/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_MMU_CONTEXT_H #define _ASM_X86_MMU_CONTEXT_H #include #include #include #include #include #include #include #include #include extern atomic64_t last_mm_ctx_id; #ifndef CONFIG_PARAVIRT static inline void paravirt_activate_mm(struct mm_struct *prev, struct mm_struct *next) { } #endif /* !CONFIG_PARAVIRT */ #ifdef CONFIG_PERF_EVENTS extern struct static_key rdpmc_always_available; static inline void load_mm_cr4(struct mm_struct *mm) { if (static_key_false(&rdpmc_always_available) || atomic_read(&mm->context.perf_rdpmc_allowed)) cr4_set_bits(X86_CR4_PCE); else cr4_clear_bits(X86_CR4_PCE); } #else static inline void load_mm_cr4(struct mm_struct *mm) {} #endif #ifdef CONFIG_MODIFY_LDT_SYSCALL /* * ldt_structs can be allocated, used, and freed, but they are never * modified while live. */ struct ldt_struct { /* * Xen requires page-aligned LDTs with special permissions. This is * needed to prevent us from installing evil descriptors such as * call gates. On native, we could merge the ldt_struct and LDT * allocations, but it's not worth trying to optimize. */ struct desc_struct *entries; unsigned int nr_entries; /* * If PTI is in use, then the entries array is not mapped while we're * in user mode. The whole array will be aliased at the addressed * given by ldt_slot_va(slot). We use two slots so that we can allocate * and map, and enable a new LDT without invalidating the mapping * of an older, still-in-use LDT. * * slot will be -1 if this LDT doesn't have an alias mapping. */ int slot; }; /* This is a multiple of PAGE_SIZE. */ #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE) static inline void *ldt_slot_va(int slot) { #ifdef CONFIG_X86_64 return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot); #else BUG(); return (void *)fix_to_virt(FIX_HOLE); #endif } /* * Used for LDT copy/destruction. */ static inline void init_new_context_ldt(struct mm_struct *mm) { mm->context.ldt = NULL; init_rwsem(&mm->context.ldt_usr_sem); } int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm); void destroy_context_ldt(struct mm_struct *mm); void ldt_arch_exit_mmap(struct mm_struct *mm); #else /* CONFIG_MODIFY_LDT_SYSCALL */ static inline void init_new_context_ldt(struct mm_struct *mm) { } static inline int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm) { return 0; } static inline void destroy_context_ldt(struct mm_struct *mm) { } static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { } #endif static inline void load_mm_ldt(struct mm_struct *mm) { #ifdef CONFIG_MODIFY_LDT_SYSCALL struct ldt_struct *ldt; /* READ_ONCE synchronizes with smp_store_release */ ldt = READ_ONCE(mm->context.ldt); /* * Any change to mm->context.ldt is followed by an IPI to all * CPUs with the mm active. The LDT will not be freed until * after the IPI is handled by all such CPUs. This means that, * if the ldt_struct changes before we return, the values we see * will be safe, and the new values will be loaded before we run * any user code. * * NB: don't try to convert this to use RCU without extreme care. * We would still need IRQs off, because we don't want to change * the local LDT after an IPI loaded a newer value than the one * that we can see. */ if (unlikely(ldt)) { if (static_cpu_has(X86_FEATURE_PTI)) { if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) { /* * Whoops -- either the new LDT isn't mapped * (if slot == -1) or is mapped into a bogus * slot (if slot > 1). */ clear_LDT(); return; } /* * If page table isolation is enabled, ldt->entries * will not be mapped in the userspace pagetables. * Tell the CPU to access the LDT through the alias * at ldt_slot_va(ldt->slot). */ set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries); } else { set_ldt(ldt->entries, ldt->nr_entries); } } else { clear_LDT(); } #else clear_LDT(); #endif } static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next) { #ifdef CONFIG_MODIFY_LDT_SYSCALL /* * Load the LDT if either the old or new mm had an LDT. * * An mm will never go from having an LDT to not having an LDT. Two * mms never share an LDT, so we don't gain anything by checking to * see whether the LDT changed. There's also no guarantee that * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL, * then prev->context.ldt will also be non-NULL. * * If we really cared, we could optimize the case where prev == next * and we're exiting lazy mode. Most of the time, if this happens, * we don't actually need to reload LDTR, but modify_ldt() is mostly * used by legacy code and emulators where we don't need this level of * performance. * * This uses | instead of || because it generates better code. */ if (unlikely((unsigned long)prev->context.ldt | (unsigned long)next->context.ldt)) load_mm_ldt(next); #endif DEBUG_LOCKS_WARN_ON(preemptible()); } void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk); /* * Init a new mm. Used on mm copies, like at fork() * and on mm's that are brand-new, like at execve(). */ static inline int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { mutex_init(&mm->context.lock); mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id); atomic64_set(&mm->context.tlb_gen, 0); #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS if (cpu_feature_enabled(X86_FEATURE_OSPKE)) { /* pkey 0 is the default and allocated implicitly */ mm->context.pkey_allocation_map = 0x1; /* -1 means unallocated or invalid */ mm->context.execute_only_pkey = -1; } #endif init_new_context_ldt(mm); return 0; } static inline void destroy_context(struct mm_struct *mm) { destroy_context_ldt(mm); } extern void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk); extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk); #define switch_mm_irqs_off switch_mm_irqs_off #define activate_mm(prev, next) \ do { \ paravirt_activate_mm((prev), (next)); \ switch_mm((prev), (next), NULL); \ } while (0); #ifdef CONFIG_X86_32 #define deactivate_mm(tsk, mm) \ do { \ lazy_load_gs(0); \ } while (0) #else #define deactivate_mm(tsk, mm) \ do { \ load_gs_index(0); \ loadsegment(fs, 0); \ } while (0) #endif static inline void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm) { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; /* Duplicate the oldmm pkey state in mm: */ mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map; mm->context.execute_only_pkey = oldmm->context.execute_only_pkey; #endif } static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { arch_dup_pkeys(oldmm, mm); paravirt_arch_dup_mmap(oldmm, mm); return ldt_dup_context(oldmm, mm); } static inline void arch_exit_mmap(struct mm_struct *mm) { paravirt_arch_exit_mmap(mm); ldt_arch_exit_mmap(mm); } #ifdef CONFIG_X86_64 static inline bool is_64bit_mm(struct mm_struct *mm) { return !IS_ENABLED(CONFIG_IA32_EMULATION) || !(mm->context.ia32_compat == TIF_IA32); } #else static inline bool is_64bit_mm(struct mm_struct *mm) { return false; } #endif static inline void arch_bprm_mm_init(struct mm_struct *mm, struct vm_area_struct *vma) { mpx_mm_init(mm); } static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long start, unsigned long end) { /* * mpx_notify_unmap() goes and reads a rarely-hot * cacheline in the mm_struct. That can be expensive * enough to be seen in profiles. * * The mpx_notify_unmap() call and its contents have been * observed to affect munmap() performance on hardware * where MPX is not present. * * The unlikely() optimizes for the fast case: no MPX * in the CPU, or no MPX use in the process. Even if * we get this wrong (in the unlikely event that MPX * is widely enabled on some system) the overhead of * MPX itself (reading bounds tables) is expected to * overwhelm the overhead of getting this unlikely() * consistently wrong. */ if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX))) mpx_notify_unmap(mm, vma, start, end); } #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS static inline int vma_pkey(struct vm_area_struct *vma) { unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 | VM_PKEY_BIT2 | VM_PKEY_BIT3; return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT; } #else static inline int vma_pkey(struct vm_area_struct *vma) { return 0; } #endif /* * We only want to enforce protection keys on the current process * because we effectively have no access to PKRU for other * processes or any way to tell *which * PKRU in a threaded * process we could use. * * So do not enforce things if the VMA is not from the current * mm, or if we are in a kernel thread. */ static inline bool vma_is_foreign(struct vm_area_struct *vma) { if (!current->mm) return true; /* * Should PKRU be enforced on the access to this VMA? If * the VMA is from another process, then PKRU has no * relevance and should not be enforced. */ if (current->mm != vma->vm_mm) return true; return false; } static inline bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write, bool execute, bool foreign) { /* pkeys never affect instruction fetches */ if (execute) return true; /* allow access if the VMA is not one from this process */ if (foreign || vma_is_foreign(vma)) return true; return __pkru_allows_pkey(vma_pkey(vma), write); } /* * This can be used from process context to figure out what the value of * CR3 is without needing to do a (slow) __read_cr3(). * * It's intended to be used for code like KVM that sneakily changes CR3 * and needs to restore it. It needs to be used very carefully. */ static inline unsigned long __get_current_cr3_fast(void) { unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, this_cpu_read(cpu_tlbstate.loaded_mm_asid)); /* For now, be very restrictive about when this can be called. */ VM_WARN_ON(in_nmi() || preemptible()); VM_BUG_ON(cr3 != __read_cr3()); return cr3; } #endif /* _ASM_X86_MMU_CONTEXT_H */