/* mpfr_compound_si --- compound(x,n) = (1+x)^n Copyright 2021-2023 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H /* needed for MPFR_INT_CEIL_LOG2 */ #include "mpfr-impl.h" /* assuming |(1+x)^n - 1| < 1/4*ulp(1), return correct rounding, where s is the sign of n*log2(1+x) */ static int mpfr_compound_near_one (mpfr_ptr y, int s, mpfr_rnd_t rnd_mode) { mpfr_set_ui (y, 1, rnd_mode); /* exact */ if (rnd_mode == MPFR_RNDN || rnd_mode == MPFR_RNDF || (s > 0 && (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDD)) || (s < 0 && (rnd_mode == MPFR_RNDA || rnd_mode == MPFR_RNDU))) { /* round toward 1 */ return -s; } else if (s > 0) /* necessarily RNDA or RNDU */ { /* round toward +Inf */ mpfr_nextabove (y); return +1; } else /* necessarily s < 0 and RNDZ or RNDD */ { /* round toward 0 */ mpfr_nextbelow (y); return -1; } } /* put in y the correctly rounded value of (1+x)^n */ int mpfr_compound_si (mpfr_ptr y, mpfr_srcptr x, long n, mpfr_rnd_t rnd_mode) { int inexact, compared, k, nloop; mpfr_t t; mpfr_exp_t e; mpfr_prec_t prec; MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC (("x[%Pu]=%.*Rg n=%ld rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, n, rnd_mode), ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); /* Special cases */ if (MPFR_IS_SINGULAR (x)) { if (MPFR_IS_INF (x) && MPFR_IS_NEG (x)) { /* compound(-Inf,n) is NaN */ MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (n == 0 || MPFR_IS_ZERO (x)) { /* compound(x,0) = 1 for x >= -1 or NaN (the only special value of x that is not concerned is -Inf, already handled); compound(0,n) = 1 */ return mpfr_set_ui (y, 1, rnd_mode); } else if (MPFR_IS_NAN (x)) { /* compound(NaN,n) is NaN, except for n = 0, already handled. */ MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) /* x = +Inf */ { MPFR_ASSERTD (MPFR_IS_POS (x)); if (n < 0) /* (1+Inf)^n = +0 for n < 0 */ MPFR_SET_ZERO (y); else /* n > 0: (1+Inf)^n = +Inf */ MPFR_SET_INF (y); MPFR_SET_POS (y); MPFR_RET (0); /* exact 0 or infinity */ } } /* (1+x)^n = NaN for x < -1 */ compared = mpfr_cmp_si (x, -1); if (compared < 0) { MPFR_SET_NAN (y); MPFR_RET_NAN; } /* compound(x,0) gives 1 for x >= 1 */ if (n == 0) return mpfr_set_ui (y, 1, rnd_mode); if (compared == 0) { if (n < 0) { /* compound(-1,n) = +Inf with divide-by-zero exception */ MPFR_SET_INF (y); MPFR_SET_POS (y); MPFR_SET_DIVBY0 (); MPFR_RET (0); } else { /* compound(-1,n) = +0 */ MPFR_SET_ZERO (y); MPFR_SET_POS (y); MPFR_RET (0); } } if (n == 1) return mpfr_add_ui (y, x, 1, rnd_mode); MPFR_SAVE_EXPO_MARK (expo); prec = MPFR_PREC(y); prec += MPFR_INT_CEIL_LOG2 (prec) + 6; mpfr_init2 (t, prec); k = MPFR_INT_CEIL_LOG2(SAFE_ABS (unsigned long, n)); /* thus |n| <= 2^k */ MPFR_ZIV_INIT (loop, prec); for (nloop = 0; ; nloop++) { /* we compute (1+x)^n as 2^(n*log2p1(x)) */ inexact = mpfr_log2p1 (t, x, MPFR_RNDN) != 0; e = MPFR_GET_EXP(t); /* |t - log2(1+x)| <= 1/2*ulp(t) = 2^(e-prec-1) */ inexact |= mpfr_mul_si (t, t, n, MPFR_RNDN) != 0; /* |t - n*log2(1+x)| <= 2^(e2-prec-1) + |n|*2^(e-prec-1) <= 2^(e2-prec-1) + 2^(e+k-prec-1) <= 2^(e+k-prec) where |n| <= 2^k, and e2 is the new exponent of t. */ MPFR_ASSERTD(MPFR_GET_EXP(t) <= e + k); e += k; /* |t - n*log2(1+x)| <= 2^(e-prec) */ /* detect overflow */ if (nloop == 0 && mpfr_cmp_si (t, __gmpfr_emax) >= 0) { MPFR_ZIV_FREE (loop); mpfr_clear (t); MPFR_SAVE_EXPO_FREE (expo); return mpfr_overflow (y, rnd_mode, 1); } /* detect underflow */ if (nloop == 0 && mpfr_cmp_si (t, __gmpfr_emin - 1) <= 0) { MPFR_ZIV_FREE (loop); mpfr_clear (t); MPFR_SAVE_EXPO_FREE (expo); return mpfr_underflow (y, (rnd_mode == MPFR_RNDN) ? MPFR_RNDZ : rnd_mode, 1); } /* Detect cases where result is 1 or 1+ulp(1) or 1-1/2*ulp(1): |2^t - 1| = |exp(t*log(2)) - 1| <= |t|*log(2) < |t| */ if (nloop == 0 && MPFR_GET_EXP(t) < - (mpfr_exp_t) MPFR_PREC(y)) { /* since ulp(1) = 2^(1-PREC(y)), we have |t| < 1/4*ulp(1) */ /* mpfr_compound_near_one must be called in the extended exponent range, so that 1 is representable. */ inexact = mpfr_compound_near_one (y, MPFR_SIGN (t), rnd_mode); goto end; } inexact |= mpfr_exp2 (t, t, MPFR_RNDA) != 0; /* |t - (1+x)^n| <= ulp(t) + |t|*log(2)*2^(e-prec) < 2^(EXP(t)-prec) + 2^(EXP(t)+e-prec) */ e = (e >= 0) ? e + 1 : 1; /* now |t - (1+x)^n| < 2^(EXP(t)+e-prec) */ if (MPFR_LIKELY (inexact == 0 || MPFR_CAN_ROUND (t, prec - e, MPFR_PREC(y), rnd_mode))) break; /* Exact cases like compound(0.5,2) = 9/4 must be detected, since except for 1+x power of 2, the log2p1 above will be inexact, so that in the Ziv test, inexact != 0 and MPFR_CAN_ROUND will fail (even for RNDN, as the ternary value cannot be determined), yielding an infinite loop. For an exact case in precision prec(y), 1+x will necessarily be exact in precision prec(y), thus also in prec(t), where prec(t) >= prec(y), and we can use mpfr_pow_si under this condition (which will also evaluate some non-exact cases). */ if (mpfr_add_ui (t, x, 1, MPFR_RNDZ) == 0) { inexact = mpfr_pow_si (y, t, n, rnd_mode); goto end; } MPFR_ZIV_NEXT (loop, prec); mpfr_set_prec (t, prec); } inexact = mpfr_set (y, t, rnd_mode); end: MPFR_ZIV_FREE (loop); mpfr_clear (t); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }