// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package fmt import ( "errors" "io" "os" "reflect" "sync" "unicode/utf8" ) // Strings for use with buffer.WriteString. // This is less overhead than using buffer.Write with byte arrays. const ( commaSpaceString = ", " nilAngleString = "" nilParenString = "(nil)" nilString = "nil" mapString = "map[" percentBangString = "%!" missingString = "(MISSING)" badIndexString = "(BADINDEX)" panicString = "(PANIC=" extraString = "%!(EXTRA " badWidthString = "%!(BADWIDTH)" badPrecString = "%!(BADPREC)" noVerbString = "%!(NOVERB)" invReflectString = "" ) // State represents the printer state passed to custom formatters. // It provides access to the io.Writer interface plus information about // the flags and options for the operand's format specifier. type State interface { // Write is the function to call to emit formatted output to be printed. Write(b []byte) (n int, err error) // Width returns the value of the width option and whether it has been set. Width() (wid int, ok bool) // Precision returns the value of the precision option and whether it has been set. Precision() (prec int, ok bool) // Flag reports whether the flag c, a character, has been set. Flag(c int) bool } // Formatter is the interface implemented by values with a custom formatter. // The implementation of Format may call Sprint(f) or Fprint(f) etc. // to generate its output. type Formatter interface { Format(f State, c rune) } // Stringer is implemented by any value that has a String method, // which defines the ``native'' format for that value. // The String method is used to print values passed as an operand // to any format that accepts a string or to an unformatted printer // such as Print. type Stringer interface { String() string } // GoStringer is implemented by any value that has a GoString method, // which defines the Go syntax for that value. // The GoString method is used to print values passed as an operand // to a %#v format. type GoStringer interface { GoString() string } // Use simple []byte instead of bytes.Buffer to avoid large dependency. type buffer []byte func (b *buffer) Write(p []byte) { *b = append(*b, p...) } func (b *buffer) WriteString(s string) { *b = append(*b, s...) } func (b *buffer) WriteByte(c byte) { *b = append(*b, c) } func (bp *buffer) WriteRune(r rune) { if r < utf8.RuneSelf { *bp = append(*bp, byte(r)) return } b := *bp n := len(b) for n+utf8.UTFMax > cap(b) { b = append(b, 0) } w := utf8.EncodeRune(b[n:n+utf8.UTFMax], r) *bp = b[:n+w] } // pp is used to store a printer's state and is reused with sync.Pool to avoid allocations. type pp struct { buf buffer // arg holds the current item, as an interface{}. arg interface{} // value is used instead of arg for reflect values. value reflect.Value // fmt is used to format basic items such as integers or strings. fmt fmt // reordered records whether the format string used argument reordering. reordered bool // goodArgNum records whether the most recent reordering directive was valid. goodArgNum bool // panicking is set by catchPanic to avoid infinite panic, recover, panic, ... recursion. panicking bool // erroring is set when printing an error string to guard against calling handleMethods. erroring bool } var ppFree = sync.Pool{ New: func() interface{} { return new(pp) }, } // newPrinter allocates a new pp struct or grabs a cached one. func newPrinter() *pp { p := ppFree.Get().(*pp) p.panicking = false p.erroring = false p.fmt.init(&p.buf) return p } // free saves used pp structs in ppFree; avoids an allocation per invocation. func (p *pp) free() { p.buf = p.buf[:0] p.arg = nil p.value = reflect.Value{} ppFree.Put(p) } func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent } func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent } func (p *pp) Flag(b int) bool { switch b { case '-': return p.fmt.minus case '+': return p.fmt.plus || p.fmt.plusV case '#': return p.fmt.sharp || p.fmt.sharpV case ' ': return p.fmt.space case '0': return p.fmt.zero } return false } // Implement Write so we can call Fprintf on a pp (through State), for // recursive use in custom verbs. func (p *pp) Write(b []byte) (ret int, err error) { p.buf.Write(b) return len(b), nil } // These routines end in 'f' and take a format string. // Fprintf formats according to a format specifier and writes to w. // It returns the number of bytes written and any write error encountered. func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) { p := newPrinter() p.doPrintf(format, a) n, err = w.Write(p.buf) p.free() return } // Printf formats according to a format specifier and writes to standard output. // It returns the number of bytes written and any write error encountered. func Printf(format string, a ...interface{}) (n int, err error) { return Fprintf(os.Stdout, format, a...) } // Sprintf formats according to a format specifier and returns the resulting string. func Sprintf(format string, a ...interface{}) string { p := newPrinter() p.doPrintf(format, a) s := string(p.buf) p.free() return s } // Errorf formats according to a format specifier and returns the string // as a value that satisfies error. func Errorf(format string, a ...interface{}) error { return errors.New(Sprintf(format, a...)) } // These routines do not take a format string // Fprint formats using the default formats for its operands and writes to w. // Spaces are added between operands when neither is a string. // It returns the number of bytes written and any write error encountered. func Fprint(w io.Writer, a ...interface{}) (n int, err error) { p := newPrinter() p.doPrint(a) n, err = w.Write(p.buf) p.free() return } // Print formats using the default formats for its operands and writes to standard output. // Spaces are added between operands when neither is a string. // It returns the number of bytes written and any write error encountered. func Print(a ...interface{}) (n int, err error) { return Fprint(os.Stdout, a...) } // Sprint formats using the default formats for its operands and returns the resulting string. // Spaces are added between operands when neither is a string. func Sprint(a ...interface{}) string { p := newPrinter() p.doPrint(a) s := string(p.buf) p.free() return s } // These routines end in 'ln', do not take a format string, // always add spaces between operands, and add a newline // after the last operand. // Fprintln formats using the default formats for its operands and writes to w. // Spaces are always added between operands and a newline is appended. // It returns the number of bytes written and any write error encountered. func Fprintln(w io.Writer, a ...interface{}) (n int, err error) { p := newPrinter() p.doPrintln(a) n, err = w.Write(p.buf) p.free() return } // Println formats using the default formats for its operands and writes to standard output. // Spaces are always added between operands and a newline is appended. // It returns the number of bytes written and any write error encountered. func Println(a ...interface{}) (n int, err error) { return Fprintln(os.Stdout, a...) } // Sprintln formats using the default formats for its operands and returns the resulting string. // Spaces are always added between operands and a newline is appended. func Sprintln(a ...interface{}) string { p := newPrinter() p.doPrintln(a) s := string(p.buf) p.free() return s } // getField gets the i'th field of the struct value. // If the field is itself is an interface, return a value for // the thing inside the interface, not the interface itself. func getField(v reflect.Value, i int) reflect.Value { val := v.Field(i) if val.Kind() == reflect.Interface && !val.IsNil() { val = val.Elem() } return val } // tooLarge reports whether the magnitude of the integer is // too large to be used as a formatting width or precision. func tooLarge(x int) bool { const max int = 1e6 return x > max || x < -max } // parsenum converts ASCII to integer. num is 0 (and isnum is false) if no number present. func parsenum(s string, start, end int) (num int, isnum bool, newi int) { if start >= end { return 0, false, end } for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ { if tooLarge(num) { return 0, false, end // Overflow; crazy long number most likely. } num = num*10 + int(s[newi]-'0') isnum = true } return } func (p *pp) unknownType(v reflect.Value) { if !v.IsValid() { p.buf.WriteString(nilAngleString) return } p.buf.WriteByte('?') p.buf.WriteString(v.Type().String()) p.buf.WriteByte('?') } func (p *pp) badVerb(verb rune) { p.erroring = true p.buf.WriteString(percentBangString) p.buf.WriteRune(verb) p.buf.WriteByte('(') switch { case p.arg != nil: p.buf.WriteString(reflect.TypeOf(p.arg).String()) p.buf.WriteByte('=') p.printArg(p.arg, 'v') case p.value.IsValid(): p.buf.WriteString(p.value.Type().String()) p.buf.WriteByte('=') p.printValue(p.value, 'v', 0) default: p.buf.WriteString(nilAngleString) } p.buf.WriteByte(')') p.erroring = false } func (p *pp) fmtBool(v bool, verb rune) { switch verb { case 't', 'v': p.fmt.fmt_boolean(v) default: p.badVerb(verb) } } // fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or // not, as requested, by temporarily setting the sharp flag. func (p *pp) fmt0x64(v uint64, leading0x bool) { sharp := p.fmt.sharp p.fmt.sharp = leading0x p.fmt.fmt_integer(v, 16, unsigned, ldigits) p.fmt.sharp = sharp } // fmtInteger formats a signed or unsigned integer. func (p *pp) fmtInteger(v uint64, isSigned bool, verb rune) { switch verb { case 'v': if p.fmt.sharpV && !isSigned { p.fmt0x64(v, true) } else { p.fmt.fmt_integer(v, 10, isSigned, ldigits) } case 'd': p.fmt.fmt_integer(v, 10, isSigned, ldigits) case 'b': p.fmt.fmt_integer(v, 2, isSigned, ldigits) case 'o': p.fmt.fmt_integer(v, 8, isSigned, ldigits) case 'x': p.fmt.fmt_integer(v, 16, isSigned, ldigits) case 'X': p.fmt.fmt_integer(v, 16, isSigned, udigits) case 'c': p.fmt.fmt_c(v) case 'q': if v <= utf8.MaxRune { p.fmt.fmt_qc(v) } else { p.badVerb(verb) } case 'U': p.fmt.fmt_unicode(v) default: p.badVerb(verb) } } // fmtFloat formats a float. The default precision for each verb // is specified as last argument in the call to fmt_float. func (p *pp) fmtFloat(v float64, size int, verb rune) { switch verb { case 'v': p.fmt.fmt_float(v, size, 'g', -1) case 'b', 'g', 'G': p.fmt.fmt_float(v, size, verb, -1) case 'f', 'e', 'E': p.fmt.fmt_float(v, size, verb, 6) case 'F': p.fmt.fmt_float(v, size, 'f', 6) default: p.badVerb(verb) } } // fmtComplex formats a complex number v with // r = real(v) and j = imag(v) as (r+ji) using // fmtFloat for r and j formatting. func (p *pp) fmtComplex(v complex128, size int, verb rune) { // Make sure any unsupported verbs are found before the // calls to fmtFloat to not generate an incorrect error string. switch verb { case 'v', 'b', 'g', 'G', 'f', 'F', 'e', 'E': oldPlus := p.fmt.plus p.buf.WriteByte('(') p.fmtFloat(real(v), size/2, verb) // Imaginary part always has a sign. p.fmt.plus = true p.fmtFloat(imag(v), size/2, verb) p.buf.WriteString("i)") p.fmt.plus = oldPlus default: p.badVerb(verb) } } func (p *pp) fmtString(v string, verb rune) { switch verb { case 'v': if p.fmt.sharpV { p.fmt.fmt_q(v) } else { p.fmt.fmt_s(v) } case 's': p.fmt.fmt_s(v) case 'x': p.fmt.fmt_sx(v, ldigits) case 'X': p.fmt.fmt_sx(v, udigits) case 'q': p.fmt.fmt_q(v) default: p.badVerb(verb) } } func (p *pp) fmtBytes(v []byte, verb rune, typeString string) { switch verb { case 'v', 'd': if p.fmt.sharpV { p.buf.WriteString(typeString) if v == nil { p.buf.WriteString(nilParenString) return } p.buf.WriteByte('{') for i, c := range v { if i > 0 { p.buf.WriteString(commaSpaceString) } p.fmt0x64(uint64(c), true) } p.buf.WriteByte('}') } else { p.buf.WriteByte('[') for i, c := range v { if i > 0 { p.buf.WriteByte(' ') } p.fmt.fmt_integer(uint64(c), 10, unsigned, ldigits) } p.buf.WriteByte(']') } case 's': p.fmt.fmt_s(string(v)) case 'x': p.fmt.fmt_bx(v, ldigits) case 'X': p.fmt.fmt_bx(v, udigits) case 'q': p.fmt.fmt_q(string(v)) default: p.printValue(reflect.ValueOf(v), verb, 0) } } func (p *pp) fmtPointer(value reflect.Value, verb rune) { var u uintptr switch value.Kind() { case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer: u = value.Pointer() default: p.badVerb(verb) return } switch verb { case 'v': if p.fmt.sharpV { p.buf.WriteByte('(') p.buf.WriteString(value.Type().String()) p.buf.WriteString(")(") if u == 0 { p.buf.WriteString(nilString) } else { p.fmt0x64(uint64(u), true) } p.buf.WriteByte(')') } else { if u == 0 { p.fmt.padString(nilAngleString) } else { p.fmt0x64(uint64(u), !p.fmt.sharp) } } case 'p': p.fmt0x64(uint64(u), !p.fmt.sharp) case 'b', 'o', 'd', 'x', 'X': p.fmtInteger(uint64(u), unsigned, verb) default: p.badVerb(verb) } } func (p *pp) catchPanic(arg interface{}, verb rune) { if err := recover(); err != nil { // If it's a nil pointer, just say "". The likeliest causes are a // Stringer that fails to guard against nil or a nil pointer for a // value receiver, and in either case, "" is a nice result. if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() { p.buf.WriteString(nilAngleString) return } // Otherwise print a concise panic message. Most of the time the panic // value will print itself nicely. if p.panicking { // Nested panics; the recursion in printArg cannot succeed. panic(err) } oldFlags := p.fmt.fmtFlags // For this output we want default behavior. p.fmt.clearflags() p.buf.WriteString(percentBangString) p.buf.WriteRune(verb) p.buf.WriteString(panicString) p.panicking = true p.printArg(err, 'v') p.panicking = false p.buf.WriteByte(')') p.fmt.fmtFlags = oldFlags } } func (p *pp) handleMethods(verb rune) (handled bool) { if p.erroring { return } // Is it a Formatter? if formatter, ok := p.arg.(Formatter); ok { handled = true defer p.catchPanic(p.arg, verb) formatter.Format(p, verb) return } // If we're doing Go syntax and the argument knows how to supply it, take care of it now. if p.fmt.sharpV { if stringer, ok := p.arg.(GoStringer); ok { handled = true defer p.catchPanic(p.arg, verb) // Print the result of GoString unadorned. p.fmt.fmt_s(stringer.GoString()) return } } else { // If a string is acceptable according to the format, see if // the value satisfies one of the string-valued interfaces. // Println etc. set verb to %v, which is "stringable". switch verb { case 'v', 's', 'x', 'X', 'q': // Is it an error or Stringer? // The duplication in the bodies is necessary: // setting handled and deferring catchPanic // must happen before calling the method. switch v := p.arg.(type) { case error: handled = true defer p.catchPanic(p.arg, verb) p.fmtString(v.Error(), verb) return case Stringer: handled = true defer p.catchPanic(p.arg, verb) p.fmtString(v.String(), verb) return } } } return false } func (p *pp) printArg(arg interface{}, verb rune) { p.arg = arg p.value = reflect.Value{} if arg == nil { switch verb { case 'T', 'v': p.fmt.padString(nilAngleString) default: p.badVerb(verb) } return } // Special processing considerations. // %T (the value's type) and %p (its address) are special; we always do them first. switch verb { case 'T': p.fmt.fmt_s(reflect.TypeOf(arg).String()) return case 'p': p.fmtPointer(reflect.ValueOf(arg), 'p') return } // Some types can be done without reflection. switch f := arg.(type) { case bool: p.fmtBool(f, verb) case float32: p.fmtFloat(float64(f), 32, verb) case float64: p.fmtFloat(f, 64, verb) case complex64: p.fmtComplex(complex128(f), 64, verb) case complex128: p.fmtComplex(f, 128, verb) case int: p.fmtInteger(uint64(f), signed, verb) case int8: p.fmtInteger(uint64(f), signed, verb) case int16: p.fmtInteger(uint64(f), signed, verb) case int32: p.fmtInteger(uint64(f), signed, verb) case int64: p.fmtInteger(uint64(f), signed, verb) case uint: p.fmtInteger(uint64(f), unsigned, verb) case uint8: p.fmtInteger(uint64(f), unsigned, verb) case uint16: p.fmtInteger(uint64(f), unsigned, verb) case uint32: p.fmtInteger(uint64(f), unsigned, verb) case uint64: p.fmtInteger(f, unsigned, verb) case uintptr: p.fmtInteger(uint64(f), unsigned, verb) case string: p.fmtString(f, verb) case []byte: p.fmtBytes(f, verb, "[]byte") case reflect.Value: // Handle extractable values with special methods // since printValue does not handle them at depth 0. if f.IsValid() && f.CanInterface() { p.arg = f.Interface() if p.handleMethods(verb) { return } } p.printValue(f, verb, 0) default: // If the type is not simple, it might have methods. if !p.handleMethods(verb) { // Need to use reflection, since the type had no // interface methods that could be used for formatting. p.printValue(reflect.ValueOf(f), verb, 0) } } } var byteType = reflect.TypeOf(byte(0)) // printValue is similar to printArg but starts with a reflect value, not an interface{} value. // It does not handle 'p' and 'T' verbs because these should have been already handled by printArg. func (p *pp) printValue(value reflect.Value, verb rune, depth int) { // Handle values with special methods if not already handled by printArg (depth == 0). if depth > 0 && value.IsValid() && value.CanInterface() { p.arg = value.Interface() if p.handleMethods(verb) { return } } p.arg = nil p.value = value switch f := value; value.Kind() { case reflect.Invalid: if depth == 0 { p.buf.WriteString(invReflectString) } else { switch verb { case 'v': p.buf.WriteString(nilAngleString) default: p.badVerb(verb) } } case reflect.Bool: p.fmtBool(f.Bool(), verb) case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: p.fmtInteger(uint64(f.Int()), signed, verb) case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: p.fmtInteger(f.Uint(), unsigned, verb) case reflect.Float32: p.fmtFloat(f.Float(), 32, verb) case reflect.Float64: p.fmtFloat(f.Float(), 64, verb) case reflect.Complex64: p.fmtComplex(f.Complex(), 64, verb) case reflect.Complex128: p.fmtComplex(f.Complex(), 128, verb) case reflect.String: p.fmtString(f.String(), verb) case reflect.Map: if p.fmt.sharpV { p.buf.WriteString(f.Type().String()) if f.IsNil() { p.buf.WriteString(nilParenString) return } p.buf.WriteByte('{') } else { p.buf.WriteString(mapString) } keys := f.MapKeys() for i, key := range keys { if i > 0 { if p.fmt.sharpV { p.buf.WriteString(commaSpaceString) } else { p.buf.WriteByte(' ') } } p.printValue(key, verb, depth+1) p.buf.WriteByte(':') p.printValue(f.MapIndex(key), verb, depth+1) } if p.fmt.sharpV { p.buf.WriteByte('}') } else { p.buf.WriteByte(']') } case reflect.Struct: if p.fmt.sharpV { p.buf.WriteString(f.Type().String()) } p.buf.WriteByte('{') for i := 0; i < f.NumField(); i++ { if i > 0 { if p.fmt.sharpV { p.buf.WriteString(commaSpaceString) } else { p.buf.WriteByte(' ') } } if p.fmt.plusV || p.fmt.sharpV { if name := f.Type().Field(i).Name; name != "" { p.buf.WriteString(name) p.buf.WriteByte(':') } } p.printValue(getField(f, i), verb, depth+1) } p.buf.WriteByte('}') case reflect.Interface: value := f.Elem() if !value.IsValid() { if p.fmt.sharpV { p.buf.WriteString(f.Type().String()) p.buf.WriteString(nilParenString) } else { p.buf.WriteString(nilAngleString) } } else { p.printValue(value, verb, depth+1) } case reflect.Array, reflect.Slice: switch verb { case 's', 'q', 'x', 'X': // Handle byte and uint8 slices and arrays special for the above verbs. t := f.Type() if t.Elem().Kind() == reflect.Uint8 { var bytes []byte if f.Kind() == reflect.Slice { bytes = f.Bytes() } else if f.CanAddr() { bytes = f.Slice(0, f.Len()).Bytes() } else { // We have an array, but we cannot Slice() a non-addressable array, // so we build a slice by hand. This is a rare case but it would be nice // if reflection could help a little more. bytes = make([]byte, f.Len()) for i := range bytes { bytes[i] = byte(f.Index(i).Uint()) } } p.fmtBytes(bytes, verb, t.String()) return } } if p.fmt.sharpV { p.buf.WriteString(f.Type().String()) if f.Kind() == reflect.Slice && f.IsNil() { p.buf.WriteString(nilParenString) return } p.buf.WriteByte('{') for i := 0; i < f.Len(); i++ { if i > 0 { p.buf.WriteString(commaSpaceString) } p.printValue(f.Index(i), verb, depth+1) } p.buf.WriteByte('}') } else { p.buf.WriteByte('[') for i := 0; i < f.Len(); i++ { if i > 0 { p.buf.WriteByte(' ') } p.printValue(f.Index(i), verb, depth+1) } p.buf.WriteByte(']') } case reflect.Ptr: // pointer to array or slice or struct? ok at top level // but not embedded (avoid loops) if depth == 0 && f.Pointer() != 0 { switch a := f.Elem(); a.Kind() { case reflect.Array, reflect.Slice, reflect.Struct, reflect.Map: p.buf.WriteByte('&') p.printValue(a, verb, depth+1) return } } fallthrough case reflect.Chan, reflect.Func, reflect.UnsafePointer: p.fmtPointer(f, verb) default: p.unknownType(f) } } // intFromArg gets the argNumth element of a. On return, isInt reports whether the argument has integer type. func intFromArg(a []interface{}, argNum int) (num int, isInt bool, newArgNum int) { newArgNum = argNum if argNum < len(a) { num, isInt = a[argNum].(int) // Almost always OK. if !isInt { // Work harder. switch v := reflect.ValueOf(a[argNum]); v.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: n := v.Int() if int64(int(n)) == n { num = int(n) isInt = true } case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: n := v.Uint() if int64(n) >= 0 && uint64(int(n)) == n { num = int(n) isInt = true } default: // Already 0, false. } } newArgNum = argNum + 1 if tooLarge(num) { num = 0 isInt = false } } return } // parseArgNumber returns the value of the bracketed number, minus 1 // (explicit argument numbers are one-indexed but we want zero-indexed). // The opening bracket is known to be present at format[0]. // The returned values are the index, the number of bytes to consume // up to the closing paren, if present, and whether the number parsed // ok. The bytes to consume will be 1 if no closing paren is present. func parseArgNumber(format string) (index int, wid int, ok bool) { // There must be at least 3 bytes: [n]. if len(format) < 3 { return 0, 1, false } // Find closing bracket. for i := 1; i < len(format); i++ { if format[i] == ']' { width, ok, newi := parsenum(format, 1, i) if !ok || newi != i { return 0, i + 1, false } return width - 1, i + 1, true // arg numbers are one-indexed and skip paren. } } return 0, 1, false } // argNumber returns the next argument to evaluate, which is either the value of the passed-in // argNum or the value of the bracketed integer that begins format[i:]. It also returns // the new value of i, that is, the index of the next byte of the format to process. func (p *pp) argNumber(argNum int, format string, i int, numArgs int) (newArgNum, newi int, found bool) { if len(format) <= i || format[i] != '[' { return argNum, i, false } p.reordered = true index, wid, ok := parseArgNumber(format[i:]) if ok && 0 <= index && index < numArgs { return index, i + wid, true } p.goodArgNum = false return argNum, i + wid, ok } func (p *pp) badArgNum(verb rune) { p.buf.WriteString(percentBangString) p.buf.WriteRune(verb) p.buf.WriteString(badIndexString) } func (p *pp) missingArg(verb rune) { p.buf.WriteString(percentBangString) p.buf.WriteRune(verb) p.buf.WriteString(missingString) } func (p *pp) doPrintf(format string, a []interface{}) { end := len(format) argNum := 0 // we process one argument per non-trivial format afterIndex := false // previous item in format was an index like [3]. p.reordered = false formatLoop: for i := 0; i < end; { p.goodArgNum = true lasti := i for i < end && format[i] != '%' { i++ } if i > lasti { p.buf.WriteString(format[lasti:i]) } if i >= end { // done processing format string break } // Process one verb i++ // Do we have flags? p.fmt.clearflags() simpleFormat: for ; i < end; i++ { c := format[i] switch c { case '#': p.fmt.sharp = true case '0': p.fmt.zero = !p.fmt.minus // Only allow zero padding to the left. case '+': p.fmt.plus = true case '-': p.fmt.minus = true p.fmt.zero = false // Do not pad with zeros to the right. case ' ': p.fmt.space = true default: // Fast path for common case of ascii lower case simple verbs // without precision or width or argument indices. if 'a' <= c && c <= 'z' && argNum < len(a) { if c == 'v' { // Go syntax p.fmt.sharpV = p.fmt.sharp p.fmt.sharp = false // Struct-field syntax p.fmt.plusV = p.fmt.plus p.fmt.plus = false } p.printArg(a[argNum], rune(c)) argNum++ i++ continue formatLoop } // Format is more complex than simple flags and a verb or is malformed. break simpleFormat } } // Do we have an explicit argument index? argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) // Do we have width? if i < end && format[i] == '*' { i++ p.fmt.wid, p.fmt.widPresent, argNum = intFromArg(a, argNum) if !p.fmt.widPresent { p.buf.WriteString(badWidthString) } // We have a negative width, so take its value and ensure // that the minus flag is set if p.fmt.wid < 0 { p.fmt.wid = -p.fmt.wid p.fmt.minus = true p.fmt.zero = false // Do not pad with zeros to the right. } afterIndex = false } else { p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end) if afterIndex && p.fmt.widPresent { // "%[3]2d" p.goodArgNum = false } } // Do we have precision? if i+1 < end && format[i] == '.' { i++ if afterIndex { // "%[3].2d" p.goodArgNum = false } argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) if i < end && format[i] == '*' { i++ p.fmt.prec, p.fmt.precPresent, argNum = intFromArg(a, argNum) // Negative precision arguments don't make sense if p.fmt.prec < 0 { p.fmt.prec = 0 p.fmt.precPresent = false } if !p.fmt.precPresent { p.buf.WriteString(badPrecString) } afterIndex = false } else { p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end) if !p.fmt.precPresent { p.fmt.prec = 0 p.fmt.precPresent = true } } } if !afterIndex { argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) } if i >= end { p.buf.WriteString(noVerbString) break } verb, w := utf8.DecodeRuneInString(format[i:]) i += w switch { case verb == '%': // Percent does not absorb operands and ignores f.wid and f.prec. p.buf.WriteByte('%') case !p.goodArgNum: p.badArgNum(verb) case argNum >= len(a): // No argument left over to print for the current verb. p.missingArg(verb) case verb == 'v': // Go syntax p.fmt.sharpV = p.fmt.sharp p.fmt.sharp = false // Struct-field syntax p.fmt.plusV = p.fmt.plus p.fmt.plus = false fallthrough default: p.printArg(a[argNum], verb) argNum++ } } // Check for extra arguments unless the call accessed the arguments // out of order, in which case it's too expensive to detect if they've all // been used and arguably OK if they're not. if !p.reordered && argNum < len(a) { p.fmt.clearflags() p.buf.WriteString(extraString) for i, arg := range a[argNum:] { if i > 0 { p.buf.WriteString(commaSpaceString) } if arg == nil { p.buf.WriteString(nilAngleString) } else { p.buf.WriteString(reflect.TypeOf(arg).String()) p.buf.WriteByte('=') p.printArg(arg, 'v') } } p.buf.WriteByte(')') } } func (p *pp) doPrint(a []interface{}) { prevString := false for argNum, arg := range a { isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String // Add a space between two non-string arguments. if argNum > 0 && !isString && !prevString { p.buf.WriteByte(' ') } p.printArg(arg, 'v') prevString = isString } } // doPrintln is like doPrint but always adds a space between arguments // and a newline after the last argument. func (p *pp) doPrintln(a []interface{}) { for argNum, arg := range a { if argNum > 0 { p.buf.WriteByte(' ') } p.printArg(arg, 'v') } p.buf.WriteByte('\n') }