/* mpfr_log2 -- log base 2 Copyright 2001-2019 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of r=log2(a) r=log2(a)=log(a)/log(2) */ int mpfr_log2 (mpfr_ptr r, mpfr_srcptr a, mpfr_rnd_t rnd_mode) { int inexact; MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC (("a[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (a), mpfr_log_prec, a, rnd_mode), ("r[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (r), mpfr_log_prec, r, inexact)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a))) { /* If a is NaN, the result is NaN */ if (MPFR_IS_NAN (a)) { MPFR_SET_NAN (r); MPFR_RET_NAN; } /* check for infinity before zero */ else if (MPFR_IS_INF (a)) { if (MPFR_IS_NEG (a)) /* log(-Inf) = NaN */ { MPFR_SET_NAN (r); MPFR_RET_NAN; } else /* log(+Inf) = +Inf */ { MPFR_SET_INF (r); MPFR_SET_POS (r); MPFR_RET (0); } } else /* a is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (a)); MPFR_SET_INF (r); MPFR_SET_NEG (r); MPFR_SET_DIVBY0 (); MPFR_RET (0); /* log2(0) is an exact -infinity */ } } /* If a is negative, the result is NaN */ if (MPFR_UNLIKELY (MPFR_IS_NEG (a))) { MPFR_SET_NAN (r); MPFR_RET_NAN; } /* If a is 1, the result is 0 */ if (MPFR_UNLIKELY (mpfr_cmp_ui (a, 1) == 0)) { MPFR_SET_ZERO (r); MPFR_SET_POS (r); MPFR_RET (0); /* only "normal" case where the result is exact */ } /* If a is 2^N, log2(a) is exact*/ if (MPFR_UNLIKELY (mpfr_cmp_ui_2exp (a, 1, MPFR_GET_EXP (a) - 1) == 0)) return mpfr_set_si(r, MPFR_GET_EXP (a) - 1, rnd_mode); MPFR_SAVE_EXPO_MARK (expo); /* General case */ { /* Declaration of the intermediary variable */ mpfr_t t, tt; /* Declaration of the size variable */ mpfr_prec_t Ny = MPFR_PREC(r); /* target precision */ mpfr_prec_t Nt; /* working precision */ mpfr_exp_t err; /* error */ MPFR_ZIV_DECL (loop); /* compute the precision of intermediary variable */ /* the optimal number of bits : see algorithms.tex */ Nt = Ny + 3 + MPFR_INT_CEIL_LOG2 (Ny); /* initialize of intermediary variable */ mpfr_init2 (t, Nt); mpfr_init2 (tt, Nt); /* First computation of log2 */ MPFR_ZIV_INIT (loop, Nt); for (;;) { /* compute log2 */ mpfr_const_log2(t,MPFR_RNDD); /* log(2) */ mpfr_log(tt,a,MPFR_RNDN); /* log(a) */ mpfr_div(t,tt,t,MPFR_RNDN); /* log(a)/log(2) */ /* estimation of the error */ err = Nt-3; if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) break; /* actualization of the precision */ MPFR_ZIV_NEXT (loop, Nt); mpfr_set_prec (t, Nt); mpfr_set_prec (tt, Nt); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (r, t, rnd_mode); mpfr_clear (t); mpfr_clear (tt); } MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (r, inexact, rnd_mode); }