/* * Common NFS I/O operations for the pnfs file based * layout drivers. * * Copyright (c) 2014, Primary Data, Inc. All rights reserved. * * Tom Haynes */ #include #include #include #include #include "nfs4session.h" #include "internal.h" #include "pnfs.h" #define NFSDBG_FACILITY NFSDBG_PNFS void pnfs_generic_rw_release(void *data) { struct nfs_pgio_header *hdr = data; nfs_put_client(hdr->ds_clp); hdr->mds_ops->rpc_release(data); } EXPORT_SYMBOL_GPL(pnfs_generic_rw_release); /* Fake up some data that will cause nfs_commit_release to retry the writes. */ void pnfs_generic_prepare_to_resend_writes(struct nfs_commit_data *data) { struct nfs_writeverf *verf = data->res.verf; data->task.tk_status = 0; memset(&verf->verifier, 0, sizeof(verf->verifier)); verf->committed = NFS_UNSTABLE; } EXPORT_SYMBOL_GPL(pnfs_generic_prepare_to_resend_writes); void pnfs_generic_write_commit_done(struct rpc_task *task, void *data) { struct nfs_commit_data *wdata = data; /* Note this may cause RPC to be resent */ wdata->mds_ops->rpc_call_done(task, data); } EXPORT_SYMBOL_GPL(pnfs_generic_write_commit_done); void pnfs_generic_commit_release(void *calldata) { struct nfs_commit_data *data = calldata; data->completion_ops->completion(data); pnfs_put_lseg(data->lseg); nfs_put_client(data->ds_clp); nfs_commitdata_release(data); } EXPORT_SYMBOL_GPL(pnfs_generic_commit_release); /* The generic layer is about to remove the req from the commit list. * If this will make the bucket empty, it will need to put the lseg reference. * Note this must be called holding nfsi->commit_mutex */ void pnfs_generic_clear_request_commit(struct nfs_page *req, struct nfs_commit_info *cinfo) { struct pnfs_layout_segment *freeme = NULL; if (!test_and_clear_bit(PG_COMMIT_TO_DS, &req->wb_flags)) goto out; cinfo->ds->nwritten--; if (list_is_singular(&req->wb_list)) { struct pnfs_commit_bucket *bucket; bucket = list_first_entry(&req->wb_list, struct pnfs_commit_bucket, written); freeme = bucket->wlseg; bucket->wlseg = NULL; } out: nfs_request_remove_commit_list(req, cinfo); pnfs_put_lseg(freeme); } EXPORT_SYMBOL_GPL(pnfs_generic_clear_request_commit); static int pnfs_generic_scan_ds_commit_list(struct pnfs_commit_bucket *bucket, struct nfs_commit_info *cinfo, int max) { struct list_head *src = &bucket->written; struct list_head *dst = &bucket->committing; int ret; lockdep_assert_held(&NFS_I(cinfo->inode)->commit_mutex); ret = nfs_scan_commit_list(src, dst, cinfo, max); if (ret) { cinfo->ds->nwritten -= ret; cinfo->ds->ncommitting += ret; if (bucket->clseg == NULL) bucket->clseg = pnfs_get_lseg(bucket->wlseg); if (list_empty(src)) { pnfs_put_lseg(bucket->wlseg); bucket->wlseg = NULL; } } return ret; } /* Move reqs from written to committing lists, returning count * of number moved. */ int pnfs_generic_scan_commit_lists(struct nfs_commit_info *cinfo, int max) { int i, rv = 0, cnt; lockdep_assert_held(&NFS_I(cinfo->inode)->commit_mutex); for (i = 0; i < cinfo->ds->nbuckets && max != 0; i++) { cnt = pnfs_generic_scan_ds_commit_list(&cinfo->ds->buckets[i], cinfo, max); max -= cnt; rv += cnt; } return rv; } EXPORT_SYMBOL_GPL(pnfs_generic_scan_commit_lists); /* Pull everything off the committing lists and dump into @dst. */ void pnfs_generic_recover_commit_reqs(struct list_head *dst, struct nfs_commit_info *cinfo) { struct pnfs_commit_bucket *b; struct pnfs_layout_segment *freeme; int nwritten; int i; lockdep_assert_held(&NFS_I(cinfo->inode)->commit_mutex); restart: for (i = 0, b = cinfo->ds->buckets; i < cinfo->ds->nbuckets; i++, b++) { nwritten = nfs_scan_commit_list(&b->written, dst, cinfo, 0); if (!nwritten) continue; cinfo->ds->nwritten -= nwritten; if (list_empty(&b->written)) { freeme = b->wlseg; b->wlseg = NULL; pnfs_put_lseg(freeme); goto restart; } } } EXPORT_SYMBOL_GPL(pnfs_generic_recover_commit_reqs); static void pnfs_generic_retry_commit(struct nfs_commit_info *cinfo, int idx) { struct pnfs_ds_commit_info *fl_cinfo = cinfo->ds; struct pnfs_commit_bucket *bucket; struct pnfs_layout_segment *freeme; struct list_head *pos; LIST_HEAD(pages); int i; mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); for (i = idx; i < fl_cinfo->nbuckets; i++) { bucket = &fl_cinfo->buckets[i]; if (list_empty(&bucket->committing)) continue; freeme = bucket->clseg; bucket->clseg = NULL; list_for_each(pos, &bucket->committing) cinfo->ds->ncommitting--; list_splice_init(&bucket->committing, &pages); mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); nfs_retry_commit(&pages, freeme, cinfo, i); pnfs_put_lseg(freeme); mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); } mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); } static unsigned int pnfs_generic_alloc_ds_commits(struct nfs_commit_info *cinfo, struct list_head *list) { struct pnfs_ds_commit_info *fl_cinfo; struct pnfs_commit_bucket *bucket; struct nfs_commit_data *data; int i; unsigned int nreq = 0; fl_cinfo = cinfo->ds; bucket = fl_cinfo->buckets; for (i = 0; i < fl_cinfo->nbuckets; i++, bucket++) { if (list_empty(&bucket->committing)) continue; data = nfs_commitdata_alloc(false); if (!data) break; data->ds_commit_index = i; list_add(&data->pages, list); nreq++; } /* Clean up on error */ pnfs_generic_retry_commit(cinfo, i); return nreq; } static inline void pnfs_fetch_commit_bucket_list(struct list_head *pages, struct nfs_commit_data *data, struct nfs_commit_info *cinfo) { struct pnfs_commit_bucket *bucket; struct list_head *pos; bucket = &cinfo->ds->buckets[data->ds_commit_index]; mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); list_for_each(pos, &bucket->committing) cinfo->ds->ncommitting--; list_splice_init(&bucket->committing, pages); data->lseg = bucket->clseg; bucket->clseg = NULL; mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); } /* Helper function for pnfs_generic_commit_pagelist to catch an empty * page list. This can happen when two commits race. * * This must be called instead of nfs_init_commit - call one or the other, but * not both! */ static bool pnfs_generic_commit_cancel_empty_pagelist(struct list_head *pages, struct nfs_commit_data *data, struct nfs_commit_info *cinfo) { if (list_empty(pages)) { if (atomic_dec_and_test(&cinfo->mds->rpcs_out)) wake_up_atomic_t(&cinfo->mds->rpcs_out); /* don't call nfs_commitdata_release - it tries to put * the open_context which is not acquired until nfs_init_commit * which has not been called on @data */ WARN_ON_ONCE(data->context); nfs_commit_free(data); return true; } return false; } /* This follows nfs_commit_list pretty closely */ int pnfs_generic_commit_pagelist(struct inode *inode, struct list_head *mds_pages, int how, struct nfs_commit_info *cinfo, int (*initiate_commit)(struct nfs_commit_data *data, int how)) { struct nfs_commit_data *data, *tmp; LIST_HEAD(list); unsigned int nreq = 0; if (!list_empty(mds_pages)) { data = nfs_commitdata_alloc(true); data->ds_commit_index = -1; list_add(&data->pages, &list); nreq++; } nreq += pnfs_generic_alloc_ds_commits(cinfo, &list); if (nreq == 0) goto out; atomic_add(nreq, &cinfo->mds->rpcs_out); list_for_each_entry_safe(data, tmp, &list, pages) { list_del_init(&data->pages); if (data->ds_commit_index < 0) { /* another commit raced with us */ if (pnfs_generic_commit_cancel_empty_pagelist(mds_pages, data, cinfo)) continue; nfs_init_commit(data, mds_pages, NULL, cinfo); nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(data->inode), data->mds_ops, how, 0); } else { LIST_HEAD(pages); pnfs_fetch_commit_bucket_list(&pages, data, cinfo); /* another commit raced with us */ if (pnfs_generic_commit_cancel_empty_pagelist(&pages, data, cinfo)) continue; nfs_init_commit(data, &pages, data->lseg, cinfo); initiate_commit(data, how); } } out: return PNFS_ATTEMPTED; } EXPORT_SYMBOL_GPL(pnfs_generic_commit_pagelist); /* * Data server cache * * Data servers can be mapped to different device ids. * nfs4_pnfs_ds reference counting * - set to 1 on allocation * - incremented when a device id maps a data server already in the cache. * - decremented when deviceid is removed from the cache. */ static DEFINE_SPINLOCK(nfs4_ds_cache_lock); static LIST_HEAD(nfs4_data_server_cache); /* Debug routines */ static void print_ds(struct nfs4_pnfs_ds *ds) { if (ds == NULL) { printk(KERN_WARNING "%s NULL device\n", __func__); return; } printk(KERN_WARNING " ds %s\n" " ref count %d\n" " client %p\n" " cl_exchange_flags %x\n", ds->ds_remotestr, atomic_read(&ds->ds_count), ds->ds_clp, ds->ds_clp ? ds->ds_clp->cl_exchange_flags : 0); } static bool same_sockaddr(struct sockaddr *addr1, struct sockaddr *addr2) { struct sockaddr_in *a, *b; struct sockaddr_in6 *a6, *b6; if (addr1->sa_family != addr2->sa_family) return false; switch (addr1->sa_family) { case AF_INET: a = (struct sockaddr_in *)addr1; b = (struct sockaddr_in *)addr2; if (a->sin_addr.s_addr == b->sin_addr.s_addr && a->sin_port == b->sin_port) return true; break; case AF_INET6: a6 = (struct sockaddr_in6 *)addr1; b6 = (struct sockaddr_in6 *)addr2; /* LINKLOCAL addresses must have matching scope_id */ if (ipv6_addr_src_scope(&a6->sin6_addr) == IPV6_ADDR_SCOPE_LINKLOCAL && a6->sin6_scope_id != b6->sin6_scope_id) return false; if (ipv6_addr_equal(&a6->sin6_addr, &b6->sin6_addr) && a6->sin6_port == b6->sin6_port) return true; break; default: dprintk("%s: unhandled address family: %u\n", __func__, addr1->sa_family); return false; } return false; } /* * Checks if 'dsaddrs1' contains a subset of 'dsaddrs2'. If it does, * declare a match. */ static bool _same_data_server_addrs_locked(const struct list_head *dsaddrs1, const struct list_head *dsaddrs2) { struct nfs4_pnfs_ds_addr *da1, *da2; struct sockaddr *sa1, *sa2; bool match = false; list_for_each_entry(da1, dsaddrs1, da_node) { sa1 = (struct sockaddr *)&da1->da_addr; match = false; list_for_each_entry(da2, dsaddrs2, da_node) { sa2 = (struct sockaddr *)&da2->da_addr; match = same_sockaddr(sa1, sa2); if (match) break; } if (!match) break; } return match; } /* * Lookup DS by addresses. nfs4_ds_cache_lock is held */ static struct nfs4_pnfs_ds * _data_server_lookup_locked(const struct list_head *dsaddrs) { struct nfs4_pnfs_ds *ds; list_for_each_entry(ds, &nfs4_data_server_cache, ds_node) if (_same_data_server_addrs_locked(&ds->ds_addrs, dsaddrs)) return ds; return NULL; } static void destroy_ds(struct nfs4_pnfs_ds *ds) { struct nfs4_pnfs_ds_addr *da; dprintk("--> %s\n", __func__); ifdebug(FACILITY) print_ds(ds); nfs_put_client(ds->ds_clp); while (!list_empty(&ds->ds_addrs)) { da = list_first_entry(&ds->ds_addrs, struct nfs4_pnfs_ds_addr, da_node); list_del_init(&da->da_node); kfree(da->da_remotestr); kfree(da); } kfree(ds->ds_remotestr); kfree(ds); } void nfs4_pnfs_ds_put(struct nfs4_pnfs_ds *ds) { if (atomic_dec_and_lock(&ds->ds_count, &nfs4_ds_cache_lock)) { list_del_init(&ds->ds_node); spin_unlock(&nfs4_ds_cache_lock); destroy_ds(ds); } } EXPORT_SYMBOL_GPL(nfs4_pnfs_ds_put); /* * Create a string with a human readable address and port to avoid * complicated setup around many dprinks. */ static char * nfs4_pnfs_remotestr(struct list_head *dsaddrs, gfp_t gfp_flags) { struct nfs4_pnfs_ds_addr *da; char *remotestr; size_t len; char *p; len = 3; /* '{', '}' and eol */ list_for_each_entry(da, dsaddrs, da_node) { len += strlen(da->da_remotestr) + 1; /* string plus comma */ } remotestr = kzalloc(len, gfp_flags); if (!remotestr) return NULL; p = remotestr; *(p++) = '{'; len--; list_for_each_entry(da, dsaddrs, da_node) { size_t ll = strlen(da->da_remotestr); if (ll > len) goto out_err; memcpy(p, da->da_remotestr, ll); p += ll; len -= ll; if (len < 1) goto out_err; (*p++) = ','; len--; } if (len < 2) goto out_err; *(p++) = '}'; *p = '\0'; return remotestr; out_err: kfree(remotestr); return NULL; } /* * Given a list of multipath struct nfs4_pnfs_ds_addr, add it to ds cache if * uncached and return cached struct nfs4_pnfs_ds. */ struct nfs4_pnfs_ds * nfs4_pnfs_ds_add(struct list_head *dsaddrs, gfp_t gfp_flags) { struct nfs4_pnfs_ds *tmp_ds, *ds = NULL; char *remotestr; if (list_empty(dsaddrs)) { dprintk("%s: no addresses defined\n", __func__); goto out; } ds = kzalloc(sizeof(*ds), gfp_flags); if (!ds) goto out; /* this is only used for debugging, so it's ok if its NULL */ remotestr = nfs4_pnfs_remotestr(dsaddrs, gfp_flags); spin_lock(&nfs4_ds_cache_lock); tmp_ds = _data_server_lookup_locked(dsaddrs); if (tmp_ds == NULL) { INIT_LIST_HEAD(&ds->ds_addrs); list_splice_init(dsaddrs, &ds->ds_addrs); ds->ds_remotestr = remotestr; atomic_set(&ds->ds_count, 1); INIT_LIST_HEAD(&ds->ds_node); ds->ds_clp = NULL; list_add(&ds->ds_node, &nfs4_data_server_cache); dprintk("%s add new data server %s\n", __func__, ds->ds_remotestr); } else { kfree(remotestr); kfree(ds); atomic_inc(&tmp_ds->ds_count); dprintk("%s data server %s found, inc'ed ds_count to %d\n", __func__, tmp_ds->ds_remotestr, atomic_read(&tmp_ds->ds_count)); ds = tmp_ds; } spin_unlock(&nfs4_ds_cache_lock); out: return ds; } EXPORT_SYMBOL_GPL(nfs4_pnfs_ds_add); static int nfs4_wait_ds_connect(struct nfs4_pnfs_ds *ds) { might_sleep(); return wait_on_bit(&ds->ds_state, NFS4DS_CONNECTING, TASK_KILLABLE); } static void nfs4_clear_ds_conn_bit(struct nfs4_pnfs_ds *ds) { smp_mb__before_atomic(); clear_and_wake_up_bit(NFS4DS_CONNECTING, &ds->ds_state); } static struct nfs_client *(*get_v3_ds_connect)( struct nfs_server *mds_srv, const struct sockaddr *ds_addr, int ds_addrlen, int ds_proto, unsigned int ds_timeo, unsigned int ds_retrans); static bool load_v3_ds_connect(void) { if (!get_v3_ds_connect) { get_v3_ds_connect = symbol_request(nfs3_set_ds_client); WARN_ON_ONCE(!get_v3_ds_connect); } return(get_v3_ds_connect != NULL); } void nfs4_pnfs_v3_ds_connect_unload(void) { if (get_v3_ds_connect) { symbol_put(nfs3_set_ds_client); get_v3_ds_connect = NULL; } } static int _nfs4_pnfs_v3_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds, unsigned int timeo, unsigned int retrans) { struct nfs_client *clp = ERR_PTR(-EIO); struct nfs4_pnfs_ds_addr *da; int status = 0; dprintk("--> %s DS %s\n", __func__, ds->ds_remotestr); if (!load_v3_ds_connect()) goto out; list_for_each_entry(da, &ds->ds_addrs, da_node) { dprintk("%s: DS %s: trying address %s\n", __func__, ds->ds_remotestr, da->da_remotestr); if (!IS_ERR(clp)) { struct xprt_create xprt_args = { .ident = XPRT_TRANSPORT_TCP, .net = clp->cl_net, .dstaddr = (struct sockaddr *)&da->da_addr, .addrlen = da->da_addrlen, .servername = clp->cl_hostname, }; /* Add this address as an alias */ rpc_clnt_add_xprt(clp->cl_rpcclient, &xprt_args, rpc_clnt_test_and_add_xprt, NULL); } else clp = get_v3_ds_connect(mds_srv, (struct sockaddr *)&da->da_addr, da->da_addrlen, IPPROTO_TCP, timeo, retrans); } if (IS_ERR(clp)) { status = PTR_ERR(clp); goto out; } smp_wmb(); ds->ds_clp = clp; dprintk("%s [new] addr: %s\n", __func__, ds->ds_remotestr); out: return status; } static int _nfs4_pnfs_v4_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds, unsigned int timeo, unsigned int retrans, u32 minor_version) { struct nfs_client *clp = ERR_PTR(-EIO); struct nfs4_pnfs_ds_addr *da; int status = 0; dprintk("--> %s DS %s\n", __func__, ds->ds_remotestr); list_for_each_entry(da, &ds->ds_addrs, da_node) { dprintk("%s: DS %s: trying address %s\n", __func__, ds->ds_remotestr, da->da_remotestr); if (!IS_ERR(clp) && clp->cl_mvops->session_trunk) { struct xprt_create xprt_args = { .ident = XPRT_TRANSPORT_TCP, .net = clp->cl_net, .dstaddr = (struct sockaddr *)&da->da_addr, .addrlen = da->da_addrlen, .servername = clp->cl_hostname, }; struct nfs4_add_xprt_data xprtdata = { .clp = clp, .cred = nfs4_get_clid_cred(clp), }; struct rpc_add_xprt_test rpcdata = { .add_xprt_test = clp->cl_mvops->session_trunk, .data = &xprtdata, }; /** * Test this address for session trunking and * add as an alias */ rpc_clnt_add_xprt(clp->cl_rpcclient, &xprt_args, rpc_clnt_setup_test_and_add_xprt, &rpcdata); if (xprtdata.cred) put_rpccred(xprtdata.cred); } else { clp = nfs4_set_ds_client(mds_srv, (struct sockaddr *)&da->da_addr, da->da_addrlen, IPPROTO_TCP, timeo, retrans, minor_version); if (IS_ERR(clp)) continue; status = nfs4_init_ds_session(clp, mds_srv->nfs_client->cl_lease_time); if (status) { nfs_put_client(clp); clp = ERR_PTR(-EIO); continue; } } } if (IS_ERR(clp)) { status = PTR_ERR(clp); goto out; } smp_wmb(); ds->ds_clp = clp; dprintk("%s [new] addr: %s\n", __func__, ds->ds_remotestr); out: return status; } /* * Create an rpc connection to the nfs4_pnfs_ds data server. * Currently only supports IPv4 and IPv6 addresses. * If connection fails, make devid unavailable and return a -errno. */ int nfs4_pnfs_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds, struct nfs4_deviceid_node *devid, unsigned int timeo, unsigned int retrans, u32 version, u32 minor_version) { int err; do { err = nfs4_wait_ds_connect(ds); if (err || ds->ds_clp) goto out; if (nfs4_test_deviceid_unavailable(devid)) return -ENODEV; } while (test_and_set_bit(NFS4DS_CONNECTING, &ds->ds_state) != 0); if (ds->ds_clp) goto connect_done; switch (version) { case 3: err = _nfs4_pnfs_v3_ds_connect(mds_srv, ds, timeo, retrans); break; case 4: err = _nfs4_pnfs_v4_ds_connect(mds_srv, ds, timeo, retrans, minor_version); break; default: dprintk("%s: unsupported DS version %d\n", __func__, version); err = -EPROTONOSUPPORT; } connect_done: nfs4_clear_ds_conn_bit(ds); out: /* * At this point the ds->ds_clp should be ready, but it might have * hit an error. */ if (!err) { if (!ds->ds_clp || !nfs_client_init_is_complete(ds->ds_clp)) { WARN_ON_ONCE(ds->ds_clp || !nfs4_test_deviceid_unavailable(devid)); return -EINVAL; } err = nfs_client_init_status(ds->ds_clp); } return err; } EXPORT_SYMBOL_GPL(nfs4_pnfs_ds_connect); /* * Currently only supports ipv4, ipv6 and one multi-path address. */ struct nfs4_pnfs_ds_addr * nfs4_decode_mp_ds_addr(struct net *net, struct xdr_stream *xdr, gfp_t gfp_flags) { struct nfs4_pnfs_ds_addr *da = NULL; char *buf, *portstr; __be16 port; int nlen, rlen; int tmp[2]; __be32 *p; char *netid, *match_netid; size_t len, match_netid_len; char *startsep = ""; char *endsep = ""; /* r_netid */ p = xdr_inline_decode(xdr, 4); if (unlikely(!p)) goto out_err; nlen = be32_to_cpup(p++); p = xdr_inline_decode(xdr, nlen); if (unlikely(!p)) goto out_err; netid = kmalloc(nlen+1, gfp_flags); if (unlikely(!netid)) goto out_err; netid[nlen] = '\0'; memcpy(netid, p, nlen); /* r_addr: ip/ip6addr with port in dec octets - see RFC 5665 */ p = xdr_inline_decode(xdr, 4); if (unlikely(!p)) goto out_free_netid; rlen = be32_to_cpup(p); p = xdr_inline_decode(xdr, rlen); if (unlikely(!p)) goto out_free_netid; /* port is ".ABC.DEF", 8 chars max */ if (rlen > INET6_ADDRSTRLEN + IPV6_SCOPE_ID_LEN + 8) { dprintk("%s: Invalid address, length %d\n", __func__, rlen); goto out_free_netid; } buf = kmalloc(rlen + 1, gfp_flags); if (!buf) { dprintk("%s: Not enough memory\n", __func__); goto out_free_netid; } buf[rlen] = '\0'; memcpy(buf, p, rlen); /* replace port '.' with '-' */ portstr = strrchr(buf, '.'); if (!portstr) { dprintk("%s: Failed finding expected dot in port\n", __func__); goto out_free_buf; } *portstr = '-'; /* find '.' between address and port */ portstr = strrchr(buf, '.'); if (!portstr) { dprintk("%s: Failed finding expected dot between address and " "port\n", __func__); goto out_free_buf; } *portstr = '\0'; da = kzalloc(sizeof(*da), gfp_flags); if (unlikely(!da)) goto out_free_buf; INIT_LIST_HEAD(&da->da_node); if (!rpc_pton(net, buf, portstr-buf, (struct sockaddr *)&da->da_addr, sizeof(da->da_addr))) { dprintk("%s: error parsing address %s\n", __func__, buf); goto out_free_da; } portstr++; sscanf(portstr, "%d-%d", &tmp[0], &tmp[1]); port = htons((tmp[0] << 8) | (tmp[1])); switch (da->da_addr.ss_family) { case AF_INET: ((struct sockaddr_in *)&da->da_addr)->sin_port = port; da->da_addrlen = sizeof(struct sockaddr_in); match_netid = "tcp"; match_netid_len = 3; break; case AF_INET6: ((struct sockaddr_in6 *)&da->da_addr)->sin6_port = port; da->da_addrlen = sizeof(struct sockaddr_in6); match_netid = "tcp6"; match_netid_len = 4; startsep = "["; endsep = "]"; break; default: dprintk("%s: unsupported address family: %u\n", __func__, da->da_addr.ss_family); goto out_free_da; } if (nlen != match_netid_len || strncmp(netid, match_netid, nlen)) { dprintk("%s: ERROR: r_netid \"%s\" != \"%s\"\n", __func__, netid, match_netid); goto out_free_da; } /* save human readable address */ len = strlen(startsep) + strlen(buf) + strlen(endsep) + 7; da->da_remotestr = kzalloc(len, gfp_flags); /* NULL is ok, only used for dprintk */ if (da->da_remotestr) snprintf(da->da_remotestr, len, "%s%s%s:%u", startsep, buf, endsep, ntohs(port)); dprintk("%s: Parsed DS addr %s\n", __func__, da->da_remotestr); kfree(buf); kfree(netid); return da; out_free_da: kfree(da); out_free_buf: dprintk("%s: Error parsing DS addr: %s\n", __func__, buf); kfree(buf); out_free_netid: kfree(netid); out_err: return NULL; } EXPORT_SYMBOL_GPL(nfs4_decode_mp_ds_addr); void pnfs_layout_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo, u32 ds_commit_idx) { struct list_head *list; struct pnfs_commit_bucket *buckets; mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); buckets = cinfo->ds->buckets; list = &buckets[ds_commit_idx].written; if (list_empty(list)) { if (!pnfs_is_valid_lseg(lseg)) { mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); cinfo->completion_ops->resched_write(cinfo, req); return; } /* Non-empty buckets hold a reference on the lseg. That ref * is normally transferred to the COMMIT call and released * there. It could also be released if the last req is pulled * off due to a rewrite, in which case it will be done in * pnfs_common_clear_request_commit */ WARN_ON_ONCE(buckets[ds_commit_idx].wlseg != NULL); buckets[ds_commit_idx].wlseg = pnfs_get_lseg(lseg); } set_bit(PG_COMMIT_TO_DS, &req->wb_flags); cinfo->ds->nwritten++; nfs_request_add_commit_list_locked(req, list, cinfo); mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); nfs_mark_page_unstable(req->wb_page, cinfo); } EXPORT_SYMBOL_GPL(pnfs_layout_mark_request_commit); int pnfs_nfs_generic_sync(struct inode *inode, bool datasync) { int ret; if (!pnfs_layoutcommit_outstanding(inode)) return 0; ret = nfs_commit_inode(inode, FLUSH_SYNC); if (ret < 0) return ret; if (datasync) return 0; return pnfs_layoutcommit_inode(inode, true); } EXPORT_SYMBOL_GPL(pnfs_nfs_generic_sync);