// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // HTTP client implementation. See RFC 2616. // // This is the low-level Transport implementation of RoundTripper. // The high-level interface is in client.go. package http import ( "bufio" "compress/gzip" "container/list" "context" "crypto/tls" "errors" "fmt" "io" "log" "net" "net/http/httptrace" "net/url" "os" "strings" "sync" "sync/atomic" "time" "golang_org/x/net/lex/httplex" ) // DefaultTransport is the default implementation of Transport and is // used by DefaultClient. It establishes network connections as needed // and caches them for reuse by subsequent calls. It uses HTTP proxies // as directed by the $HTTP_PROXY and $NO_PROXY (or $http_proxy and // $no_proxy) environment variables. var DefaultTransport RoundTripper = &Transport{ Proxy: ProxyFromEnvironment, DialContext: (&net.Dialer{ Timeout: 30 * time.Second, KeepAlive: 30 * time.Second, DualStack: true, }).DialContext, MaxIdleConns: 100, IdleConnTimeout: 90 * time.Second, TLSHandshakeTimeout: 10 * time.Second, ExpectContinueTimeout: 1 * time.Second, } // DefaultMaxIdleConnsPerHost is the default value of Transport's // MaxIdleConnsPerHost. const DefaultMaxIdleConnsPerHost = 2 // Transport is an implementation of RoundTripper that supports HTTP, // HTTPS, and HTTP proxies (for either HTTP or HTTPS with CONNECT). // // By default, Transport caches connections for future re-use. // This may leave many open connections when accessing many hosts. // This behavior can be managed using Transport's CloseIdleConnections method // and the MaxIdleConnsPerHost and DisableKeepAlives fields. // // Transports should be reused instead of created as needed. // Transports are safe for concurrent use by multiple goroutines. // // A Transport is a low-level primitive for making HTTP and HTTPS requests. // For high-level functionality, such as cookies and redirects, see Client. // // Transport uses HTTP/1.1 for HTTP URLs and either HTTP/1.1 or HTTP/2 // for HTTPS URLs, depending on whether the server supports HTTP/2, // and how the Transport is configured. The DefaultTransport supports HTTP/2. // To explicitly enable HTTP/2 on a transport, use golang.org/x/net/http2 // and call ConfigureTransport. See the package docs for more about HTTP/2. type Transport struct { idleMu sync.Mutex wantIdle bool // user has requested to close all idle conns idleConn map[connectMethodKey][]*persistConn // most recently used at end idleConnCh map[connectMethodKey]chan *persistConn idleLRU connLRU reqMu sync.Mutex reqCanceler map[*Request]func(error) altMu sync.Mutex // guards changing altProto only altProto atomic.Value // of nil or map[string]RoundTripper, key is URI scheme // Proxy specifies a function to return a proxy for a given // Request. If the function returns a non-nil error, the // request is aborted with the provided error. // If Proxy is nil or returns a nil *URL, no proxy is used. Proxy func(*Request) (*url.URL, error) // DialContext specifies the dial function for creating unencrypted TCP connections. // If DialContext is nil (and the deprecated Dial below is also nil), // then the transport dials using package net. DialContext func(ctx context.Context, network, addr string) (net.Conn, error) // Dial specifies the dial function for creating unencrypted TCP connections. // // Deprecated: Use DialContext instead, which allows the transport // to cancel dials as soon as they are no longer needed. // If both are set, DialContext takes priority. Dial func(network, addr string) (net.Conn, error) // DialTLS specifies an optional dial function for creating // TLS connections for non-proxied HTTPS requests. // // If DialTLS is nil, Dial and TLSClientConfig are used. // // If DialTLS is set, the Dial hook is not used for HTTPS // requests and the TLSClientConfig and TLSHandshakeTimeout // are ignored. The returned net.Conn is assumed to already be // past the TLS handshake. DialTLS func(network, addr string) (net.Conn, error) // TLSClientConfig specifies the TLS configuration to use with // tls.Client. // If nil, the default configuration is used. // If non-nil, HTTP/2 support may not be enabled by default. TLSClientConfig *tls.Config // TLSHandshakeTimeout specifies the maximum amount of time waiting to // wait for a TLS handshake. Zero means no timeout. TLSHandshakeTimeout time.Duration // DisableKeepAlives, if true, prevents re-use of TCP connections // between different HTTP requests. DisableKeepAlives bool // DisableCompression, if true, prevents the Transport from // requesting compression with an "Accept-Encoding: gzip" // request header when the Request contains no existing // Accept-Encoding value. If the Transport requests gzip on // its own and gets a gzipped response, it's transparently // decoded in the Response.Body. However, if the user // explicitly requested gzip it is not automatically // uncompressed. DisableCompression bool // MaxIdleConns controls the maximum number of idle (keep-alive) // connections across all hosts. Zero means no limit. MaxIdleConns int // MaxIdleConnsPerHost, if non-zero, controls the maximum idle // (keep-alive) connections to keep per-host. If zero, // DefaultMaxIdleConnsPerHost is used. MaxIdleConnsPerHost int // IdleConnTimeout is the maximum amount of time an idle // (keep-alive) connection will remain idle before closing // itself. // Zero means no limit. IdleConnTimeout time.Duration // ResponseHeaderTimeout, if non-zero, specifies the amount of // time to wait for a server's response headers after fully // writing the request (including its body, if any). This // time does not include the time to read the response body. ResponseHeaderTimeout time.Duration // ExpectContinueTimeout, if non-zero, specifies the amount of // time to wait for a server's first response headers after fully // writing the request headers if the request has an // "Expect: 100-continue" header. Zero means no timeout and // causes the body to be sent immediately, without // waiting for the server to approve. // This time does not include the time to send the request header. ExpectContinueTimeout time.Duration // TLSNextProto specifies how the Transport switches to an // alternate protocol (such as HTTP/2) after a TLS NPN/ALPN // protocol negotiation. If Transport dials an TLS connection // with a non-empty protocol name and TLSNextProto contains a // map entry for that key (such as "h2"), then the func is // called with the request's authority (such as "example.com" // or "example.com:1234") and the TLS connection. The function // must return a RoundTripper that then handles the request. // If TLSNextProto is not nil, HTTP/2 support is not enabled // automatically. TLSNextProto map[string]func(authority string, c *tls.Conn) RoundTripper // ProxyConnectHeader optionally specifies headers to send to // proxies during CONNECT requests. ProxyConnectHeader Header // MaxResponseHeaderBytes specifies a limit on how many // response bytes are allowed in the server's response // header. // // Zero means to use a default limit. MaxResponseHeaderBytes int64 // nextProtoOnce guards initialization of TLSNextProto and // h2transport (via onceSetNextProtoDefaults) nextProtoOnce sync.Once h2transport *http2Transport // non-nil if http2 wired up // TODO: tunable on max per-host TCP dials in flight (Issue 13957) } // onceSetNextProtoDefaults initializes TLSNextProto. // It must be called via t.nextProtoOnce.Do. func (t *Transport) onceSetNextProtoDefaults() { if strings.Contains(os.Getenv("GODEBUG"), "http2client=0") { return } if t.TLSNextProto != nil { // This is the documented way to disable http2 on a // Transport. return } if t.TLSClientConfig != nil || t.Dial != nil || t.DialTLS != nil { // Be conservative and don't automatically enable // http2 if they've specified a custom TLS config or // custom dialers. Let them opt-in themselves via // http2.ConfigureTransport so we don't surprise them // by modifying their tls.Config. Issue 14275. return } t2, err := http2configureTransport(t) if err != nil { log.Printf("Error enabling Transport HTTP/2 support: %v", err) return } t.h2transport = t2 // Auto-configure the http2.Transport's MaxHeaderListSize from // the http.Transport's MaxResponseHeaderBytes. They don't // exactly mean the same thing, but they're close. // // TODO: also add this to x/net/http2.Configure Transport, behind // a +build go1.7 build tag: if limit1 := t.MaxResponseHeaderBytes; limit1 != 0 && t2.MaxHeaderListSize == 0 { const h2max = 1<<32 - 1 if limit1 >= h2max { t2.MaxHeaderListSize = h2max } else { t2.MaxHeaderListSize = uint32(limit1) } } } // ProxyFromEnvironment returns the URL of the proxy to use for a // given request, as indicated by the environment variables // HTTP_PROXY, HTTPS_PROXY and NO_PROXY (or the lowercase versions // thereof). HTTPS_PROXY takes precedence over HTTP_PROXY for https // requests. // // The environment values may be either a complete URL or a // "host[:port]", in which case the "http" scheme is assumed. // An error is returned if the value is a different form. // // A nil URL and nil error are returned if no proxy is defined in the // environment, or a proxy should not be used for the given request, // as defined by NO_PROXY. // // As a special case, if req.URL.Host is "localhost" (with or without // a port number), then a nil URL and nil error will be returned. func ProxyFromEnvironment(req *Request) (*url.URL, error) { var proxy string if req.URL.Scheme == "https" { proxy = httpsProxyEnv.Get() } if proxy == "" { proxy = httpProxyEnv.Get() if proxy != "" && os.Getenv("REQUEST_METHOD") != "" { return nil, errors.New("net/http: refusing to use HTTP_PROXY value in CGI environment; see golang.org/s/cgihttpproxy") } } if proxy == "" { return nil, nil } if !useProxy(canonicalAddr(req.URL)) { return nil, nil } proxyURL, err := url.Parse(proxy) if err != nil || !strings.HasPrefix(proxyURL.Scheme, "http") { // proxy was bogus. Try prepending "http://" to it and // see if that parses correctly. If not, we fall // through and complain about the original one. if proxyURL, err := url.Parse("http://" + proxy); err == nil { return proxyURL, nil } } if err != nil { return nil, fmt.Errorf("invalid proxy address %q: %v", proxy, err) } return proxyURL, nil } // ProxyURL returns a proxy function (for use in a Transport) // that always returns the same URL. func ProxyURL(fixedURL *url.URL) func(*Request) (*url.URL, error) { return func(*Request) (*url.URL, error) { return fixedURL, nil } } // transportRequest is a wrapper around a *Request that adds // optional extra headers to write. type transportRequest struct { *Request // original request, not to be mutated extra Header // extra headers to write, or nil trace *httptrace.ClientTrace // optional } func (tr *transportRequest) extraHeaders() Header { if tr.extra == nil { tr.extra = make(Header) } return tr.extra } // RoundTrip implements the RoundTripper interface. // // For higher-level HTTP client support (such as handling of cookies // and redirects), see Get, Post, and the Client type. func (t *Transport) RoundTrip(req *Request) (*Response, error) { t.nextProtoOnce.Do(t.onceSetNextProtoDefaults) ctx := req.Context() trace := httptrace.ContextClientTrace(ctx) if req.URL == nil { req.closeBody() return nil, errors.New("http: nil Request.URL") } if req.Header == nil { req.closeBody() return nil, errors.New("http: nil Request.Header") } scheme := req.URL.Scheme isHTTP := scheme == "http" || scheme == "https" if isHTTP { for k, vv := range req.Header { if !httplex.ValidHeaderFieldName(k) { return nil, fmt.Errorf("net/http: invalid header field name %q", k) } for _, v := range vv { if !httplex.ValidHeaderFieldValue(v) { return nil, fmt.Errorf("net/http: invalid header field value %q for key %v", v, k) } } } } altProto, _ := t.altProto.Load().(map[string]RoundTripper) if altRT := altProto[scheme]; altRT != nil { if resp, err := altRT.RoundTrip(req); err != ErrSkipAltProtocol { return resp, err } } if !isHTTP { req.closeBody() return nil, &badStringError{"unsupported protocol scheme", scheme} } if req.Method != "" && !validMethod(req.Method) { return nil, fmt.Errorf("net/http: invalid method %q", req.Method) } if req.URL.Host == "" { req.closeBody() return nil, errors.New("http: no Host in request URL") } for { // treq gets modified by roundTrip, so we need to recreate for each retry. treq := &transportRequest{Request: req, trace: trace} cm, err := t.connectMethodForRequest(treq) if err != nil { req.closeBody() return nil, err } // Get the cached or newly-created connection to either the // host (for http or https), the http proxy, or the http proxy // pre-CONNECTed to https server. In any case, we'll be ready // to send it requests. pconn, err := t.getConn(treq, cm) if err != nil { t.setReqCanceler(req, nil) req.closeBody() return nil, err } var resp *Response if pconn.alt != nil { // HTTP/2 path. t.setReqCanceler(req, nil) // not cancelable with CancelRequest resp, err = pconn.alt.RoundTrip(req) } else { resp, err = pconn.roundTrip(treq) } if err == nil { return resp, nil } if !pconn.shouldRetryRequest(req, err) { // Issue 16465: return underlying net.Conn.Read error from peek, // as we've historically done. if e, ok := err.(transportReadFromServerError); ok { err = e.err } return nil, err } testHookRoundTripRetried() } } // shouldRetryRequest reports whether we should retry sending a failed // HTTP request on a new connection. The non-nil input error is the // error from roundTrip. func (pc *persistConn) shouldRetryRequest(req *Request, err error) bool { if err == http2ErrNoCachedConn { // Issue 16582: if the user started a bunch of // requests at once, they can all pick the same conn // and violate the server's max concurrent streams. // Instead, match the HTTP/1 behavior for now and dial // again to get a new TCP connection, rather than failing // this request. return true } if err == errMissingHost { // User error. return false } if !pc.isReused() { // This was a fresh connection. There's no reason the server // should've hung up on us. // // Also, if we retried now, we could loop forever // creating new connections and retrying if the server // is just hanging up on us because it doesn't like // our request (as opposed to sending an error). return false } if _, ok := err.(nothingWrittenError); ok { // We never wrote anything, so it's safe to retry. return true } if !req.isReplayable() { // Don't retry non-idempotent requests. return false } if _, ok := err.(transportReadFromServerError); ok { // We got some non-EOF net.Conn.Read failure reading // the 1st response byte from the server. return true } if err == errServerClosedIdle { // The server replied with io.EOF while we were trying to // read the response. Probably an unfortunately keep-alive // timeout, just as the client was writing a request. return true } return false // conservatively } // ErrSkipAltProtocol is a sentinel error value defined by Transport.RegisterProtocol. var ErrSkipAltProtocol = errors.New("net/http: skip alternate protocol") // RegisterProtocol registers a new protocol with scheme. // The Transport will pass requests using the given scheme to rt. // It is rt's responsibility to simulate HTTP request semantics. // // RegisterProtocol can be used by other packages to provide // implementations of protocol schemes like "ftp" or "file". // // If rt.RoundTrip returns ErrSkipAltProtocol, the Transport will // handle the RoundTrip itself for that one request, as if the // protocol were not registered. func (t *Transport) RegisterProtocol(scheme string, rt RoundTripper) { t.altMu.Lock() defer t.altMu.Unlock() oldMap, _ := t.altProto.Load().(map[string]RoundTripper) if _, exists := oldMap[scheme]; exists { panic("protocol " + scheme + " already registered") } newMap := make(map[string]RoundTripper) for k, v := range oldMap { newMap[k] = v } newMap[scheme] = rt t.altProto.Store(newMap) } // CloseIdleConnections closes any connections which were previously // connected from previous requests but are now sitting idle in // a "keep-alive" state. It does not interrupt any connections currently // in use. func (t *Transport) CloseIdleConnections() { t.nextProtoOnce.Do(t.onceSetNextProtoDefaults) t.idleMu.Lock() m := t.idleConn t.idleConn = nil t.idleConnCh = nil t.wantIdle = true t.idleLRU = connLRU{} t.idleMu.Unlock() for _, conns := range m { for _, pconn := range conns { pconn.close(errCloseIdleConns) } } if t2 := t.h2transport; t2 != nil { t2.CloseIdleConnections() } } // CancelRequest cancels an in-flight request by closing its connection. // CancelRequest should only be called after RoundTrip has returned. // // Deprecated: Use Request.WithContext to create a request with a // cancelable context instead. CancelRequest cannot cancel HTTP/2 // requests. func (t *Transport) CancelRequest(req *Request) { t.cancelRequest(req, errRequestCanceled) } // Cancel an in-flight request, recording the error value. func (t *Transport) cancelRequest(req *Request, err error) { t.reqMu.Lock() cancel := t.reqCanceler[req] delete(t.reqCanceler, req) t.reqMu.Unlock() if cancel != nil { cancel(err) } } // // Private implementation past this point. // var ( httpProxyEnv = &envOnce{ names: []string{"HTTP_PROXY", "http_proxy"}, } httpsProxyEnv = &envOnce{ names: []string{"HTTPS_PROXY", "https_proxy"}, } noProxyEnv = &envOnce{ names: []string{"NO_PROXY", "no_proxy"}, } ) // envOnce looks up an environment variable (optionally by multiple // names) once. It mitigates expensive lookups on some platforms // (e.g. Windows). type envOnce struct { names []string once sync.Once val string } func (e *envOnce) Get() string { e.once.Do(e.init) return e.val } func (e *envOnce) init() { for _, n := range e.names { e.val = os.Getenv(n) if e.val != "" { return } } } // reset is used by tests func (e *envOnce) reset() { e.once = sync.Once{} e.val = "" } func (t *Transport) connectMethodForRequest(treq *transportRequest) (cm connectMethod, err error) { if port := treq.URL.Port(); !validPort(port) { return cm, fmt.Errorf("invalid URL port %q", port) } cm.targetScheme = treq.URL.Scheme cm.targetAddr = canonicalAddr(treq.URL) if t.Proxy != nil { cm.proxyURL, err = t.Proxy(treq.Request) if err == nil && cm.proxyURL != nil { if port := cm.proxyURL.Port(); !validPort(port) { return cm, fmt.Errorf("invalid proxy URL port %q", port) } } } return cm, err } // proxyAuth returns the Proxy-Authorization header to set // on requests, if applicable. func (cm *connectMethod) proxyAuth() string { if cm.proxyURL == nil { return "" } if u := cm.proxyURL.User; u != nil { username := u.Username() password, _ := u.Password() return "Basic " + basicAuth(username, password) } return "" } // error values for debugging and testing, not seen by users. var ( errKeepAlivesDisabled = errors.New("http: putIdleConn: keep alives disabled") errConnBroken = errors.New("http: putIdleConn: connection is in bad state") errWantIdle = errors.New("http: putIdleConn: CloseIdleConnections was called") errTooManyIdle = errors.New("http: putIdleConn: too many idle connections") errTooManyIdleHost = errors.New("http: putIdleConn: too many idle connections for host") errCloseIdleConns = errors.New("http: CloseIdleConnections called") errReadLoopExiting = errors.New("http: persistConn.readLoop exiting") errServerClosedIdle = errors.New("http: server closed idle connection") errIdleConnTimeout = errors.New("http: idle connection timeout") errNotCachingH2Conn = errors.New("http: not caching alternate protocol's connections") ) // transportReadFromServerError is used by Transport.readLoop when the // 1 byte peek read fails and we're actually anticipating a response. // Usually this is just due to the inherent keep-alive shut down race, // where the server closed the connection at the same time the client // wrote. The underlying err field is usually io.EOF or some // ECONNRESET sort of thing which varies by platform. But it might be // the user's custom net.Conn.Read error too, so we carry it along for // them to return from Transport.RoundTrip. type transportReadFromServerError struct { err error } func (e transportReadFromServerError) Error() string { return fmt.Sprintf("net/http: Transport failed to read from server: %v", e.err) } func (t *Transport) putOrCloseIdleConn(pconn *persistConn) { if err := t.tryPutIdleConn(pconn); err != nil { pconn.close(err) } } func (t *Transport) maxIdleConnsPerHost() int { if v := t.MaxIdleConnsPerHost; v != 0 { return v } return DefaultMaxIdleConnsPerHost } // tryPutIdleConn adds pconn to the list of idle persistent connections awaiting // a new request. // If pconn is no longer needed or not in a good state, tryPutIdleConn returns // an error explaining why it wasn't registered. // tryPutIdleConn does not close pconn. Use putOrCloseIdleConn instead for that. func (t *Transport) tryPutIdleConn(pconn *persistConn) error { if t.DisableKeepAlives || t.MaxIdleConnsPerHost < 0 { return errKeepAlivesDisabled } if pconn.isBroken() { return errConnBroken } if pconn.alt != nil { return errNotCachingH2Conn } pconn.markReused() key := pconn.cacheKey t.idleMu.Lock() defer t.idleMu.Unlock() waitingDialer := t.idleConnCh[key] select { case waitingDialer <- pconn: // We're done with this pconn and somebody else is // currently waiting for a conn of this type (they're // actively dialing, but this conn is ready // first). Chrome calls this socket late binding. See // https://insouciant.org/tech/connection-management-in-chromium/ return nil default: if waitingDialer != nil { // They had populated this, but their dial won // first, so we can clean up this map entry. delete(t.idleConnCh, key) } } if t.wantIdle { return errWantIdle } if t.idleConn == nil { t.idleConn = make(map[connectMethodKey][]*persistConn) } idles := t.idleConn[key] if len(idles) >= t.maxIdleConnsPerHost() { return errTooManyIdleHost } for _, exist := range idles { if exist == pconn { log.Fatalf("dup idle pconn %p in freelist", pconn) } } t.idleConn[key] = append(idles, pconn) t.idleLRU.add(pconn) if t.MaxIdleConns != 0 && t.idleLRU.len() > t.MaxIdleConns { oldest := t.idleLRU.removeOldest() oldest.close(errTooManyIdle) t.removeIdleConnLocked(oldest) } if t.IdleConnTimeout > 0 { if pconn.idleTimer != nil { pconn.idleTimer.Reset(t.IdleConnTimeout) } else { pconn.idleTimer = time.AfterFunc(t.IdleConnTimeout, pconn.closeConnIfStillIdle) } } pconn.idleAt = time.Now() return nil } // getIdleConnCh returns a channel to receive and return idle // persistent connection for the given connectMethod. // It may return nil, if persistent connections are not being used. func (t *Transport) getIdleConnCh(cm connectMethod) chan *persistConn { if t.DisableKeepAlives { return nil } key := cm.key() t.idleMu.Lock() defer t.idleMu.Unlock() t.wantIdle = false if t.idleConnCh == nil { t.idleConnCh = make(map[connectMethodKey]chan *persistConn) } ch, ok := t.idleConnCh[key] if !ok { ch = make(chan *persistConn) t.idleConnCh[key] = ch } return ch } func (t *Transport) getIdleConn(cm connectMethod) (pconn *persistConn, idleSince time.Time) { key := cm.key() t.idleMu.Lock() defer t.idleMu.Unlock() for { pconns, ok := t.idleConn[key] if !ok { return nil, time.Time{} } if len(pconns) == 1 { pconn = pconns[0] delete(t.idleConn, key) } else { // 2 or more cached connections; use the most // recently used one at the end. pconn = pconns[len(pconns)-1] t.idleConn[key] = pconns[:len(pconns)-1] } t.idleLRU.remove(pconn) if pconn.isBroken() { // There is a tiny window where this is // possible, between the connecting dying and // the persistConn readLoop calling // Transport.removeIdleConn. Just skip it and // carry on. continue } if pconn.idleTimer != nil && !pconn.idleTimer.Stop() { // We picked this conn at the ~same time it // was expiring and it's trying to close // itself in another goroutine. Don't use it. continue } return pconn, pconn.idleAt } } // removeIdleConn marks pconn as dead. func (t *Transport) removeIdleConn(pconn *persistConn) { t.idleMu.Lock() defer t.idleMu.Unlock() t.removeIdleConnLocked(pconn) } // t.idleMu must be held. func (t *Transport) removeIdleConnLocked(pconn *persistConn) { if pconn.idleTimer != nil { pconn.idleTimer.Stop() } t.idleLRU.remove(pconn) key := pconn.cacheKey pconns, _ := t.idleConn[key] switch len(pconns) { case 0: // Nothing case 1: if pconns[0] == pconn { delete(t.idleConn, key) } default: for i, v := range pconns { if v != pconn { continue } // Slide down, keeping most recently-used // conns at the end. copy(pconns[i:], pconns[i+1:]) t.idleConn[key] = pconns[:len(pconns)-1] break } } } func (t *Transport) setReqCanceler(r *Request, fn func(error)) { t.reqMu.Lock() defer t.reqMu.Unlock() if t.reqCanceler == nil { t.reqCanceler = make(map[*Request]func(error)) } if fn != nil { t.reqCanceler[r] = fn } else { delete(t.reqCanceler, r) } } // replaceReqCanceler replaces an existing cancel function. If there is no cancel function // for the request, we don't set the function and return false. // Since CancelRequest will clear the canceler, we can use the return value to detect if // the request was canceled since the last setReqCancel call. func (t *Transport) replaceReqCanceler(r *Request, fn func(error)) bool { t.reqMu.Lock() defer t.reqMu.Unlock() _, ok := t.reqCanceler[r] if !ok { return false } if fn != nil { t.reqCanceler[r] = fn } else { delete(t.reqCanceler, r) } return true } var zeroDialer net.Dialer func (t *Transport) dial(ctx context.Context, network, addr string) (net.Conn, error) { if t.DialContext != nil { return t.DialContext(ctx, network, addr) } if t.Dial != nil { c, err := t.Dial(network, addr) if c == nil && err == nil { err = errors.New("net/http: Transport.Dial hook returned (nil, nil)") } return c, err } return zeroDialer.DialContext(ctx, network, addr) } // getConn dials and creates a new persistConn to the target as // specified in the connectMethod. This includes doing a proxy CONNECT // and/or setting up TLS. If this doesn't return an error, the persistConn // is ready to write requests to. func (t *Transport) getConn(treq *transportRequest, cm connectMethod) (*persistConn, error) { req := treq.Request trace := treq.trace ctx := req.Context() if trace != nil && trace.GetConn != nil { trace.GetConn(cm.addr()) } if pc, idleSince := t.getIdleConn(cm); pc != nil { if trace != nil && trace.GotConn != nil { trace.GotConn(pc.gotIdleConnTrace(idleSince)) } // set request canceler to some non-nil function so we // can detect whether it was cleared between now and when // we enter roundTrip t.setReqCanceler(req, func(error) {}) return pc, nil } type dialRes struct { pc *persistConn err error } dialc := make(chan dialRes) // Copy these hooks so we don't race on the postPendingDial in // the goroutine we launch. Issue 11136. testHookPrePendingDial := testHookPrePendingDial testHookPostPendingDial := testHookPostPendingDial handlePendingDial := func() { testHookPrePendingDial() go func() { if v := <-dialc; v.err == nil { t.putOrCloseIdleConn(v.pc) } testHookPostPendingDial() }() } cancelc := make(chan error, 1) t.setReqCanceler(req, func(err error) { cancelc <- err }) go func() { pc, err := t.dialConn(ctx, cm) dialc <- dialRes{pc, err} }() idleConnCh := t.getIdleConnCh(cm) select { case v := <-dialc: // Our dial finished. if v.pc != nil { if trace != nil && trace.GotConn != nil && v.pc.alt == nil { trace.GotConn(httptrace.GotConnInfo{Conn: v.pc.conn}) } return v.pc, nil } // Our dial failed. See why to return a nicer error // value. select { case <-req.Cancel: // It was an error due to cancelation, so prioritize that // error value. (Issue 16049) return nil, errRequestCanceledConn case <-req.Context().Done(): return nil, req.Context().Err() case err := <-cancelc: if err == errRequestCanceled { err = errRequestCanceledConn } return nil, err default: // It wasn't an error due to cancelation, so // return the original error message: return nil, v.err } case pc := <-idleConnCh: // Another request finished first and its net.Conn // became available before our dial. Or somebody // else's dial that they didn't use. // But our dial is still going, so give it away // when it finishes: handlePendingDial() if trace != nil && trace.GotConn != nil { trace.GotConn(httptrace.GotConnInfo{Conn: pc.conn, Reused: pc.isReused()}) } return pc, nil case <-req.Cancel: handlePendingDial() return nil, errRequestCanceledConn case <-req.Context().Done(): handlePendingDial() return nil, req.Context().Err() case err := <-cancelc: handlePendingDial() if err == errRequestCanceled { err = errRequestCanceledConn } return nil, err } } func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (*persistConn, error) { pconn := &persistConn{ t: t, cacheKey: cm.key(), reqch: make(chan requestAndChan, 1), writech: make(chan writeRequest, 1), closech: make(chan struct{}), writeErrCh: make(chan error, 1), writeLoopDone: make(chan struct{}), } trace := httptrace.ContextClientTrace(ctx) tlsDial := t.DialTLS != nil && cm.targetScheme == "https" && cm.proxyURL == nil if tlsDial { var err error pconn.conn, err = t.DialTLS("tcp", cm.addr()) if err != nil { return nil, err } if pconn.conn == nil { return nil, errors.New("net/http: Transport.DialTLS returned (nil, nil)") } if tc, ok := pconn.conn.(*tls.Conn); ok { // Handshake here, in case DialTLS didn't. TLSNextProto below // depends on it for knowing the connection state. if trace != nil && trace.TLSHandshakeStart != nil { trace.TLSHandshakeStart() } if err := tc.Handshake(); err != nil { go pconn.conn.Close() if trace != nil && trace.TLSHandshakeDone != nil { trace.TLSHandshakeDone(tls.ConnectionState{}, err) } return nil, err } cs := tc.ConnectionState() if trace != nil && trace.TLSHandshakeDone != nil { trace.TLSHandshakeDone(cs, nil) } pconn.tlsState = &cs } } else { conn, err := t.dial(ctx, "tcp", cm.addr()) if err != nil { if cm.proxyURL != nil { // Return a typed error, per Issue 16997: err = &net.OpError{Op: "proxyconnect", Net: "tcp", Err: err} } return nil, err } pconn.conn = conn } // Proxy setup. switch { case cm.proxyURL == nil: // Do nothing. Not using a proxy. case cm.targetScheme == "http": pconn.isProxy = true if pa := cm.proxyAuth(); pa != "" { pconn.mutateHeaderFunc = func(h Header) { h.Set("Proxy-Authorization", pa) } } case cm.targetScheme == "https": conn := pconn.conn hdr := t.ProxyConnectHeader if hdr == nil { hdr = make(Header) } connectReq := &Request{ Method: "CONNECT", URL: &url.URL{Opaque: cm.targetAddr}, Host: cm.targetAddr, Header: hdr, } if pa := cm.proxyAuth(); pa != "" { connectReq.Header.Set("Proxy-Authorization", pa) } connectReq.Write(conn) // Read response. // Okay to use and discard buffered reader here, because // TLS server will not speak until spoken to. br := bufio.NewReader(conn) resp, err := ReadResponse(br, connectReq) if err != nil { conn.Close() return nil, err } if resp.StatusCode != 200 { f := strings.SplitN(resp.Status, " ", 2) conn.Close() return nil, errors.New(f[1]) } } if cm.targetScheme == "https" && !tlsDial { // Initiate TLS and check remote host name against certificate. cfg := cloneTLSConfig(t.TLSClientConfig) if cfg.ServerName == "" { cfg.ServerName = cm.tlsHost() } plainConn := pconn.conn tlsConn := tls.Client(plainConn, cfg) errc := make(chan error, 2) var timer *time.Timer // for canceling TLS handshake if d := t.TLSHandshakeTimeout; d != 0 { timer = time.AfterFunc(d, func() { errc <- tlsHandshakeTimeoutError{} }) } go func() { if trace != nil && trace.TLSHandshakeStart != nil { trace.TLSHandshakeStart() } err := tlsConn.Handshake() if timer != nil { timer.Stop() } errc <- err }() if err := <-errc; err != nil { plainConn.Close() if trace != nil && trace.TLSHandshakeDone != nil { trace.TLSHandshakeDone(tls.ConnectionState{}, err) } return nil, err } if !cfg.InsecureSkipVerify { if err := tlsConn.VerifyHostname(cfg.ServerName); err != nil { plainConn.Close() return nil, err } } cs := tlsConn.ConnectionState() if trace != nil && trace.TLSHandshakeDone != nil { trace.TLSHandshakeDone(cs, nil) } pconn.tlsState = &cs pconn.conn = tlsConn } if s := pconn.tlsState; s != nil && s.NegotiatedProtocolIsMutual && s.NegotiatedProtocol != "" { if next, ok := t.TLSNextProto[s.NegotiatedProtocol]; ok { return &persistConn{alt: next(cm.targetAddr, pconn.conn.(*tls.Conn))}, nil } } pconn.br = bufio.NewReader(pconn) pconn.bw = bufio.NewWriter(persistConnWriter{pconn}) go pconn.readLoop() go pconn.writeLoop() return pconn, nil } // persistConnWriter is the io.Writer written to by pc.bw. // It accumulates the number of bytes written to the underlying conn, // so the retry logic can determine whether any bytes made it across // the wire. // This is exactly 1 pointer field wide so it can go into an interface // without allocation. type persistConnWriter struct { pc *persistConn } func (w persistConnWriter) Write(p []byte) (n int, err error) { n, err = w.pc.conn.Write(p) w.pc.nwrite += int64(n) return } // useProxy reports whether requests to addr should use a proxy, // according to the NO_PROXY or no_proxy environment variable. // addr is always a canonicalAddr with a host and port. func useProxy(addr string) bool { if len(addr) == 0 { return true } host, _, err := net.SplitHostPort(addr) if err != nil { return false } if host == "localhost" { return false } if ip := net.ParseIP(host); ip != nil { if ip.IsLoopback() { return false } } no_proxy := noProxyEnv.Get() if no_proxy == "*" { return false } addr = strings.ToLower(strings.TrimSpace(addr)) if hasPort(addr) { addr = addr[:strings.LastIndex(addr, ":")] } for _, p := range strings.Split(no_proxy, ",") { p = strings.ToLower(strings.TrimSpace(p)) if len(p) == 0 { continue } if hasPort(p) { p = p[:strings.LastIndex(p, ":")] } if addr == p { return false } if p[0] == '.' && (strings.HasSuffix(addr, p) || addr == p[1:]) { // no_proxy ".foo.com" matches "bar.foo.com" or "foo.com" return false } if p[0] != '.' && strings.HasSuffix(addr, p) && addr[len(addr)-len(p)-1] == '.' { // no_proxy "foo.com" matches "bar.foo.com" return false } } return true } // connectMethod is the map key (in its String form) for keeping persistent // TCP connections alive for subsequent HTTP requests. // // A connect method may be of the following types: // // Cache key form Description // ----------------- ------------------------- // |http|foo.com http directly to server, no proxy // |https|foo.com https directly to server, no proxy // http://proxy.com|https|foo.com http to proxy, then CONNECT to foo.com // http://proxy.com|http http to proxy, http to anywhere after that // // Note: no support to https to the proxy yet. // type connectMethod struct { proxyURL *url.URL // nil for no proxy, else full proxy URL targetScheme string // "http" or "https" targetAddr string // Not used if proxy + http targetScheme (4th example in table) } func (cm *connectMethod) key() connectMethodKey { proxyStr := "" targetAddr := cm.targetAddr if cm.proxyURL != nil { proxyStr = cm.proxyURL.String() if cm.targetScheme == "http" { targetAddr = "" } } return connectMethodKey{ proxy: proxyStr, scheme: cm.targetScheme, addr: targetAddr, } } // addr returns the first hop "host:port" to which we need to TCP connect. func (cm *connectMethod) addr() string { if cm.proxyURL != nil { return canonicalAddr(cm.proxyURL) } return cm.targetAddr } // tlsHost returns the host name to match against the peer's // TLS certificate. func (cm *connectMethod) tlsHost() string { h := cm.targetAddr if hasPort(h) { h = h[:strings.LastIndex(h, ":")] } return h } // connectMethodKey is the map key version of connectMethod, with a // stringified proxy URL (or the empty string) instead of a pointer to // a URL. type connectMethodKey struct { proxy, scheme, addr string } func (k connectMethodKey) String() string { // Only used by tests. return fmt.Sprintf("%s|%s|%s", k.proxy, k.scheme, k.addr) } // persistConn wraps a connection, usually a persistent one // (but may be used for non-keep-alive requests as well) type persistConn struct { // alt optionally specifies the TLS NextProto RoundTripper. // This is used for HTTP/2 today and future protocols later. // If it's non-nil, the rest of the fields are unused. alt RoundTripper t *Transport cacheKey connectMethodKey conn net.Conn tlsState *tls.ConnectionState br *bufio.Reader // from conn bw *bufio.Writer // to conn nwrite int64 // bytes written reqch chan requestAndChan // written by roundTrip; read by readLoop writech chan writeRequest // written by roundTrip; read by writeLoop closech chan struct{} // closed when conn closed isProxy bool sawEOF bool // whether we've seen EOF from conn; owned by readLoop readLimit int64 // bytes allowed to be read; owned by readLoop // writeErrCh passes the request write error (usually nil) // from the writeLoop goroutine to the readLoop which passes // it off to the res.Body reader, which then uses it to decide // whether or not a connection can be reused. Issue 7569. writeErrCh chan error writeLoopDone chan struct{} // closed when write loop ends // Both guarded by Transport.idleMu: idleAt time.Time // time it last become idle idleTimer *time.Timer // holding an AfterFunc to close it mu sync.Mutex // guards following fields numExpectedResponses int closed error // set non-nil when conn is closed, before closech is closed canceledErr error // set non-nil if conn is canceled broken bool // an error has happened on this connection; marked broken so it's not reused. reused bool // whether conn has had successful request/response and is being reused. // mutateHeaderFunc is an optional func to modify extra // headers on each outbound request before it's written. (the // original Request given to RoundTrip is not modified) mutateHeaderFunc func(Header) } func (pc *persistConn) maxHeaderResponseSize() int64 { if v := pc.t.MaxResponseHeaderBytes; v != 0 { return v } return 10 << 20 // conservative default; same as http2 } func (pc *persistConn) Read(p []byte) (n int, err error) { if pc.readLimit <= 0 { return 0, fmt.Errorf("read limit of %d bytes exhausted", pc.maxHeaderResponseSize()) } if int64(len(p)) > pc.readLimit { p = p[:pc.readLimit] } n, err = pc.conn.Read(p) if err == io.EOF { pc.sawEOF = true } pc.readLimit -= int64(n) return } // isBroken reports whether this connection is in a known broken state. func (pc *persistConn) isBroken() bool { pc.mu.Lock() b := pc.closed != nil pc.mu.Unlock() return b } // canceled returns non-nil if the connection was closed due to // CancelRequest or due to context cancelation. func (pc *persistConn) canceled() error { pc.mu.Lock() defer pc.mu.Unlock() return pc.canceledErr } // isReused reports whether this connection is in a known broken state. func (pc *persistConn) isReused() bool { pc.mu.Lock() r := pc.reused pc.mu.Unlock() return r } func (pc *persistConn) gotIdleConnTrace(idleAt time.Time) (t httptrace.GotConnInfo) { pc.mu.Lock() defer pc.mu.Unlock() t.Reused = pc.reused t.Conn = pc.conn t.WasIdle = true if !idleAt.IsZero() { t.IdleTime = time.Since(idleAt) } return } func (pc *persistConn) cancelRequest(err error) { pc.mu.Lock() defer pc.mu.Unlock() pc.canceledErr = err pc.closeLocked(errRequestCanceled) } // closeConnIfStillIdle closes the connection if it's still sitting idle. // This is what's called by the persistConn's idleTimer, and is run in its // own goroutine. func (pc *persistConn) closeConnIfStillIdle() { t := pc.t t.idleMu.Lock() defer t.idleMu.Unlock() if _, ok := t.idleLRU.m[pc]; !ok { // Not idle. return } t.removeIdleConnLocked(pc) pc.close(errIdleConnTimeout) } // mapRoundTripErrorFromReadLoop maps the provided readLoop error into // the error value that should be returned from persistConn.roundTrip. // // The startBytesWritten value should be the value of pc.nwrite before the roundTrip // started writing the request. func (pc *persistConn) mapRoundTripErrorFromReadLoop(req *Request, startBytesWritten int64, err error) (out error) { if err == nil { return nil } if err := pc.canceled(); err != nil { return err } if err == errServerClosedIdle { return err } if _, ok := err.(transportReadFromServerError); ok { return err } if pc.isBroken() { <-pc.writeLoopDone if pc.nwrite == startBytesWritten && req.outgoingLength() == 0 { return nothingWrittenError{err} } } return err } // mapRoundTripErrorAfterClosed returns the error value to be propagated // up to Transport.RoundTrip method when persistConn.roundTrip sees // its pc.closech channel close, indicating the persistConn is dead. // (after closech is closed, pc.closed is valid). func (pc *persistConn) mapRoundTripErrorAfterClosed(req *Request, startBytesWritten int64) error { if err := pc.canceled(); err != nil { return err } err := pc.closed if err == errServerClosedIdle { // Don't decorate return err } if _, ok := err.(transportReadFromServerError); ok { // Don't decorate return err } // Wait for the writeLoop goroutine to terminated, and then // see if we actually managed to write anything. If not, we // can retry the request. <-pc.writeLoopDone if pc.nwrite == startBytesWritten && req.outgoingLength() == 0 { return nothingWrittenError{err} } return fmt.Errorf("net/http: HTTP/1.x transport connection broken: %v", err) } func (pc *persistConn) readLoop() { closeErr := errReadLoopExiting // default value, if not changed below defer func() { pc.close(closeErr) pc.t.removeIdleConn(pc) }() tryPutIdleConn := func(trace *httptrace.ClientTrace) bool { if err := pc.t.tryPutIdleConn(pc); err != nil { closeErr = err if trace != nil && trace.PutIdleConn != nil && err != errKeepAlivesDisabled { trace.PutIdleConn(err) } return false } if trace != nil && trace.PutIdleConn != nil { trace.PutIdleConn(nil) } return true } // eofc is used to block caller goroutines reading from Response.Body // at EOF until this goroutines has (potentially) added the connection // back to the idle pool. eofc := make(chan struct{}) defer close(eofc) // unblock reader on errors // Read this once, before loop starts. (to avoid races in tests) testHookMu.Lock() testHookReadLoopBeforeNextRead := testHookReadLoopBeforeNextRead testHookMu.Unlock() alive := true for alive { pc.readLimit = pc.maxHeaderResponseSize() _, err := pc.br.Peek(1) pc.mu.Lock() if pc.numExpectedResponses == 0 { pc.readLoopPeekFailLocked(err) pc.mu.Unlock() return } pc.mu.Unlock() rc := <-pc.reqch trace := httptrace.ContextClientTrace(rc.req.Context()) var resp *Response if err == nil { resp, err = pc.readResponse(rc, trace) } else { err = transportReadFromServerError{err} closeErr = err } if err != nil { if pc.readLimit <= 0 { err = fmt.Errorf("net/http: server response headers exceeded %d bytes; aborted", pc.maxHeaderResponseSize()) } // If we won't be able to retry this request later (from the // roundTrip goroutine), mark it as done now. // BEFORE the send on rc.ch, as the client might re-use the // same *Request pointer, and we don't want to set call // t.setReqCanceler from this persistConn while the Transport // potentially spins up a different persistConn for the // caller's subsequent request. if !pc.shouldRetryRequest(rc.req, err) { pc.t.setReqCanceler(rc.req, nil) } select { case rc.ch <- responseAndError{err: err}: case <-rc.callerGone: return } return } pc.readLimit = maxInt64 // effictively no limit for response bodies pc.mu.Lock() pc.numExpectedResponses-- pc.mu.Unlock() hasBody := rc.req.Method != "HEAD" && resp.ContentLength != 0 if resp.Close || rc.req.Close || resp.StatusCode <= 199 { // Don't do keep-alive on error if either party requested a close // or we get an unexpected informational (1xx) response. // StatusCode 100 is already handled above. alive = false } if !hasBody { pc.t.setReqCanceler(rc.req, nil) // Put the idle conn back into the pool before we send the response // so if they process it quickly and make another request, they'll // get this same conn. But we use the unbuffered channel 'rc' // to guarantee that persistConn.roundTrip got out of its select // potentially waiting for this persistConn to close. // but after alive = alive && !pc.sawEOF && pc.wroteRequest() && tryPutIdleConn(trace) select { case rc.ch <- responseAndError{res: resp}: case <-rc.callerGone: return } // Now that they've read from the unbuffered channel, they're safely // out of the select that also waits on this goroutine to die, so // we're allowed to exit now if needed (if alive is false) testHookReadLoopBeforeNextRead() continue } waitForBodyRead := make(chan bool, 2) body := &bodyEOFSignal{ body: resp.Body, earlyCloseFn: func() error { waitForBodyRead <- false return nil }, fn: func(err error) error { isEOF := err == io.EOF waitForBodyRead <- isEOF if isEOF { <-eofc // see comment above eofc declaration } else if err != nil { if cerr := pc.canceled(); cerr != nil { return cerr } } return err }, } resp.Body = body if rc.addedGzip && resp.Header.Get("Content-Encoding") == "gzip" { resp.Body = &gzipReader{body: body} resp.Header.Del("Content-Encoding") resp.Header.Del("Content-Length") resp.ContentLength = -1 resp.Uncompressed = true } select { case rc.ch <- responseAndError{res: resp}: case <-rc.callerGone: return } // Before looping back to the top of this function and peeking on // the bufio.Reader, wait for the caller goroutine to finish // reading the response body. (or for cancelation or death) select { case bodyEOF := <-waitForBodyRead: pc.t.setReqCanceler(rc.req, nil) // before pc might return to idle pool alive = alive && bodyEOF && !pc.sawEOF && pc.wroteRequest() && tryPutIdleConn(trace) if bodyEOF { eofc <- struct{}{} } case <-rc.req.Cancel: alive = false pc.t.CancelRequest(rc.req) case <-rc.req.Context().Done(): alive = false pc.t.cancelRequest(rc.req, rc.req.Context().Err()) case <-pc.closech: alive = false } testHookReadLoopBeforeNextRead() } } func (pc *persistConn) readLoopPeekFailLocked(peekErr error) { if pc.closed != nil { return } if n := pc.br.Buffered(); n > 0 { buf, _ := pc.br.Peek(n) log.Printf("Unsolicited response received on idle HTTP channel starting with %q; err=%v", buf, peekErr) } if peekErr == io.EOF { // common case. pc.closeLocked(errServerClosedIdle) } else { pc.closeLocked(fmt.Errorf("readLoopPeekFailLocked: %v", peekErr)) } } // readResponse reads an HTTP response (or two, in the case of "Expect: // 100-continue") from the server. It returns the final non-100 one. // trace is optional. func (pc *persistConn) readResponse(rc requestAndChan, trace *httptrace.ClientTrace) (resp *Response, err error) { if trace != nil && trace.GotFirstResponseByte != nil { if peek, err := pc.br.Peek(1); err == nil && len(peek) == 1 { trace.GotFirstResponseByte() } } resp, err = ReadResponse(pc.br, rc.req) if err != nil { return } if rc.continueCh != nil { if resp.StatusCode == 100 { if trace != nil && trace.Got100Continue != nil { trace.Got100Continue() } rc.continueCh <- struct{}{} } else { close(rc.continueCh) } } if resp.StatusCode == 100 { pc.readLimit = pc.maxHeaderResponseSize() // reset the limit resp, err = ReadResponse(pc.br, rc.req) if err != nil { return } } resp.TLS = pc.tlsState return } // waitForContinue returns the function to block until // any response, timeout or connection close. After any of them, // the function returns a bool which indicates if the body should be sent. func (pc *persistConn) waitForContinue(continueCh <-chan struct{}) func() bool { if continueCh == nil { return nil } return func() bool { timer := time.NewTimer(pc.t.ExpectContinueTimeout) defer timer.Stop() select { case _, ok := <-continueCh: return ok case <-timer.C: return true case <-pc.closech: return false } } } // nothingWrittenError wraps a write errors which ended up writing zero bytes. type nothingWrittenError struct { error } func (pc *persistConn) writeLoop() { defer close(pc.writeLoopDone) for { select { case wr := <-pc.writech: startBytesWritten := pc.nwrite err := wr.req.Request.write(pc.bw, pc.isProxy, wr.req.extra, pc.waitForContinue(wr.continueCh)) if err == nil { err = pc.bw.Flush() } if err != nil { wr.req.Request.closeBody() if pc.nwrite == startBytesWritten && wr.req.outgoingLength() == 0 { err = nothingWrittenError{err} } } pc.writeErrCh <- err // to the body reader, which might recycle us wr.ch <- err // to the roundTrip function if err != nil { pc.close(err) return } case <-pc.closech: return } } } // wroteRequest is a check before recycling a connection that the previous write // (from writeLoop above) happened and was successful. func (pc *persistConn) wroteRequest() bool { select { case err := <-pc.writeErrCh: // Common case: the write happened well before the response, so // avoid creating a timer. return err == nil default: // Rare case: the request was written in writeLoop above but // before it could send to pc.writeErrCh, the reader read it // all, processed it, and called us here. In this case, give the // write goroutine a bit of time to finish its send. // // Less rare case: We also get here in the legitimate case of // Issue 7569, where the writer is still writing (or stalled), // but the server has already replied. In this case, we don't // want to wait too long, and we want to return false so this // connection isn't re-used. select { case err := <-pc.writeErrCh: return err == nil case <-time.After(50 * time.Millisecond): return false } } } // responseAndError is how the goroutine reading from an HTTP/1 server // communicates with the goroutine doing the RoundTrip. type responseAndError struct { res *Response // else use this response (see res method) err error } type requestAndChan struct { req *Request ch chan responseAndError // unbuffered; always send in select on callerGone // whether the Transport (as opposed to the user client code) // added the Accept-Encoding gzip header. If the Transport // set it, only then do we transparently decode the gzip. addedGzip bool // Optional blocking chan for Expect: 100-continue (for send). // If the request has an "Expect: 100-continue" header and // the server responds 100 Continue, readLoop send a value // to writeLoop via this chan. continueCh chan<- struct{} callerGone <-chan struct{} // closed when roundTrip caller has returned } // A writeRequest is sent by the readLoop's goroutine to the // writeLoop's goroutine to write a request while the read loop // concurrently waits on both the write response and the server's // reply. type writeRequest struct { req *transportRequest ch chan<- error // Optional blocking chan for Expect: 100-continue (for receive). // If not nil, writeLoop blocks sending request body until // it receives from this chan. continueCh <-chan struct{} } type httpError struct { err string timeout bool } func (e *httpError) Error() string { return e.err } func (e *httpError) Timeout() bool { return e.timeout } func (e *httpError) Temporary() bool { return true } var errTimeout error = &httpError{err: "net/http: timeout awaiting response headers", timeout: true} var errRequestCanceled = errors.New("net/http: request canceled") var errRequestCanceledConn = errors.New("net/http: request canceled while waiting for connection") // TODO: unify? func nop() {} // testHooks. Always non-nil. var ( testHookEnterRoundTrip = nop testHookWaitResLoop = nop testHookRoundTripRetried = nop testHookPrePendingDial = nop testHookPostPendingDial = nop testHookMu sync.Locker = fakeLocker{} // guards following testHookReadLoopBeforeNextRead = nop ) func (pc *persistConn) roundTrip(req *transportRequest) (resp *Response, err error) { testHookEnterRoundTrip() if !pc.t.replaceReqCanceler(req.Request, pc.cancelRequest) { pc.t.putOrCloseIdleConn(pc) return nil, errRequestCanceled } pc.mu.Lock() pc.numExpectedResponses++ headerFn := pc.mutateHeaderFunc pc.mu.Unlock() if headerFn != nil { headerFn(req.extraHeaders()) } // Ask for a compressed version if the caller didn't set their // own value for Accept-Encoding. We only attempt to // uncompress the gzip stream if we were the layer that // requested it. requestedGzip := false if !pc.t.DisableCompression && req.Header.Get("Accept-Encoding") == "" && req.Header.Get("Range") == "" && req.Method != "HEAD" { // Request gzip only, not deflate. Deflate is ambiguous and // not as universally supported anyway. // See: http://www.gzip.org/zlib/zlib_faq.html#faq38 // // Note that we don't request this for HEAD requests, // due to a bug in nginx: // http://trac.nginx.org/nginx/ticket/358 // https://golang.org/issue/5522 // // We don't request gzip if the request is for a range, since // auto-decoding a portion of a gzipped document will just fail // anyway. See https://golang.org/issue/8923 requestedGzip = true req.extraHeaders().Set("Accept-Encoding", "gzip") } var continueCh chan struct{} if req.ProtoAtLeast(1, 1) && req.Body != nil && req.expectsContinue() { continueCh = make(chan struct{}, 1) } if pc.t.DisableKeepAlives { req.extraHeaders().Set("Connection", "close") } gone := make(chan struct{}) defer close(gone) // Write the request concurrently with waiting for a response, // in case the server decides to reply before reading our full // request body. startBytesWritten := pc.nwrite writeErrCh := make(chan error, 1) pc.writech <- writeRequest{req, writeErrCh, continueCh} resc := make(chan responseAndError) pc.reqch <- requestAndChan{ req: req.Request, ch: resc, addedGzip: requestedGzip, continueCh: continueCh, callerGone: gone, } var re responseAndError var respHeaderTimer <-chan time.Time cancelChan := req.Request.Cancel ctxDoneChan := req.Context().Done() WaitResponse: for { testHookWaitResLoop() select { case err := <-writeErrCh: if err != nil { if cerr := pc.canceled(); cerr != nil { err = cerr } re = responseAndError{err: err} pc.close(fmt.Errorf("write error: %v", err)) break WaitResponse } if d := pc.t.ResponseHeaderTimeout; d > 0 { timer := time.NewTimer(d) defer timer.Stop() // prevent leaks respHeaderTimer = timer.C } case <-pc.closech: re = responseAndError{err: pc.mapRoundTripErrorAfterClosed(req.Request, startBytesWritten)} break WaitResponse case <-respHeaderTimer: pc.close(errTimeout) re = responseAndError{err: errTimeout} break WaitResponse case re = <-resc: re.err = pc.mapRoundTripErrorFromReadLoop(req.Request, startBytesWritten, re.err) break WaitResponse case <-cancelChan: pc.t.CancelRequest(req.Request) cancelChan = nil case <-ctxDoneChan: pc.t.cancelRequest(req.Request, req.Context().Err()) cancelChan = nil ctxDoneChan = nil } } if re.err != nil { pc.t.setReqCanceler(req.Request, nil) } if (re.res == nil) == (re.err == nil) { panic("internal error: exactly one of res or err should be set") } return re.res, re.err } // markReused marks this connection as having been successfully used for a // request and response. func (pc *persistConn) markReused() { pc.mu.Lock() pc.reused = true pc.mu.Unlock() } // close closes the underlying TCP connection and closes // the pc.closech channel. // // The provided err is only for testing and debugging; in normal // circumstances it should never be seen by users. func (pc *persistConn) close(err error) { pc.mu.Lock() defer pc.mu.Unlock() pc.closeLocked(err) } func (pc *persistConn) closeLocked(err error) { if err == nil { panic("nil error") } pc.broken = true if pc.closed == nil { pc.closed = err if pc.alt != nil { // Do nothing; can only get here via getConn's // handlePendingDial's putOrCloseIdleConn when // it turns out the abandoned connection in // flight ended up negotiating an alternate // protocol. We don't use the connection // freelist for http2. That's done by the // alternate protocol's RoundTripper. } else { pc.conn.Close() close(pc.closech) } } pc.mutateHeaderFunc = nil } var portMap = map[string]string{ "http": "80", "https": "443", } // canonicalAddr returns url.Host but always with a ":port" suffix func canonicalAddr(url *url.URL) string { addr := url.Hostname() if v, err := idnaASCII(addr); err == nil { addr = v } port := url.Port() if port == "" { port = portMap[url.Scheme] } return net.JoinHostPort(addr, port) } // bodyEOFSignal is used by the HTTP/1 transport when reading response // bodies to make sure we see the end of a response body before // proceeding and reading on the connection again. // // It wraps a ReadCloser but runs fn (if non-nil) at most // once, right before its final (error-producing) Read or Close call // returns. fn should return the new error to return from Read or Close. // // If earlyCloseFn is non-nil and Close is called before io.EOF is // seen, earlyCloseFn is called instead of fn, and its return value is // the return value from Close. type bodyEOFSignal struct { body io.ReadCloser mu sync.Mutex // guards following 4 fields closed bool // whether Close has been called rerr error // sticky Read error fn func(error) error // err will be nil on Read io.EOF earlyCloseFn func() error // optional alt Close func used if io.EOF not seen } var errReadOnClosedResBody = errors.New("http: read on closed response body") func (es *bodyEOFSignal) Read(p []byte) (n int, err error) { es.mu.Lock() closed, rerr := es.closed, es.rerr es.mu.Unlock() if closed { return 0, errReadOnClosedResBody } if rerr != nil { return 0, rerr } n, err = es.body.Read(p) if err != nil { es.mu.Lock() defer es.mu.Unlock() if es.rerr == nil { es.rerr = err } err = es.condfn(err) } return } func (es *bodyEOFSignal) Close() error { es.mu.Lock() defer es.mu.Unlock() if es.closed { return nil } es.closed = true if es.earlyCloseFn != nil && es.rerr != io.EOF { return es.earlyCloseFn() } err := es.body.Close() return es.condfn(err) } // caller must hold es.mu. func (es *bodyEOFSignal) condfn(err error) error { if es.fn == nil { return err } err = es.fn(err) es.fn = nil return err } // gzipReader wraps a response body so it can lazily // call gzip.NewReader on the first call to Read type gzipReader struct { body *bodyEOFSignal // underlying HTTP/1 response body framing zr *gzip.Reader // lazily-initialized gzip reader zerr error // any error from gzip.NewReader; sticky } func (gz *gzipReader) Read(p []byte) (n int, err error) { if gz.zr == nil { if gz.zerr == nil { gz.zr, gz.zerr = gzip.NewReader(gz.body) } if gz.zerr != nil { return 0, gz.zerr } } gz.body.mu.Lock() if gz.body.closed { err = errReadOnClosedResBody } gz.body.mu.Unlock() if err != nil { return 0, err } return gz.zr.Read(p) } func (gz *gzipReader) Close() error { return gz.body.Close() } type readerAndCloser struct { io.Reader io.Closer } type tlsHandshakeTimeoutError struct{} func (tlsHandshakeTimeoutError) Timeout() bool { return true } func (tlsHandshakeTimeoutError) Temporary() bool { return true } func (tlsHandshakeTimeoutError) Error() string { return "net/http: TLS handshake timeout" } // fakeLocker is a sync.Locker which does nothing. It's used to guard // test-only fields when not under test, to avoid runtime atomic // overhead. type fakeLocker struct{} func (fakeLocker) Lock() {} func (fakeLocker) Unlock() {} // clneTLSConfig returns a shallow clone of cfg, or a new zero tls.Config if // cfg is nil. This is safe to call even if cfg is in active use by a TLS // client or server. func cloneTLSConfig(cfg *tls.Config) *tls.Config { if cfg == nil { return &tls.Config{} } return cfg.Clone() } type connLRU struct { ll *list.List // list.Element.Value type is of *persistConn m map[*persistConn]*list.Element } // add adds pc to the head of the linked list. func (cl *connLRU) add(pc *persistConn) { if cl.ll == nil { cl.ll = list.New() cl.m = make(map[*persistConn]*list.Element) } ele := cl.ll.PushFront(pc) if _, ok := cl.m[pc]; ok { panic("persistConn was already in LRU") } cl.m[pc] = ele } func (cl *connLRU) removeOldest() *persistConn { ele := cl.ll.Back() pc := ele.Value.(*persistConn) cl.ll.Remove(ele) delete(cl.m, pc) return pc } // remove removes pc from cl. func (cl *connLRU) remove(pc *persistConn) { if ele, ok := cl.m[pc]; ok { cl.ll.Remove(ele) delete(cl.m, pc) } } // len returns the number of items in the cache. func (cl *connLRU) len() int { return len(cl.m) } // validPort reports whether p (without the colon) is a valid port in // a URL, per RFC 3986 Section 3.2.3, which says the port may be // empty, or only contain digits. func validPort(p string) bool { for _, r := range []byte(p) { if r < '0' || r > '9' { return false } } return true }