/* * turbostat -- Log CPU frequency and C-state residency * on modern Intel turbo-capable processors for collectd. * * Based on the 'turbostat' tool of the Linux kernel, found at * linux/tools/power/x86/turbostat/turbostat.c: * ---- * Copyright (c) 2013 Intel Corporation. * Len Brown * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * ---- * Ported to collectd by Vincent Brillault */ /* * _GNU_SOURCE is required because of the following functions: * - CPU_ISSET_S * - CPU_ZERO_S * - CPU_SET_S * - CPU_FREE * - CPU_ALLOC * - CPU_ALLOC_SIZE */ #define _GNU_SOURCE #include "collectd.h" #include "plugin.h" #include "utils/common/common.h" #include "utils_time.h" #include "msr-index.h" #include #ifdef HAVE_SYS_CAPABILITY_H #include #endif /* HAVE_SYS_CAPABILITY_H */ #define PLUGIN_NAME "turbostat" typedef enum affinity_policy_enum { policy_restore_affinity, /* restore cpu affinity to whatever it was before */ policy_allcpus_affinity /* do not restore affinity, set to all cpus */ } affinity_policy_t; /* the default is to set cpu affinity to all cpus */ static affinity_policy_t affinity_policy = policy_allcpus_affinity; /* * This tool uses the Model-Specific Registers (MSRs) present on Intel * processors. * The general description each of these registers, depending on the * architecture, * can be found in the IntelĀ® 64 and IA-32 Architectures Software Developer * Manual, * Volume 3 Chapter 35. */ /* * If set, aperf_mperf_unstable disables a/mperf based stats. * This includes: C0 & C1 states, frequency * * This value is automatically set if mperf or aperf go backward */ static bool aperf_mperf_unstable; /* * If set, use kernel logical core numbering for all "per core" metrics. */ static bool config_lcn; /* * Bitmask of the list of core C states supported by the processor. * Currently supported C-states (by this plugin): 3, 6, 7 */ static unsigned int do_core_cstate; static unsigned int config_core_cstate; static bool apply_config_core_cstate; /* * Bitmask of the list of pacages C states supported by the processor. * Currently supported C-states (by this plugin): 2, 3, 6, 7, 8, 9, 10 */ static unsigned int do_pkg_cstate; static unsigned int config_pkg_cstate; static bool apply_config_pkg_cstate; /* * Boolean indicating if the processor supports 'I/O System-Management Interrupt * counter' */ static bool do_smi; static bool config_smi; static bool apply_config_smi; /* * Boolean indicating if the processor supports 'Digital temperature sensor' * This feature enables the monitoring of the temperature of each core * * This feature has two limitations: * - if MSR_IA32_TEMPERATURE_TARGET is not supported, the absolute temperature * might be wrong * - Temperatures above the tcc_activation_temp are not recorded */ static bool do_dts; static bool config_dts; static bool apply_config_dts; /* * Boolean indicating if the processor supports 'Package thermal management' * This feature allows the monitoring of the temperature of each package * * This feature has two limitations: * - if MSR_IA32_TEMPERATURE_TARGET is not supported, the absolute temperature * might be wrong * - Temperatures above the tcc_activation_temp are not recorded */ static bool do_ptm; static bool config_ptm; static bool apply_config_ptm; /* * Thermal Control Circuit Activation Temperature as configured by the user. * This override the automated detection via MSR_IA32_TEMPERATURE_TARGET * and should only be used if the automated detection fails. */ static unsigned int tcc_activation_temp; static unsigned int do_power_fields; #define UFS_PLATFORM (1 << 0) #define TURBO_PLATFORM (1 << 1) #define PSTATES_PLATFORM (1 << 2) static unsigned int do_rapl; static unsigned int config_rapl; static bool apply_config_rapl; static double rapl_energy_units; static double rapl_power_units; #define RAPL_PKG (1 << 0) /* 0x610 MSR_PKG_POWER_LIMIT */ /* 0x611 MSR_PKG_ENERGY_STATUS */ /* 0x614 MSR_PKG_POWER_INFO */ #define RAPL_DRAM (1 << 1) /* 0x618 MSR_DRAM_POWER_LIMIT */ /* 0x619 MSR_DRAM_ENERGY_STATUS */ /* 0x61c MSR_DRAM_POWER_INFO */ #define RAPL_CORES (1 << 2) /* 0x638 MSR_PP0_POWER_LIMIT */ /* 0x639 MSR_PP0_ENERGY_STATUS */ #define RAPL_GFX (1 << 3) /* 0x640 MSR_PP1_POWER_LIMIT */ /* 0x641 MSR_PP1_ENERGY_STATUS */ /* 0x642 MSR_PP1_POLICY */ #define TJMAX_DEFAULT 100 static cpu_set_t *cpu_present_set, *cpu_affinity_set, *cpu_saved_affinity_set; static size_t cpu_present_setsize, cpu_affinity_setsize, cpu_saved_affinity_setsize; static struct thread_data { unsigned long long tsc; unsigned long long aperf; unsigned long long mperf; unsigned long long c1; unsigned int smi_count; unsigned int cpu_id; unsigned int flags; #define CPU_IS_FIRST_THREAD_IN_CORE 0x2 #define CPU_IS_FIRST_CORE_IN_PACKAGE 0x4 } * thread_delta, *thread_even, *thread_odd; static struct core_data { unsigned long long c3; unsigned long long c6; unsigned long long c7; unsigned int core_temp_c; unsigned int core_id; } * core_delta, *core_even, *core_odd; static struct pkg_data { unsigned long long pc2; unsigned long long pc3; unsigned long long pc6; unsigned long long pc7; unsigned long long pc8; unsigned long long pc9; unsigned long long pc10; unsigned int package_id; uint32_t energy_pkg; /* MSR_PKG_ENERGY_STATUS */ uint32_t energy_dram; /* MSR_DRAM_ENERGY_STATUS */ uint32_t energy_cores; /* MSR_PP0_ENERGY_STATUS */ uint32_t energy_gfx; /* MSR_PP1_ENERGY_STATUS */ uint32_t tdp; uint8_t turbo_enabled; uint8_t pstates_enabled; uint32_t uncore; unsigned int tcc_activation_temp; unsigned int pkg_temp_c; } * package_delta, *package_even, *package_odd; #define DELTA_COUNTERS thread_delta, core_delta, package_delta #define ODD_COUNTERS thread_odd, core_odd, package_odd #define EVEN_COUNTERS thread_even, core_even, package_even static bool is_even = true; static bool allocated; static bool initialized; #define GET_THREAD(thread_base, thread_no, core_no, pkg_no) \ (thread_base + (pkg_no)*topology.num_cores * topology.num_threads + \ (core_no)*topology.num_threads + (thread_no)) #define GET_CORE(core_base, core_no, pkg_no) \ (core_base + (pkg_no)*topology.num_cores + (core_no)) #define GET_PKG(pkg_base, pkg_no) (pkg_base + pkg_no) struct cpu_topology { unsigned int package_id; unsigned int core_id; bool first_core_in_package; bool first_thread_in_core; }; static struct topology { unsigned int max_cpu_id; unsigned int num_packages; unsigned int num_cores; unsigned int num_threads; struct cpu_topology *cpus; } topology; static cdtime_t time_even, time_odd, time_delta; static const char *config_keys[] = { "CoreCstates", "PackageCstates", "SystemManagementInterrupt", "DigitalTemperatureSensor", "PackageThermalManagement", "TCCActivationTemp", "RunningAveragePowerLimit", "LogicalCoreNames", "RestoreAffinityPolicy", }; static const int config_keys_num = STATIC_ARRAY_SIZE(config_keys); /***************************** * MSR Manipulation helpers * *****************************/ /* * Open a MSR device for reading * Can change the scheduling affinity of the current process if multiple_read is * true */ static int __attribute__((warn_unused_result)) open_msr(unsigned int cpu, bool multiple_read) { char pathname[32]; int fd; /* * If we need to do multiple read, let's migrate to the CPU * Otherwise, we would lose time calling functions on another CPU * * If we are not yet initialized (cpu_affinity_setsize = 0), * we need to skip this optimisation. */ if (multiple_read && cpu_affinity_setsize) { CPU_ZERO_S(cpu_affinity_setsize, cpu_affinity_set); CPU_SET_S(cpu, cpu_affinity_setsize, cpu_affinity_set); if (sched_setaffinity(0, cpu_affinity_setsize, cpu_affinity_set) == -1) { ERROR("turbostat plugin: Could not migrate to CPU %d", cpu); return -1; } } snprintf(pathname, sizeof(pathname), "/dev/cpu/%d/msr", cpu); fd = open(pathname, O_RDONLY); if (fd < 0) { ERROR("turbostat plugin: failed to open %s", pathname); return -1; } return fd; } /* * Read a single MSR from an open file descriptor */ static int __attribute__((warn_unused_result)) read_msr(int fd, off_t offset, unsigned long long *msr) { ssize_t retval; retval = pread(fd, msr, sizeof *msr, offset); if (retval != sizeof *msr) { ERROR("turbostat plugin: MSR offset 0x%llx read failed", (unsigned long long)offset); return -1; } return 0; } /* * Open a MSR device for reading, read the value asked for and close it. * This call will not affect the scheduling affinity of this thread. */ static ssize_t __attribute__((warn_unused_result)) get_msr(unsigned int cpu, off_t offset, unsigned long long *msr) { ssize_t retval; int fd; fd = open_msr(cpu, 0); if (fd < 0) return fd; retval = read_msr(fd, offset, msr); close(fd); return retval; } /******************************** * Raw data acquisition (1 CPU) * ********************************/ /* * Read every data avalaible for a single CPU * * Core data is shared for all threads in one core: extracted only for the first * thread * Package data is shared for all core in one package: extracted only for the * first thread of the first core * * Side effect: migrates to the targeted CPU */ static int __attribute__((warn_unused_result)) get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned int cpu = t->cpu_id; unsigned long long msr; int msr_fd; int retval = 0; msr_fd = open_msr(cpu, 1); if (msr_fd < 0) return msr_fd; #define READ_MSR(msr, dst) \ do { \ if (read_msr(msr_fd, msr, dst)) { \ ERROR("turbostat plugin: Unable to read " #msr); \ retval = -1; \ goto out; \ } \ } while (0) READ_MSR(MSR_IA32_TSC, &t->tsc); READ_MSR(MSR_IA32_APERF, &t->aperf); READ_MSR(MSR_IA32_MPERF, &t->mperf); if (do_smi) { READ_MSR(MSR_SMI_COUNT, &msr); t->smi_count = msr & 0xFFFFFFFF; } /* collect core counters only for 1st thread in core */ if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE)) { retval = 0; goto out; } if (do_core_cstate & (1 << 3)) READ_MSR(MSR_CORE_C3_RESIDENCY, &c->c3); if (do_core_cstate & (1 << 6)) READ_MSR(MSR_CORE_C6_RESIDENCY, &c->c6); if (do_core_cstate & (1 << 7)) READ_MSR(MSR_CORE_C7_RESIDENCY, &c->c7); if (do_dts) { READ_MSR(MSR_IA32_THERM_STATUS, &msr); c->core_temp_c = p->tcc_activation_temp - ((msr >> 16) & 0x7F); } /* collect package counters only for 1st core in package */ if (!(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) { retval = 0; goto out; } if (do_pkg_cstate & (1 << 2)) READ_MSR(MSR_PKG_C2_RESIDENCY, &p->pc2); if (do_pkg_cstate & (1 << 3)) READ_MSR(MSR_PKG_C3_RESIDENCY, &p->pc3); if (do_pkg_cstate & (1 << 6)) READ_MSR(MSR_PKG_C6_RESIDENCY, &p->pc6); if (do_pkg_cstate & (1 << 7)) READ_MSR(MSR_PKG_C7_RESIDENCY, &p->pc7); if (do_pkg_cstate & (1 << 8)) READ_MSR(MSR_PKG_C8_RESIDENCY, &p->pc8); if (do_pkg_cstate & (1 << 9)) READ_MSR(MSR_PKG_C9_RESIDENCY, &p->pc9); if (do_pkg_cstate & (1 << 10)) READ_MSR(MSR_PKG_C10_RESIDENCY, &p->pc10); if (do_rapl & RAPL_PKG) { READ_MSR(MSR_PKG_ENERGY_STATUS, &msr); p->energy_pkg = msr & 0xFFFFFFFF; READ_MSR(MSR_PKG_POWER_INFO, &msr); p->tdp = msr & 0x7FFF; } if (do_rapl & RAPL_CORES) { READ_MSR(MSR_PP0_ENERGY_STATUS, &msr); p->energy_cores = msr & 0xFFFFFFFF; } if (do_rapl & RAPL_DRAM) { READ_MSR(MSR_DRAM_ENERGY_STATUS, &msr); p->energy_dram = msr & 0xFFFFFFFF; } if (do_rapl & RAPL_GFX) { READ_MSR(MSR_PP1_ENERGY_STATUS, &msr); p->energy_gfx = msr & 0xFFFFFFFF; } if (do_ptm) { READ_MSR(MSR_IA32_PACKAGE_THERM_STATUS, &msr); p->pkg_temp_c = p->tcc_activation_temp - ((msr >> 16) & 0x7F); } if (do_power_fields & TURBO_PLATFORM) { READ_MSR(MSR_IA32_MISC_ENABLE, &msr); p->turbo_enabled = !((msr >> 38) & 0x1); } if (do_power_fields & PSTATES_PLATFORM) { READ_MSR(MSR_IA32_MISC_ENABLE, &msr); p->pstates_enabled = (msr >> 16) & 0x1; } if (do_power_fields & UFS_PLATFORM) { READ_MSR(MSR_UNCORE_FREQ_SCALING, &msr); p->uncore = msr & 0x1F; } out: close(msr_fd); return retval; } /********************************** * Evaluating the changes (1 CPU) * **********************************/ /* * Extract the evolution old->new in delta at a package level * (some are not new-delta, e.g. temperature) */ static inline void delta_package(struct pkg_data *delta, const struct pkg_data *new, const struct pkg_data *old) { delta->pc2 = new->pc2 - old->pc2; delta->pc3 = new->pc3 - old->pc3; delta->pc6 = new->pc6 - old->pc6; delta->pc7 = new->pc7 - old->pc7; delta->pc8 = new->pc8 - old->pc8; delta->pc9 = new->pc9 - old->pc9; delta->pc10 = new->pc10 - old->pc10; delta->pkg_temp_c = new->pkg_temp_c; delta->energy_pkg = new->energy_pkg - old->energy_pkg; delta->energy_cores = new->energy_cores - old->energy_cores; delta->energy_gfx = new->energy_gfx - old->energy_gfx; delta->energy_dram = new->energy_dram - old->energy_dram; delta->tdp = new->tdp; delta->turbo_enabled = new->turbo_enabled; delta->pstates_enabled = new->pstates_enabled; delta->tcc_activation_temp = new->tcc_activation_temp; delta->uncore = new->uncore; } /* * Extract the evolution old->new in delta at a core level * (some are not new-delta, e.g. temperature) */ static inline void delta_core(struct core_data *delta, const struct core_data *new, const struct core_data *old) { delta->c3 = new->c3 - old->c3; delta->c6 = new->c6 - old->c6; delta->c7 = new->c7 - old->c7; delta->core_temp_c = new->core_temp_c; } /* * Extract the evolution old->new in delta at a package level * core_delta is required for c1 estimation (tsc - c0 - all core cstates) */ static inline int __attribute__((warn_unused_result)) delta_thread(struct thread_data *delta, const struct thread_data *new, const struct thread_data *old, const struct core_data *cdelta) { delta->tsc = new->tsc - old->tsc; /* check for TSC < 1 Mcycles over interval */ if (delta->tsc < (1000 * 1000)) { WARNING("turbostat plugin: Insanely slow TSC rate, TSC stops " "in idle? You can disable all c-states by booting with" " 'idle=poll' or just the deep ones with" " 'processor.max_cstate=1'"); return -1; } delta->c1 = new->c1 - old->c1; if ((new->aperf > old->aperf) && (new->mperf > old->mperf)) { delta->aperf = new->aperf - old->aperf; delta->mperf = new->mperf - old->mperf; } else { if (!aperf_mperf_unstable) { WARNING("turbostat plugin: APERF or MPERF went " "backwards. Frequency results do not cover " "the entire interval. Fix this by running " "Linux-2.6.30 or later."); aperf_mperf_unstable = true; } } /* * As counter collection is not atomic, * it is possible for mperf's non-halted cycles + idle states * to exceed TSC's all cycles: show c1 = 0% in that case. */ if ((delta->mperf + cdelta->c3 + cdelta->c6 + cdelta->c7) > delta->tsc) delta->c1 = 0; else { /* normal case, derive c1 */ delta->c1 = delta->tsc - delta->mperf - cdelta->c3 - cdelta->c6 - cdelta->c7; } if (delta->mperf == 0) { WARNING("turbostat plugin: cpu%d MPERF 0!", old->cpu_id); delta->mperf = 1; /* divide by 0 protection */ } if (do_smi) delta->smi_count = new->smi_count - old->smi_count; return 0; } /********************************** * Submitting the results (1 CPU) * **********************************/ /* * Submit one gauge value */ static void turbostat_submit(const char *plugin_instance, const char *type, const char *type_instance, gauge_t value) { value_list_t vl = VALUE_LIST_INIT; vl.values = &(value_t){.gauge = value}; vl.values_len = 1; sstrncpy(vl.plugin, PLUGIN_NAME, sizeof(vl.plugin)); if (plugin_instance != NULL) sstrncpy(vl.plugin_instance, plugin_instance, sizeof(vl.plugin_instance)); sstrncpy(vl.type, type, sizeof(vl.type)); if (type_instance != NULL) sstrncpy(vl.type_instance, type_instance, sizeof(vl.type_instance)); plugin_dispatch_values(&vl); } /* * Submit every data for a single CPU * * Core data is shared for all threads in one core: submitted only for the first * thread * Package data is shared for all core in one package: submitted only for the * first thread of the first core */ static int submit_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { char name[DATA_MAX_NAME_LEN]; double interval_float; interval_float = CDTIME_T_TO_DOUBLE(time_delta); DEBUG("turbostat plugin: submit stats for cpu: %d, core: %d, pkg: %d", t->cpu_id, c->core_id, p->package_id); snprintf(name, sizeof(name), "cpu%02d", t->cpu_id); if (!aperf_mperf_unstable) turbostat_submit(name, "percent", "c0", 100.0 * t->mperf / t->tsc); if (!aperf_mperf_unstable) turbostat_submit(name, "percent", "c1", 100.0 * t->c1 / t->tsc); turbostat_submit(name, "frequency", "average", 1.0 / 1000000 * t->aperf / interval_float); if ((!aperf_mperf_unstable) || (!(t->aperf > t->tsc || t->mperf > t->tsc))) turbostat_submit(name, "frequency", "busy", 1.0 * t->tsc / 1000000 * t->aperf / t->mperf / interval_float); /* Sanity check (should stay stable) */ turbostat_submit(name, "gauge", "TSC", 1.0 * t->tsc / 1000000 / interval_float); /* SMI */ if (do_smi) turbostat_submit(name, "count", NULL, t->smi_count); /* submit per-core data only for 1st thread in core */ if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE)) goto done; /* If not using logical core numbering, set core id */ if (!config_lcn) { if (topology.num_packages > 1) snprintf(name, sizeof(name), "pkg%02d-core%02d", p->package_id, c->core_id); else snprintf(name, sizeof(name), "core%02d", c->core_id); } if (do_core_cstate & (1 << 3)) turbostat_submit(name, "percent", "c3", 100.0 * c->c3 / t->tsc); if (do_core_cstate & (1 << 6)) turbostat_submit(name, "percent", "c6", 100.0 * c->c6 / t->tsc); if (do_core_cstate & (1 << 7)) turbostat_submit(name, "percent", "c7", 100.0 * c->c7 / t->tsc); if (do_dts) turbostat_submit(name, "temperature", NULL, c->core_temp_c); /* submit per-package data only for 1st core in package */ if (!(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) goto done; snprintf(name, sizeof(name), "pkg%02d", p->package_id); if (do_ptm) turbostat_submit(name, "temperature", NULL, p->pkg_temp_c); if (do_pkg_cstate & (1 << 2)) turbostat_submit(name, "percent", "pc2", 100.0 * p->pc2 / t->tsc); if (do_pkg_cstate & (1 << 3)) turbostat_submit(name, "percent", "pc3", 100.0 * p->pc3 / t->tsc); if (do_pkg_cstate & (1 << 6)) turbostat_submit(name, "percent", "pc6", 100.0 * p->pc6 / t->tsc); if (do_pkg_cstate & (1 << 7)) turbostat_submit(name, "percent", "pc7", 100.0 * p->pc7 / t->tsc); if (do_pkg_cstate & (1 << 8)) turbostat_submit(name, "percent", "pc8", 100.0 * p->pc8 / t->tsc); if (do_pkg_cstate & (1 << 9)) turbostat_submit(name, "percent", "pc9", 100.0 * p->pc9 / t->tsc); if (do_pkg_cstate & (1 << 10)) turbostat_submit(name, "percent", "pc10", 100.0 * p->pc10 / t->tsc); if (do_rapl) { if (do_rapl & RAPL_PKG) { turbostat_submit(name, "power", "pkg", p->energy_pkg * rapl_energy_units / interval_float); turbostat_submit(name, "tdp", "pkg", p->tdp * rapl_power_units); } if (do_rapl & RAPL_CORES) turbostat_submit(name, "power", "cores", p->energy_cores * rapl_energy_units / interval_float); if (do_rapl & RAPL_GFX) turbostat_submit(name, "power", "GFX", p->energy_gfx * rapl_energy_units / interval_float); if (do_rapl & RAPL_DRAM) turbostat_submit(name, "power", "DRAM", p->energy_dram * rapl_energy_units / interval_float); } if (do_power_fields & TURBO_PLATFORM) { turbostat_submit(name, "turbo_enabled", NULL, p->turbo_enabled); } if (do_power_fields & PSTATES_PLATFORM) { turbostat_submit(name, "pstates_enabled", NULL, p->pstates_enabled); } if (do_power_fields & UFS_PLATFORM) { turbostat_submit(name, "uncore_ratio", NULL, p->uncore); } turbostat_submit(name, "temperature", "tcc_activation", p->tcc_activation_temp); done: return 0; } /********************************** * Looping function over all CPUs * **********************************/ /* * Check if a given cpu id is in our compiled list of existing CPUs */ static int cpu_is_not_present(unsigned int cpu) { return !CPU_ISSET_S(cpu, cpu_present_setsize, cpu_present_set); } /* * Loop on all CPUs in topological order * * Skip non-present cpus * Return the error code at the first error or 0 */ static int __attribute__((warn_unused_result)) for_all_cpus(int(func)(struct thread_data *, struct core_data *, struct pkg_data *), struct thread_data *thread_base, struct core_data *core_base, struct pkg_data *pkg_base) { int retval; for (unsigned int pkg_no = 0; pkg_no < topology.num_packages; ++pkg_no) { for (unsigned int core_no = 0; core_no < topology.num_cores; ++core_no) { for (unsigned int thread_no = 0; thread_no < topology.num_threads; ++thread_no) { struct thread_data *t; struct core_data *c; struct pkg_data *p; t = GET_THREAD(thread_base, thread_no, core_no, pkg_no); if (cpu_is_not_present(t->cpu_id)) continue; c = GET_CORE(core_base, core_no, pkg_no); p = GET_PKG(pkg_base, pkg_no); retval = func(t, c, p); if (retval) return retval; } } } return 0; } /* * Dedicated loop: Extract every data evolution for all CPU * * Skip non-present cpus * Return the error code at the first error or 0 * * Core data is shared for all threads in one core: extracted only for the first * thread * Package data is shared for all core in one package: extracted only for the * first thread of the first core */ static int __attribute__((warn_unused_result)) for_all_cpus_delta(const struct thread_data *thread_new_base, const struct core_data *core_new_base, const struct pkg_data *pkg_new_base, const struct thread_data *thread_old_base, const struct core_data *core_old_base, const struct pkg_data *pkg_old_base) { int retval; for (unsigned int pkg_no = 0; pkg_no < topology.num_packages; ++pkg_no) { for (unsigned int core_no = 0; core_no < topology.num_cores; ++core_no) { for (unsigned int thread_no = 0; thread_no < topology.num_threads; ++thread_no) { struct thread_data *t_delta; const struct thread_data *t_old, *t_new; struct core_data *c_delta; /* Get correct pointers for threads */ t_delta = GET_THREAD(thread_delta, thread_no, core_no, pkg_no); t_new = GET_THREAD(thread_new_base, thread_no, core_no, pkg_no); t_old = GET_THREAD(thread_old_base, thread_no, core_no, pkg_no); /* Skip threads that disappeared */ if (cpu_is_not_present(t_delta->cpu_id)) continue; /* c_delta is always required for delta_thread */ c_delta = GET_CORE(core_delta, core_no, pkg_no); /* calculate core delta only for 1st thread in core */ if (t_new->flags & CPU_IS_FIRST_THREAD_IN_CORE) { const struct core_data *c_old, *c_new; c_new = GET_CORE(core_new_base, core_no, pkg_no); c_old = GET_CORE(core_old_base, core_no, pkg_no); delta_core(c_delta, c_new, c_old); } /* Always calculate thread delta */ retval = delta_thread(t_delta, t_new, t_old, c_delta); if (retval) return retval; /* calculate package delta only for 1st core in package */ if (t_new->flags & CPU_IS_FIRST_CORE_IN_PACKAGE) { struct pkg_data *p_delta; const struct pkg_data *p_old, *p_new; p_delta = GET_PKG(package_delta, pkg_no); p_new = GET_PKG(pkg_new_base, pkg_no); p_old = GET_PKG(pkg_old_base, pkg_no); delta_package(p_delta, p_new, p_old); } } } } return 0; } /*************** * CPU Probing * ***************/ /* * MSR_IA32_TEMPERATURE_TARGET indicates the temperature where * the Thermal Control Circuit (TCC) activates. * This is usually equal to tjMax. * * Older processors do not have this MSR, so there we guess, * but also allow conficuration over-ride with "TCCActivationTemp". * * Several MSR temperature values are in units of degrees-C * below this value, including the Digital Thermal Sensor (DTS), * Package Thermal Management Sensor (PTM), and thermal event thresholds. */ static int __attribute__((warn_unused_result)) set_temperature_target(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned long long msr; unsigned int target_c_local; /* tcc_activation_temp is used only for dts or ptm */ if (!(do_dts || do_ptm)) return 0; /* this is a per-package concept */ if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE) || !(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) return 0; if (tcc_activation_temp != 0) { p->tcc_activation_temp = tcc_activation_temp; return 0; } if (get_msr(t->cpu_id, MSR_IA32_TEMPERATURE_TARGET, &msr)) goto guess; target_c_local = (msr >> 16) & 0xFF; if (!target_c_local) goto guess; p->tcc_activation_temp = target_c_local; return 0; guess: p->tcc_activation_temp = TJMAX_DEFAULT; WARNING("turbostat plugin: cpu%d: Guessing tjMax %d C," " Please use TCCActivationTemp to specify it.", t->cpu_id, p->tcc_activation_temp); return 0; } /* * Identify the functionality of the CPU */ static int __attribute__((warn_unused_result)) probe_cpu(void) { unsigned int eax, ebx, ecx, edx, max_level; unsigned int fms, family, model; /* CPUID(0): * - EAX: Maximum Input Value for Basic CPUID Information * - EBX: "Genu" (0x756e6547) * - EDX: "ineI" (0x49656e69) * - ECX: "ntel" (0x6c65746e) */ max_level = ebx = ecx = edx = 0; __get_cpuid(0, &max_level, &ebx, &ecx, &edx); if (ebx != 0x756e6547 && edx != 0x49656e69 && ecx != 0x6c65746e) { ERROR("turbostat plugin: Unsupported CPU (not Intel)"); return -1; } /* CPUID(1): * - EAX: Version Information: Type, Family, Model, and Stepping ID * + 4-7: Model ID * + 8-11: Family ID * + 12-13: Processor type * + 16-19: Extended Model ID * + 20-27: Extended Family ID * - EDX: Feature Information: * + 5: Support for MSR read/write operations */ fms = ebx = ecx = edx = 0; __get_cpuid(1, &fms, &ebx, &ecx, &edx); family = (fms >> 8) & 0xf; model = (fms >> 4) & 0xf; if (family == 0xf) family += (fms >> 20) & 0xf; if (family == 6 || family == 0xf) model += ((fms >> 16) & 0xf) << 4; if (!(edx & (1 << 5))) { ERROR("turbostat plugin: Unsupported CPU (no MSR support)"); return -1; } /* * CPUID(6): * - EAX: * + 0: Digital temperature sensor is supported if set * + 6: Package thermal management is supported if set * - ECX: * + 0: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and * IA32_APERF). * + 3: The processor supports performance-energy bias preference if set. * It also implies the presence of a new architectural MSR called * IA32_ENERGY_PERF_BIAS * * This check is valid for both Intel and AMD */ eax = ebx = ecx = edx = 0; __get_cpuid(0x6, &eax, &ebx, &ecx, &edx); do_dts = eax & (1 << 0); do_ptm = eax & (1 << 6); if (!(ecx & (1 << 0))) { ERROR("turbostat plugin: Unsupported CPU (No APERF)"); return -1; } /* * Enable or disable C states depending on the model and family */ if (family == 6) { switch (model) { /* Atom (partial) */ case 0x27: do_smi = false; do_core_cstate = 0; do_pkg_cstate = (1 << 2) | (1 << 4) | (1 << 6); break; /* Silvermont */ case 0x37: /* BYT */ case 0x4D: /* AVN */ do_smi = true; do_core_cstate = (1 << 1) | (1 << 6); do_pkg_cstate = (1 << 6); break; /* Nehalem */ case 0x1A: /* Core i7, Xeon 5500 series - Bloomfield, Gainstown NHM-EP */ case 0x1E: /* Core i7 and i5 Processor - Clarksfield, Lynnfield, Jasper Forest */ case 0x1F: /* Core i7 and i5 Processor - Nehalem */ case 0x2E: /* Nehalem-EX Xeon - Beckton */ do_smi = true; do_core_cstate = (1 << 3) | (1 << 6); do_pkg_cstate = (1 << 3) | (1 << 6) | (1 << 7); break; /* Westmere */ case 0x25: /* Westmere Client - Clarkdale, Arrandale */ case 0x2C: /* Westmere EP - Gulftown */ case 0x2F: /* Westmere-EX Xeon - Eagleton */ do_smi = true; do_core_cstate = (1 << 3) | (1 << 6); do_pkg_cstate = (1 << 3) | (1 << 6) | (1 << 7); break; /* Sandy Bridge */ case 0x2A: /* SNB */ case 0x2D: /* SNB Xeon */ do_smi = true; do_core_cstate = (1 << 3) | (1 << 6) | (1 << 7); do_pkg_cstate = (1 << 2) | (1 << 3) | (1 << 6) | (1 << 7); break; /* Ivy Bridge */ case 0x3A: /* IVB */ case 0x3E: /* IVB Xeon */ case 0x55: /* SKX,CLX Xeon */ case 0x6A: /* ICX Xeon */ do_smi = true; do_core_cstate = (1 << 3) | (1 << 6) | (1 << 7); do_pkg_cstate = (1 << 2) | (1 << 3) | (1 << 6) | (1 << 7); break; /* Haswell Bridge */ case 0x3C: /* HSW */ case 0x3F: /* HSW */ case 0x46: /* HSW */ do_smi = true; do_core_cstate = (1 << 3) | (1 << 6) | (1 << 7); do_pkg_cstate = (1 << 2) | (1 << 3) | (1 << 6) | (1 << 7); break; case 0x45: /* HSW */ do_smi = true; do_core_cstate = (1 << 3) | (1 << 6) | (1 << 7); do_pkg_cstate = (1 << 2) | (1 << 3) | (1 << 6) | (1 << 7) | (1 << 8) | (1 << 9) | (1 << 10); break; /* Broadwell */ case 0x4F: /* BDW */ case 0x56: /* BDX-DE */ do_smi = true; do_core_cstate = (1 << 3) | (1 << 6) | (1 << 7); do_pkg_cstate = (1 << 2) | (1 << 3) | (1 << 6) | (1 << 7); break; case 0x3D: /* BDW */ do_smi = true; do_core_cstate = (1 << 3) | (1 << 6) | (1 << 7); do_pkg_cstate = (1 << 2) | (1 << 3) | (1 << 6) | (1 << 7) | (1 << 8) | (1 << 9) | (1 << 10); break; default: do_smi = false; do_core_cstate = 0; do_pkg_cstate = 0; break; } switch (model) { case 0x2A: /* SNB */ case 0x3A: /* IVB */ case 0x3C: /* HSW */ case 0x45: /* HSW */ case 0x46: /* HSW */ case 0x3D: /* BDW */ case 0x5E: /* SKL */ do_rapl = RAPL_PKG | RAPL_CORES | RAPL_GFX; break; case 0x3F: /* HSX */ case 0x4F: /* BDX */ case 0x56: /* BDX-DE */ do_rapl = RAPL_PKG | RAPL_DRAM; do_power_fields = TURBO_PLATFORM | UFS_PLATFORM | PSTATES_PLATFORM; break; case 0x2D: /* SNB Xeon */ case 0x3E: /* IVB Xeon */ case 0x55: /* SKX,CLX Xeon */ case 0x6A: /* ICX Xeon */ do_rapl = RAPL_PKG | RAPL_CORES | RAPL_DRAM; do_power_fields = TURBO_PLATFORM | PSTATES_PLATFORM; break; case 0x37: /* BYT */ case 0x4D: /* AVN */ do_rapl = RAPL_PKG | RAPL_CORES; break; default: do_rapl = 0; } } else { ERROR("turbostat plugin: Unsupported CPU (family: %#x, " "model: %#x)", family, model); return -1; } /* Override detected values with configuration */ if (apply_config_core_cstate) do_core_cstate = config_core_cstate; if (apply_config_pkg_cstate) do_pkg_cstate = config_pkg_cstate; if (apply_config_smi) do_smi = config_smi; if (apply_config_dts) do_dts = config_dts; if (apply_config_ptm) do_ptm = config_ptm; if (apply_config_rapl) do_rapl = config_rapl; if (do_rapl) { unsigned long long msr; if (get_msr(0, MSR_RAPL_POWER_UNIT, &msr)) return 0; rapl_power_units = 1.0 / (1 << (msr & 0xF)); if (model == 0x37) rapl_energy_units = 1.0 * (1 << (msr >> 8 & 0x1F)) / 1000000; else rapl_energy_units = 1.0 / (1 << (msr >> 8 & 0x1F)); } return 0; } /******************** * Topology Probing * ********************/ /* * Read a single int from a file. */ static int __attribute__((format(printf, 1, 2))) parse_int_file(const char *fmt, ...) { va_list args; char path[PATH_MAX]; char buf[256]; int len; value_t v; char *c; FILE *fp; va_start(args, fmt); len = vsnprintf(path, sizeof(path), fmt, args); va_end(args); if (len < 0 || len >= PATH_MAX) { ERROR("turbostat plugin: path truncated: '%s'", path); return -1; } fp = fopen(path, "r"); if (fp == NULL) { ERROR("turbostat plugin: unable to open: '%s': %s", path, strerror(errno)); return -1; } if (fgets(buf, sizeof(buf), fp) == NULL) { ERROR("turbostat plugin: unable to read: '%s': %s", path, strerror(errno)); fclose(fp); return -1; } fclose(fp); /* We only care about the first integer in the range */ c = strchr(buf, '-'); if (c != NULL) *c = '\0'; c = strchr(buf, ','); if (c != NULL) *c = '\0'; strstripnewline(buf); if (parse_value(buf, &v, DS_TYPE_DERIVE) != 0) { ERROR("turbostat plugin: Parsing \"%s\" failed.", path); return -1; } return (int)v.derive; } static int get_threads_on_core(unsigned int cpu) { char path[80]; FILE *filep; int sib1, sib2; int matches; char character; snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list", cpu); filep = fopen(path, "r"); if (!filep) { ERROR("turbostat plugin: Failed to open '%s'", path); return -1; } /* * file format: * if a pair of number with a character between: 2 siblings (eg. 1-2, or 1,4) * otherwinse 1 sibling (self). */ matches = fscanf(filep, "%d%c%d\n", &sib1, &character, &sib2); fclose(filep); if (matches == 3) return 2; else return 1; } /* * run func(cpu) on every cpu in /proc/stat * return max_cpu number */ static int __attribute__((warn_unused_result)) for_all_proc_cpus(int(func)(unsigned int)) { FILE *fp; unsigned int cpu_num; int retval; fp = fopen("/proc/stat", "r"); if (!fp) { ERROR("turbostat plugin: Failed to open /proc/stat"); return -1; } retval = fscanf(fp, "cpu %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d\n"); if (retval != 0) { ERROR("turbostat plugin: Failed to parse /proc/stat"); fclose(fp); return -1; } while (1) { retval = fscanf(fp, "cpu%u %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d\n", &cpu_num); if (retval != 1) break; retval = func(cpu_num); if (retval) { fclose(fp); return retval; } } fclose(fp); return 0; } /* * Update the stored topology.max_cpu_id */ static int update_max_cpu_id(unsigned int cpu) { if (topology.max_cpu_id < cpu) topology.max_cpu_id = cpu; return 0; } static int mark_cpu_present(unsigned int cpu) { CPU_SET_S(cpu, cpu_present_setsize, cpu_present_set); return 0; } static int __attribute__((warn_unused_result)) allocate_cpu_set(cpu_set_t **set, size_t *size) { *set = CPU_ALLOC(topology.max_cpu_id + 1); if (*set == NULL) { ERROR("turbostat plugin: Unable to allocate CPU state"); return -1; } *size = CPU_ALLOC_SIZE(topology.max_cpu_id + 1); CPU_ZERO_S(*size, *set); return 0; } /* * Build a local representation of the cpu distribution */ static int __attribute__((warn_unused_result)) topology_probe(void) { int ret; unsigned int max_package_id, max_core_id, max_threads; max_package_id = max_core_id = max_threads = 0; /* Clean topology */ free(topology.cpus); memset(&topology, 0, sizeof(topology)); ret = for_all_proc_cpus(update_max_cpu_id); if (ret != 0) goto err; topology.cpus = calloc(1, (topology.max_cpu_id + 1) * sizeof(struct cpu_topology)); if (topology.cpus == NULL) { ERROR("turbostat plugin: Unable to allocate memory for CPU topology"); return -1; } ret = allocate_cpu_set(&cpu_present_set, &cpu_present_setsize); if (ret != 0) goto err; ret = allocate_cpu_set(&cpu_affinity_set, &cpu_affinity_setsize); if (ret != 0) goto err; ret = allocate_cpu_set(&cpu_saved_affinity_set, &cpu_saved_affinity_setsize); if (ret != 0) goto err; ret = for_all_proc_cpus(mark_cpu_present); if (ret != 0) goto err; /* * For online cpus * find max_core_id, max_package_id */ for (unsigned int i = 0; i <= topology.max_cpu_id; ++i) { unsigned int num_threads; struct cpu_topology *cpu = &topology.cpus[i]; if (cpu_is_not_present(i)) { WARNING("turbostat plugin: cpu%d NOT PRESENT", i); continue; } ret = parse_int_file( "/sys/devices/system/cpu/cpu%d/topology/physical_package_id", i); if (ret < 0) goto err; else cpu->package_id = (unsigned int)ret; if (cpu->package_id > max_package_id) max_package_id = cpu->package_id; ret = parse_int_file("/sys/devices/system/cpu/cpu%d/topology/core_id", i); if (ret < 0) goto err; else cpu->core_id = (unsigned int)ret; if (cpu->core_id > max_core_id) max_core_id = cpu->core_id; ret = parse_int_file( "/sys/devices/system/cpu/cpu%d/topology/core_siblings_list", i); if (ret < 0) goto err; else if ((unsigned int)ret == i) cpu->first_core_in_package = true; ret = get_threads_on_core(i); if (ret < 0) goto err; else num_threads = (unsigned int)ret; if (num_threads > max_threads) max_threads = num_threads; ret = parse_int_file( "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list", i); if (ret < 0) goto err; else if ((unsigned int)ret == i) cpu->first_thread_in_core = true; DEBUG("turbostat plugin: cpu %d pkg %d core %d\n", i, cpu->package_id, cpu->core_id); } /* Num is max + 1 (need to count 0) */ topology.num_packages = max_package_id + 1; topology.num_cores = max_core_id + 1; topology.num_threads = max_threads; return 0; err: free(topology.cpus); return ret; } /************************ * Main alloc/init/free * ************************/ static int allocate_counters(struct thread_data **threads, struct core_data **cores, struct pkg_data **packages) { unsigned int total_threads, total_cores; if ((topology.num_threads == 0) || (topology.num_cores == 0) || (topology.num_packages == 0)) { ERROR( "turbostat plugin: Invalid topology: %u threads, %u cores, %u packages", topology.num_threads, topology.num_cores, topology.num_packages); return -1; } total_threads = topology.num_threads * topology.num_cores * topology.num_packages; *threads = calloc(total_threads, sizeof(struct thread_data)); if (*threads == NULL) { ERROR("turbostat plugin: calloc failed"); return -1; } for (unsigned int i = 0; i < total_threads; ++i) (*threads)[i].cpu_id = topology.max_cpu_id + 1; total_cores = topology.num_cores * topology.num_packages; *cores = calloc(total_cores, sizeof(struct core_data)); if (*cores == NULL) { ERROR("turbostat plugin: calloc failed"); sfree(*threads); return -1; } *packages = calloc(topology.num_packages, sizeof(struct pkg_data)); if (*packages == NULL) { ERROR("turbostat plugin: calloc failed"); sfree(*cores); sfree(*threads); return -1; } return 0; } static void init_counter(struct thread_data *thread_base, struct core_data *core_base, struct pkg_data *pkg_base, unsigned int cpu_id) { struct thread_data *t; struct core_data *c; struct pkg_data *p; struct cpu_topology *cpu = &topology.cpus[cpu_id]; t = GET_THREAD(thread_base, !(cpu->first_thread_in_core), cpu->core_id, cpu->package_id); c = GET_CORE(core_base, cpu->core_id, cpu->package_id); p = GET_PKG(pkg_base, cpu->package_id); t->cpu_id = cpu_id; if (cpu->first_thread_in_core) t->flags |= CPU_IS_FIRST_THREAD_IN_CORE; if (cpu->first_core_in_package) t->flags |= CPU_IS_FIRST_CORE_IN_PACKAGE; c->core_id = cpu->core_id; p->package_id = cpu->package_id; } static void initialize_counters(void) { for (unsigned int cpu_id = 0; cpu_id <= topology.max_cpu_id; ++cpu_id) { if (cpu_is_not_present(cpu_id)) continue; init_counter(EVEN_COUNTERS, cpu_id); init_counter(ODD_COUNTERS, cpu_id); init_counter(DELTA_COUNTERS, cpu_id); } } static void free_all_buffers(void) { allocated = false; initialized = false; CPU_FREE(cpu_present_set); cpu_present_set = NULL; cpu_present_setsize = 0; CPU_FREE(cpu_affinity_set); cpu_affinity_set = NULL; cpu_affinity_setsize = 0; CPU_FREE(cpu_saved_affinity_set); cpu_saved_affinity_set = NULL; cpu_saved_affinity_setsize = 0; free(thread_even); free(core_even); free(package_even); thread_even = NULL; core_even = NULL; package_even = NULL; free(thread_odd); free(core_odd); free(package_odd); thread_odd = NULL; core_odd = NULL; package_odd = NULL; free(thread_delta); free(core_delta); free(package_delta); thread_delta = NULL; core_delta = NULL; package_delta = NULL; } /********************** * Collectd functions * **********************/ #define DO_OR_GOTO_ERR(something) \ do { \ ret = (something); \ if (ret < 0) \ goto err; \ } while (0) static int setup_all_buffers(void) { int ret; DO_OR_GOTO_ERR(topology_probe()); DO_OR_GOTO_ERR(allocate_counters(&thread_even, &core_even, &package_even)); DO_OR_GOTO_ERR(allocate_counters(&thread_odd, &core_odd, &package_odd)); DO_OR_GOTO_ERR(allocate_counters(&thread_delta, &core_delta, &package_delta)); initialize_counters(); DO_OR_GOTO_ERR(for_all_cpus(set_temperature_target, EVEN_COUNTERS)); DO_OR_GOTO_ERR(for_all_cpus(set_temperature_target, ODD_COUNTERS)); allocated = true; return 0; err: free_all_buffers(); return ret; } static int save_affinity(void) { if (affinity_policy == policy_restore_affinity) { /* Try to save the scheduling affinity, as it will be modified by * get_counters(). */ if (sched_getaffinity(0, cpu_saved_affinity_setsize, cpu_saved_affinity_set) != 0) return -1; } return 0; } static void restore_affinity(void) { /* Let's restore the affinity to the value saved in save_affinity */ if (affinity_policy == policy_restore_affinity) (void)sched_setaffinity(0, cpu_saved_affinity_setsize, cpu_saved_affinity_set); else { /* reset the affinity to all present cpus */ (void)sched_setaffinity(0, cpu_present_setsize, cpu_present_set); } } static int turbostat_read(void) { int ret; if (!allocated) { if ((ret = setup_all_buffers()) < 0) return ret; } if (for_all_proc_cpus(cpu_is_not_present)) { free_all_buffers(); if ((ret = setup_all_buffers()) < 0) return ret; if (for_all_proc_cpus(cpu_is_not_present)) { ERROR("turbostat plugin: CPU appeared just after " "initialization"); return -1; } } if (save_affinity() != 0) { ERROR("turbostat plugin: Unable to save the CPU affinity. Please read the " "docs about RestoreAffinityPolicy option."); return -1; } if (!initialized) { if ((ret = for_all_cpus(get_counters, EVEN_COUNTERS)) < 0) goto out; time_even = cdtime(); is_even = true; initialized = true; ret = 0; goto out; } if (is_even) { if ((ret = for_all_cpus(get_counters, ODD_COUNTERS)) < 0) goto out; time_odd = cdtime(); is_even = false; time_delta = time_odd - time_even; if ((ret = for_all_cpus_delta(ODD_COUNTERS, EVEN_COUNTERS)) < 0) goto out; if ((ret = for_all_cpus(submit_counters, DELTA_COUNTERS)) < 0) goto out; } else { if ((ret = for_all_cpus(get_counters, EVEN_COUNTERS)) < 0) goto out; time_even = cdtime(); is_even = true; time_delta = time_even - time_odd; if ((ret = for_all_cpus_delta(EVEN_COUNTERS, ODD_COUNTERS)) < 0) goto out; if ((ret = for_all_cpus(submit_counters, DELTA_COUNTERS)) < 0) goto out; } ret = 0; out: restore_affinity(); return ret; } static int check_permissions(void) { if (getuid() == 0) { /* We have everything we need */ return 0; #if !defined(HAVE_SYS_CAPABILITY_H) && !defined(CAP_SYS_RAWIO) } else { ERROR("turbostat plugin: Initialization failed: this plugin " "requires collectd to run as root"); return -1; } #else /* HAVE_SYS_CAPABILITY_H && CAP_SYS_RAWIO */ } int ret = 0; if (check_capability(CAP_SYS_RAWIO) != 0) { WARNING("turbostat plugin: Collectd doesn't have the " "CAP_SYS_RAWIO capability. If you don't want to run " "collectd as root, try running \"setcap " "cap_sys_rawio=ep\" on collectd binary"); ret = -1; } if (euidaccess("/dev/cpu/0/msr", R_OK)) { WARNING("turbostat plugin: Collectd cannot open " "/dev/cpu/0/msr. If you don't want to run collectd as " "root, you need to change the ownership (chown) and " "permissions on /dev/cpu/*/msr to allow such access"); ret = -1; } if (ret != 0) ERROR("turbostat plugin: Initialization failed: this plugin " "requires collectd to either to run as root or give " "collectd a special capability (CAP_SYS_RAWIO) and read " "access to /dev/cpu/*/msr (see previous warnings)"); return ret; #endif /* HAVE_SYS_CAPABILITY_H && CAP_SYS_RAWIO */ } static int turbostat_init(void) { struct stat sb; int ret; if (stat("/dev/cpu/0/msr", &sb)) { ERROR("turbostat plugin: Initialization failed: /dev/cpu/0/msr " "does not exist while the CPU supports MSR. You may be " "missing the corresponding kernel module, please try '# " "modprobe msr'"); return -1; } DO_OR_GOTO_ERR(check_permissions()); DO_OR_GOTO_ERR(probe_cpu()); DO_OR_GOTO_ERR(setup_all_buffers()); plugin_register_read(PLUGIN_NAME, turbostat_read); return 0; err: free_all_buffers(); return ret; } static int turbostat_config(const char *key, const char *value) { long unsigned int tmp_val; char *end; if (strcasecmp("CoreCstates", key) == 0) { tmp_val = strtoul(value, &end, 0); if (*end != '\0' || tmp_val > UINT_MAX) { ERROR("turbostat plugin: Invalid CoreCstates '%s'", value); return -1; } config_core_cstate = (unsigned int)tmp_val; apply_config_core_cstate = true; } else if (strcasecmp("PackageCstates", key) == 0) { tmp_val = strtoul(value, &end, 0); if (*end != '\0' || tmp_val > UINT_MAX) { ERROR("turbostat plugin: Invalid PackageCstates '%s'", value); return -1; } config_pkg_cstate = (unsigned int)tmp_val; apply_config_pkg_cstate = true; } else if (strcasecmp("SystemManagementInterrupt", key) == 0) { config_smi = IS_TRUE(value); apply_config_smi = true; } else if (strcasecmp("DigitalTemperatureSensor", key) == 0) { config_dts = IS_TRUE(value); apply_config_dts = true; } else if (strcasecmp("PackageThermalManagement", key) == 0) { config_ptm = IS_TRUE(value); apply_config_ptm = true; } else if (strcasecmp("LogicalCoreNames", key) == 0) { config_lcn = IS_TRUE(value); } else if (strcasecmp("RunningAveragePowerLimit", key) == 0) { tmp_val = strtoul(value, &end, 0); if (*end != '\0' || tmp_val > UINT_MAX) { ERROR("turbostat plugin: Invalid RunningAveragePowerLimit '%s'", value); return -1; } config_rapl = (unsigned int)tmp_val; apply_config_rapl = true; } else if (strcasecmp("TCCActivationTemp", key) == 0) { tmp_val = strtoul(value, &end, 0); if (*end != '\0' || tmp_val > UINT_MAX) { ERROR("turbostat plugin: Invalid TCCActivationTemp '%s'", value); return -1; } tcc_activation_temp = (unsigned int)tmp_val; } else if (strcasecmp("RestoreAffinityPolicy", key) == 0) { if (strcasecmp("Restore", value) == 0) affinity_policy = policy_restore_affinity; else if (strcasecmp("AllCPUs", value) == 0) affinity_policy = policy_allcpus_affinity; else { ERROR("turbostat plugin: Invalid RestoreAffinityPolicy '%s'", value); return -1; } } else { ERROR("turbostat plugin: Invalid configuration option '%s'", key); return -1; } return 0; } void module_register(void) { plugin_register_init(PLUGIN_NAME, turbostat_init); plugin_register_config(PLUGIN_NAME, turbostat_config, config_keys, config_keys_num); }