/* mpfr_tanh -- hyperbolic tangent Copyright 2001-2023 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" int mpfr_tanh (mpfr_ptr y, mpfr_srcptr xt, mpfr_rnd_t rnd_mode) { /****** Declaration ******/ mpfr_t x; int inexact; MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode), ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); /* Special value checking */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt))) { if (MPFR_IS_NAN (xt)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (xt)) { /* tanh(inf) = 1 && tanh(-inf) = -1 */ return mpfr_set_si (y, MPFR_INT_SIGN (xt), rnd_mode); } else /* tanh (0) = 0 and xt is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO(xt)); MPFR_SET_ZERO (y); MPFR_SET_SAME_SIGN (y, xt); MPFR_RET (0); } } /* tanh(x) = x - x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP (xt), 1, 0, rnd_mode, {}); MPFR_TMP_INIT_ABS (x, xt); MPFR_SAVE_EXPO_MARK (expo); /* General case */ { /* Declaration of the intermediary variable */ mpfr_t t, te; mpfr_exp_t d; /* Declaration of the size variable */ mpfr_prec_t Ny = MPFR_PREC(y); /* target precision */ mpfr_prec_t Nt; /* working precision */ long int err; /* error */ int sign = MPFR_SIGN (xt); MPFR_ZIV_DECL (loop); MPFR_GROUP_DECL (group); /* First check for BIG overflow of exp(2*x): For x > 0, exp(2*x) > 2^(2*x) If 2 ^(2*x) > 2^emax or x>emax/2, there is an overflow */ if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax/2) >= 0)) { /* initialize of intermediary variables since 'set_one' label assumes the variables have been initialize */ MPFR_GROUP_INIT_2 (group, MPFR_PREC_MIN, t, te); goto set_one; } /* Compute the precision of intermediary variable */ /* The optimal number of bits: see algorithms.tex */ Nt = Ny + MPFR_INT_CEIL_LOG2 (Ny) + 4; /* if x is small, there will be a cancellation in exp(2x)-1 */ if (MPFR_GET_EXP (x) < 0) Nt += -MPFR_GET_EXP (x); /* The error analysis in algorithms.tex assumes that x is exactly representable with working precision Nt. FIXME: adapt the error analysis for the case Nt < PREC(x). */ if (Nt < MPFR_PREC(x)) Nt = MPFR_PREC(x); /* initialize of intermediary variable */ MPFR_GROUP_INIT_2 (group, Nt, t, te); MPFR_ZIV_INIT (loop, Nt); for (;;) { /* tanh = (exp(2x)-1)/(exp(2x)+1) */ inexact = mpfr_mul_2ui (te, x, 1, MPFR_RNDN); /* 2x */ MPFR_ASSERTD(inexact == 0); /* see FIXME above */ /* since x > 0, we can only have an overflow */ mpfr_exp (te, te, MPFR_RNDN); /* exp(2x) */ if (MPFR_UNLIKELY (MPFR_IS_INF (te))) { set_one: inexact = MPFR_FROM_SIGN_TO_INT (sign); mpfr_set4 (y, __gmpfr_one, MPFR_RNDN, sign); if (MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG_SIGN (sign))) { inexact = -inexact; mpfr_nexttozero (y); } break; } d = MPFR_GET_EXP (te); /* For Error calculation */ mpfr_add_ui (t, te, 1, MPFR_RNDD); /* exp(2x) + 1 */ mpfr_sub_ui (te, te, 1, MPFR_RNDU); /* exp(2x) - 1 */ d = d - MPFR_GET_EXP (te); mpfr_div (t, te, t, MPFR_RNDN); /* (exp(2x)-1)/(exp(2x)+1) */ /* Calculation of the error, see algorithms.tex; the current value of d is k in algorithms.tex. */ d = MAX(3, d + 1); /* d = exponent in 2^(max(3,k+1)) */ err = Nt - (d + 1); /* The inequality is the condition max(3,k+1) <= floor(p/2). */ if (MPFR_LIKELY (d <= Nt / 2 && MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) { inexact = mpfr_set4 (y, t, rnd_mode, sign); break; } /* if t=1, we still can round since |sinh(x)| < 1 */ if (MPFR_GET_EXP (t) == 1) goto set_one; /* Actualisation of the precision */ MPFR_ZIV_NEXT (loop, Nt); MPFR_GROUP_REPREC_2 (group, Nt, t, te); } MPFR_ZIV_FREE (loop); MPFR_GROUP_CLEAR (group); } MPFR_SAVE_EXPO_FREE (expo); inexact = mpfr_check_range (y, inexact, rnd_mode); return inexact; }