/* * Simple MTD partitioning layer * * Copyright © 2000 Nicolas Pitre * Copyright © 2002 Thomas Gleixner * Copyright © 2000-2010 David Woodhouse * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "mtdcore.h" #include "mtdsplit/mtdsplit.h" #define MTD_ERASE_PARTIAL 0x8000 /* partition only covers parts of an erase block */ /* Our partition linked list */ static LIST_HEAD(mtd_partitions); static DEFINE_MUTEX(mtd_partitions_mutex); /** * struct mtd_part - our partition node structure * * @mtd: struct holding partition details * @parent: parent mtd - flash device or another partition * @offset: partition offset relative to the *flash device* */ struct mtd_part { struct mtd_info mtd; struct mtd_info *parent; uint64_t offset; struct list_head list; }; static void mtd_partition_split(struct mtd_info *master, struct mtd_part *part); static int parse_mtd_partitions_by_type(struct mtd_info *master, enum mtd_parser_type type, const struct mtd_partition **pparts, struct mtd_part_parser_data *data); /* * Given a pointer to the MTD object in the mtd_part structure, we can retrieve * the pointer to that structure. */ static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd) { return container_of(mtd, struct mtd_part, mtd); } static u64 part_absolute_offset(struct mtd_info *mtd) { struct mtd_part *part = mtd_to_part(mtd); if (!mtd_is_partition(mtd)) return 0; return part_absolute_offset(part->parent) + part->offset; } /* * MTD methods which simply translate the effective address and pass through * to the _real_ device. */ static int part_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = mtd_to_part(mtd); struct mtd_ecc_stats stats; int res; stats = part->parent->ecc_stats; res = part->parent->_read(part->parent, from + part->offset, len, retlen, buf); if (unlikely(mtd_is_eccerr(res))) mtd->ecc_stats.failed += part->parent->ecc_stats.failed - stats.failed; else mtd->ecc_stats.corrected += part->parent->ecc_stats.corrected - stats.corrected; return res; } static int part_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_point(part->parent, from + part->offset, len, retlen, virt, phys); } static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_unpoint(part->parent, from + part->offset, len); } static unsigned long part_get_unmapped_area(struct mtd_info *mtd, unsigned long len, unsigned long offset, unsigned long flags) { struct mtd_part *part = mtd_to_part(mtd); offset += part->offset; return part->parent->_get_unmapped_area(part->parent, len, offset, flags); } static int part_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct mtd_part *part = mtd_to_part(mtd); int res; if (from >= mtd->size) return -EINVAL; if (ops->datbuf && from + ops->len > mtd->size) return -EINVAL; /* * If OOB is also requested, make sure that we do not read past the end * of this partition. */ if (ops->oobbuf) { size_t len, pages; len = mtd_oobavail(mtd, ops); pages = mtd_div_by_ws(mtd->size, mtd); pages -= mtd_div_by_ws(from, mtd); if (ops->ooboffs + ops->ooblen > pages * len) return -EINVAL; } res = part->parent->_read_oob(part->parent, from + part->offset, ops); if (unlikely(res)) { if (mtd_is_bitflip(res)) mtd->ecc_stats.corrected++; if (mtd_is_eccerr(res)) mtd->ecc_stats.failed++; } return res; } static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_read_user_prot_reg(part->parent, from, len, retlen, buf); } static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *buf) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_get_user_prot_info(part->parent, len, retlen, buf); } static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_read_fact_prot_reg(part->parent, from, len, retlen, buf); } static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *buf) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_get_fact_prot_info(part->parent, len, retlen, buf); } static int part_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_write(part->parent, to + part->offset, len, retlen, buf); } static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_panic_write(part->parent, to + part->offset, len, retlen, buf); } static int part_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct mtd_part *part = mtd_to_part(mtd); if (to >= mtd->size) return -EINVAL; if (ops->datbuf && to + ops->len > mtd->size) return -EINVAL; return part->parent->_write_oob(part->parent, to + part->offset, ops); } static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_write_user_prot_reg(part->parent, from, len, retlen, buf); } static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_lock_user_prot_reg(part->parent, from, len); } static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_writev(part->parent, vecs, count, to + part->offset, retlen); } static int part_erase(struct mtd_info *mtd, struct erase_info *instr) { struct mtd_part *part = mtd_to_part(mtd); int ret; instr->partial_start = false; if (mtd->flags & MTD_ERASE_PARTIAL) { size_t readlen = 0; u64 mtd_ofs; instr->erase_buf = kmalloc(part->parent->erasesize, GFP_ATOMIC); if (!instr->erase_buf) return -ENOMEM; mtd_ofs = part->offset + instr->addr; instr->erase_buf_ofs = do_div(mtd_ofs, part->parent->erasesize); if (instr->erase_buf_ofs > 0) { instr->addr -= instr->erase_buf_ofs; ret = mtd_read(part->parent, instr->addr + part->offset, part->parent->erasesize, &readlen, instr->erase_buf); instr->len += instr->erase_buf_ofs; instr->partial_start = true; } else { mtd_ofs = part->offset + part->mtd.size; instr->erase_buf_ofs = part->parent->erasesize - do_div(mtd_ofs, part->parent->erasesize); if (instr->erase_buf_ofs > 0) { instr->len += instr->erase_buf_ofs; ret = mtd_read(part->parent, part->offset + instr->addr + instr->len - part->parent->erasesize, part->parent->erasesize, &readlen, instr->erase_buf); } else { ret = 0; } } if (ret < 0) { kfree(instr->erase_buf); return ret; } } instr->addr += part->offset; ret = part->parent->_erase(part->parent, instr); if (ret) { if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr -= part->offset; instr->addr -= part->offset; if (mtd->flags & MTD_ERASE_PARTIAL) kfree(instr->erase_buf); } return ret; } void mtd_erase_callback(struct erase_info *instr) { if (instr->mtd->_erase == part_erase) { struct mtd_part *part = mtd_to_part(instr->mtd); size_t wrlen = 0; if (instr->mtd->flags & MTD_ERASE_PARTIAL) { if (instr->partial_start) { part->parent->_write(part->parent, instr->addr, instr->erase_buf_ofs, &wrlen, instr->erase_buf); instr->addr += instr->erase_buf_ofs; } else { instr->len -= instr->erase_buf_ofs; part->parent->_write(part->parent, instr->addr + instr->len, instr->erase_buf_ofs, &wrlen, instr->erase_buf + part->parent->erasesize - instr->erase_buf_ofs); } kfree(instr->erase_buf); } if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr -= part->offset; instr->addr -= part->offset; } if (instr->callback) instr->callback(instr); } EXPORT_SYMBOL_GPL(mtd_erase_callback); static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_lock(part->parent, ofs + part->offset, len); } static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = mtd_to_part(mtd); ofs += part->offset; if (mtd->flags & MTD_ERASE_PARTIAL) { /* round up len to next erasesize and round down offset to prev block */ len = (mtd_div_by_eb(len, part->parent) + 1) * part->parent->erasesize; ofs &= ~(part->parent->erasesize - 1); } return part->parent->_unlock(part->parent, ofs, len); } static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_is_locked(part->parent, ofs + part->offset, len); } static void part_sync(struct mtd_info *mtd) { struct mtd_part *part = mtd_to_part(mtd); part->parent->_sync(part->parent); } static int part_suspend(struct mtd_info *mtd) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_suspend(part->parent); } static void part_resume(struct mtd_info *mtd) { struct mtd_part *part = mtd_to_part(mtd); part->parent->_resume(part->parent); } static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = mtd_to_part(mtd); ofs += part->offset; return part->parent->_block_isreserved(part->parent, ofs); } static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = mtd_to_part(mtd); ofs += part->offset; return part->parent->_block_isbad(part->parent, ofs); } static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = mtd_to_part(mtd); int res; ofs += part->offset; res = part->parent->_block_markbad(part->parent, ofs); if (!res) mtd->ecc_stats.badblocks++; return res; } static int part_get_device(struct mtd_info *mtd) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_get_device(part->parent); } static void part_put_device(struct mtd_info *mtd) { struct mtd_part *part = mtd_to_part(mtd); part->parent->_put_device(part->parent); } static int part_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct mtd_part *part = mtd_to_part(mtd); return mtd_ooblayout_ecc(part->parent, section, oobregion); } static int part_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct mtd_part *part = mtd_to_part(mtd); return mtd_ooblayout_free(part->parent, section, oobregion); } static const struct mtd_ooblayout_ops part_ooblayout_ops = { .ecc = part_ooblayout_ecc, .free = part_ooblayout_free, }; static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) { struct mtd_part *part = mtd_to_part(mtd); return part->parent->_max_bad_blocks(part->parent, ofs + part->offset, len); } static inline void free_partition(struct mtd_part *p) { kfree(p->mtd.name); kfree(p); } static struct mtd_part *allocate_partition(struct mtd_info *parent, const struct mtd_partition *part, int partno, uint64_t cur_offset) { int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize : parent->erasesize; struct mtd_part *slave; u32 remainder; char *name; u64 tmp; /* allocate the partition structure */ slave = kzalloc(sizeof(*slave), GFP_KERNEL); name = kstrdup(part->name, GFP_KERNEL); if (!name || !slave) { printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", parent->name); kfree(name); kfree(slave); return ERR_PTR(-ENOMEM); } /* set up the MTD object for this partition */ slave->mtd.type = parent->type; slave->mtd.flags = parent->orig_flags & ~part->mask_flags; slave->mtd.orig_flags = slave->mtd.flags; slave->mtd.size = part->size; slave->mtd.writesize = parent->writesize; slave->mtd.writebufsize = parent->writebufsize; slave->mtd.oobsize = parent->oobsize; slave->mtd.oobavail = parent->oobavail; slave->mtd.subpage_sft = parent->subpage_sft; slave->mtd.pairing = parent->pairing; slave->mtd.name = name; slave->mtd.owner = parent->owner; /* NOTE: Historically, we didn't arrange MTDs as a tree out of * concern for showing the same data in multiple partitions. * However, it is very useful to have the master node present, * so the MTD_PARTITIONED_MASTER option allows that. The master * will have device nodes etc only if this is set, so make the * parent conditional on that option. Note, this is a way to * distinguish between the master and the partition in sysfs. */ slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ? &parent->dev : parent->dev.parent; slave->mtd.dev.of_node = part->of_node; slave->mtd._read = part_read; slave->mtd._write = part_write; if (parent->_panic_write) slave->mtd._panic_write = part_panic_write; if (parent->_point && parent->_unpoint) { slave->mtd._point = part_point; slave->mtd._unpoint = part_unpoint; } if (parent->_get_unmapped_area) slave->mtd._get_unmapped_area = part_get_unmapped_area; if (parent->_read_oob) slave->mtd._read_oob = part_read_oob; if (parent->_write_oob) slave->mtd._write_oob = part_write_oob; if (parent->_read_user_prot_reg) slave->mtd._read_user_prot_reg = part_read_user_prot_reg; if (parent->_read_fact_prot_reg) slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; if (parent->_write_user_prot_reg) slave->mtd._write_user_prot_reg = part_write_user_prot_reg; if (parent->_lock_user_prot_reg) slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; if (parent->_get_user_prot_info) slave->mtd._get_user_prot_info = part_get_user_prot_info; if (parent->_get_fact_prot_info) slave->mtd._get_fact_prot_info = part_get_fact_prot_info; if (parent->_sync) slave->mtd._sync = part_sync; if (!partno && !parent->dev.class && parent->_suspend && parent->_resume) { slave->mtd._suspend = part_suspend; slave->mtd._resume = part_resume; } if (parent->_writev) slave->mtd._writev = part_writev; if (parent->_lock) slave->mtd._lock = part_lock; if (parent->_unlock) slave->mtd._unlock = part_unlock; if (parent->_is_locked) slave->mtd._is_locked = part_is_locked; if (parent->_block_isreserved) slave->mtd._block_isreserved = part_block_isreserved; if (parent->_block_isbad) slave->mtd._block_isbad = part_block_isbad; if (parent->_block_markbad) slave->mtd._block_markbad = part_block_markbad; if (parent->_max_bad_blocks) slave->mtd._max_bad_blocks = part_max_bad_blocks; if (parent->_get_device) slave->mtd._get_device = part_get_device; if (parent->_put_device) slave->mtd._put_device = part_put_device; slave->mtd._erase = part_erase; slave->parent = parent; slave->offset = part->offset; if (slave->offset == MTDPART_OFS_APPEND) slave->offset = cur_offset; if (slave->offset == MTDPART_OFS_NXTBLK) { tmp = cur_offset; slave->offset = cur_offset; remainder = do_div(tmp, wr_alignment); if (remainder) { slave->offset += wr_alignment - remainder; printk(KERN_NOTICE "Moving partition %d: " "0x%012llx -> 0x%012llx\n", partno, (unsigned long long)cur_offset, (unsigned long long)slave->offset); } } if (slave->offset == MTDPART_OFS_RETAIN) { slave->offset = cur_offset; if (parent->size - slave->offset >= slave->mtd.size) { slave->mtd.size = parent->size - slave->offset - slave->mtd.size; } else { printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", part->name, parent->size - slave->offset, slave->mtd.size); /* register to preserve ordering */ goto out_register; } } if (slave->mtd.size == MTDPART_SIZ_FULL) slave->mtd.size = parent->size - slave->offset; printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); /* let's do some sanity checks */ if (slave->offset >= parent->size) { /* let's register it anyway to preserve ordering */ slave->offset = 0; slave->mtd.size = 0; printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", part->name); goto out_register; } if (slave->offset + slave->mtd.size > parent->size) { slave->mtd.size = parent->size - slave->offset; printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", part->name, parent->name, (unsigned long long)slave->mtd.size); } if (parent->numeraseregions > 1) { /* Deal with variable erase size stuff */ int i, max = parent->numeraseregions; u64 end = slave->offset + slave->mtd.size; struct mtd_erase_region_info *regions = parent->eraseregions; /* Find the first erase regions which is part of this * partition. */ for (i = 0; i < max && regions[i].offset <= slave->offset; i++) ; /* The loop searched for the region _behind_ the first one */ if (i > 0) i--; /* Pick biggest erasesize */ for (; i < max && regions[i].offset < end; i++) { if (slave->mtd.erasesize < regions[i].erasesize) { slave->mtd.erasesize = regions[i].erasesize; } } BUG_ON(slave->mtd.erasesize == 0); } else { /* Single erase size */ slave->mtd.erasesize = parent->erasesize; } /* * Slave erasesize might differ from the master one if the master * exposes several regions with different erasesize. Adjust * wr_alignment accordingly. */ if (!(slave->mtd.flags & MTD_NO_ERASE)) wr_alignment = slave->mtd.erasesize; tmp = part_absolute_offset(parent) + slave->offset; remainder = do_div(tmp, wr_alignment); if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) { /* Doesn't start on a boundary of major erase size */ slave->mtd.flags |= MTD_ERASE_PARTIAL; if (((u32)slave->mtd.size) > parent->erasesize) slave->mtd.flags &= ~MTD_WRITEABLE; else slave->mtd.erasesize = slave->mtd.size; } tmp = part_absolute_offset(parent) + slave->offset + slave->mtd.size; remainder = do_div(tmp, wr_alignment); if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) { slave->mtd.flags |= MTD_ERASE_PARTIAL; if ((u32)slave->mtd.size > parent->erasesize) slave->mtd.flags &= ~MTD_WRITEABLE; else slave->mtd.erasesize = slave->mtd.size; } mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops); slave->mtd.ecc_step_size = parent->ecc_step_size; slave->mtd.ecc_strength = parent->ecc_strength; slave->mtd.bitflip_threshold = parent->bitflip_threshold; if (parent->_block_isbad) { uint64_t offs = 0; while (offs < slave->mtd.size) { if (mtd_block_isreserved(parent, offs + slave->offset)) slave->mtd.ecc_stats.bbtblocks++; else if (mtd_block_isbad(parent, offs + slave->offset)) slave->mtd.ecc_stats.badblocks++; offs += slave->mtd.erasesize; } } out_register: return slave; } static ssize_t mtd_partition_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mtd_info *mtd = dev_get_drvdata(dev); struct mtd_part *part = mtd_to_part(mtd); return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset); } static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL); static const struct attribute *mtd_partition_attrs[] = { &dev_attr_offset.attr, NULL }; static int mtd_add_partition_attrs(struct mtd_part *new) { int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs); if (ret) printk(KERN_WARNING "mtd: failed to create partition attrs, err=%d\n", ret); return ret; } int mtd_add_partition(struct mtd_info *parent, const char *name, long long offset, long long length) { struct mtd_partition part; struct mtd_part *new; int ret = 0; /* the direct offset is expected */ if (offset == MTDPART_OFS_APPEND || offset == MTDPART_OFS_NXTBLK) return -EINVAL; if (length == MTDPART_SIZ_FULL) length = parent->size - offset; if (length <= 0) return -EINVAL; memset(&part, 0, sizeof(part)); part.name = name; part.size = length; part.offset = offset; new = allocate_partition(parent, &part, -1, offset); if (IS_ERR(new)) return PTR_ERR(new); mutex_lock(&mtd_partitions_mutex); list_add(&new->list, &mtd_partitions); mutex_unlock(&mtd_partitions_mutex); ret = add_mtd_device(&new->mtd); if (ret) goto err_remove_part; mtd_partition_split(parent, new); mtd_add_partition_attrs(new); return 0; err_remove_part: mutex_lock(&mtd_partitions_mutex); list_del(&new->list); mutex_unlock(&mtd_partitions_mutex); free_partition(new); return ret; } EXPORT_SYMBOL_GPL(mtd_add_partition); /** * __mtd_del_partition - delete MTD partition * * @priv: internal MTD struct for partition to be deleted * * This function must be called with the partitions mutex locked. */ static int __mtd_del_partition(struct mtd_part *priv) { struct mtd_part *child, *next; int err; list_for_each_entry_safe(child, next, &mtd_partitions, list) { if (child->parent == &priv->mtd) { err = __mtd_del_partition(child); if (err) return err; } } sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs); err = del_mtd_device(&priv->mtd); if (err) return err; list_del(&priv->list); free_partition(priv); return 0; } /* * This function unregisters and destroy all slave MTD objects which are * attached to the given MTD object. */ int del_mtd_partitions(struct mtd_info *mtd) { struct mtd_part *slave, *next; int ret, err = 0; mutex_lock(&mtd_partitions_mutex); list_for_each_entry_safe(slave, next, &mtd_partitions, list) if (slave->parent == mtd) { ret = __mtd_del_partition(slave); if (ret < 0) err = ret; } mutex_unlock(&mtd_partitions_mutex); return err; } int mtd_del_partition(struct mtd_info *mtd, int partno) { struct mtd_part *slave, *next; int ret = -EINVAL; mutex_lock(&mtd_partitions_mutex); list_for_each_entry_safe(slave, next, &mtd_partitions, list) if ((slave->parent == mtd) && (slave->mtd.index == partno)) { ret = __mtd_del_partition(slave); break; } mutex_unlock(&mtd_partitions_mutex); return ret; } EXPORT_SYMBOL_GPL(mtd_del_partition); static int run_parsers_by_type(struct mtd_part *slave, enum mtd_parser_type type) { struct mtd_partition *parts; int nr_parts; int i; nr_parts = parse_mtd_partitions_by_type(&slave->mtd, type, (const struct mtd_partition **)&parts, NULL); if (nr_parts <= 0) return nr_parts; if (WARN_ON(!parts)) return 0; for (i = 0; i < nr_parts; i++) { /* adjust partition offsets */ parts[i].offset += slave->offset; mtd_add_partition(slave->parent, parts[i].name, parts[i].offset, parts[i].size); } kfree(parts); return nr_parts; } #ifdef CONFIG_MTD_SPLIT_FIRMWARE_NAME #define SPLIT_FIRMWARE_NAME CONFIG_MTD_SPLIT_FIRMWARE_NAME #else #define SPLIT_FIRMWARE_NAME "unused" #endif static void split_firmware(struct mtd_info *master, struct mtd_part *part) { run_parsers_by_type(part, MTD_PARSER_TYPE_FIRMWARE); } static void mtd_partition_split(struct mtd_info *master, struct mtd_part *part) { static int rootfs_found = 0; if (rootfs_found) return; if (!strcmp(part->mtd.name, "rootfs")) { run_parsers_by_type(part, MTD_PARSER_TYPE_ROOTFS); rootfs_found = 1; } if (IS_ENABLED(CONFIG_MTD_SPLIT_FIRMWARE) && !strcmp(part->mtd.name, SPLIT_FIRMWARE_NAME) && !of_find_property(mtd_get_of_node(&part->mtd), "compatible", NULL)) split_firmware(master, part); } /* * This function, given a master MTD object and a partition table, creates * and registers slave MTD objects which are bound to the master according to * the partition definitions. * * For historical reasons, this function's caller only registers the master * if the MTD_PARTITIONED_MASTER config option is set. */ int add_mtd_partitions(struct mtd_info *master, const struct mtd_partition *parts, int nbparts) { struct mtd_part *slave; uint64_t cur_offset = 0; int i, ret; printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); for (i = 0; i < nbparts; i++) { slave = allocate_partition(master, parts + i, i, cur_offset); if (IS_ERR(slave)) { ret = PTR_ERR(slave); goto err_del_partitions; } mutex_lock(&mtd_partitions_mutex); list_add(&slave->list, &mtd_partitions); mutex_unlock(&mtd_partitions_mutex); ret = add_mtd_device(&slave->mtd); if (ret) { mutex_lock(&mtd_partitions_mutex); list_del(&slave->list); mutex_unlock(&mtd_partitions_mutex); free_partition(slave); goto err_del_partitions; } mtd_partition_split(master, slave); mtd_add_partition_attrs(slave); /* Look for subpartitions */ parse_mtd_partitions(&slave->mtd, parts[i].types, NULL); cur_offset = slave->offset + slave->mtd.size; } return 0; err_del_partitions: del_mtd_partitions(master); return ret; } static DEFINE_SPINLOCK(part_parser_lock); static LIST_HEAD(part_parsers); static struct mtd_part_parser *mtd_part_parser_get(const char *name) { struct mtd_part_parser *p, *ret = NULL; spin_lock(&part_parser_lock); list_for_each_entry(p, &part_parsers, list) if (!strcmp(p->name, name) && try_module_get(p->owner)) { ret = p; break; } spin_unlock(&part_parser_lock); return ret; } static inline void mtd_part_parser_put(const struct mtd_part_parser *p) { module_put(p->owner); } /* * Many partition parsers just expected the core to kfree() all their data in * one chunk. Do that by default. */ static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts, int nr_parts) { kfree(pparts); } int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner) { p->owner = owner; if (!p->cleanup) p->cleanup = &mtd_part_parser_cleanup_default; spin_lock(&part_parser_lock); list_add(&p->list, &part_parsers); spin_unlock(&part_parser_lock); return 0; } EXPORT_SYMBOL_GPL(__register_mtd_parser); void deregister_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_del(&p->list); spin_unlock(&part_parser_lock); } EXPORT_SYMBOL_GPL(deregister_mtd_parser); #include /* * Parses the linux,part-probe device tree property. * When a non null value is returned it has to be freed with kfree() by * the caller. */ static const char * const *of_get_probes(struct device_node *dp) { const char **res; int count; count = of_property_count_strings(dp, "linux,part-probe"); if (count < 0) return NULL; res = kzalloc((count + 1) * sizeof(*res), GFP_KERNEL); if (!res) return NULL; count = of_property_read_string_array(dp, "linux,part-probe", res, count); if (count < 0) return NULL; pr_warn("Support for the generic \"linux,part-probe\" has been deprecated and will be removed soon"); BUILD_BUG_ON(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 15, 0)); return res; } /* * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you * are changing this array! */ static const char * const default_mtd_part_types[] = { "cmdlinepart", "ofpart", NULL }; /* Check DT only when looking for subpartitions. */ static const char * const default_subpartition_types[] = { "ofpart", NULL }; static int mtd_part_do_parse(struct mtd_part_parser *parser, struct mtd_info *master, struct mtd_partitions *pparts, struct mtd_part_parser_data *data) { int ret; ret = (*parser->parse_fn)(master, &pparts->parts, data); pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret); if (ret <= 0) return ret; pr_notice("%d %s partitions found on MTD device %s\n", ret, parser->name, master->name); pparts->nr_parts = ret; pparts->parser = parser; return ret; } /** * mtd_part_get_compatible_parser - find MTD parser by a compatible string * * @compat: compatible string describing partitions in a device tree * * MTD parsers can specify supported partitions by providing a table of * compatibility strings. This function finds a parser that advertises support * for a passed value of "compatible". */ static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat) { struct mtd_part_parser *p, *ret = NULL; spin_lock(&part_parser_lock); list_for_each_entry(p, &part_parsers, list) { const struct of_device_id *matches; matches = p->of_match_table; if (!matches) continue; for (; matches->compatible[0]; matches++) { if (!strcmp(matches->compatible, compat) && try_module_get(p->owner)) { ret = p; break; } } if (ret) break; } spin_unlock(&part_parser_lock); return ret; } static int mtd_part_of_parse(struct mtd_info *master, struct mtd_partitions *pparts) { struct mtd_part_parser *parser; struct device_node *np; struct property *prop; const char *compat; const char *fixed = "fixed-partitions"; int ret, err = 0; np = mtd_get_of_node(master); if (!mtd_is_partition(master)) np = of_get_child_by_name(np, "partitions"); of_property_for_each_string(np, "compatible", prop, compat) { parser = mtd_part_get_compatible_parser(compat); if (!parser) continue; ret = mtd_part_do_parse(parser, master, pparts, NULL); if (ret > 0) { of_node_put(np); return ret; } mtd_part_parser_put(parser); if (ret < 0 && !err) err = ret; } of_node_put(np); /* * For backward compatibility we have to try the "fixed-partitions" * parser. It supports old DT format with partitions specified as a * direct subnodes of a flash device DT node without any compatibility * specified we could match. */ parser = mtd_part_parser_get(fixed); if (!parser && !request_module("%s", fixed)) parser = mtd_part_parser_get(fixed); if (parser) { ret = mtd_part_do_parse(parser, master, pparts, NULL); if (ret > 0) return ret; mtd_part_parser_put(parser); if (ret < 0 && !err) err = ret; } return err; } /** * parse_mtd_partitions - parse and register MTD partitions * * @master: the master partition (describes whole MTD device) * @types: names of partition parsers to try or %NULL * @data: MTD partition parser-specific data * * This function tries to find & register partitions on MTD device @master. It * uses MTD partition parsers, specified in @types. However, if @types is %NULL, * then the default list of parsers is used. The default list contains only the * "cmdlinepart" and "ofpart" parsers ATM. * Note: If there are more then one parser in @types, the kernel only takes the * partitions parsed out by the first parser. * * This function may return: * o a negative error code in case of failure * o number of found partitions otherwise */ int parse_mtd_partitions(struct mtd_info *master, const char *const *types, struct mtd_part_parser_data *data) { struct mtd_partitions pparts = { }; struct mtd_part_parser *parser; int ret, err = 0; const char *const *types_of = NULL; if (mtd_get_of_node(master)) { types_of = of_get_probes(mtd_get_of_node(master)); if (types_of != NULL) types = types_of; } if (!types) types = mtd_is_partition(master) ? default_subpartition_types : default_mtd_part_types; for ( ; *types; types++) { /* * ofpart is a special type that means OF partitioning info * should be used. It requires a bit different logic so it is * handled in a separated function. */ if (!strcmp(*types, "ofpart")) { ret = mtd_part_of_parse(master, &pparts); } else { pr_debug("%s: parsing partitions %s\n", master->name, *types); parser = mtd_part_parser_get(*types); if (!parser && !request_module("%s", *types)) parser = mtd_part_parser_get(*types); pr_debug("%s: got parser %s\n", master->name, parser ? parser->name : NULL); if (!parser) continue; ret = mtd_part_do_parse(parser, master, &pparts, data); if (ret <= 0) mtd_part_parser_put(parser); } /* Found partitions! */ if (ret > 0) { err = add_mtd_partitions(master, pparts.parts, pparts.nr_parts); mtd_part_parser_cleanup(&pparts); return err ? err : pparts.nr_parts; } /* * Stash the first error we see; only report it if no parser * succeeds */ if (ret < 0 && !err) err = ret; } kfree(types_of); return err; } void mtd_part_parser_cleanup(struct mtd_partitions *parts) { const struct mtd_part_parser *parser; if (!parts) return; parser = parts->parser; if (parser) { if (parser->cleanup) parser->cleanup(parts->parts, parts->nr_parts); mtd_part_parser_put(parser); } } static struct mtd_part_parser * get_partition_parser_by_type(enum mtd_parser_type type, struct mtd_part_parser *start) { struct mtd_part_parser *p, *ret = NULL; spin_lock(&part_parser_lock); p = list_prepare_entry(start, &part_parsers, list); if (start) mtd_part_parser_put(start); list_for_each_entry_continue(p, &part_parsers, list) { if (p->type == type && try_module_get(p->owner)) { ret = p; break; } } spin_unlock(&part_parser_lock); return ret; } static int parse_mtd_partitions_by_type(struct mtd_info *master, enum mtd_parser_type type, const struct mtd_partition **pparts, struct mtd_part_parser_data *data) { struct mtd_part_parser *prev = NULL; int ret = 0; while (1) { struct mtd_part_parser *parser; parser = get_partition_parser_by_type(type, prev); if (!parser) break; ret = (*parser->parse_fn)(master, pparts, data); if (ret > 0) { mtd_part_parser_put(parser); printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", ret, parser->name, master->name); break; } prev = parser; } return ret; } int mtd_is_partition(const struct mtd_info *mtd) { struct mtd_part *part; int ispart = 0; mutex_lock(&mtd_partitions_mutex); list_for_each_entry(part, &mtd_partitions, list) if (&part->mtd == mtd) { ispart = 1; break; } mutex_unlock(&mtd_partitions_mutex); return ispart; } EXPORT_SYMBOL_GPL(mtd_is_partition); struct mtd_info *mtdpart_get_master(const struct mtd_info *mtd) { if (!mtd_is_partition(mtd)) return (struct mtd_info *)mtd; return mtd_to_part(mtd)->parent; } EXPORT_SYMBOL_GPL(mtdpart_get_master); uint64_t mtdpart_get_offset(const struct mtd_info *mtd) { if (!mtd_is_partition(mtd)) return 0; return mtd_to_part(mtd)->offset; } EXPORT_SYMBOL_GPL(mtdpart_get_offset); /* Returns the size of the entire flash chip */ uint64_t mtd_get_device_size(const struct mtd_info *mtd) { if (!mtd_is_partition(mtd)) return mtd->size; return mtd_get_device_size(mtd_to_part(mtd)->parent); } EXPORT_SYMBOL_GPL(mtd_get_device_size);