// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) // Should be a built-in for unsafe.Pointer? //go:nosplit func add(p unsafe.Pointer, x uintptr) unsafe.Pointer { return unsafe.Pointer(uintptr(p) + x) } // getg returns the pointer to the current g. // The compiler rewrites calls to this function into instructions // that fetch the g directly (from TLS or from the dedicated register). func getg() *g // mcall switches from the g to the g0 stack and invokes fn(g), // where g is the goroutine that made the call. // mcall saves g's current PC/SP in g->sched so that it can be restored later. // It is up to fn to arrange for that later execution, typically by recording // g in a data structure, causing something to call ready(g) later. // mcall returns to the original goroutine g later, when g has been rescheduled. // fn must not return at all; typically it ends by calling schedule, to let the m // run other goroutines. // // mcall can only be called from g stacks (not g0, not gsignal). // // This must NOT be go:noescape: if fn is a stack-allocated closure, // fn puts g on a run queue, and g executes before fn returns, the // closure will be invalidated while it is still executing. func mcall(fn func(*g)) // systemstack runs fn on a system stack. // // It is common to use a func literal as the argument, in order // to share inputs and outputs with the code around the call // to system stack: // // ... set up y ... // systemstack(func() { // x = bigcall(y) // }) // ... use x ... // // For the gc toolchain this permits running a function that requires // additional stack space in a context where the stack can not be // split. For gccgo, however, stack splitting is not managed by the // Go runtime. In effect, all stacks are system stacks. So this gccgo // version just runs the function. func systemstack(fn func()) { fn() } func badsystemstack() { throw("systemstack called from unexpected goroutine") } // memclrNoHeapPointers clears n bytes starting at ptr. // // Usually you should use typedmemclr. memclrNoHeapPointers should be // used only when the caller knows that *ptr contains no heap pointers // because either: // // 1. *ptr is initialized memory and its type is pointer-free. // // 2. *ptr is uninitialized memory (e.g., memory that's being reused // for a new allocation) and hence contains only "junk". // // in memclr_*.s //go:noescape func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr) //go:linkname reflect_memclrNoHeapPointers reflect.memclrNoHeapPointers func reflect_memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr) { memclrNoHeapPointers(ptr, n) } // memmove copies n bytes from "from" to "to". //go:noescape func memmove(to, from unsafe.Pointer, n uintptr) //go:linkname reflect_memmove reflect.memmove func reflect_memmove(to, from unsafe.Pointer, n uintptr) { memmove(to, from, n) } //go:noescape //extern __builtin_memcmp func memcmp(a, b unsafe.Pointer, size uintptr) int32 // exported value for testing var hashLoad = loadFactor // in asm_*.s func fastrand() uint32 //go:linkname sync_fastrand sync.fastrand func sync_fastrand() uint32 { return fastrand() } // in asm_*.s //go:noescape func memequal(a, b unsafe.Pointer, size uintptr) bool // noescape hides a pointer from escape analysis. noescape is // the identity function but escape analysis doesn't think the // output depends on the input. noescape is inlined and currently // compiles down to zero instructions. // USE CAREFULLY! //go:nosplit func noescape(p unsafe.Pointer) unsafe.Pointer { x := uintptr(p) return unsafe.Pointer(x ^ 0) } //extern mincore func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32 //go:noescape func jmpdefer(fv *funcval, argp uintptr) func exit1(code int32) func asminit() func setg(gg *g) func breakpoint() // reflectcall calls fn with a copy of the n argument bytes pointed at by arg. // After fn returns, reflectcall copies n-retoffset result bytes // back into arg+retoffset before returning. If copying result bytes back, // the caller should pass the argument frame type as argtype, so that // call can execute appropriate write barriers during the copy. // Package reflect passes a frame type. In package runtime, there is only // one call that copies results back, in cgocallbackg1, and it does NOT pass a // frame type, meaning there are no write barriers invoked. See that call // site for justification. func reflectcall(argtype *_type, fn, arg unsafe.Pointer, argsize uint32, retoffset uint32) func procyield(cycles uint32) type neverCallThisFunction struct{} // goexit is the return stub at the top of every goroutine call stack. // Each goroutine stack is constructed as if goexit called the // goroutine's entry point function, so that when the entry point // function returns, it will return to goexit, which will call goexit1 // to perform the actual exit. // // This function must never be called directly. Call goexit1 instead. // gentraceback assumes that goexit terminates the stack. A direct // call on the stack will cause gentraceback to stop walking the stack // prematurely and if there are leftover stack barriers it may panic. func goexit(neverCallThisFunction) // publicationBarrier performs a store/store barrier (a "publication" // or "export" barrier). Some form of synchronization is required // between initializing an object and making that object accessible to // another processor. Without synchronization, the initialization // writes and the "publication" write may be reordered, allowing the // other processor to follow the pointer and observe an uninitialized // object. In general, higher-level synchronization should be used, // such as locking or an atomic pointer write. publicationBarrier is // for when those aren't an option, such as in the implementation of // the memory manager. // // There's no corresponding barrier for the read side because the read // side naturally has a data dependency order. All architectures that // Go supports or seems likely to ever support automatically enforce // data dependency ordering. func publicationBarrier() //go:noescape func setcallerpc(argp unsafe.Pointer, pc uintptr) // getcallerpc returns the program counter (PC) of its caller's caller. // getcallersp returns the stack pointer (SP) of its caller's caller. // For both, the argp must be a pointer to the caller's first function argument. // The implementation may or may not use argp, depending on // the architecture. // // For example: // // func f(arg1, arg2, arg3 int) { // pc := getcallerpc(unsafe.Pointer(&arg1)) // sp := getcallersp(unsafe.Pointer(&arg1)) // } // // These two lines find the PC and SP immediately following // the call to f (where f will return). // // The call to getcallerpc and getcallersp must be done in the // frame being asked about. It would not be correct for f to pass &arg1 // to another function g and let g call getcallerpc/getcallersp. // The call inside g might return information about g's caller or // information about f's caller or complete garbage. // // The result of getcallersp is correct at the time of the return, // but it may be invalidated by any subsequent call to a function // that might relocate the stack in order to grow or shrink it. // A general rule is that the result of getcallersp should be used // immediately and can only be passed to nosplit functions. //go:noescape func getcallerpc(argp unsafe.Pointer) uintptr //go:noescape func getcallersp(argp unsafe.Pointer) uintptr // argp used in Defer structs when there is no argp. const _NoArgs = ^uintptr(0) //go:linkname time_now time.now func time_now() (sec int64, nsec int32) // For gccgo, expose this for C callers. //go:linkname unixnanotime runtime.unixnanotime func unixnanotime() int64 { sec, nsec := time_now() return sec*1e9 + int64(nsec) } // round n up to a multiple of a. a must be a power of 2. func round(n, a uintptr) uintptr { return (n + a - 1) &^ (a - 1) } // checkASM returns whether assembly runtime checks have passed. func checkASM() bool { return true } func eqstring(x, y string) bool { a := stringStructOf(&x) b := stringStructOf(&y) if a.len != b.len { return false } if a.str == b.str { return true } return memequal(a.str, b.str, uintptr(a.len)) } // For gccgo this is in the C code. func osyield() // For gccgo this can be called directly. //extern syscall func syscall(trap uintptr, a1, a2, a3, a4, a5, a6 uintptr) uintptr // newobject allocates a new object. // For gccgo unless and until we port malloc.go. func newobject(*_type) unsafe.Pointer // newarray allocates a new array of objects. // For gccgo unless and until we port malloc.go. func newarray(*_type, int) unsafe.Pointer // For gccgo, to communicate from the C code to the Go code. //go:linkname setIsCgo runtime.setIsCgo func setIsCgo() { iscgo = true } // Temporary for gccgo until we port proc.go. //go:linkname makeMainInitDone runtime.makeMainInitDone func makeMainInitDone() { main_init_done = make(chan bool) } // Temporary for gccgo until we port proc.go. //go:linkname closeMainInitDone runtime.closeMainInitDone func closeMainInitDone() { close(main_init_done) } // For gccgo, to communicate from the C code to the Go code. //go:linkname setCpuidECX runtime.setCpuidECX func setCpuidECX(v uint32) { cpuid_ecx = v } // For gccgo, to communicate from the C code to the Go code. //go:linkname setSupportAES runtime.setSupportAES func setSupportAES(v bool) { support_aes = v } // typedmemmove copies a typed value. // For gccgo for now. //go:linkname typedmemmove runtime.typedmemmove //go:nosplit func typedmemmove(typ *_type, dst, src unsafe.Pointer) { memmove(dst, src, typ.size) } // Temporary for gccgo until we port mbarrier.go. //go:linkname reflect_typedmemmove reflect.typedmemmove func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) { typedmemmove(typ, dst, src) } // Temporary for gccgo until we port mbarrier.go. //go:nosplit func typedmemclr(typ *_type, ptr unsafe.Pointer) { memclrNoHeapPointers(ptr, typ.size) } // Temporary for gccgo until we port mbarrier.go. //go:nosplit func memclrHasPointers(ptr unsafe.Pointer, n uintptr) { memclrNoHeapPointers(ptr, n) } // Temporary for gccgo until we port mbarrier.go. //go:linkname typedslicecopy runtime.typedslicecopy func typedslicecopy(typ *_type, dst, src slice) int { n := dst.len if n > src.len { n = src.len } if n == 0 { return 0 } memmove(dst.array, src.array, uintptr(n)*typ.size) return n } // Temporary for gccgo until we port mbarrier.go. //go:linkname reflect_typedslicecopy reflect.typedslicecopy func reflect_typedslicecopy(elemType *_type, dst, src slice) int { return typedslicecopy(elemType, dst, src) } // Here for gccgo until we port malloc.go. const ( _64bit = 1 << (^uintptr(0) >> 63) / 2 _MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*32 _MaxMem = uintptr(1<<_MHeapMap_TotalBits - 1) _MaxGcproc = 32 ) // Here for gccgo until we port malloc.go. //extern runtime_mallocgc func c_mallocgc(size uintptr, typ uintptr, flag uint32) unsafe.Pointer func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer { flag := uint32(0) if !needzero { flag = 1 << 3 } return c_mallocgc(size, uintptr(unsafe.Pointer(typ)), flag) } // Here for gccgo until we port mgc.go. var writeBarrier struct { enabled bool // compiler emits a check of this before calling write barrier needed bool // whether we need a write barrier for current GC phase cgo bool // whether we need a write barrier for a cgo check alignme uint64 // guarantee alignment so that compiler can use a 32 or 64-bit load } func queueRescan(*g) { } // Here for gccgo until we port atomic_pointer.go and mgc.go. //go:nosplit func casp(ptr *unsafe.Pointer, old, new unsafe.Pointer) bool { if !atomic.Casp1((*unsafe.Pointer)(noescape(unsafe.Pointer(ptr))), noescape(old), new) { return false } return true } // Here for gccgo until we port lock_*.go. func lock(l *mutex) func unlock(l *mutex) // Here for gccgo for netpoll and Solaris. func errno() int // Temporary for gccgo until we port proc.go. func entersyscall(int32) func entersyscallblock(int32) func exitsyscall(int32) func gopark(func(*g, unsafe.Pointer) bool, unsafe.Pointer, string, byte, int) func goparkunlock(*mutex, string, byte, int) // Temporary hack for gccgo until we port the garbage collector. func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) {} // Here for gccgo until we port msize.go. func roundupsize(uintptr) uintptr // Here for gccgo until we port mgc.go. func GC() // For gccgo to call from C code. //go:linkname acquireWorldsema runtime.acquireWorldsema func acquireWorldsema() { semacquire(&worldsema, 0) } // For gccgo to call from C code. //go:linkname releaseWorldsema runtime.releaseWorldsema func releaseWorldsema() { semrelease(&worldsema) } // For gccgo to call from C code, so that the C code and the Go code // can share the memstats variable for now. //go:linkname getMstats runtime.getMstats func getMstats() *mstats { return &memstats } // Temporary for gccgo until we port proc.go. func setcpuprofilerate_m(hz int32) // Temporary for gccgo until we port mem_GOOS.go. func sysAlloc(n uintptr, sysStat *uint64) unsafe.Pointer func sysFree(v unsafe.Pointer, n uintptr, sysStat *uint64) // Temporary for gccgo until we port proc.go, so that the C signal // handler can call into cpuprof. //go:linkname cpuprofAdd runtime.cpuprofAdd func cpuprofAdd(stk []uintptr) { cpuprof.add(stk) } // For gccgo until we port proc.go. func Breakpoint() func LockOSThread() func UnlockOSThread() func lockOSThread() func unlockOSThread() // Temporary for gccgo until we port malloc.go func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer // Temporary for gccgo until we port mheap.go func setprofilebucket(p unsafe.Pointer, b *bucket) // Temporary for gccgo until we port mgc.go. func setgcpercent(int32) int32 //go:linkname setGCPercent runtime_debug.setGCPercent func setGCPercent(in int32) (out int32) { return setgcpercent(in) } // Temporary for gccgo until we port atomic_pointer.go. //go:nosplit func atomicstorep(ptr unsafe.Pointer, new unsafe.Pointer) { atomic.StorepNoWB(noescape(ptr), new) } // Temporary for gccgo until we port mbarrier.go func writebarrierptr(dst *uintptr, src uintptr) { *dst = src } // Temporary for gccgo until we port malloc.go var zerobase uintptr //go:linkname getZerobase runtime.getZerobase func getZerobase() *uintptr { return &zerobase } // Temporary for gccgo until we port proc.go. func sigprof() func goexit1() // Get signal trampoline, written in C. func getSigtramp() uintptr // The sa_handler field is generally hidden in a union, so use C accessors. func getSigactionHandler(*_sigaction) uintptr func setSigactionHandler(*_sigaction, uintptr) // Retrieve fields from the siginfo_t and ucontext_t pointers passed // to a signal handler using C, as they are often hidden in a union. // Returns and, if available, PC where signal occurred. func getSiginfo(*_siginfo_t, unsafe.Pointer) (sigaddr uintptr, sigpc uintptr) // Implemented in C for gccgo. func dumpregs(*_siginfo_t, unsafe.Pointer) // Temporary for gccgo until we port proc.go. //go:linkname getsched runtime.getsched func getsched() *schedt { return &sched } // Temporary for gccgo until we port proc.go. //go:linkname getCgoHasExtraM runtime.getCgoHasExtraM func getCgoHasExtraM() *bool { return &cgoHasExtraM } // Temporary for gccgo until we port proc.go. //go:linkname getAllP runtime.getAllP func getAllP() **p { return &allp[0] } // Temporary for gccgo until we port proc.go. //go:linkname allocg runtime.allocg func allocg() *g { return new(g) } // Temporary for gccgo until we port the garbage collector. //go:linkname getallglen runtime.getallglen func getallglen() uintptr { return allglen } // Temporary for gccgo until we port the garbage collector. //go:linkname getallg runtime.getallg func getallg(i int) *g { return allgs[i] } // Temporary for gccgo until we port the garbage collector. //go:linkname getallm runtime.getallm func getallm() *m { return allm } // Throw and rethrow an exception. func throwException() func rethrowException() // Fetch the size and required alignment of the _Unwind_Exception type // used by the stack unwinder. func unwindExceptionSize() uintptr // Temporary for gccgo until C code no longer needs it. //go:nosplit //go:linkname getPanicking runtime.getPanicking func getPanicking() uint32 { return panicking } // Temporary for gccgo until we port mcache.go. func allocmcache() *mcache func freemcache(*mcache) // Temporary for gccgo until we port mgc.go. // This is just so that allgadd will compile. var work struct { rescan struct { lock mutex list []guintptr } } // Temporary for gccgo until we port mgc.go. var gcBlackenEnabled uint32 // Temporary for gccgo until we port mgc.go. func gcMarkWorkAvailable(p *p) bool { return false } // Temporary for gccgo until we port mgc.go. var gcController gcControllerState // Temporary for gccgo until we port mgc.go. type gcControllerState struct { } // Temporary for gccgo until we port mgc.go. func (c *gcControllerState) findRunnableGCWorker(_p_ *p) *g { return nil } // Temporary for gccgo until we port mgc.go. var gcphase uint32 // Temporary for gccgo until we port mgc.go. const ( _GCoff = iota _GCmark _GCmarktermination ) // Temporary for gccgo until we port mgc.go. type gcMarkWorkerMode int // Temporary for gccgo until we port mgc.go. const ( gcMarkWorkerDedicatedMode gcMarkWorkerMode = iota gcMarkWorkerFractionalMode gcMarkWorkerIdleMode ) // Temporary for gccgo until we port mheap.go. type mheap struct { } // Temporary for gccgo until we port mheap.go. var mheap_ mheap // Temporary for gccgo until we port mheap.go. func (h *mheap) scavenge(k int32, now, limit uint64) { } // Temporary for gccgo until we initialize ncpu in Go. //go:linkname setncpu runtime.setncpu func setncpu(n int32) { ncpu = n } // Temporary for gccgo until we port malloc.go. var physPageSize uintptr // Temporary for gccgo until we reliably initialize physPageSize in Go. //go:linkname setpagesize runtime.setpagesize func setpagesize(s uintptr) { if physPageSize == 0 { physPageSize = s } } // Temporary for gccgo until we port more of proc.go. func sigprofNonGoPC(pc uintptr) { } // Temporary for gccgo until we port mgc.go. // gcMarkWorkerModeStrings are the strings labels of gcMarkWorkerModes // to use in execution traces. var gcMarkWorkerModeStrings = [...]string{ "GC (dedicated)", "GC (fractional)", "GC (idle)", }