// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package elliptic // This is a constant-time, 32-bit implementation of P224. See FIPS 186-3, // section D.2.2. // // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. import ( "math/big" ) var p224 p224Curve type p224Curve struct { *CurveParams gx, gy, b p224FieldElement } func initP224() { // See FIPS 186-3, section D.2.2 p224.CurveParams = &CurveParams{Name: "P-224"} p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10) p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10) p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16) p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16) p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16) p224.BitSize = 224 p224FromBig(&p224.gx, p224.Gx) p224FromBig(&p224.gy, p224.Gy) p224FromBig(&p224.b, p224.B) } // P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2). // // The cryptographic operations are implemented using constant-time algorithms. func P224() Curve { initonce.Do(initAll) return p224 } func (curve p224Curve) Params() *CurveParams { return curve.CurveParams } func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool { var x, y p224FieldElement p224FromBig(&x, bigX) p224FromBig(&y, bigY) // y² = x³ - 3x + b var tmp p224LargeFieldElement var x3 p224FieldElement p224Square(&x3, &x, &tmp) p224Mul(&x3, &x3, &x, &tmp) for i := 0; i < 8; i++ { x[i] *= 3 } p224Sub(&x3, &x3, &x) p224Reduce(&x3) p224Add(&x3, &x3, &curve.b) p224Contract(&x3, &x3) p224Square(&y, &y, &tmp) p224Contract(&y, &y) for i := 0; i < 8; i++ { if y[i] != x3[i] { return false } } return true } func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) { var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement p224FromBig(&x1, bigX1) p224FromBig(&y1, bigY1) if bigX1.Sign() != 0 || bigY1.Sign() != 0 { z1[0] = 1 } p224FromBig(&x2, bigX2) p224FromBig(&y2, bigY2) if bigX2.Sign() != 0 || bigY2.Sign() != 0 { z2[0] = 1 } p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2) return p224ToAffine(&x3, &y3, &z3) } func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) { var x1, y1, z1, x2, y2, z2 p224FieldElement p224FromBig(&x1, bigX1) p224FromBig(&y1, bigY1) z1[0] = 1 p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1) return p224ToAffine(&x2, &y2, &z2) } func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) { var x1, y1, z1, x2, y2, z2 p224FieldElement p224FromBig(&x1, bigX1) p224FromBig(&y1, bigY1) z1[0] = 1 p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar) return p224ToAffine(&x2, &y2, &z2) } func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { var z1, x2, y2, z2 p224FieldElement z1[0] = 1 p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar) return p224ToAffine(&x2, &y2, &z2) } // Field element functions. // // The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1. // // Field elements are represented by a FieldElement, which is a typedef to an // array of 8 uint32's. The value of a FieldElement, a, is: // a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] // // Using 28-bit limbs means that there's only 4 bits of headroom, which is less // than we would really like. But it has the useful feature that we hit 2**224 // exactly, making the reflections during a reduce much nicer. type p224FieldElement [8]uint32 // p224P is the order of the field, represented as a p224FieldElement. var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff} // p224IsZero returns 1 if a == 0 mod p and 0 otherwise. // // a[i] < 2**29 func p224IsZero(a *p224FieldElement) uint32 { // Since a p224FieldElement contains 224 bits there are two possible // representations of 0: 0 and p. var minimal p224FieldElement p224Contract(&minimal, a) var isZero, isP uint32 for i, v := range minimal { isZero |= v isP |= v - p224P[i] } // If either isZero or isP is 0, then we should return 1. isZero |= isZero >> 16 isZero |= isZero >> 8 isZero |= isZero >> 4 isZero |= isZero >> 2 isZero |= isZero >> 1 isP |= isP >> 16 isP |= isP >> 8 isP |= isP >> 4 isP |= isP >> 2 isP |= isP >> 1 // For isZero and isP, the LSB is 0 iff all the bits are zero. result := isZero & isP result = (^result) & 1 return result } // p224Add computes *out = a+b // // a[i] + b[i] < 2**32 func p224Add(out, a, b *p224FieldElement) { for i := 0; i < 8; i++ { out[i] = a[i] + b[i] } } const two31p3 = 1<<31 + 1<<3 const two31m3 = 1<<31 - 1<<3 const two31m15m3 = 1<<31 - 1<<15 - 1<<3 // p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can // subtract smaller amounts without underflow. See the section "Subtraction" in // [1] for reasoning. var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3} // p224Sub computes *out = a-b // // a[i], b[i] < 2**30 // out[i] < 2**32 func p224Sub(out, a, b *p224FieldElement) { for i := 0; i < 8; i++ { out[i] = a[i] + p224ZeroModP31[i] - b[i] } } // LargeFieldElement also represents an element of the field. The limbs are // still spaced 28-bits apart and in little-endian order. So the limbs are at // 0, 28, 56, ..., 392 bits, each 64-bits wide. type p224LargeFieldElement [15]uint64 const two63p35 = 1<<63 + 1<<35 const two63m35 = 1<<63 - 1<<35 const two63m35m19 = 1<<63 - 1<<35 - 1<<19 // p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section // "Subtraction" in [1] for why. var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35} const bottom12Bits = 0xfff const bottom28Bits = 0xfffffff // p224Mul computes *out = a*b // // a[i] < 2**29, b[i] < 2**30 (or vice versa) // out[i] < 2**29 func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) { for i := 0; i < 15; i++ { tmp[i] = 0 } for i := 0; i < 8; i++ { for j := 0; j < 8; j++ { tmp[i+j] += uint64(a[i]) * uint64(b[j]) } } p224ReduceLarge(out, tmp) } // Square computes *out = a*a // // a[i] < 2**29 // out[i] < 2**29 func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) { for i := 0; i < 15; i++ { tmp[i] = 0 } for i := 0; i < 8; i++ { for j := 0; j <= i; j++ { r := uint64(a[i]) * uint64(a[j]) if i == j { tmp[i+j] += r } else { tmp[i+j] += r << 1 } } } p224ReduceLarge(out, tmp) } // ReduceLarge converts a p224LargeFieldElement to a p224FieldElement. // // in[i] < 2**62 func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) { for i := 0; i < 8; i++ { in[i] += p224ZeroModP63[i] } // Eliminate the coefficients at 2**224 and greater. for i := 14; i >= 8; i-- { in[i-8] -= in[i] in[i-5] += (in[i] & 0xffff) << 12 in[i-4] += in[i] >> 16 } in[8] = 0 // in[0..8] < 2**64 // As the values become small enough, we start to store them in |out| // and use 32-bit operations. for i := 1; i < 8; i++ { in[i+1] += in[i] >> 28 out[i] = uint32(in[i] & bottom28Bits) } in[0] -= in[8] out[3] += uint32(in[8]&0xffff) << 12 out[4] += uint32(in[8] >> 16) // in[0] < 2**64 // out[3] < 2**29 // out[4] < 2**29 // out[1,2,5..7] < 2**28 out[0] = uint32(in[0] & bottom28Bits) out[1] += uint32((in[0] >> 28) & bottom28Bits) out[2] += uint32(in[0] >> 56) // out[0] < 2**28 // out[1..4] < 2**29 // out[5..7] < 2**28 } // Reduce reduces the coefficients of a to smaller bounds. // // On entry: a[i] < 2**31 + 2**30 // On exit: a[i] < 2**29 func p224Reduce(a *p224FieldElement) { for i := 0; i < 7; i++ { a[i+1] += a[i] >> 28 a[i] &= bottom28Bits } top := a[7] >> 28 a[7] &= bottom28Bits // top < 2**4 mask := top mask |= mask >> 2 mask |= mask >> 1 mask <<= 31 mask = uint32(int32(mask) >> 31) // Mask is all ones if top != 0, all zero otherwise a[0] -= top a[3] += top << 12 // We may have just made a[0] negative but, if we did, then we must // have added something to a[3], this it's > 2**12. Therefore we can // carry down to a[0]. a[3] -= 1 & mask a[2] += mask & (1<<28 - 1) a[1] += mask & (1<<28 - 1) a[0] += mask & (1 << 28) } // p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1), // i.e. Fermat's little theorem. func p224Invert(out, in *p224FieldElement) { var f1, f2, f3, f4 p224FieldElement var c p224LargeFieldElement p224Square(&f1, in, &c) // 2 p224Mul(&f1, &f1, in, &c) // 2**2 - 1 p224Square(&f1, &f1, &c) // 2**3 - 2 p224Mul(&f1, &f1, in, &c) // 2**3 - 1 p224Square(&f2, &f1, &c) // 2**4 - 2 p224Square(&f2, &f2, &c) // 2**5 - 4 p224Square(&f2, &f2, &c) // 2**6 - 8 p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1 p224Square(&f2, &f1, &c) // 2**7 - 2 for i := 0; i < 5; i++ { // 2**12 - 2**6 p224Square(&f2, &f2, &c) } p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1 p224Square(&f3, &f2, &c) // 2**13 - 2 for i := 0; i < 11; i++ { // 2**24 - 2**12 p224Square(&f3, &f3, &c) } p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1 p224Square(&f3, &f2, &c) // 2**25 - 2 for i := 0; i < 23; i++ { // 2**48 - 2**24 p224Square(&f3, &f3, &c) } p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1 p224Square(&f4, &f3, &c) // 2**49 - 2 for i := 0; i < 47; i++ { // 2**96 - 2**48 p224Square(&f4, &f4, &c) } p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1 p224Square(&f4, &f3, &c) // 2**97 - 2 for i := 0; i < 23; i++ { // 2**120 - 2**24 p224Square(&f4, &f4, &c) } p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1 for i := 0; i < 6; i++ { // 2**126 - 2**6 p224Square(&f2, &f2, &c) } p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1 p224Square(&f1, &f1, &c) // 2**127 - 2 p224Mul(&f1, &f1, in, &c) // 2**127 - 1 for i := 0; i < 97; i++ { // 2**224 - 2**97 p224Square(&f1, &f1, &c) } p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1 } // p224Contract converts a FieldElement to its unique, minimal form. // // On entry, in[i] < 2**29 // On exit, in[i] < 2**28 func p224Contract(out, in *p224FieldElement) { copy(out[:], in[:]) for i := 0; i < 7; i++ { out[i+1] += out[i] >> 28 out[i] &= bottom28Bits } top := out[7] >> 28 out[7] &= bottom28Bits out[0] -= top out[3] += top << 12 // We may just have made out[i] negative. So we carry down. If we made // out[0] negative then we know that out[3] is sufficiently positive // because we just added to it. for i := 0; i < 3; i++ { mask := uint32(int32(out[i]) >> 31) out[i] += (1 << 28) & mask out[i+1] -= 1 & mask } // We might have pushed out[3] over 2**28 so we perform another, partial, // carry chain. for i := 3; i < 7; i++ { out[i+1] += out[i] >> 28 out[i] &= bottom28Bits } top = out[7] >> 28 out[7] &= bottom28Bits // Eliminate top while maintaining the same value mod p. out[0] -= top out[3] += top << 12 // There are two cases to consider for out[3]: // 1) The first time that we eliminated top, we didn't push out[3] over // 2**28. In this case, the partial carry chain didn't change any values // and top is zero. // 2) We did push out[3] over 2**28 the first time that we eliminated top. // The first value of top was in [0..16), therefore, prior to eliminating // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after // overflowing and being reduced by the second carry chain, out[3] <= // 0xf000. Thus it cannot have overflowed when we eliminated top for the // second time. // Again, we may just have made out[0] negative, so do the same carry down. // As before, if we made out[0] negative then we know that out[3] is // sufficiently positive. for i := 0; i < 3; i++ { mask := uint32(int32(out[i]) >> 31) out[i] += (1 << 28) & mask out[i+1] -= 1 & mask } // Now we see if the value is >= p and, if so, subtract p. // First we build a mask from the top four limbs, which must all be // equal to bottom28Bits if the whole value is >= p. If top4AllOnes // ends up with any zero bits in the bottom 28 bits, then this wasn't // true. top4AllOnes := uint32(0xffffffff) for i := 4; i < 8; i++ { top4AllOnes &= out[i] } top4AllOnes |= 0xf0000000 // Now we replicate any zero bits to all the bits in top4AllOnes. top4AllOnes &= top4AllOnes >> 16 top4AllOnes &= top4AllOnes >> 8 top4AllOnes &= top4AllOnes >> 4 top4AllOnes &= top4AllOnes >> 2 top4AllOnes &= top4AllOnes >> 1 top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31) // Now we test whether the bottom three limbs are non-zero. bottom3NonZero := out[0] | out[1] | out[2] bottom3NonZero |= bottom3NonZero >> 16 bottom3NonZero |= bottom3NonZero >> 8 bottom3NonZero |= bottom3NonZero >> 4 bottom3NonZero |= bottom3NonZero >> 2 bottom3NonZero |= bottom3NonZero >> 1 bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31) // Everything depends on the value of out[3]. // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, // then the whole value is >= p // If it's < 0xffff000, then the whole value is < p n := out[3] - 0xffff000 out3Equal := n out3Equal |= out3Equal >> 16 out3Equal |= out3Equal >> 8 out3Equal |= out3Equal >> 4 out3Equal |= out3Equal >> 2 out3Equal |= out3Equal >> 1 out3Equal = ^uint32(int32(out3Equal<<31) >> 31) // If out[3] > 0xffff000 then n's MSB will be zero. out3GT := ^uint32(int32(n) >> 31) mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT) out[0] -= 1 & mask out[3] -= 0xffff000 & mask out[4] -= 0xfffffff & mask out[5] -= 0xfffffff & mask out[6] -= 0xfffffff & mask out[7] -= 0xfffffff & mask } // Group element functions. // // These functions deal with group elements. The group is an elliptic curve // group with a = -3 defined in FIPS 186-3, section D.2.2. // p224AddJacobian computes *out = a+b where a != b. func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) { // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement var c p224LargeFieldElement z1IsZero := p224IsZero(z1) z2IsZero := p224IsZero(z2) // Z1Z1 = Z1² p224Square(&z1z1, z1, &c) // Z2Z2 = Z2² p224Square(&z2z2, z2, &c) // U1 = X1*Z2Z2 p224Mul(&u1, x1, &z2z2, &c) // U2 = X2*Z1Z1 p224Mul(&u2, x2, &z1z1, &c) // S1 = Y1*Z2*Z2Z2 p224Mul(&s1, z2, &z2z2, &c) p224Mul(&s1, y1, &s1, &c) // S2 = Y2*Z1*Z1Z1 p224Mul(&s2, z1, &z1z1, &c) p224Mul(&s2, y2, &s2, &c) // H = U2-U1 p224Sub(&h, &u2, &u1) p224Reduce(&h) xEqual := p224IsZero(&h) // I = (2*H)² for j := 0; j < 8; j++ { i[j] = h[j] << 1 } p224Reduce(&i) p224Square(&i, &i, &c) // J = H*I p224Mul(&j, &h, &i, &c) // r = 2*(S2-S1) p224Sub(&r, &s2, &s1) p224Reduce(&r) yEqual := p224IsZero(&r) if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 { p224DoubleJacobian(x3, y3, z3, x1, y1, z1) return } for i := 0; i < 8; i++ { r[i] <<= 1 } p224Reduce(&r) // V = U1*I p224Mul(&v, &u1, &i, &c) // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H p224Add(&z1z1, &z1z1, &z2z2) p224Add(&z2z2, z1, z2) p224Reduce(&z2z2) p224Square(&z2z2, &z2z2, &c) p224Sub(z3, &z2z2, &z1z1) p224Reduce(z3) p224Mul(z3, z3, &h, &c) // X3 = r²-J-2*V for i := 0; i < 8; i++ { z1z1[i] = v[i] << 1 } p224Add(&z1z1, &j, &z1z1) p224Reduce(&z1z1) p224Square(x3, &r, &c) p224Sub(x3, x3, &z1z1) p224Reduce(x3) // Y3 = r*(V-X3)-2*S1*J for i := 0; i < 8; i++ { s1[i] <<= 1 } p224Mul(&s1, &s1, &j, &c) p224Sub(&z1z1, &v, x3) p224Reduce(&z1z1) p224Mul(&z1z1, &z1z1, &r, &c) p224Sub(y3, &z1z1, &s1) p224Reduce(y3) p224CopyConditional(x3, x2, z1IsZero) p224CopyConditional(x3, x1, z2IsZero) p224CopyConditional(y3, y2, z1IsZero) p224CopyConditional(y3, y1, z2IsZero) p224CopyConditional(z3, z2, z1IsZero) p224CopyConditional(z3, z1, z2IsZero) } // p224DoubleJacobian computes *out = a+a. func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) { var delta, gamma, beta, alpha, t p224FieldElement var c p224LargeFieldElement p224Square(&delta, z1, &c) p224Square(&gamma, y1, &c) p224Mul(&beta, x1, &gamma, &c) // alpha = 3*(X1-delta)*(X1+delta) p224Add(&t, x1, &delta) for i := 0; i < 8; i++ { t[i] += t[i] << 1 } p224Reduce(&t) p224Sub(&alpha, x1, &delta) p224Reduce(&alpha) p224Mul(&alpha, &alpha, &t, &c) // Z3 = (Y1+Z1)²-gamma-delta p224Add(z3, y1, z1) p224Reduce(z3) p224Square(z3, z3, &c) p224Sub(z3, z3, &gamma) p224Reduce(z3) p224Sub(z3, z3, &delta) p224Reduce(z3) // X3 = alpha²-8*beta for i := 0; i < 8; i++ { delta[i] = beta[i] << 3 } p224Reduce(&delta) p224Square(x3, &alpha, &c) p224Sub(x3, x3, &delta) p224Reduce(x3) // Y3 = alpha*(4*beta-X3)-8*gamma² for i := 0; i < 8; i++ { beta[i] <<= 2 } p224Sub(&beta, &beta, x3) p224Reduce(&beta) p224Square(&gamma, &gamma, &c) for i := 0; i < 8; i++ { gamma[i] <<= 3 } p224Reduce(&gamma) p224Mul(y3, &alpha, &beta, &c) p224Sub(y3, y3, &gamma) p224Reduce(y3) } // p224CopyConditional sets *out = *in iff the least-significant-bit of control // is true, and it runs in constant time. func p224CopyConditional(out, in *p224FieldElement, control uint32) { control <<= 31 control = uint32(int32(control) >> 31) for i := 0; i < 8; i++ { out[i] ^= (out[i] ^ in[i]) & control } } func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) { var xx, yy, zz p224FieldElement for i := 0; i < 8; i++ { outX[i] = 0 outY[i] = 0 outZ[i] = 0 } for _, byte := range scalar { for bitNum := uint(0); bitNum < 8; bitNum++ { p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ) bit := uint32((byte >> (7 - bitNum)) & 1) p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ) p224CopyConditional(outX, &xx, bit) p224CopyConditional(outY, &yy, bit) p224CopyConditional(outZ, &zz, bit) } } } // p224ToAffine converts from Jacobian to affine form. func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) { var zinv, zinvsq, outx, outy p224FieldElement var tmp p224LargeFieldElement if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 { return new(big.Int), new(big.Int) } p224Invert(&zinv, z) p224Square(&zinvsq, &zinv, &tmp) p224Mul(x, x, &zinvsq, &tmp) p224Mul(&zinvsq, &zinvsq, &zinv, &tmp) p224Mul(y, y, &zinvsq, &tmp) p224Contract(&outx, x) p224Contract(&outy, y) return p224ToBig(&outx), p224ToBig(&outy) } // get28BitsFromEnd returns the least-significant 28 bits from buf>>shift, // where buf is interpreted as a big-endian number. func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) { var ret uint32 for i := uint(0); i < 4; i++ { var b byte if l := len(buf); l > 0 { b = buf[l-1] // We don't remove the byte if we're about to return and we're not // reading all of it. if i != 3 || shift == 4 { buf = buf[:l-1] } } ret |= uint32(b) << (8 * i) >> shift } ret &= bottom28Bits return ret, buf } // p224FromBig sets *out = *in. func p224FromBig(out *p224FieldElement, in *big.Int) { bytes := in.Bytes() out[0], bytes = get28BitsFromEnd(bytes, 0) out[1], bytes = get28BitsFromEnd(bytes, 4) out[2], bytes = get28BitsFromEnd(bytes, 0) out[3], bytes = get28BitsFromEnd(bytes, 4) out[4], bytes = get28BitsFromEnd(bytes, 0) out[5], bytes = get28BitsFromEnd(bytes, 4) out[6], bytes = get28BitsFromEnd(bytes, 0) out[7], bytes = get28BitsFromEnd(bytes, 4) } // p224ToBig returns in as a big.Int. func p224ToBig(in *p224FieldElement) *big.Int { var buf [28]byte buf[27] = byte(in[0]) buf[26] = byte(in[0] >> 8) buf[25] = byte(in[0] >> 16) buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0) buf[23] = byte(in[1] >> 4) buf[22] = byte(in[1] >> 12) buf[21] = byte(in[1] >> 20) buf[20] = byte(in[2]) buf[19] = byte(in[2] >> 8) buf[18] = byte(in[2] >> 16) buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0) buf[16] = byte(in[3] >> 4) buf[15] = byte(in[3] >> 12) buf[14] = byte(in[3] >> 20) buf[13] = byte(in[4]) buf[12] = byte(in[4] >> 8) buf[11] = byte(in[4] >> 16) buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0) buf[9] = byte(in[5] >> 4) buf[8] = byte(in[5] >> 12) buf[7] = byte(in[5] >> 20) buf[6] = byte(in[6]) buf[5] = byte(in[6] >> 8) buf[4] = byte(in[6] >> 16) buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0) buf[2] = byte(in[7] >> 4) buf[1] = byte(in[7] >> 12) buf[0] = byte(in[7] >> 20) return new(big.Int).SetBytes(buf[:]) }