// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package sync import ( "internal/race" "sync/atomic" "unsafe" ) // An RWMutex is a reader/writer mutual exclusion lock. // The lock can be held by an arbitrary number of readers or a single writer. // RWMutexes can be created as part of other structures; // the zero value for a RWMutex is an unlocked mutex. // // An RWMutex must not be copied after first use. // // If a goroutine holds a RWMutex for reading, it must not expect this or any // other goroutine to be able to also take the read lock until the first read // lock is released. In particular, this prohibits recursive read locking. // This is to ensure that the lock eventually becomes available; // a blocked Lock call excludes new readers from acquiring the lock. type RWMutex struct { w Mutex // held if there are pending writers writerSem uint32 // semaphore for writers to wait for completing readers readerSem uint32 // semaphore for readers to wait for completing writers readerCount int32 // number of pending readers readerWait int32 // number of departing readers } const rwmutexMaxReaders = 1 << 30 // RLock locks rw for reading. func (rw *RWMutex) RLock() { if race.Enabled { _ = rw.w.state race.Disable() } if atomic.AddInt32(&rw.readerCount, 1) < 0 { // A writer is pending, wait for it. runtime_Semacquire(&rw.readerSem) } if race.Enabled { race.Enable() race.Acquire(unsafe.Pointer(&rw.readerSem)) } } // RUnlock undoes a single RLock call; // it does not affect other simultaneous readers. // It is a run-time error if rw is not locked for reading // on entry to RUnlock. func (rw *RWMutex) RUnlock() { if race.Enabled { _ = rw.w.state race.ReleaseMerge(unsafe.Pointer(&rw.writerSem)) race.Disable() } if r := atomic.AddInt32(&rw.readerCount, -1); r < 0 { if r+1 == 0 || r+1 == -rwmutexMaxReaders { race.Enable() throw("sync: RUnlock of unlocked RWMutex") } // A writer is pending. if atomic.AddInt32(&rw.readerWait, -1) == 0 { // The last reader unblocks the writer. runtime_Semrelease(&rw.writerSem) } } if race.Enabled { race.Enable() } } // Lock locks rw for writing. // If the lock is already locked for reading or writing, // Lock blocks until the lock is available. func (rw *RWMutex) Lock() { if race.Enabled { _ = rw.w.state race.Disable() } // First, resolve competition with other writers. rw.w.Lock() // Announce to readers there is a pending writer. r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxReaders // Wait for active readers. if r != 0 && atomic.AddInt32(&rw.readerWait, r) != 0 { runtime_Semacquire(&rw.writerSem) } if race.Enabled { race.Enable() race.Acquire(unsafe.Pointer(&rw.readerSem)) race.Acquire(unsafe.Pointer(&rw.writerSem)) } } // Unlock unlocks rw for writing. It is a run-time error if rw is // not locked for writing on entry to Unlock. // // As with Mutexes, a locked RWMutex is not associated with a particular // goroutine. One goroutine may RLock (Lock) an RWMutex and then // arrange for another goroutine to RUnlock (Unlock) it. func (rw *RWMutex) Unlock() { if race.Enabled { _ = rw.w.state race.Release(unsafe.Pointer(&rw.readerSem)) race.Release(unsafe.Pointer(&rw.writerSem)) race.Disable() } // Announce to readers there is no active writer. r := atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders) if r >= rwmutexMaxReaders { race.Enable() throw("sync: Unlock of unlocked RWMutex") } // Unblock blocked readers, if any. for i := 0; i < int(r); i++ { runtime_Semrelease(&rw.readerSem) } // Allow other writers to proceed. rw.w.Unlock() if race.Enabled { race.Enable() } } // RLocker returns a Locker interface that implements // the Lock and Unlock methods by calling rw.RLock and rw.RUnlock. func (rw *RWMutex) RLocker() Locker { return (*rlocker)(rw) } type rlocker RWMutex func (r *rlocker) Lock() { (*RWMutex)(r).RLock() } func (r *rlocker) Unlock() { (*RWMutex)(r).RUnlock() }