// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file provides Go implementations of elementary multi-precision // arithmetic operations on word vectors. Needed for platforms without // assembly implementations of these routines. package big // A Word represents a single digit of a multi-precision unsigned integer. type Word uintptr const ( // Compute the size _S of a Word in bytes. _m = ^Word(0) _logS = _m>>8&1 + _m>>16&1 + _m>>32&1 _S = 1 << _logS _W = _S << 3 // word size in bits _B = 1 << _W // digit base _M = _B - 1 // digit mask _W2 = _W / 2 // half word size in bits _B2 = 1 << _W2 // half digit base _M2 = _B2 - 1 // half digit mask ) // ---------------------------------------------------------------------------- // Elementary operations on words // // These operations are used by the vector operations below. // z1<<_W + z0 = x+y+c, with c == 0 or 1 func addWW_g(x, y, c Word) (z1, z0 Word) { yc := y + c z0 = x + yc if z0 < x || yc < y { z1 = 1 } return } // z1<<_W + z0 = x-y-c, with c == 0 or 1 func subWW_g(x, y, c Word) (z1, z0 Word) { yc := y + c z0 = x - yc if z0 > x || yc < y { z1 = 1 } return } // z1<<_W + z0 = x*y // Adapted from Warren, Hacker's Delight, p. 132. func mulWW_g(x, y Word) (z1, z0 Word) { x0 := x & _M2 x1 := x >> _W2 y0 := y & _M2 y1 := y >> _W2 w0 := x0 * y0 t := x1*y0 + w0>>_W2 w1 := t & _M2 w2 := t >> _W2 w1 += x0 * y1 z1 = x1*y1 + w2 + w1>>_W2 z0 = x * y return } // z1<<_W + z0 = x*y + c func mulAddWWW_g(x, y, c Word) (z1, z0 Word) { z1, zz0 := mulWW_g(x, y) if z0 = zz0 + c; z0 < zz0 { z1++ } return } // Length of x in bits. func bitLen_g(x Word) (n int) { for ; x >= 0x8000; x >>= 16 { n += 16 } if x >= 0x80 { x >>= 8 n += 8 } if x >= 0x8 { x >>= 4 n += 4 } if x >= 0x2 { x >>= 2 n += 2 } if x >= 0x1 { n++ } return } // log2 computes the integer binary logarithm of x. // The result is the integer n for which 2^n <= x < 2^(n+1). // If x == 0, the result is -1. func log2(x Word) int { return bitLen(x) - 1 } // nlz returns the number of leading zeros in x. func nlz(x Word) uint { return uint(_W - bitLen(x)) } // nlz64 returns the number of leading zeros in x. func nlz64(x uint64) uint { switch _W { case 32: w := x >> 32 if w == 0 { return 32 + nlz(Word(x)) } return nlz(Word(w)) case 64: return nlz(Word(x)) } panic("unreachable") } // q = (u1<<_W + u0 - r)/y // Adapted from Warren, Hacker's Delight, p. 152. func divWW_g(u1, u0, v Word) (q, r Word) { if u1 >= v { return 1<<_W - 1, 1<<_W - 1 } s := nlz(v) v <<= s vn1 := v >> _W2 vn0 := v & _M2 un32 := u1<>(_W-s) un10 := u0 << s un1 := un10 >> _W2 un0 := un10 & _M2 q1 := un32 / vn1 rhat := un32 - q1*vn1 for q1 >= _B2 || q1*vn0 > _B2*rhat+un1 { q1-- rhat += vn1 if rhat >= _B2 { break } } un21 := un32*_B2 + un1 - q1*v q0 := un21 / vn1 rhat = un21 - q0*vn1 for q0 >= _B2 || q0*vn0 > _B2*rhat+un0 { q0-- rhat += vn1 if rhat >= _B2 { break } } return q1*_B2 + q0, (un21*_B2 + un0 - q0*v) >> s } // Keep for performance debugging. // Using addWW_g is likely slower. const use_addWW_g = false // The resulting carry c is either 0 or 1. func addVV_g(z, x, y []Word) (c Word) { if use_addWW_g { for i := range z { c, z[i] = addWW_g(x[i], y[i], c) } return } for i, xi := range x[:len(z)] { yi := y[i] zi := xi + yi + c z[i] = zi // see "Hacker's Delight", section 2-12 (overflow detection) c = (xi&yi | (xi|yi)&^zi) >> (_W - 1) } return } // The resulting carry c is either 0 or 1. func subVV_g(z, x, y []Word) (c Word) { if use_addWW_g { for i := range z { c, z[i] = subWW_g(x[i], y[i], c) } return } for i, xi := range x[:len(z)] { yi := y[i] zi := xi - yi - c z[i] = zi // see "Hacker's Delight", section 2-12 (overflow detection) c = (yi&^xi | (yi|^xi)&zi) >> (_W - 1) } return } // The resulting carry c is either 0 or 1. func addVW_g(z, x []Word, y Word) (c Word) { if use_addWW_g { c = y for i := range z { c, z[i] = addWW_g(x[i], c, 0) } return } c = y for i, xi := range x[:len(z)] { zi := xi + c z[i] = zi c = xi &^ zi >> (_W - 1) } return } func subVW_g(z, x []Word, y Word) (c Word) { if use_addWW_g { c = y for i := range z { c, z[i] = subWW_g(x[i], c, 0) } return } c = y for i, xi := range x[:len(z)] { zi := xi - c z[i] = zi c = (zi &^ xi) >> (_W - 1) } return } func shlVU_g(z, x []Word, s uint) (c Word) { if n := len(z); n > 0 { ŝ := _W - s w1 := x[n-1] c = w1 >> ŝ for i := n - 1; i > 0; i-- { w := w1 w1 = x[i-1] z[i] = w<>ŝ } z[0] = w1 << s } return } func shrVU_g(z, x []Word, s uint) (c Word) { if n := len(z); n > 0 { ŝ := _W - s w1 := x[0] c = w1 << ŝ for i := 0; i < n-1; i++ { w := w1 w1 = x[i+1] z[i] = w>>s | w1<<ŝ } z[n-1] = w1 >> s } return } func mulAddVWW_g(z, x []Word, y, r Word) (c Word) { c = r for i := range z { c, z[i] = mulAddWWW_g(x[i], y, c) } return } // TODO(gri) Remove use of addWW_g here and then we can remove addWW_g and subWW_g. func addMulVVW_g(z, x []Word, y Word) (c Word) { for i := range z { z1, z0 := mulAddWWW_g(x[i], y, z[i]) c, z[i] = addWW_g(z0, c, 0) c += z1 } return } func divWVW_g(z []Word, xn Word, x []Word, y Word) (r Word) { r = xn for i := len(z) - 1; i >= 0; i-- { z[i], r = divWW_g(r, x[i], y) } return }