/* sha512.c - an implementation of SHA-384/512 hash functions * based on FIPS 180-3 (Federal Information Processing Standart). * * Copyright (c) 2010, Aleksey Kravchenko * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include #include "byte_order.h" #include "sha512.h" /* SHA-384 and SHA-512 constants for 80 rounds. These qwords represent * the first 64 bits of the fractional parts of the cube * roots of the first 80 prime numbers. */ static const uint64_t rhash_k512[80] = { I64(0x428a2f98d728ae22), I64(0x7137449123ef65cd), I64(0xb5c0fbcfec4d3b2f), I64(0xe9b5dba58189dbbc), I64(0x3956c25bf348b538), I64(0x59f111f1b605d019), I64(0x923f82a4af194f9b), I64(0xab1c5ed5da6d8118), I64(0xd807aa98a3030242), I64(0x12835b0145706fbe), I64(0x243185be4ee4b28c), I64(0x550c7dc3d5ffb4e2), I64(0x72be5d74f27b896f), I64(0x80deb1fe3b1696b1), I64(0x9bdc06a725c71235), I64(0xc19bf174cf692694), I64(0xe49b69c19ef14ad2), I64(0xefbe4786384f25e3), I64(0x0fc19dc68b8cd5b5), I64(0x240ca1cc77ac9c65), I64(0x2de92c6f592b0275), I64(0x4a7484aa6ea6e483), I64(0x5cb0a9dcbd41fbd4), I64(0x76f988da831153b5), I64(0x983e5152ee66dfab), I64(0xa831c66d2db43210), I64(0xb00327c898fb213f), I64(0xbf597fc7beef0ee4), I64(0xc6e00bf33da88fc2), I64(0xd5a79147930aa725), I64(0x06ca6351e003826f), I64(0x142929670a0e6e70), I64(0x27b70a8546d22ffc), I64(0x2e1b21385c26c926), I64(0x4d2c6dfc5ac42aed), I64(0x53380d139d95b3df), I64(0x650a73548baf63de), I64(0x766a0abb3c77b2a8), I64(0x81c2c92e47edaee6), I64(0x92722c851482353b), I64(0xa2bfe8a14cf10364), I64(0xa81a664bbc423001), I64(0xc24b8b70d0f89791), I64(0xc76c51a30654be30), I64(0xd192e819d6ef5218), I64(0xd69906245565a910), I64(0xf40e35855771202a), I64(0x106aa07032bbd1b8), I64(0x19a4c116b8d2d0c8), I64(0x1e376c085141ab53), I64(0x2748774cdf8eeb99), I64(0x34b0bcb5e19b48a8), I64(0x391c0cb3c5c95a63), I64(0x4ed8aa4ae3418acb), I64(0x5b9cca4f7763e373), I64(0x682e6ff3d6b2b8a3), I64(0x748f82ee5defb2fc), I64(0x78a5636f43172f60), I64(0x84c87814a1f0ab72), I64(0x8cc702081a6439ec), I64(0x90befffa23631e28), I64(0xa4506cebde82bde9), I64(0xbef9a3f7b2c67915), I64(0xc67178f2e372532b), I64(0xca273eceea26619c), I64(0xd186b8c721c0c207), I64(0xeada7dd6cde0eb1e), I64(0xf57d4f7fee6ed178), I64(0x06f067aa72176fba), I64(0x0a637dc5a2c898a6), I64(0x113f9804bef90dae), I64(0x1b710b35131c471b), I64(0x28db77f523047d84), I64(0x32caab7b40c72493), I64(0x3c9ebe0a15c9bebc), I64(0x431d67c49c100d4c), I64(0x4cc5d4becb3e42b6), I64(0x597f299cfc657e2a), I64(0x5fcb6fab3ad6faec), I64(0x6c44198c4a475817) }; /* The SHA512/384 functions defined by FIPS 180-3, 4.1.3 */ /* Optimized version of Ch(x,y,z)=((x & y) | (~x & z)) */ #define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) /* Optimized version of Maj(x,y,z)=((x & y) ^ (x & z) ^ (y & z)) */ #define Maj(x,y,z) (((x) & (y)) ^ ((z) & ((x) ^ (y)))) #define Sigma0(x) (ROTR64((x), 28) ^ ROTR64((x), 34) ^ ROTR64((x), 39)) #define Sigma1(x) (ROTR64((x), 14) ^ ROTR64((x), 18) ^ ROTR64((x), 41)) #define sigma0(x) (ROTR64((x), 1) ^ ROTR64((x), 8) ^ ((x) >> 7)) #define sigma1(x) (ROTR64((x), 19) ^ ROTR64((x), 61) ^ ((x) >> 6)) /* Recalculate element n-th of circular buffer W using formula * W[n] = sigma1(W[n - 2]) + W[n - 7] + sigma0(W[n - 15]) + W[n - 16]; */ #define RECALCULATE_W(W,n) (W[n] += \ (sigma1(W[(n - 2) & 15]) + W[(n - 7) & 15] + sigma0(W[(n - 15) & 15]))) #define ROUND(a,b,c,d,e,f,g,h,k,data) { \ uint64_t T1 = h + Sigma1(e) + Ch(e,f,g) + k + (data); \ d += T1, h = T1 + Sigma0(a) + Maj(a,b,c); } #define ROUND_1_16(a,b,c,d,e,f,g,h,n) \ ROUND(a,b,c,d,e,f,g,h, rhash_k512[n], W[n] = be2me_64(block[n])) #define ROUND_17_80(a,b,c,d,e,f,g,h,n) \ ROUND(a,b,c,d,e,f,g,h, k[n], RECALCULATE_W(W, n)) /** * Initialize context before calculating hash. * * @param ctx context to initialize */ void rhash_sha512_init(sha512_ctx* ctx) { /* Initial values. These words were obtained by taking the first 32 * bits of the fractional parts of the square roots of the first * eight prime numbers. */ static const uint64_t SHA512_H0[8] = { I64(0x6a09e667f3bcc908), I64(0xbb67ae8584caa73b), I64(0x3c6ef372fe94f82b), I64(0xa54ff53a5f1d36f1), I64(0x510e527fade682d1), I64(0x9b05688c2b3e6c1f), I64(0x1f83d9abfb41bd6b), I64(0x5be0cd19137e2179) }; ctx->length = 0; ctx->digest_length = sha512_hash_size; /* initialize algorithm state */ memcpy(ctx->hash, SHA512_H0, sizeof(ctx->hash)); } /** * Initialize context before calculaing hash. * * @param ctx context to initialize */ void rhash_sha384_init(struct sha512_ctx* ctx) { /* Initial values from FIPS 180-3. These words were obtained by taking * the first sixty-four bits of the fractional parts of the square * roots of ninth through sixteenth prime numbers. */ static const uint64_t SHA384_H0[8] = { I64(0xcbbb9d5dc1059ed8), I64(0x629a292a367cd507), I64(0x9159015a3070dd17), I64(0x152fecd8f70e5939), I64(0x67332667ffc00b31), I64(0x8eb44a8768581511), I64(0xdb0c2e0d64f98fa7), I64(0x47b5481dbefa4fa4) }; ctx->length = 0; ctx->digest_length = sha384_hash_size; memcpy(ctx->hash, SHA384_H0, sizeof(ctx->hash)); } /** * The core transformation. Process a 512-bit block. * * @param hash algorithm state * @param block the message block to process */ static void rhash_sha512_process_block(uint64_t hash[8], uint64_t block[16]) { uint64_t A, B, C, D, E, F, G, H; uint64_t W[16]; const uint64_t* k; int i; A = hash[0], B = hash[1], C = hash[2], D = hash[3]; E = hash[4], F = hash[5], G = hash[6], H = hash[7]; /* Compute SHA using alternate Method: FIPS 180-3 6.1.3 */ ROUND_1_16(A, B, C, D, E, F, G, H, 0); ROUND_1_16(H, A, B, C, D, E, F, G, 1); ROUND_1_16(G, H, A, B, C, D, E, F, 2); ROUND_1_16(F, G, H, A, B, C, D, E, 3); ROUND_1_16(E, F, G, H, A, B, C, D, 4); ROUND_1_16(D, E, F, G, H, A, B, C, 5); ROUND_1_16(C, D, E, F, G, H, A, B, 6); ROUND_1_16(B, C, D, E, F, G, H, A, 7); ROUND_1_16(A, B, C, D, E, F, G, H, 8); ROUND_1_16(H, A, B, C, D, E, F, G, 9); ROUND_1_16(G, H, A, B, C, D, E, F, 10); ROUND_1_16(F, G, H, A, B, C, D, E, 11); ROUND_1_16(E, F, G, H, A, B, C, D, 12); ROUND_1_16(D, E, F, G, H, A, B, C, 13); ROUND_1_16(C, D, E, F, G, H, A, B, 14); ROUND_1_16(B, C, D, E, F, G, H, A, 15); for (i = 16, k = &rhash_k512[16]; i < 80; i += 16, k += 16) { ROUND_17_80(A, B, C, D, E, F, G, H, 0); ROUND_17_80(H, A, B, C, D, E, F, G, 1); ROUND_17_80(G, H, A, B, C, D, E, F, 2); ROUND_17_80(F, G, H, A, B, C, D, E, 3); ROUND_17_80(E, F, G, H, A, B, C, D, 4); ROUND_17_80(D, E, F, G, H, A, B, C, 5); ROUND_17_80(C, D, E, F, G, H, A, B, 6); ROUND_17_80(B, C, D, E, F, G, H, A, 7); ROUND_17_80(A, B, C, D, E, F, G, H, 8); ROUND_17_80(H, A, B, C, D, E, F, G, 9); ROUND_17_80(G, H, A, B, C, D, E, F, 10); ROUND_17_80(F, G, H, A, B, C, D, E, 11); ROUND_17_80(E, F, G, H, A, B, C, D, 12); ROUND_17_80(D, E, F, G, H, A, B, C, 13); ROUND_17_80(C, D, E, F, G, H, A, B, 14); ROUND_17_80(B, C, D, E, F, G, H, A, 15); } hash[0] += A, hash[1] += B, hash[2] += C, hash[3] += D; hash[4] += E, hash[5] += F, hash[6] += G, hash[7] += H; } /** * Calculate message hash. * Can be called repeatedly with chunks of the message to be hashed. * * @param ctx the algorithm context containing current hashing state * @param msg message chunk * @param size length of the message chunk */ void rhash_sha512_update(sha512_ctx* ctx, const unsigned char* msg, size_t size) { size_t index = (size_t)ctx->length & 127; ctx->length += size; /* fill partial block */ if (index) { size_t left = sha512_block_size - index; memcpy((char*)ctx->message + index, msg, (size < left ? size : left)); if (size < left) return; /* process partial block */ rhash_sha512_process_block(ctx->hash, ctx->message); msg += left; size -= left; } while (size >= sha512_block_size) { uint64_t* aligned_message_block; if (IS_ALIGNED_64(msg)) { /* the most common case is processing of an already aligned message without copying it */ aligned_message_block = (uint64_t*)msg; } else { memcpy(ctx->message, msg, sha512_block_size); aligned_message_block = ctx->message; } rhash_sha512_process_block(ctx->hash, aligned_message_block); msg += sha512_block_size; size -= sha512_block_size; } if (size) { memcpy(ctx->message, msg, size); /* save leftovers */ } } /** * Store calculated hash into the given array. * * @param ctx the algorithm context containing current hashing state * @param result calculated hash in binary form */ void rhash_sha512_final(sha512_ctx* ctx, unsigned char* result) { size_t index = ((unsigned)ctx->length & 127) >> 3; unsigned shift = ((unsigned)ctx->length & 7) * 8; /* pad message and process the last block */ /* append the byte 0x80 to the message */ ctx->message[index] &= le2me_64( ~(I64(0xFFFFFFFFFFFFFFFF) << shift) ); ctx->message[index++] ^= le2me_64( I64(0x80) << shift ); /* if no room left in the message to store 128-bit message length */ if (index >= 15) { if (index == 15) ctx->message[index] = 0; rhash_sha512_process_block(ctx->hash, ctx->message); index = 0; } while (index < 15) { ctx->message[index++] = 0; } ctx->message[15] = be2me_64(ctx->length << 3); rhash_sha512_process_block(ctx->hash, ctx->message); if (result) be64_copy(result, 0, ctx->hash, ctx->digest_length); }