/* sha3.c - an implementation of Secure Hash Algorithm 3 (Keccak). * based on the * The Keccak SHA-3 submission. Submission to NIST (Round 3), 2011 * by Guido Bertoni, Joan Daemen, Michaƫl Peeters and Gilles Van Assche * * Copyright (c) 2013, Aleksey Kravchenko * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include #include #include "byte_order.h" #include "sha3.h" /* constants */ #define NumberOfRounds 24 /* SHA3 (Keccak) constants for 24 rounds */ static uint64_t keccak_round_constants[NumberOfRounds] = { I64(0x0000000000000001), I64(0x0000000000008082), I64(0x800000000000808A), I64(0x8000000080008000), I64(0x000000000000808B), I64(0x0000000080000001), I64(0x8000000080008081), I64(0x8000000000008009), I64(0x000000000000008A), I64(0x0000000000000088), I64(0x0000000080008009), I64(0x000000008000000A), I64(0x000000008000808B), I64(0x800000000000008B), I64(0x8000000000008089), I64(0x8000000000008003), I64(0x8000000000008002), I64(0x8000000000000080), I64(0x000000000000800A), I64(0x800000008000000A), I64(0x8000000080008081), I64(0x8000000000008080), I64(0x0000000080000001), I64(0x8000000080008008) }; /* Initializing a sha3 context for given number of output bits */ static void rhash_keccak_init(sha3_ctx* ctx, unsigned bits) { /* NB: The Keccak capacity parameter = bits * 2 */ unsigned rate = 1600 - bits * 2; memset(ctx, 0, sizeof(sha3_ctx)); ctx->block_size = rate / 8; assert(rate <= 1600 && (rate % 64) == 0); } /** * Initialize context before calculating hash. * * @param ctx context to initialize */ void rhash_sha3_224_init(sha3_ctx* ctx) { rhash_keccak_init(ctx, 224); } /** * Initialize context before calculating hash. * * @param ctx context to initialize */ void rhash_sha3_256_init(sha3_ctx* ctx) { rhash_keccak_init(ctx, 256); } /** * Initialize context before calculating hash. * * @param ctx context to initialize */ void rhash_sha3_384_init(sha3_ctx* ctx) { rhash_keccak_init(ctx, 384); } /** * Initialize context before calculating hash. * * @param ctx context to initialize */ void rhash_sha3_512_init(sha3_ctx* ctx) { rhash_keccak_init(ctx, 512); } #define XORED_A(i) A[(i)] ^ A[(i) + 5] ^ A[(i) + 10] ^ A[(i) + 15] ^ A[(i) + 20] #define THETA_STEP(i) \ A[(i)] ^= D[(i)]; \ A[(i) + 5] ^= D[(i)]; \ A[(i) + 10] ^= D[(i)]; \ A[(i) + 15] ^= D[(i)]; \ A[(i) + 20] ^= D[(i)] \ /* Keccak theta() transformation */ static void keccak_theta(uint64_t* A) { uint64_t D[5]; D[0] = ROTL64(XORED_A(1), 1) ^ XORED_A(4); D[1] = ROTL64(XORED_A(2), 1) ^ XORED_A(0); D[2] = ROTL64(XORED_A(3), 1) ^ XORED_A(1); D[3] = ROTL64(XORED_A(4), 1) ^ XORED_A(2); D[4] = ROTL64(XORED_A(0), 1) ^ XORED_A(3); THETA_STEP(0); THETA_STEP(1); THETA_STEP(2); THETA_STEP(3); THETA_STEP(4); } /* Keccak pi() transformation */ static void keccak_pi(uint64_t* A) { uint64_t A1; A1 = A[1]; A[ 1] = A[ 6]; A[ 6] = A[ 9]; A[ 9] = A[22]; A[22] = A[14]; A[14] = A[20]; A[20] = A[ 2]; A[ 2] = A[12]; A[12] = A[13]; A[13] = A[19]; A[19] = A[23]; A[23] = A[15]; A[15] = A[ 4]; A[ 4] = A[24]; A[24] = A[21]; A[21] = A[ 8]; A[ 8] = A[16]; A[16] = A[ 5]; A[ 5] = A[ 3]; A[ 3] = A[18]; A[18] = A[17]; A[17] = A[11]; A[11] = A[ 7]; A[ 7] = A[10]; A[10] = A1; /* note: A[ 0] is left as is */ } #define CHI_STEP(i) \ A0 = A[0 + (i)]; \ A1 = A[1 + (i)]; \ A[0 + (i)] ^= ~A1 & A[2 + (i)]; \ A[1 + (i)] ^= ~A[2 + (i)] & A[3 + (i)]; \ A[2 + (i)] ^= ~A[3 + (i)] & A[4 + (i)]; \ A[3 + (i)] ^= ~A[4 + (i)] & A0; \ A[4 + (i)] ^= ~A0 & A1 \ /* Keccak chi() transformation */ static void keccak_chi(uint64_t* A) { uint64_t A0, A1; CHI_STEP(0); CHI_STEP(5); CHI_STEP(10); CHI_STEP(15); CHI_STEP(20); } static void rhash_sha3_permutation(uint64_t* state) { int round; for (round = 0; round < NumberOfRounds; round++) { keccak_theta(state); /* apply Keccak rho() transformation */ state[ 1] = ROTL64(state[ 1], 1); state[ 2] = ROTL64(state[ 2], 62); state[ 3] = ROTL64(state[ 3], 28); state[ 4] = ROTL64(state[ 4], 27); state[ 5] = ROTL64(state[ 5], 36); state[ 6] = ROTL64(state[ 6], 44); state[ 7] = ROTL64(state[ 7], 6); state[ 8] = ROTL64(state[ 8], 55); state[ 9] = ROTL64(state[ 9], 20); state[10] = ROTL64(state[10], 3); state[11] = ROTL64(state[11], 10); state[12] = ROTL64(state[12], 43); state[13] = ROTL64(state[13], 25); state[14] = ROTL64(state[14], 39); state[15] = ROTL64(state[15], 41); state[16] = ROTL64(state[16], 45); state[17] = ROTL64(state[17], 15); state[18] = ROTL64(state[18], 21); state[19] = ROTL64(state[19], 8); state[20] = ROTL64(state[20], 18); state[21] = ROTL64(state[21], 2); state[22] = ROTL64(state[22], 61); state[23] = ROTL64(state[23], 56); state[24] = ROTL64(state[24], 14); keccak_pi(state); keccak_chi(state); /* apply iota(state, round) */ *state ^= keccak_round_constants[round]; } } /** * The core transformation. Process the specified block of data. * * @param hash the algorithm state * @param block the message block to process * @param block_size the size of the processed block in bytes */ static void rhash_sha3_process_block(uint64_t hash[25], const uint64_t* block, size_t block_size) { /* expanded loop */ hash[ 0] ^= le2me_64(block[ 0]); hash[ 1] ^= le2me_64(block[ 1]); hash[ 2] ^= le2me_64(block[ 2]); hash[ 3] ^= le2me_64(block[ 3]); hash[ 4] ^= le2me_64(block[ 4]); hash[ 5] ^= le2me_64(block[ 5]); hash[ 6] ^= le2me_64(block[ 6]); hash[ 7] ^= le2me_64(block[ 7]); hash[ 8] ^= le2me_64(block[ 8]); /* if not sha3-512 */ if (block_size > 72) { hash[ 9] ^= le2me_64(block[ 9]); hash[10] ^= le2me_64(block[10]); hash[11] ^= le2me_64(block[11]); hash[12] ^= le2me_64(block[12]); /* if not sha3-384 */ if (block_size > 104) { hash[13] ^= le2me_64(block[13]); hash[14] ^= le2me_64(block[14]); hash[15] ^= le2me_64(block[15]); hash[16] ^= le2me_64(block[16]); /* if not sha3-256 */ if (block_size > 136) { hash[17] ^= le2me_64(block[17]); #ifdef FULL_SHA3_FAMILY_SUPPORT /* if not sha3-224 */ if (block_size > 144) { hash[18] ^= le2me_64(block[18]); hash[19] ^= le2me_64(block[19]); hash[20] ^= le2me_64(block[20]); hash[21] ^= le2me_64(block[21]); hash[22] ^= le2me_64(block[22]); hash[23] ^= le2me_64(block[23]); hash[24] ^= le2me_64(block[24]); } #endif } } } /* make a permutation of the hash */ rhash_sha3_permutation(hash); } #define SHA3_FINALIZED 0x80000000 /** * Calculate message hash. * Can be called repeatedly with chunks of the message to be hashed. * * @param ctx the algorithm context containing current hashing state * @param msg message chunk * @param size length of the message chunk */ void rhash_sha3_update(sha3_ctx* ctx, const unsigned char* msg, size_t size) { size_t index = (size_t)ctx->rest; size_t block_size = (size_t)ctx->block_size; if (ctx->rest & SHA3_FINALIZED) return; /* too late for additional input */ ctx->rest = (unsigned)((ctx->rest + size) % block_size); /* fill partial block */ if (index) { size_t left = block_size - index; memcpy((char*)ctx->message + index, msg, (size < left ? size : left)); if (size < left) return; /* process partial block */ rhash_sha3_process_block(ctx->hash, ctx->message, block_size); msg += left; size -= left; } while (size >= block_size) { uint64_t* aligned_message_block; if (IS_ALIGNED_64(msg)) { /* the most common case is processing of an already aligned message without copying it */ aligned_message_block = (uint64_t*)msg; } else { memcpy(ctx->message, msg, block_size); aligned_message_block = ctx->message; } rhash_sha3_process_block(ctx->hash, aligned_message_block, block_size); msg += block_size; size -= block_size; } if (size) { memcpy(ctx->message, msg, size); /* save leftovers */ } } /** * Store calculated hash into the given array. * * @param ctx the algorithm context containing current hashing state * @param result calculated hash in binary form */ void rhash_sha3_final(sha3_ctx* ctx, unsigned char* result) { size_t digest_length = 100 - ctx->block_size / 2; const size_t block_size = ctx->block_size; if (!(ctx->rest & SHA3_FINALIZED)) { /* clear the rest of the data queue */ memset((char*)ctx->message + ctx->rest, 0, block_size - ctx->rest); ((char*)ctx->message)[ctx->rest] |= 0x06; ((char*)ctx->message)[block_size - 1] |= 0x80; /* process final block */ rhash_sha3_process_block(ctx->hash, ctx->message, block_size); ctx->rest = SHA3_FINALIZED; /* mark context as finalized */ } assert(block_size > digest_length); if (result) me64_to_le_str(result, ctx->hash, digest_length); } #ifdef USE_KECCAK /** * Store calculated hash into the given array. * * @param ctx the algorithm context containing current hashing state * @param result calculated hash in binary form */ void rhash_keccak_final(sha3_ctx* ctx, unsigned char* result) { size_t digest_length = 100 - ctx->block_size / 2; const size_t block_size = ctx->block_size; if (!(ctx->rest & SHA3_FINALIZED)) { /* clear the rest of the data queue */ memset((char*)ctx->message + ctx->rest, 0, block_size - ctx->rest); ((char*)ctx->message)[ctx->rest] |= 0x01; ((char*)ctx->message)[block_size - 1] |= 0x80; /* process final block */ rhash_sha3_process_block(ctx->hash, ctx->message, block_size); ctx->rest = SHA3_FINALIZED; /* mark context as finalized */ } assert(block_size > digest_length); if (result) me64_to_le_str(result, ctx->hash, digest_length); } #endif /* USE_KECCAK */