/* A Bison parser, made by GNU Bison 3.8.2. */
/* Bison implementation for Yacc-like parsers in C
Copyright (C) 1984, 1989-1990, 2000-2015, 2018-2021 Free Software Foundation,
Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
/* As a special exception, you may create a larger work that contains
part or all of the Bison parser skeleton and distribute that work
under terms of your choice, so long as that work isn't itself a
parser generator using the skeleton or a modified version thereof
as a parser skeleton. Alternatively, if you modify or redistribute
the parser skeleton itself, you may (at your option) remove this
special exception, which will cause the skeleton and the resulting
Bison output files to be licensed under the GNU General Public
License without this special exception.
This special exception was added by the Free Software Foundation in
version 2.2 of Bison. */
/* C LALR(1) parser skeleton written by Richard Stallman, by
simplifying the original so-called "semantic" parser. */
/* DO NOT RELY ON FEATURES THAT ARE NOT DOCUMENTED in the manual,
especially those whose name start with YY_ or yy_. They are
private implementation details that can be changed or removed. */
/* All symbols defined below should begin with yy or YY, to avoid
infringing on user name space. This should be done even for local
variables, as they might otherwise be expanded by user macros.
There are some unavoidable exceptions within include files to
define necessary library symbols; they are noted "INFRINGES ON
USER NAME SPACE" below. */
/* Identify Bison output, and Bison version. */
#define YYBISON 30802
/* Bison version string. */
#define YYBISON_VERSION "3.8.2"
/* Skeleton name. */
#define YYSKELETON_NAME "yacc.c"
/* Pure parsers. */
#define YYPURE 0
/* Push parsers. */
#define YYPUSH 0
/* Pull parsers. */
#define YYPULL 1
/* Substitute the variable and function names. */
#define yyparse i386_parse
#define yylex i386_lex
#define yyerror i386_error
#define yydebug i386_debug
#define yynerrs i386_nerrs
#define yylval i386_lval
#define yychar i386_char
/* First part of user prologue. */
#line 1 "i386_parse.y"
/* Parser for i386 CPU description.
Copyright (C) 2004, 2005, 2007, 2008, 2009 Red Hat, Inc.
Written by Ulrich Drepper , 2004.
This file is free software; you can redistribute it and/or modify
it under the terms of either
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at
your option) any later version
or
* the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at
your option) any later version
or both in parallel, as here.
elfutils is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see . */
#ifdef HAVE_CONFIG_H
# include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "i386_mne.h"
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
/* The error handler. */
static void yyerror (const char *s);
extern int yylex (void);
extern int i386_lineno;
extern char *infname;
struct known_bitfield
{
char *name;
unsigned long int bits;
int tmp;
};
struct bitvalue
{
enum bittype { zeroone, field, failure } type;
union
{
unsigned int value;
struct known_bitfield *field;
};
struct bitvalue *next;
};
struct argname
{
enum nametype { string, nfield } type;
union
{
char *str;
struct known_bitfield *field;
};
struct argname *next;
};
struct argument
{
struct argname *name;
struct argument *next;
};
struct instruction
{
/* The byte encoding. */
struct bitvalue *bytes;
/* Prefix possible. */
int repe;
int rep;
/* Mnemonic. */
char *mnemonic;
/* Suffix. */
enum { suffix_none = 0, suffix_w, suffix_w0, suffix_W, suffix_tttn,
suffix_w1, suffix_W1, suffix_D } suffix;
/* Flag set if modr/m is used. */
int modrm;
/* Operands. */
struct operand
{
char *fct;
char *str;
int off1;
int off2;
int off3;
} operands[3];
struct instruction *next;
};
struct synonym
{
char *from;
char *to;
};
struct suffix
{
char *name;
int idx;
};
struct argstring
{
char *str;
int idx;
int off;
};
static struct known_bitfield ax_reg =
{
.name = "ax", .bits = 0, .tmp = 0
};
static struct known_bitfield dx_reg =
{
.name = "dx", .bits = 0, .tmp = 0
};
static struct known_bitfield di_reg =
{
.name = "es_di", .bits = 0, .tmp = 0
};
static struct known_bitfield si_reg =
{
.name = "ds_si", .bits = 0, .tmp = 0
};
static struct known_bitfield bx_reg =
{
.name = "ds_bx", .bits = 0, .tmp = 0
};
static int bitfield_compare (const void *p1, const void *p2);
static void new_bitfield (char *name, unsigned long int num);
static void check_bits (struct bitvalue *value);
static int check_duplicates (struct bitvalue *val);
static int check_argsdef (struct bitvalue *bitval, struct argument *args);
static int check_bitsused (struct bitvalue *bitval,
struct known_bitfield *suffix,
struct argument *args);
static struct argname *combine (struct argname *name);
static void fillin_arg (struct bitvalue *bytes, struct argname *name,
struct instruction *instr, int n);
static void find_numbers (void);
static int compare_syn (const void *p1, const void *p2);
static int compare_suf (const void *p1, const void *p2);
static void instrtable_out (void);
#if 0
static void create_mnemonic_table (void);
#endif
static void *bitfields;
static struct instruction *instructions;
static size_t ninstructions;
static void *synonyms;
static void *suffixes;
static int nsuffixes;
static void *mnemonics;
size_t nmnemonics;
extern FILE *outfile;
/* Number of bits used mnemonics. */
#if 0
static size_t best_mnemonic_bits;
#endif
#line 294 "i386_parse.c"
# ifndef YY_CAST
# ifdef __cplusplus
# define YY_CAST(Type, Val) static_cast (Val)
# define YY_REINTERPRET_CAST(Type, Val) reinterpret_cast (Val)
# else
# define YY_CAST(Type, Val) ((Type) (Val))
# define YY_REINTERPRET_CAST(Type, Val) ((Type) (Val))
# endif
# endif
# ifndef YY_NULLPTR
# if defined __cplusplus
# if 201103L <= __cplusplus
# define YY_NULLPTR nullptr
# else
# define YY_NULLPTR 0
# endif
# else
# define YY_NULLPTR ((void*)0)
# endif
# endif
/* Use api.header.include to #include this header
instead of duplicating it here. */
#ifndef YY_I386_I_PARSE_H_INCLUDED
# define YY_I386_I_PARSE_H_INCLUDED
/* Debug traces. */
#ifndef YYDEBUG
# define YYDEBUG 0
#endif
#if YYDEBUG
extern int i386_debug;
#endif
/* Token kinds. */
#ifndef YYTOKENTYPE
# define YYTOKENTYPE
enum yytokentype
{
YYEMPTY = -2,
YYEOF = 0, /* "end of file" */
YYerror = 256, /* error */
YYUNDEF = 257, /* "invalid token" */
kMASK = 258, /* kMASK */
kPREFIX = 259, /* kPREFIX */
kSUFFIX = 260, /* kSUFFIX */
kSYNONYM = 261, /* kSYNONYM */
kID = 262, /* kID */
kNUMBER = 263, /* kNUMBER */
kPERCPERC = 264, /* kPERCPERC */
kBITFIELD = 265, /* kBITFIELD */
kCHAR = 266, /* kCHAR */
kSPACE = 267 /* kSPACE */
};
typedef enum yytokentype yytoken_kind_t;
#endif
/* Token kinds. */
#define YYEMPTY -2
#define YYEOF 0
#define YYerror 256
#define YYUNDEF 257
#define kMASK 258
#define kPREFIX 259
#define kSUFFIX 260
#define kSYNONYM 261
#define kID 262
#define kNUMBER 263
#define kPERCPERC 264
#define kBITFIELD 265
#define kCHAR 266
#define kSPACE 267
/* Value type. */
#if ! defined YYSTYPE && ! defined YYSTYPE_IS_DECLARED
union YYSTYPE
{
#line 217 "i386_parse.y"
unsigned long int num;
char *str;
char ch;
struct known_bitfield *field;
struct bitvalue *bit;
struct argname *name;
struct argument *arg;
#line 381 "i386_parse.c"
};
typedef union YYSTYPE YYSTYPE;
# define YYSTYPE_IS_TRIVIAL 1
# define YYSTYPE_IS_DECLARED 1
#endif
extern YYSTYPE i386_lval;
int i386_parse (void);
#endif /* !YY_I386_I_PARSE_H_INCLUDED */
/* Symbol kind. */
enum yysymbol_kind_t
{
YYSYMBOL_YYEMPTY = -2,
YYSYMBOL_YYEOF = 0, /* "end of file" */
YYSYMBOL_YYerror = 1, /* error */
YYSYMBOL_YYUNDEF = 2, /* "invalid token" */
YYSYMBOL_kMASK = 3, /* kMASK */
YYSYMBOL_kPREFIX = 4, /* kPREFIX */
YYSYMBOL_kSUFFIX = 5, /* kSUFFIX */
YYSYMBOL_kSYNONYM = 6, /* kSYNONYM */
YYSYMBOL_kID = 7, /* kID */
YYSYMBOL_kNUMBER = 8, /* kNUMBER */
YYSYMBOL_kPERCPERC = 9, /* kPERCPERC */
YYSYMBOL_kBITFIELD = 10, /* kBITFIELD */
YYSYMBOL_kCHAR = 11, /* kCHAR */
YYSYMBOL_kSPACE = 12, /* kSPACE */
YYSYMBOL_13_n_ = 13, /* '\n' */
YYSYMBOL_14_ = 14, /* ':' */
YYSYMBOL_15_ = 15, /* ',' */
YYSYMBOL_16_0_ = 16, /* '0' */
YYSYMBOL_17_1_ = 17, /* '1' */
YYSYMBOL_YYACCEPT = 18, /* $accept */
YYSYMBOL_spec = 19, /* spec */
YYSYMBOL_masks = 20, /* masks */
YYSYMBOL_mask = 21, /* mask */
YYSYMBOL_instrs = 22, /* instrs */
YYSYMBOL_instr = 23, /* instr */
YYSYMBOL_bitfieldopt = 24, /* bitfieldopt */
YYSYMBOL_bytes = 25, /* bytes */
YYSYMBOL_byte = 26, /* byte */
YYSYMBOL_bit = 27, /* bit */
YYSYMBOL_optargs = 28, /* optargs */
YYSYMBOL_args = 29, /* args */
YYSYMBOL_arg = 30, /* arg */
YYSYMBOL_argcomp = 31 /* argcomp */
};
typedef enum yysymbol_kind_t yysymbol_kind_t;
#ifdef short
# undef short
#endif
/* On compilers that do not define __PTRDIFF_MAX__ etc., make sure
and (if available) are included
so that the code can choose integer types of a good width. */
#ifndef __PTRDIFF_MAX__
# include /* INFRINGES ON USER NAME SPACE */
# if defined __STDC_VERSION__ && 199901 <= __STDC_VERSION__
# include /* INFRINGES ON USER NAME SPACE */
# define YY_STDINT_H
# endif
#endif
/* Narrow types that promote to a signed type and that can represent a
signed or unsigned integer of at least N bits. In tables they can
save space and decrease cache pressure. Promoting to a signed type
helps avoid bugs in integer arithmetic. */
#ifdef __INT_LEAST8_MAX__
typedef __INT_LEAST8_TYPE__ yytype_int8;
#elif defined YY_STDINT_H
typedef int_least8_t yytype_int8;
#else
typedef signed char yytype_int8;
#endif
#ifdef __INT_LEAST16_MAX__
typedef __INT_LEAST16_TYPE__ yytype_int16;
#elif defined YY_STDINT_H
typedef int_least16_t yytype_int16;
#else
typedef short yytype_int16;
#endif
/* Work around bug in HP-UX 11.23, which defines these macros
incorrectly for preprocessor constants. This workaround can likely
be removed in 2023, as HPE has promised support for HP-UX 11.23
(aka HP-UX 11i v2) only through the end of 2022; see Table 2 of
. */
#ifdef __hpux
# undef UINT_LEAST8_MAX
# undef UINT_LEAST16_MAX
# define UINT_LEAST8_MAX 255
# define UINT_LEAST16_MAX 65535
#endif
#if defined __UINT_LEAST8_MAX__ && __UINT_LEAST8_MAX__ <= __INT_MAX__
typedef __UINT_LEAST8_TYPE__ yytype_uint8;
#elif (!defined __UINT_LEAST8_MAX__ && defined YY_STDINT_H \
&& UINT_LEAST8_MAX <= INT_MAX)
typedef uint_least8_t yytype_uint8;
#elif !defined __UINT_LEAST8_MAX__ && UCHAR_MAX <= INT_MAX
typedef unsigned char yytype_uint8;
#else
typedef short yytype_uint8;
#endif
#if defined __UINT_LEAST16_MAX__ && __UINT_LEAST16_MAX__ <= __INT_MAX__
typedef __UINT_LEAST16_TYPE__ yytype_uint16;
#elif (!defined __UINT_LEAST16_MAX__ && defined YY_STDINT_H \
&& UINT_LEAST16_MAX <= INT_MAX)
typedef uint_least16_t yytype_uint16;
#elif !defined __UINT_LEAST16_MAX__ && USHRT_MAX <= INT_MAX
typedef unsigned short yytype_uint16;
#else
typedef int yytype_uint16;
#endif
#ifndef YYPTRDIFF_T
# if defined __PTRDIFF_TYPE__ && defined __PTRDIFF_MAX__
# define YYPTRDIFF_T __PTRDIFF_TYPE__
# define YYPTRDIFF_MAXIMUM __PTRDIFF_MAX__
# elif defined PTRDIFF_MAX
# ifndef ptrdiff_t
# include /* INFRINGES ON USER NAME SPACE */
# endif
# define YYPTRDIFF_T ptrdiff_t
# define YYPTRDIFF_MAXIMUM PTRDIFF_MAX
# else
# define YYPTRDIFF_T long
# define YYPTRDIFF_MAXIMUM LONG_MAX
# endif
#endif
#ifndef YYSIZE_T
# ifdef __SIZE_TYPE__
# define YYSIZE_T __SIZE_TYPE__
# elif defined size_t
# define YYSIZE_T size_t
# elif defined __STDC_VERSION__ && 199901 <= __STDC_VERSION__
# include /* INFRINGES ON USER NAME SPACE */
# define YYSIZE_T size_t
# else
# define YYSIZE_T unsigned
# endif
#endif
#define YYSIZE_MAXIMUM \
YY_CAST (YYPTRDIFF_T, \
(YYPTRDIFF_MAXIMUM < YY_CAST (YYSIZE_T, -1) \
? YYPTRDIFF_MAXIMUM \
: YY_CAST (YYSIZE_T, -1)))
#define YYSIZEOF(X) YY_CAST (YYPTRDIFF_T, sizeof (X))
/* Stored state numbers (used for stacks). */
typedef yytype_int8 yy_state_t;
/* State numbers in computations. */
typedef int yy_state_fast_t;
#ifndef YY_
# if defined YYENABLE_NLS && YYENABLE_NLS
# if ENABLE_NLS
# include /* INFRINGES ON USER NAME SPACE */
# define YY_(Msgid) dgettext ("bison-runtime", Msgid)
# endif
# endif
# ifndef YY_
# define YY_(Msgid) Msgid
# endif
#endif
#ifndef YY_ATTRIBUTE_PURE
# if defined __GNUC__ && 2 < __GNUC__ + (96 <= __GNUC_MINOR__)
# define YY_ATTRIBUTE_PURE __attribute__ ((__pure__))
# else
# define YY_ATTRIBUTE_PURE
# endif
#endif
#ifndef YY_ATTRIBUTE_UNUSED
# if defined __GNUC__ && 2 < __GNUC__ + (7 <= __GNUC_MINOR__)
# define YY_ATTRIBUTE_UNUSED __attribute__ ((__unused__))
# else
# define YY_ATTRIBUTE_UNUSED
# endif
#endif
/* Suppress unused-variable warnings by "using" E. */
#if ! defined lint || defined __GNUC__
# define YY_USE(E) ((void) (E))
#else
# define YY_USE(E) /* empty */
#endif
/* Suppress an incorrect diagnostic about yylval being uninitialized. */
#if defined __GNUC__ && ! defined __ICC && 406 <= __GNUC__ * 100 + __GNUC_MINOR__
# if __GNUC__ * 100 + __GNUC_MINOR__ < 407
# define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN \
_Pragma ("GCC diagnostic push") \
_Pragma ("GCC diagnostic ignored \"-Wuninitialized\"")
# else
# define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN \
_Pragma ("GCC diagnostic push") \
_Pragma ("GCC diagnostic ignored \"-Wuninitialized\"") \
_Pragma ("GCC diagnostic ignored \"-Wmaybe-uninitialized\"")
# endif
# define YY_IGNORE_MAYBE_UNINITIALIZED_END \
_Pragma ("GCC diagnostic pop")
#else
# define YY_INITIAL_VALUE(Value) Value
#endif
#ifndef YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
# define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
# define YY_IGNORE_MAYBE_UNINITIALIZED_END
#endif
#ifndef YY_INITIAL_VALUE
# define YY_INITIAL_VALUE(Value) /* Nothing. */
#endif
#if defined __cplusplus && defined __GNUC__ && ! defined __ICC && 6 <= __GNUC__
# define YY_IGNORE_USELESS_CAST_BEGIN \
_Pragma ("GCC diagnostic push") \
_Pragma ("GCC diagnostic ignored \"-Wuseless-cast\"")
# define YY_IGNORE_USELESS_CAST_END \
_Pragma ("GCC diagnostic pop")
#endif
#ifndef YY_IGNORE_USELESS_CAST_BEGIN
# define YY_IGNORE_USELESS_CAST_BEGIN
# define YY_IGNORE_USELESS_CAST_END
#endif
#define YY_ASSERT(E) ((void) (0 && (E)))
#if !defined yyoverflow
/* The parser invokes alloca or malloc; define the necessary symbols. */
# ifdef YYSTACK_USE_ALLOCA
# if YYSTACK_USE_ALLOCA
# ifdef __GNUC__
# define YYSTACK_ALLOC __builtin_alloca
# elif defined __BUILTIN_VA_ARG_INCR
# include /* INFRINGES ON USER NAME SPACE */
# elif defined _AIX
# define YYSTACK_ALLOC __alloca
# elif defined _MSC_VER
# include /* INFRINGES ON USER NAME SPACE */
# define alloca _alloca
# else
# define YYSTACK_ALLOC alloca
# if ! defined _ALLOCA_H && ! defined EXIT_SUCCESS
# include /* INFRINGES ON USER NAME SPACE */
/* Use EXIT_SUCCESS as a witness for stdlib.h. */
# ifndef EXIT_SUCCESS
# define EXIT_SUCCESS 0
# endif
# endif
# endif
# endif
# endif
# ifdef YYSTACK_ALLOC
/* Pacify GCC's 'empty if-body' warning. */
# define YYSTACK_FREE(Ptr) do { /* empty */; } while (0)
# ifndef YYSTACK_ALLOC_MAXIMUM
/* The OS might guarantee only one guard page at the bottom of the stack,
and a page size can be as small as 4096 bytes. So we cannot safely
invoke alloca (N) if N exceeds 4096. Use a slightly smaller number
to allow for a few compiler-allocated temporary stack slots. */
# define YYSTACK_ALLOC_MAXIMUM 4032 /* reasonable circa 2006 */
# endif
# else
# define YYSTACK_ALLOC YYMALLOC
# define YYSTACK_FREE YYFREE
# ifndef YYSTACK_ALLOC_MAXIMUM
# define YYSTACK_ALLOC_MAXIMUM YYSIZE_MAXIMUM
# endif
# if (defined __cplusplus && ! defined EXIT_SUCCESS \
&& ! ((defined YYMALLOC || defined malloc) \
&& (defined YYFREE || defined free)))
# include /* INFRINGES ON USER NAME SPACE */
# ifndef EXIT_SUCCESS
# define EXIT_SUCCESS 0
# endif
# endif
# ifndef YYMALLOC
# define YYMALLOC malloc
# if ! defined malloc && ! defined EXIT_SUCCESS
void *malloc (YYSIZE_T); /* INFRINGES ON USER NAME SPACE */
# endif
# endif
# ifndef YYFREE
# define YYFREE free
# if ! defined free && ! defined EXIT_SUCCESS
void free (void *); /* INFRINGES ON USER NAME SPACE */
# endif
# endif
# endif
#endif /* !defined yyoverflow */
#if (! defined yyoverflow \
&& (! defined __cplusplus \
|| (defined YYSTYPE_IS_TRIVIAL && YYSTYPE_IS_TRIVIAL)))
/* A type that is properly aligned for any stack member. */
union yyalloc
{
yy_state_t yyss_alloc;
YYSTYPE yyvs_alloc;
};
/* The size of the maximum gap between one aligned stack and the next. */
# define YYSTACK_GAP_MAXIMUM (YYSIZEOF (union yyalloc) - 1)
/* The size of an array large to enough to hold all stacks, each with
N elements. */
# define YYSTACK_BYTES(N) \
((N) * (YYSIZEOF (yy_state_t) + YYSIZEOF (YYSTYPE)) \
+ YYSTACK_GAP_MAXIMUM)
# define YYCOPY_NEEDED 1
/* Relocate STACK from its old location to the new one. The
local variables YYSIZE and YYSTACKSIZE give the old and new number of
elements in the stack, and YYPTR gives the new location of the
stack. Advance YYPTR to a properly aligned location for the next
stack. */
# define YYSTACK_RELOCATE(Stack_alloc, Stack) \
do \
{ \
YYPTRDIFF_T yynewbytes; \
YYCOPY (&yyptr->Stack_alloc, Stack, yysize); \
Stack = &yyptr->Stack_alloc; \
yynewbytes = yystacksize * YYSIZEOF (*Stack) + YYSTACK_GAP_MAXIMUM; \
yyptr += yynewbytes / YYSIZEOF (*yyptr); \
} \
while (0)
#endif
#if defined YYCOPY_NEEDED && YYCOPY_NEEDED
/* Copy COUNT objects from SRC to DST. The source and destination do
not overlap. */
# ifndef YYCOPY
# if defined __GNUC__ && 1 < __GNUC__
# define YYCOPY(Dst, Src, Count) \
__builtin_memcpy (Dst, Src, YY_CAST (YYSIZE_T, (Count)) * sizeof (*(Src)))
# else
# define YYCOPY(Dst, Src, Count) \
do \
{ \
YYPTRDIFF_T yyi; \
for (yyi = 0; yyi < (Count); yyi++) \
(Dst)[yyi] = (Src)[yyi]; \
} \
while (0)
# endif
# endif
#endif /* !YYCOPY_NEEDED */
/* YYFINAL -- State number of the termination state. */
#define YYFINAL 12
/* YYLAST -- Last index in YYTABLE. */
#define YYLAST 37
/* YYNTOKENS -- Number of terminals. */
#define YYNTOKENS 18
/* YYNNTS -- Number of nonterminals. */
#define YYNNTS 14
/* YYNRULES -- Number of rules. */
#define YYNRULES 32
/* YYNSTATES -- Number of states. */
#define YYNSTATES 49
/* YYMAXUTOK -- Last valid token kind. */
#define YYMAXUTOK 267
/* YYTRANSLATE(TOKEN-NUM) -- Symbol number corresponding to TOKEN-NUM
as returned by yylex, with out-of-bounds checking. */
#define YYTRANSLATE(YYX) \
(0 <= (YYX) && (YYX) <= YYMAXUTOK \
? YY_CAST (yysymbol_kind_t, yytranslate[YYX]) \
: YYSYMBOL_YYUNDEF)
/* YYTRANSLATE[TOKEN-NUM] -- Symbol number corresponding to TOKEN-NUM
as returned by yylex. */
static const yytype_int8 yytranslate[] =
{
0, 2, 2, 2, 2, 2, 2, 2, 2, 2,
13, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 15, 2, 2, 2, 16, 17,
2, 2, 2, 2, 2, 2, 2, 2, 14, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12
};
#if YYDEBUG
/* YYRLINE[YYN] -- Source line where rule number YYN was defined. */
static const yytype_int16 yyrline[] =
{
0, 247, 247, 257, 258, 261, 263, 265, 267, 279,
282, 283, 286, 369, 372, 388, 391, 401, 408, 416,
420, 427, 434, 456, 459, 462, 472, 480, 488, 491,
523, 532, 539
};
#endif
/** Accessing symbol of state STATE. */
#define YY_ACCESSING_SYMBOL(State) YY_CAST (yysymbol_kind_t, yystos[State])
#if YYDEBUG || 0
/* The user-facing name of the symbol whose (internal) number is
YYSYMBOL. No bounds checking. */
static const char *yysymbol_name (yysymbol_kind_t yysymbol) YY_ATTRIBUTE_UNUSED;
/* YYTNAME[SYMBOL-NUM] -- String name of the symbol SYMBOL-NUM.
First, the terminals, then, starting at YYNTOKENS, nonterminals. */
static const char *const yytname[] =
{
"\"end of file\"", "error", "\"invalid token\"", "kMASK", "kPREFIX",
"kSUFFIX", "kSYNONYM", "kID", "kNUMBER", "kPERCPERC", "kBITFIELD",
"kCHAR", "kSPACE", "'\\n'", "':'", "','", "'0'", "'1'", "$accept",
"spec", "masks", "mask", "instrs", "instr", "bitfieldopt", "bytes",
"byte", "bit", "optargs", "args", "arg", "argcomp", YY_NULLPTR
};
static const char *
yysymbol_name (yysymbol_kind_t yysymbol)
{
return yytname[yysymbol];
}
#endif
#define YYPACT_NINF (-35)
#define yypact_value_is_default(Yyn) \
((Yyn) == YYPACT_NINF)
#define YYTABLE_NINF (-1)
#define yytable_value_is_error(Yyn) \
0
/* YYPACT[STATE-NUM] -- Index in YYTABLE of the portion describing
STATE-NUM. */
static const yytype_int8 yypact[] =
{
12, 9, 10, 11, 13, 22, -2, -35, 16, -35,
-35, 15, -35, 14, 12, -35, -35, -4, -35, -35,
-35, -35, 17, -35, -12, -4, -35, -4, 18, -4,
-35, -35, -35, 19, -4, 18, 20, -6, -35, -35,
-35, -35, -35, 21, -6, -35, -6, -35, -6
};
/* YYDEFACT[STATE-NUM] -- Default reduction number in state STATE-NUM.
Performed when YYTABLE does not specify something else to do. Zero
means the default is an error. */
static const yytype_int8 yydefact[] =
{
9, 0, 0, 0, 0, 0, 0, 4, 0, 6,
7, 0, 1, 0, 9, 5, 8, 13, 3, 22,
20, 21, 2, 11, 0, 17, 19, 13, 15, 0,
18, 10, 14, 0, 16, 15, 24, 0, 12, 31,
29, 30, 32, 23, 26, 28, 0, 27, 25
};
/* YYPGOTO[NTERM-NUM]. */
static const yytype_int8 yypgoto[] =
{
-35, -35, -35, 23, -35, 2, -1, -35, 4, -25,
-35, -35, -15, -34
};
/* YYDEFGOTO[NTERM-NUM]. */
static const yytype_int8 yydefgoto[] =
{
0, 5, 6, 7, 22, 23, 33, 24, 25, 26,
38, 43, 44, 45
};
/* YYTABLE[YYPACT[STATE-NUM]] -- What to do in state STATE-NUM. If
positive, shift that token. If negative, reduce the rule whose
number is the opposite. If YYTABLE_NINF, syntax error. */
static const yytype_int8 yytable[] =
{
30, 39, 28, 29, 40, 41, 19, 13, 42, 30,
47, 14, 20, 21, 47, 1, 2, 3, 4, 8,
9, 10, 12, 11, 15, 16, 35, 17, 32, 31,
27, 48, 37, 34, 36, 0, 46, 18
};
static const yytype_int8 yycheck[] =
{
25, 7, 14, 15, 10, 11, 10, 9, 14, 34,
44, 13, 16, 17, 48, 3, 4, 5, 6, 10,
10, 10, 0, 10, 8, 10, 7, 13, 10, 27,
13, 46, 12, 29, 35, -1, 15, 14
};
/* YYSTOS[STATE-NUM] -- The symbol kind of the accessing symbol of
state STATE-NUM. */
static const yytype_int8 yystos[] =
{
0, 3, 4, 5, 6, 19, 20, 21, 10, 10,
10, 10, 0, 9, 13, 8, 10, 13, 21, 10,
16, 17, 22, 23, 25, 26, 27, 13, 14, 15,
27, 23, 10, 24, 26, 7, 24, 12, 28, 7,
10, 11, 14, 29, 30, 31, 15, 31, 30
};
/* YYR1[RULE-NUM] -- Symbol kind of the left-hand side of rule RULE-NUM. */
static const yytype_int8 yyr1[] =
{
0, 18, 19, 20, 20, 21, 21, 21, 21, 21,
22, 22, 23, 23, 24, 24, 25, 25, 26, 26,
27, 27, 27, 28, 28, 29, 29, 30, 30, 31,
31, 31, 31
};
/* YYR2[RULE-NUM] -- Number of symbols on the right-hand side of rule RULE-NUM. */
static const yytype_int8 yyr2[] =
{
0, 2, 4, 3, 1, 3, 2, 2, 3, 0,
3, 1, 6, 0, 1, 0, 3, 1, 2, 1,
1, 1, 1, 2, 0, 3, 1, 2, 1, 1,
1, 1, 1
};
enum { YYENOMEM = -2 };
#define yyerrok (yyerrstatus = 0)
#define yyclearin (yychar = YYEMPTY)
#define YYACCEPT goto yyacceptlab
#define YYABORT goto yyabortlab
#define YYERROR goto yyerrorlab
#define YYNOMEM goto yyexhaustedlab
#define YYRECOVERING() (!!yyerrstatus)
#define YYBACKUP(Token, Value) \
do \
if (yychar == YYEMPTY) \
{ \
yychar = (Token); \
yylval = (Value); \
YYPOPSTACK (yylen); \
yystate = *yyssp; \
goto yybackup; \
} \
else \
{ \
yyerror (YY_("syntax error: cannot back up")); \
YYERROR; \
} \
while (0)
/* Backward compatibility with an undocumented macro.
Use YYerror or YYUNDEF. */
#define YYERRCODE YYUNDEF
/* Enable debugging if requested. */
#if YYDEBUG
# ifndef YYFPRINTF
# include /* INFRINGES ON USER NAME SPACE */
# define YYFPRINTF fprintf
# endif
# define YYDPRINTF(Args) \
do { \
if (yydebug) \
YYFPRINTF Args; \
} while (0)
# define YY_SYMBOL_PRINT(Title, Kind, Value, Location) \
do { \
if (yydebug) \
{ \
YYFPRINTF (stderr, "%s ", Title); \
yy_symbol_print (stderr, \
Kind, Value); \
YYFPRINTF (stderr, "\n"); \
} \
} while (0)
/*-----------------------------------.
| Print this symbol's value on YYO. |
`-----------------------------------*/
static void
yy_symbol_value_print (FILE *yyo,
yysymbol_kind_t yykind, YYSTYPE const * const yyvaluep)
{
FILE *yyoutput = yyo;
YY_USE (yyoutput);
if (!yyvaluep)
return;
YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
YY_USE (yykind);
YY_IGNORE_MAYBE_UNINITIALIZED_END
}
/*---------------------------.
| Print this symbol on YYO. |
`---------------------------*/
static void
yy_symbol_print (FILE *yyo,
yysymbol_kind_t yykind, YYSTYPE const * const yyvaluep)
{
YYFPRINTF (yyo, "%s %s (",
yykind < YYNTOKENS ? "token" : "nterm", yysymbol_name (yykind));
yy_symbol_value_print (yyo, yykind, yyvaluep);
YYFPRINTF (yyo, ")");
}
/*------------------------------------------------------------------.
| yy_stack_print -- Print the state stack from its BOTTOM up to its |
| TOP (included). |
`------------------------------------------------------------------*/
static void
yy_stack_print (yy_state_t *yybottom, yy_state_t *yytop)
{
YYFPRINTF (stderr, "Stack now");
for (; yybottom <= yytop; yybottom++)
{
int yybot = *yybottom;
YYFPRINTF (stderr, " %d", yybot);
}
YYFPRINTF (stderr, "\n");
}
# define YY_STACK_PRINT(Bottom, Top) \
do { \
if (yydebug) \
yy_stack_print ((Bottom), (Top)); \
} while (0)
/*------------------------------------------------.
| Report that the YYRULE is going to be reduced. |
`------------------------------------------------*/
static void
yy_reduce_print (yy_state_t *yyssp, YYSTYPE *yyvsp,
int yyrule)
{
int yylno = yyrline[yyrule];
int yynrhs = yyr2[yyrule];
int yyi;
YYFPRINTF (stderr, "Reducing stack by rule %d (line %d):\n",
yyrule - 1, yylno);
/* The symbols being reduced. */
for (yyi = 0; yyi < yynrhs; yyi++)
{
YYFPRINTF (stderr, " $%d = ", yyi + 1);
yy_symbol_print (stderr,
YY_ACCESSING_SYMBOL (+yyssp[yyi + 1 - yynrhs]),
&yyvsp[(yyi + 1) - (yynrhs)]);
YYFPRINTF (stderr, "\n");
}
}
# define YY_REDUCE_PRINT(Rule) \
do { \
if (yydebug) \
yy_reduce_print (yyssp, yyvsp, Rule); \
} while (0)
/* Nonzero means print parse trace. It is left uninitialized so that
multiple parsers can coexist. */
int yydebug;
#else /* !YYDEBUG */
# define YYDPRINTF(Args) ((void) 0)
# define YY_SYMBOL_PRINT(Title, Kind, Value, Location)
# define YY_STACK_PRINT(Bottom, Top)
# define YY_REDUCE_PRINT(Rule)
#endif /* !YYDEBUG */
/* YYINITDEPTH -- initial size of the parser's stacks. */
#ifndef YYINITDEPTH
# define YYINITDEPTH 200
#endif
/* YYMAXDEPTH -- maximum size the stacks can grow to (effective only
if the built-in stack extension method is used).
Do not make this value too large; the results are undefined if
YYSTACK_ALLOC_MAXIMUM < YYSTACK_BYTES (YYMAXDEPTH)
evaluated with infinite-precision integer arithmetic. */
#ifndef YYMAXDEPTH
# define YYMAXDEPTH 10000
#endif
/*-----------------------------------------------.
| Release the memory associated to this symbol. |
`-----------------------------------------------*/
static void
yydestruct (const char *yymsg,
yysymbol_kind_t yykind, YYSTYPE *yyvaluep)
{
YY_USE (yyvaluep);
if (!yymsg)
yymsg = "Deleting";
YY_SYMBOL_PRINT (yymsg, yykind, yyvaluep, yylocationp);
YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
YY_USE (yykind);
YY_IGNORE_MAYBE_UNINITIALIZED_END
}
/* Lookahead token kind. */
int yychar;
/* The semantic value of the lookahead symbol. */
YYSTYPE yylval;
/* Number of syntax errors so far. */
int yynerrs;
/*----------.
| yyparse. |
`----------*/
int
yyparse (void)
{
yy_state_fast_t yystate = 0;
/* Number of tokens to shift before error messages enabled. */
int yyerrstatus = 0;
/* Refer to the stacks through separate pointers, to allow yyoverflow
to reallocate them elsewhere. */
/* Their size. */
YYPTRDIFF_T yystacksize = YYINITDEPTH;
/* The state stack: array, bottom, top. */
yy_state_t yyssa[YYINITDEPTH];
yy_state_t *yyss = yyssa;
yy_state_t *yyssp = yyss;
/* The semantic value stack: array, bottom, top. */
YYSTYPE yyvsa[YYINITDEPTH];
YYSTYPE *yyvs = yyvsa;
YYSTYPE *yyvsp = yyvs;
int yyn;
/* The return value of yyparse. */
int yyresult;
/* Lookahead symbol kind. */
yysymbol_kind_t yytoken = YYSYMBOL_YYEMPTY;
/* The variables used to return semantic value and location from the
action routines. */
YYSTYPE yyval;
#define YYPOPSTACK(N) (yyvsp -= (N), yyssp -= (N))
/* The number of symbols on the RHS of the reduced rule.
Keep to zero when no symbol should be popped. */
int yylen = 0;
YYDPRINTF ((stderr, "Starting parse\n"));
yychar = YYEMPTY; /* Cause a token to be read. */
goto yysetstate;
/*------------------------------------------------------------.
| yynewstate -- push a new state, which is found in yystate. |
`------------------------------------------------------------*/
yynewstate:
/* In all cases, when you get here, the value and location stacks
have just been pushed. So pushing a state here evens the stacks. */
yyssp++;
/*--------------------------------------------------------------------.
| yysetstate -- set current state (the top of the stack) to yystate. |
`--------------------------------------------------------------------*/
yysetstate:
YYDPRINTF ((stderr, "Entering state %d\n", yystate));
YY_ASSERT (0 <= yystate && yystate < YYNSTATES);
YY_IGNORE_USELESS_CAST_BEGIN
*yyssp = YY_CAST (yy_state_t, yystate);
YY_IGNORE_USELESS_CAST_END
YY_STACK_PRINT (yyss, yyssp);
if (yyss + yystacksize - 1 <= yyssp)
#if !defined yyoverflow && !defined YYSTACK_RELOCATE
YYNOMEM;
#else
{
/* Get the current used size of the three stacks, in elements. */
YYPTRDIFF_T yysize = yyssp - yyss + 1;
# if defined yyoverflow
{
/* Give user a chance to reallocate the stack. Use copies of
these so that the &'s don't force the real ones into
memory. */
yy_state_t *yyss1 = yyss;
YYSTYPE *yyvs1 = yyvs;
/* Each stack pointer address is followed by the size of the
data in use in that stack, in bytes. This used to be a
conditional around just the two extra args, but that might
be undefined if yyoverflow is a macro. */
yyoverflow (YY_("memory exhausted"),
&yyss1, yysize * YYSIZEOF (*yyssp),
&yyvs1, yysize * YYSIZEOF (*yyvsp),
&yystacksize);
yyss = yyss1;
yyvs = yyvs1;
}
# else /* defined YYSTACK_RELOCATE */
/* Extend the stack our own way. */
if (YYMAXDEPTH <= yystacksize)
YYNOMEM;
yystacksize *= 2;
if (YYMAXDEPTH < yystacksize)
yystacksize = YYMAXDEPTH;
{
yy_state_t *yyss1 = yyss;
union yyalloc *yyptr =
YY_CAST (union yyalloc *,
YYSTACK_ALLOC (YY_CAST (YYSIZE_T, YYSTACK_BYTES (yystacksize))));
if (! yyptr)
YYNOMEM;
YYSTACK_RELOCATE (yyss_alloc, yyss);
YYSTACK_RELOCATE (yyvs_alloc, yyvs);
# undef YYSTACK_RELOCATE
if (yyss1 != yyssa)
YYSTACK_FREE (yyss1);
}
# endif
yyssp = yyss + yysize - 1;
yyvsp = yyvs + yysize - 1;
YY_IGNORE_USELESS_CAST_BEGIN
YYDPRINTF ((stderr, "Stack size increased to %ld\n",
YY_CAST (long, yystacksize)));
YY_IGNORE_USELESS_CAST_END
if (yyss + yystacksize - 1 <= yyssp)
YYABORT;
}
#endif /* !defined yyoverflow && !defined YYSTACK_RELOCATE */
if (yystate == YYFINAL)
YYACCEPT;
goto yybackup;
/*-----------.
| yybackup. |
`-----------*/
yybackup:
/* Do appropriate processing given the current state. Read a
lookahead token if we need one and don't already have one. */
/* First try to decide what to do without reference to lookahead token. */
yyn = yypact[yystate];
if (yypact_value_is_default (yyn))
goto yydefault;
/* Not known => get a lookahead token if don't already have one. */
/* YYCHAR is either empty, or end-of-input, or a valid lookahead. */
if (yychar == YYEMPTY)
{
YYDPRINTF ((stderr, "Reading a token\n"));
yychar = yylex ();
}
if (yychar <= YYEOF)
{
yychar = YYEOF;
yytoken = YYSYMBOL_YYEOF;
YYDPRINTF ((stderr, "Now at end of input.\n"));
}
else if (yychar == YYerror)
{
/* The scanner already issued an error message, process directly
to error recovery. But do not keep the error token as
lookahead, it is too special and may lead us to an endless
loop in error recovery. */
yychar = YYUNDEF;
yytoken = YYSYMBOL_YYerror;
goto yyerrlab1;
}
else
{
yytoken = YYTRANSLATE (yychar);
YY_SYMBOL_PRINT ("Next token is", yytoken, &yylval, &yylloc);
}
/* If the proper action on seeing token YYTOKEN is to reduce or to
detect an error, take that action. */
yyn += yytoken;
if (yyn < 0 || YYLAST < yyn || yycheck[yyn] != yytoken)
goto yydefault;
yyn = yytable[yyn];
if (yyn <= 0)
{
if (yytable_value_is_error (yyn))
goto yyerrlab;
yyn = -yyn;
goto yyreduce;
}
/* Count tokens shifted since error; after three, turn off error
status. */
if (yyerrstatus)
yyerrstatus--;
/* Shift the lookahead token. */
YY_SYMBOL_PRINT ("Shifting", yytoken, &yylval, &yylloc);
yystate = yyn;
YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
*++yyvsp = yylval;
YY_IGNORE_MAYBE_UNINITIALIZED_END
/* Discard the shifted token. */
yychar = YYEMPTY;
goto yynewstate;
/*-----------------------------------------------------------.
| yydefault -- do the default action for the current state. |
`-----------------------------------------------------------*/
yydefault:
yyn = yydefact[yystate];
if (yyn == 0)
goto yyerrlab;
goto yyreduce;
/*-----------------------------.
| yyreduce -- do a reduction. |
`-----------------------------*/
yyreduce:
/* yyn is the number of a rule to reduce with. */
yylen = yyr2[yyn];
/* If YYLEN is nonzero, implement the default value of the action:
'$$ = $1'.
Otherwise, the following line sets YYVAL to garbage.
This behavior is undocumented and Bison
users should not rely upon it. Assigning to YYVAL
unconditionally makes the parser a bit smaller, and it avoids a
GCC warning that YYVAL may be used uninitialized. */
yyval = yyvsp[1-yylen];
YY_REDUCE_PRINT (yyn);
switch (yyn)
{
case 2: /* spec: masks kPERCPERC '\n' instrs */
#line 248 "i386_parse.y"
{
if (error_message_count != 0)
error (EXIT_FAILURE, 0,
"terminated due to previous error");
instrtable_out ();
}
#line 1416 "i386_parse.c"
break;
case 5: /* mask: kMASK kBITFIELD kNUMBER */
#line 262 "i386_parse.y"
{ new_bitfield ((yyvsp[-1].str), (yyvsp[0].num)); }
#line 1422 "i386_parse.c"
break;
case 6: /* mask: kPREFIX kBITFIELD */
#line 264 "i386_parse.y"
{ new_bitfield ((yyvsp[0].str), -1); }
#line 1428 "i386_parse.c"
break;
case 7: /* mask: kSUFFIX kBITFIELD */
#line 266 "i386_parse.y"
{ new_bitfield ((yyvsp[0].str), -2); }
#line 1434 "i386_parse.c"
break;
case 8: /* mask: kSYNONYM kBITFIELD kBITFIELD */
#line 268 "i386_parse.y"
{
struct synonym *newp = xmalloc (sizeof (*newp));
newp->from = (yyvsp[-1].str);
newp->to = (yyvsp[0].str);
if (tfind (newp, &synonyms, compare_syn) != NULL)
error (0, 0,
"%d: duplicate definition for synonym '%s'",
i386_lineno, (yyvsp[-1].str));
else if (tsearch ( newp, &synonyms, compare_syn) == NULL)
error (EXIT_FAILURE, 0, "tsearch");
}
#line 1450 "i386_parse.c"
break;
case 12: /* instr: bytes ':' bitfieldopt kID bitfieldopt optargs */
#line 287 "i386_parse.y"
{
if ((yyvsp[-3].field) != NULL && strcmp ((yyvsp[-3].field)->name, "RE") != 0
&& strcmp ((yyvsp[-3].field)->name, "R") != 0)
{
error (0, 0, "%d: only 'R' and 'RE' prefix allowed",
i386_lineno - 1);
}
if (check_duplicates ((yyvsp[-5].bit)) == 0
&& check_argsdef ((yyvsp[-5].bit), (yyvsp[0].arg)) == 0
&& check_bitsused ((yyvsp[-5].bit), (yyvsp[-1].field), (yyvsp[0].arg)) == 0)
{
struct instruction *newp = xcalloc (sizeof (*newp),
1);
if ((yyvsp[-3].field) != NULL)
{
if (strcmp ((yyvsp[-3].field)->name, "RE") == 0)
newp->repe = 1;
else if (strcmp ((yyvsp[-3].field)->name, "R") == 0)
newp->rep = 1;
}
newp->bytes = (yyvsp[-5].bit);
newp->mnemonic = (yyvsp[-2].str);
if (newp->mnemonic != (void *) -1l
&& tfind ((yyvsp[-2].str), &mnemonics,
(int (*)(const void *, const void *)) strcmp) == NULL)
{
if (tsearch ((yyvsp[-2].str), &mnemonics,
(int (*)(const void *, const void *)) strcmp) == NULL)
error (EXIT_FAILURE, errno, "tsearch");
++nmnemonics;
}
if ((yyvsp[-1].field) != NULL)
{
if (strcmp ((yyvsp[-1].field)->name, "w") == 0)
newp->suffix = suffix_w;
else if (strcmp ((yyvsp[-1].field)->name, "w0") == 0)
newp->suffix = suffix_w0;
else if (strcmp ((yyvsp[-1].field)->name, "tttn") == 0)
newp->suffix = suffix_tttn;
else if (strcmp ((yyvsp[-1].field)->name, "w1") == 0)
newp->suffix = suffix_w1;
else if (strcmp ((yyvsp[-1].field)->name, "W") == 0)
newp->suffix = suffix_W;
else if (strcmp ((yyvsp[-1].field)->name, "W1") == 0)
newp->suffix = suffix_W1;
else if (strcmp ((yyvsp[-1].field)->name, "D") == 0)
newp->suffix = suffix_D;
else
error (EXIT_FAILURE, 0,
"%s: %d: unknown suffix '%s'",
infname, i386_lineno - 1, (yyvsp[-1].field)->name);
struct suffix search = { .name = (yyvsp[-1].field)->name };
if (tfind (&search, &suffixes, compare_suf)
== NULL)
{
struct suffix *ns = xmalloc (sizeof (*ns));
ns->name = (yyvsp[-1].field)->name;
ns->idx = ++nsuffixes;
if (tsearch (ns, &suffixes, compare_suf)
== NULL)
error (EXIT_FAILURE, errno, "tsearch");
}
}
struct argument *args = (yyvsp[0].arg);
int n = 0;
while (args != NULL)
{
fillin_arg ((yyvsp[-5].bit), args->name, newp, n);
args = args->next;
++n;
}
newp->next = instructions;
instructions = newp;
++ninstructions;
}
}
#line 1537 "i386_parse.c"
break;
case 14: /* bitfieldopt: kBITFIELD */
#line 373 "i386_parse.y"
{
struct known_bitfield search;
search.name = (yyvsp[0].str);
struct known_bitfield **res;
res = tfind (&search, &bitfields, bitfield_compare);
if (res == NULL)
{
error (0, 0, "%d: unknown bitfield '%s'",
i386_lineno, search.name);
(yyval.field) = NULL;
}
else
(yyval.field) = *res;
}
#line 1556 "i386_parse.c"
break;
case 15: /* bitfieldopt: %empty */
#line 388 "i386_parse.y"
{ (yyval.field) = NULL; }
#line 1562 "i386_parse.c"
break;
case 16: /* bytes: bytes ',' byte */
#line 392 "i386_parse.y"
{
check_bits ((yyvsp[0].bit));
struct bitvalue *runp = (yyvsp[-2].bit);
while (runp->next != NULL)
runp = runp->next;
runp->next = (yyvsp[0].bit);
(yyval.bit) = (yyvsp[-2].bit);
}
#line 1576 "i386_parse.c"
break;
case 17: /* bytes: byte */
#line 402 "i386_parse.y"
{
check_bits ((yyvsp[0].bit));
(yyval.bit) = (yyvsp[0].bit);
}
#line 1585 "i386_parse.c"
break;
case 18: /* byte: byte bit */
#line 409 "i386_parse.y"
{
struct bitvalue *runp = (yyvsp[-1].bit);
while (runp->next != NULL)
runp = runp->next;
runp->next = (yyvsp[0].bit);
(yyval.bit) = (yyvsp[-1].bit);
}
#line 1597 "i386_parse.c"
break;
case 19: /* byte: bit */
#line 417 "i386_parse.y"
{ (yyval.bit) = (yyvsp[0].bit); }
#line 1603 "i386_parse.c"
break;
case 20: /* bit: '0' */
#line 421 "i386_parse.y"
{
(yyval.bit) = xmalloc (sizeof (struct bitvalue));
(yyval.bit)->type = zeroone;
(yyval.bit)->value = 0;
(yyval.bit)->next = NULL;
}
#line 1614 "i386_parse.c"
break;
case 21: /* bit: '1' */
#line 428 "i386_parse.y"
{
(yyval.bit) = xmalloc (sizeof (struct bitvalue));
(yyval.bit)->type = zeroone;
(yyval.bit)->value = 1;
(yyval.bit)->next = NULL;
}
#line 1625 "i386_parse.c"
break;
case 22: /* bit: kBITFIELD */
#line 435 "i386_parse.y"
{
(yyval.bit) = xmalloc (sizeof (struct bitvalue));
struct known_bitfield search;
search.name = (yyvsp[0].str);
struct known_bitfield **res;
res = tfind (&search, &bitfields, bitfield_compare);
if (res == NULL)
{
error (0, 0, "%d: unknown bitfield '%s'",
i386_lineno, search.name);
(yyval.bit)->type = failure;
}
else
{
(yyval.bit)->type = field;
(yyval.bit)->field = *res;
}
(yyval.bit)->next = NULL;
}
#line 1649 "i386_parse.c"
break;
case 23: /* optargs: kSPACE args */
#line 457 "i386_parse.y"
{ (yyval.arg) = (yyvsp[0].arg); }
#line 1655 "i386_parse.c"
break;
case 24: /* optargs: %empty */
#line 459 "i386_parse.y"
{ (yyval.arg) = NULL; }
#line 1661 "i386_parse.c"
break;
case 25: /* args: args ',' arg */
#line 463 "i386_parse.y"
{
struct argument *runp = (yyvsp[-2].arg);
while (runp->next != NULL)
runp = runp->next;
runp->next = xmalloc (sizeof (struct argument));
runp->next->name = combine ((yyvsp[0].name));
runp->next->next = NULL;
(yyval.arg) = (yyvsp[-2].arg);
}
#line 1675 "i386_parse.c"
break;
case 26: /* args: arg */
#line 473 "i386_parse.y"
{
(yyval.arg) = xmalloc (sizeof (struct argument));
(yyval.arg)->name = combine ((yyvsp[0].name));
(yyval.arg)->next = NULL;
}
#line 1685 "i386_parse.c"
break;
case 27: /* arg: arg argcomp */
#line 481 "i386_parse.y"
{
struct argname *runp = (yyvsp[-1].name);
while (runp->next != NULL)
runp = runp->next;
runp->next = (yyvsp[0].name);
(yyval.name) = (yyvsp[-1].name);
}
#line 1697 "i386_parse.c"
break;
case 28: /* arg: argcomp */
#line 489 "i386_parse.y"
{ (yyval.name) = (yyvsp[0].name); }
#line 1703 "i386_parse.c"
break;
case 29: /* argcomp: kBITFIELD */
#line 492 "i386_parse.y"
{
(yyval.name) = xmalloc (sizeof (struct argname));
(yyval.name)->type = nfield;
(yyval.name)->next = NULL;
struct known_bitfield search;
search.name = (yyvsp[0].str);
struct known_bitfield **res;
res = tfind (&search, &bitfields, bitfield_compare);
if (res == NULL)
{
if (strcmp ((yyvsp[0].str), "ax") == 0)
(yyval.name)->field = &ax_reg;
else if (strcmp ((yyvsp[0].str), "dx") == 0)
(yyval.name)->field = &dx_reg;
else if (strcmp ((yyvsp[0].str), "es_di") == 0)
(yyval.name)->field = &di_reg;
else if (strcmp ((yyvsp[0].str), "ds_si") == 0)
(yyval.name)->field = &si_reg;
else if (strcmp ((yyvsp[0].str), "ds_bx") == 0)
(yyval.name)->field = &bx_reg;
else
{
error (0, 0, "%d: unknown bitfield '%s'",
i386_lineno, search.name);
(yyval.name)->field = NULL;
}
}
else
(yyval.name)->field = *res;
}
#line 1739 "i386_parse.c"
break;
case 30: /* argcomp: kCHAR */
#line 524 "i386_parse.y"
{
(yyval.name) = xmalloc (sizeof (struct argname));
(yyval.name)->type = string;
(yyval.name)->next = NULL;
(yyval.name)->str = xmalloc (2);
(yyval.name)->str[0] = (yyvsp[0].ch);
(yyval.name)->str[1] = '\0';
}
#line 1752 "i386_parse.c"
break;
case 31: /* argcomp: kID */
#line 533 "i386_parse.y"
{
(yyval.name) = xmalloc (sizeof (struct argname));
(yyval.name)->type = string;
(yyval.name)->next = NULL;
(yyval.name)->str = (yyvsp[0].str);
}
#line 1763 "i386_parse.c"
break;
case 32: /* argcomp: ':' */
#line 540 "i386_parse.y"
{
(yyval.name) = xmalloc (sizeof (struct argname));
(yyval.name)->type = string;
(yyval.name)->next = NULL;
(yyval.name)->str = xmalloc (2);
(yyval.name)->str[0] = ':';
(yyval.name)->str[1] = '\0';
}
#line 1776 "i386_parse.c"
break;
#line 1780 "i386_parse.c"
default: break;
}
/* User semantic actions sometimes alter yychar, and that requires
that yytoken be updated with the new translation. We take the
approach of translating immediately before every use of yytoken.
One alternative is translating here after every semantic action,
but that translation would be missed if the semantic action invokes
YYABORT, YYACCEPT, or YYERROR immediately after altering yychar or
if it invokes YYBACKUP. In the case of YYABORT or YYACCEPT, an
incorrect destructor might then be invoked immediately. In the
case of YYERROR or YYBACKUP, subsequent parser actions might lead
to an incorrect destructor call or verbose syntax error message
before the lookahead is translated. */
YY_SYMBOL_PRINT ("-> $$ =", YY_CAST (yysymbol_kind_t, yyr1[yyn]), &yyval, &yyloc);
YYPOPSTACK (yylen);
yylen = 0;
*++yyvsp = yyval;
/* Now 'shift' the result of the reduction. Determine what state
that goes to, based on the state we popped back to and the rule
number reduced by. */
{
const int yylhs = yyr1[yyn] - YYNTOKENS;
const int yyi = yypgoto[yylhs] + *yyssp;
yystate = (0 <= yyi && yyi <= YYLAST && yycheck[yyi] == *yyssp
? yytable[yyi]
: yydefgoto[yylhs]);
}
goto yynewstate;
/*--------------------------------------.
| yyerrlab -- here on detecting error. |
`--------------------------------------*/
yyerrlab:
/* Make sure we have latest lookahead translation. See comments at
user semantic actions for why this is necessary. */
yytoken = yychar == YYEMPTY ? YYSYMBOL_YYEMPTY : YYTRANSLATE (yychar);
/* If not already recovering from an error, report this error. */
if (!yyerrstatus)
{
++yynerrs;
yyerror (YY_("syntax error"));
}
if (yyerrstatus == 3)
{
/* If just tried and failed to reuse lookahead token after an
error, discard it. */
if (yychar <= YYEOF)
{
/* Return failure if at end of input. */
if (yychar == YYEOF)
YYABORT;
}
else
{
yydestruct ("Error: discarding",
yytoken, &yylval);
yychar = YYEMPTY;
}
}
/* Else will try to reuse lookahead token after shifting the error
token. */
goto yyerrlab1;
/*---------------------------------------------------.
| yyerrorlab -- error raised explicitly by YYERROR. |
`---------------------------------------------------*/
yyerrorlab:
/* Pacify compilers when the user code never invokes YYERROR and the
label yyerrorlab therefore never appears in user code. */
if (0)
YYERROR;
++yynerrs;
/* Do not reclaim the symbols of the rule whose action triggered
this YYERROR. */
YYPOPSTACK (yylen);
yylen = 0;
YY_STACK_PRINT (yyss, yyssp);
yystate = *yyssp;
goto yyerrlab1;
/*-------------------------------------------------------------.
| yyerrlab1 -- common code for both syntax error and YYERROR. |
`-------------------------------------------------------------*/
yyerrlab1:
yyerrstatus = 3; /* Each real token shifted decrements this. */
/* Pop stack until we find a state that shifts the error token. */
for (;;)
{
yyn = yypact[yystate];
if (!yypact_value_is_default (yyn))
{
yyn += YYSYMBOL_YYerror;
if (0 <= yyn && yyn <= YYLAST && yycheck[yyn] == YYSYMBOL_YYerror)
{
yyn = yytable[yyn];
if (0 < yyn)
break;
}
}
/* Pop the current state because it cannot handle the error token. */
if (yyssp == yyss)
YYABORT;
yydestruct ("Error: popping",
YY_ACCESSING_SYMBOL (yystate), yyvsp);
YYPOPSTACK (1);
yystate = *yyssp;
YY_STACK_PRINT (yyss, yyssp);
}
YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
*++yyvsp = yylval;
YY_IGNORE_MAYBE_UNINITIALIZED_END
/* Shift the error token. */
YY_SYMBOL_PRINT ("Shifting", YY_ACCESSING_SYMBOL (yyn), yyvsp, yylsp);
yystate = yyn;
goto yynewstate;
/*-------------------------------------.
| yyacceptlab -- YYACCEPT comes here. |
`-------------------------------------*/
yyacceptlab:
yyresult = 0;
goto yyreturnlab;
/*-----------------------------------.
| yyabortlab -- YYABORT comes here. |
`-----------------------------------*/
yyabortlab:
yyresult = 1;
goto yyreturnlab;
/*-----------------------------------------------------------.
| yyexhaustedlab -- YYNOMEM (memory exhaustion) comes here. |
`-----------------------------------------------------------*/
yyexhaustedlab:
yyerror (YY_("memory exhausted"));
yyresult = 2;
goto yyreturnlab;
/*----------------------------------------------------------.
| yyreturnlab -- parsing is finished, clean up and return. |
`----------------------------------------------------------*/
yyreturnlab:
if (yychar != YYEMPTY)
{
/* Make sure we have latest lookahead translation. See comments at
user semantic actions for why this is necessary. */
yytoken = YYTRANSLATE (yychar);
yydestruct ("Cleanup: discarding lookahead",
yytoken, &yylval);
}
/* Do not reclaim the symbols of the rule whose action triggered
this YYABORT or YYACCEPT. */
YYPOPSTACK (yylen);
YY_STACK_PRINT (yyss, yyssp);
while (yyssp != yyss)
{
yydestruct ("Cleanup: popping",
YY_ACCESSING_SYMBOL (+*yyssp), yyvsp);
YYPOPSTACK (1);
}
#ifndef yyoverflow
if (yyss != yyssa)
YYSTACK_FREE (yyss);
#endif
return yyresult;
}
#line 550 "i386_parse.y"
static void
yyerror (const char *s)
{
error (0, 0, _("while reading i386 CPU description: %s at line %d"),
_(s), i386_lineno);
}
static int
bitfield_compare (const void *p1, const void *p2)
{
struct known_bitfield *f1 = (struct known_bitfield *) p1;
struct known_bitfield *f2 = (struct known_bitfield *) p2;
return strcmp (f1->name, f2->name);
}
static void
new_bitfield (char *name, unsigned long int num)
{
struct known_bitfield *newp = xmalloc (sizeof (struct known_bitfield));
newp->name = name;
newp->bits = num;
newp->tmp = 0;
if (tfind (newp, &bitfields, bitfield_compare) != NULL)
{
error (0, 0, "%d: duplicated definition of bitfield '%s'",
i386_lineno, name);
free (name);
free (newp);
return;
}
if (tsearch (newp, &bitfields, bitfield_compare) == NULL)
error (EXIT_FAILURE, errno, "%d: cannot insert new bitfield '%s'",
i386_lineno, name);
}
/* Check that the number of bits is a multiple of 8. */
static void
check_bits (struct bitvalue *val)
{
struct bitvalue *runp = val;
unsigned int total = 0;
while (runp != NULL)
{
if (runp->type == zeroone)
++total;
else if (runp->field == NULL)
/* No sense doing anything, the field is not known. */
return;
else
total += runp->field->bits;
runp = runp->next;
}
if (total % 8 != 0)
{
struct obstack os;
obstack_init (&os);
while (val != NULL)
{
if (val->type == zeroone)
obstack_printf (&os, "%u", val->value);
else
obstack_printf (&os, "{%s}", val->field->name);
val = val->next;
}
obstack_1grow (&os, '\0');
error (0, 0, "%d: field '%s' not a multiple of 8 bits in size",
i386_lineno, (char *) obstack_finish (&os));
obstack_free (&os, NULL);
}
}
static int
check_duplicates (struct bitvalue *val)
{
static int testcnt;
++testcnt;
int result = 0;
while (val != NULL)
{
if (val->type == field && val->field != NULL)
{
if (val->field->tmp == testcnt)
{
error (0, 0, "%d: bitfield '%s' used more than once",
i386_lineno - 1, val->field->name);
result = 1;
}
val->field->tmp = testcnt;
}
val = val->next;
}
return result;
}
static int
check_argsdef (struct bitvalue *bitval, struct argument *args)
{
int result = 0;
while (args != NULL)
{
for (struct argname *name = args->name; name != NULL; name = name->next)
if (name->type == nfield && name->field != NULL
&& name->field != &ax_reg && name->field != &dx_reg
&& name->field != &di_reg && name->field != &si_reg
&& name->field != &bx_reg)
{
struct bitvalue *runp = bitval;
while (runp != NULL)
if (runp->type == field && runp->field == name->field)
break;
else
runp = runp->next;
if (runp == NULL)
{
error (0, 0, "%d: unknown bitfield '%s' used in output format",
i386_lineno - 1, name->field->name);
result = 1;
}
}
args = args->next;
}
return result;
}
static int
check_bitsused (struct bitvalue *bitval, struct known_bitfield *suffix,
struct argument *args)
{
int result = 0;
while (bitval != NULL)
{
if (bitval->type == field && bitval->field != NULL
&& bitval->field != suffix
/* {w} is handled special. */
&& strcmp (bitval->field->name, "w") != 0)
{
struct argument *runp;
for (runp = args; runp != NULL; runp = runp->next)
{
struct argname *name = runp->name;
while (name != NULL)
if (name->type == nfield && name->field == bitval->field)
break;
else
name = name->next;
if (name != NULL)
break;
}
#if 0
if (runp == NULL)
{
error (0, 0, "%d: bitfield '%s' not used",
i386_lineno - 1, bitval->field->name);
result = 1;
}
#endif
}
bitval = bitval->next;
}
return result;
}
static struct argname *
combine (struct argname *name)
{
struct argname *last_str = NULL;
for (struct argname *runp = name; runp != NULL; runp = runp->next)
{
if (runp->type == string)
{
if (last_str == NULL)
last_str = runp;
else
{
last_str->str = xrealloc (last_str->str,
strlen (last_str->str)
+ strlen (runp->str) + 1);
strcat (last_str->str, runp->str);
last_str->next = runp->next;
}
}
else
last_str = NULL;
}
return name;
}
#define obstack_grow_str(ob, str) obstack_grow (ob, str, strlen (str))
static void
fillin_arg (struct bitvalue *bytes, struct argname *name,
struct instruction *instr, int n)
{
static struct obstack ob;
static int initialized;
if (! initialized)
{
initialized = 1;
obstack_init (&ob);
}
struct argname *runp = name;
int cnt = 0;
while (runp != NULL)
{
/* We ignore strings in the function name. */
if (runp->type == string)
{
if (instr->operands[n].str != NULL)
error (EXIT_FAILURE, 0,
"%d: cannot have more than one string parameter",
i386_lineno - 1);
instr->operands[n].str = runp->str;
}
else
{
assert (runp->type == nfield);
/* Construct the function name. */
if (cnt++ > 0)
obstack_1grow (&ob, '$');
if (runp->field == NULL)
/* Add some string which contains invalid characters. */
obstack_grow_str (&ob, "!!!INVALID!!!");
else
{
char *fieldname = runp->field->name;
struct synonym search = { .from = fieldname };
struct synonym **res = tfind (&search, &synonyms, compare_syn);
if (res != NULL)
fieldname = (*res)->to;
obstack_grow_str (&ob, fieldname);
}
/* Now compute the bit offset of the field. */
struct bitvalue *b = bytes;
int bitoff = 0;
if (runp->field != NULL)
while (b != NULL)
{
if (b->type == field && b->field != NULL)
{
if (strcmp (b->field->name, runp->field->name) == 0)
break;
bitoff += b->field->bits;
}
else
++bitoff;
b = b->next;
}
if (instr->operands[n].off1 == 0)
instr->operands[n].off1 = bitoff;
else if (instr->operands[n].off2 == 0)
instr->operands[n].off2 = bitoff;
else if (instr->operands[n].off3 == 0)
instr->operands[n].off3 = bitoff;
else
error (EXIT_FAILURE, 0,
"%d: cannot have more than three fields in parameter",
i386_lineno - 1);
if (runp->field != NULL
&& strncasecmp (runp->field->name, "mod", 3) == 0)
instr->modrm = 1;
}
runp = runp->next;
}
if (obstack_object_size (&ob) == 0)
obstack_grow_str (&ob, "string");
obstack_1grow (&ob, '\0');
char *fct = obstack_finish (&ob);
instr->operands[n].fct = fct;
}
#if 0
static void
nameout (const void *nodep, VISIT value, int level)
{
if (value == leaf || value == postorder)
printf (" %s\n", *(const char **) nodep);
}
#endif
static int
compare_argstring (const void *p1, const void *p2)
{
const struct argstring *a1 = (const struct argstring *) p1;
const struct argstring *a2 = (const struct argstring *) p2;
return strcmp (a1->str, a2->str);
}
static int maxoff[3][3];
static int minoff[3][3] = { { 1000, 1000, 1000 },
{ 1000, 1000, 1000 },
{ 1000, 1000, 1000 } };
static int nbitoff[3][3];
static void *fct_names[3];
static int nbitfct[3];
static int nbitsuf;
static void *strs[3];
static int nbitstr[3];
static int total_bits = 2; // Already counted the rep/repe bits.
static void
find_numbers (void)
{
int nfct_names[3] = { 0, 0, 0 };
int nstrs[3] = { 0, 0, 0 };
/* We reverse the order of the instruction list while processing it.
Later phases need it in the order in which the input file has
them. */
struct instruction *reversed = NULL;
struct instruction *runp = instructions;
while (runp != NULL)
{
for (int i = 0; i < 3; ++i)
if (runp->operands[i].fct != NULL)
{
struct argstring search = { .str = runp->operands[i].fct };
if (tfind (&search, &fct_names[i], compare_argstring) == NULL)
{
struct argstring *newp = xmalloc (sizeof (*newp));
newp->str = runp->operands[i].fct;
newp->idx = 0;
if (tsearch (newp, &fct_names[i], compare_argstring) == NULL)
error (EXIT_FAILURE, errno, "tsearch");
++nfct_names[i];
}
if (runp->operands[i].str != NULL)
{
search.str = runp->operands[i].str;
if (tfind (&search, &strs[i], compare_argstring) == NULL)
{
struct argstring *newp = xmalloc (sizeof (*newp));
newp->str = runp->operands[i].str;
newp->idx = 0;
if (tsearch (newp, &strs[i], compare_argstring) == NULL)
error (EXIT_FAILURE, errno, "tsearch");
++nstrs[i];
}
}
maxoff[i][0] = MAX (maxoff[i][0], runp->operands[i].off1);
maxoff[i][1] = MAX (maxoff[i][1], runp->operands[i].off2);
maxoff[i][2] = MAX (maxoff[i][2], runp->operands[i].off3);
if (runp->operands[i].off1 > 0)
minoff[i][0] = MIN (minoff[i][0], runp->operands[i].off1);
if (runp->operands[i].off2 > 0)
minoff[i][1] = MIN (minoff[i][1], runp->operands[i].off2);
if (runp->operands[i].off3 > 0)
minoff[i][2] = MIN (minoff[i][2], runp->operands[i].off3);
}
struct instruction *old = runp;
runp = runp->next;
old->next = reversed;
reversed = old;
}
instructions = reversed;
int d;
int c;
for (int i = 0; i < 3; ++i)
{
// printf ("min1 = %d, min2 = %d, min3 = %d\n", minoff[i][0], minoff[i][1], minoff[i][2]);
// printf ("max1 = %d, max2 = %d, max3 = %d\n", maxoff[i][0], maxoff[i][1], maxoff[i][2]);
if (minoff[i][0] == 1000)
nbitoff[i][0] = 0;
else
{
nbitoff[i][0] = 1;
d = maxoff[i][0] - minoff[i][0];
c = 1;
while (c < d)
{
++nbitoff[i][0];
c *= 2;
}
total_bits += nbitoff[i][0];
}
if (minoff[i][1] == 1000)
nbitoff[i][1] = 0;
else
{
nbitoff[i][1] = 1;
d = maxoff[i][1] - minoff[i][1];
c = 1;
while (c < d)
{
++nbitoff[i][1];
c *= 2;
}
total_bits += nbitoff[i][1];
}
if (minoff[i][2] == 1000)
nbitoff[i][2] = 0;
else
{
nbitoff[i][2] = 1;
d = maxoff[i][2] - minoff[i][2];
c = 1;
while (c < d)
{
++nbitoff[i][2];
c *= 2;
}
total_bits += nbitoff[i][2];
}
// printf ("off1 = %d, off2 = %d, off3 = %d\n", nbitoff[i][0], nbitoff[i][1], nbitoff[i][2]);
nbitfct[i] = 1;
d = nfct_names[i];
c = 1;
while (c < d)
{
++nbitfct[i];
c *= 2;
}
total_bits += nbitfct[i];
// printf ("%d fct[%d], %d bits\n", nfct_names[i], i, nbitfct[i]);
if (nstrs[i] != 0)
{
nbitstr[i] = 1;
d = nstrs[i];
c = 1;
while (c < d)
{
++nbitstr[i];
c *= 2;
}
total_bits += nbitstr[i];
}
// twalk (fct_names[i], nameout);
}
nbitsuf = 0;
d = nsuffixes;
c = 1;
while (c < d)
{
++nbitsuf;
c *= 2;
}
total_bits += nbitsuf;
// printf ("%d suffixes, %d bits\n", nsuffixes, nbitsuf);
}
static int
compare_syn (const void *p1, const void *p2)
{
const struct synonym *s1 = (const struct synonym *) p1;
const struct synonym *s2 = (const struct synonym *) p2;
return strcmp (s1->from, s2->from);
}
static int
compare_suf (const void *p1, const void *p2)
{
const struct suffix *s1 = (const struct suffix *) p1;
const struct suffix *s2 = (const struct suffix *) p2;
return strcmp (s1->name, s2->name);
}
static int count_op_str;
static int off_op_str;
static void
print_op_str (const void *nodep, VISIT value,
int level __attribute__ ((unused)))
{
if (value == leaf || value == postorder)
{
const char *str = (*(struct argstring **) nodep)->str;
fprintf (outfile, "%s\n \"%s",
count_op_str == 0 ? "" : "\\0\"", str);
(*(struct argstring **) nodep)->idx = ++count_op_str;
(*(struct argstring **) nodep)->off = off_op_str;
off_op_str += strlen (str) + 1;
}
}
static void
print_op_str_idx (const void *nodep, VISIT value,
int level __attribute__ ((unused)))
{
if (value == leaf || value == postorder)
printf (" %d,\n", (*(struct argstring **) nodep)->off);
}
static void
print_op_fct (const void *nodep, VISIT value,
int level __attribute__ ((unused)))
{
if (value == leaf || value == postorder)
{
fprintf (outfile, " FCT_%s,\n", (*(struct argstring **) nodep)->str);
(*(struct argstring **) nodep)->idx = ++count_op_str;
}
}
static void
instrtable_out (void)
{
find_numbers ();
#if 0
create_mnemonic_table ();
fprintf (outfile, "#define MNEMONIC_BITS %zu\n", best_mnemonic_bits);
#else
fprintf (outfile, "#define MNEMONIC_BITS %ld\n",
lrint (ceil (log2 (MNE_COUNT))));
#endif
fprintf (outfile, "#define SUFFIX_BITS %d\n", nbitsuf);
for (int i = 0; i < 3; ++i)
{
fprintf (outfile, "#define FCT%d_BITS %d\n", i + 1, nbitfct[i]);
if (nbitstr[i] != 0)
fprintf (outfile, "#define STR%d_BITS %d\n", i + 1, nbitstr[i]);
fprintf (outfile, "#define OFF%d_1_BITS %d\n", i + 1, nbitoff[i][0]);
fprintf (outfile, "#define OFF%d_1_BIAS %d\n", i + 1, minoff[i][0]);
if (nbitoff[i][1] != 0)
{
fprintf (outfile, "#define OFF%d_2_BITS %d\n", i + 1, nbitoff[i][1]);
fprintf (outfile, "#define OFF%d_2_BIAS %d\n", i + 1, minoff[i][1]);
}
if (nbitoff[i][2] != 0)
{
fprintf (outfile, "#define OFF%d_3_BITS %d\n", i + 1, nbitoff[i][2]);
fprintf (outfile, "#define OFF%d_3_BIAS %d\n", i + 1, minoff[i][2]);
}
}
fputs ("\n#include \n\n", outfile);
#define APPEND(a, b) APPEND_ (a, b)
#define APPEND_(a, b) a##b
#define EMIT_SUFFIX(suf) \
fprintf (outfile, "#define suffix_%s %d\n", #suf, APPEND (suffix_, suf))
EMIT_SUFFIX (none);
EMIT_SUFFIX (w);
EMIT_SUFFIX (w0);
EMIT_SUFFIX (W);
EMIT_SUFFIX (tttn);
EMIT_SUFFIX (D);
EMIT_SUFFIX (w1);
EMIT_SUFFIX (W1);
fputc_unlocked ('\n', outfile);
for (int i = 0; i < 3; ++i)
{
/* Functions. */
count_op_str = 0;
fprintf (outfile, "static const opfct_t op%d_fct[] =\n{\n NULL,\n",
i + 1);
twalk (fct_names[i], print_op_fct);
fputs ("};\n", outfile);
/* The operand strings. */
if (nbitstr[i] != 0)
{
count_op_str = 0;
off_op_str = 0;
fprintf (outfile, "static const char op%d_str[] =", i + 1);
twalk (strs[i], print_op_str);
fputs ("\";\n", outfile);
fprintf (outfile, "static const uint8_t op%d_str_idx[] = {\n",
i + 1);
twalk (strs[i], print_op_str_idx);
fputs ("};\n", outfile);
}
}
fputs ("static const struct instr_enc instrtab[] =\n{\n", outfile);
struct instruction *instr;
for (instr = instructions; instr != NULL; instr = instr->next)
{
fputs (" {", outfile);
if (instr->mnemonic == (void *) -1l)
fputs (" .mnemonic = MNE_INVALID,", outfile);
else
fprintf (outfile, " .mnemonic = MNE_%s,", instr->mnemonic);
fprintf (outfile, " .rep = %d,", instr->rep);
fprintf (outfile, " .repe = %d,", instr->repe);
fprintf (outfile, " .suffix = %d,", instr->suffix);
fprintf (outfile, " .modrm = %d,", instr->modrm);
for (int i = 0; i < 3; ++i)
{
int idx = 0;
if (instr->operands[i].fct != NULL)
{
struct argstring search = { .str = instr->operands[i].fct };
struct argstring **res = tfind (&search, &fct_names[i],
compare_argstring);
assert (res != NULL);
idx = (*res)->idx;
}
fprintf (outfile, " .fct%d = %d,", i + 1, idx);
idx = 0;
if (instr->operands[i].str != NULL)
{
struct argstring search = { .str = instr->operands[i].str };
struct argstring **res = tfind (&search, &strs[i],
compare_argstring);
assert (res != NULL);
idx = (*res)->idx;
}
if (nbitstr[i] != 0)
fprintf (outfile, " .str%d = %d,", i + 1, idx);
fprintf (outfile, " .off%d_1 = %d,", i + 1,
MAX (0, instr->operands[i].off1 - minoff[i][0]));
if (nbitoff[i][1] != 0)
fprintf (outfile, " .off%d_2 = %d,", i + 1,
MAX (0, instr->operands[i].off2 - minoff[i][1]));
if (nbitoff[i][2] != 0)
fprintf (outfile, " .off%d_3 = %d,", i + 1,
MAX (0, instr->operands[i].off3 - minoff[i][2]));
}
fputs (" },\n", outfile);
}
fputs ("};\n", outfile);
fputs ("static const uint8_t match_data[] =\n{\n", outfile);
size_t cnt = 0;
for (instr = instructions; instr != NULL; instr = instr->next, ++cnt)
{
/* First count the number of bytes. */
size_t totalbits = 0;
size_t zerobits = 0;
bool leading_p = true;
size_t leadingbits = 0;
struct bitvalue *b = instr->bytes;
while (b != NULL)
{
if (b->type == zeroone)
{
++totalbits;
zerobits = 0;
if (leading_p)
++leadingbits;
}
else
{
totalbits += b->field->bits;
/* We must always count the mod/rm byte. */
if (strncasecmp (b->field->name, "mod", 3) == 0)
zerobits = 0;
else
zerobits += b->field->bits;
leading_p = false;
}
b = b->next;
}
size_t nbytes = (totalbits - zerobits + 7) / 8;
assert (nbytes > 0);
size_t leadingbytes = leadingbits / 8;
fprintf (outfile, " %#zx,", nbytes | (leadingbytes << 4));
/* Now create the mask and byte values. */
uint8_t byte = 0;
uint8_t mask = 0;
int nbits = 0;
b = instr->bytes;
while (b != NULL)
{
if (b->type == zeroone)
{
byte = (byte << 1) | b->value;
mask = (mask << 1) | 1;
if (++nbits == 8)
{
if (leadingbytes > 0)
{
assert (mask == 0xff);
fprintf (outfile, " %#" PRIx8 ",", byte);
--leadingbytes;
}
else
fprintf (outfile, " %#" PRIx8 ", %#" PRIx8 ",",
mask, byte);
byte = mask = nbits = 0;
if (--nbytes == 0)
break;
}
}
else
{
assert (leadingbytes == 0);
unsigned long int remaining = b->field->bits;
while (nbits + remaining > 8)
{
fprintf (outfile, " %#" PRIx8 ", %#" PRIx8 ",",
mask << (8 - nbits), byte << (8 - nbits));
remaining = nbits + remaining - 8;
byte = mask = nbits = 0;
if (--nbytes == 0)
break;
}
byte <<= remaining;
mask <<= remaining;
nbits += remaining;
if (nbits == 8)
{
fprintf (outfile, " %#" PRIx8 ", %#" PRIx8 ",", mask, byte);
byte = mask = nbits = 0;
if (--nbytes == 0)
break;
}
}
b = b->next;
}
fputc_unlocked ('\n', outfile);
}
fputs ("};\n", outfile);
}
#if 0
static size_t mnemonic_maxlen;
static size_t mnemonic_minlen;
static size_t
which_chars (const char *str[], size_t nstr)
{
char used_char[256];
memset (used_char, '\0', sizeof (used_char));
mnemonic_maxlen = 0;
mnemonic_minlen = 10000;
for (size_t cnt = 0; cnt < nstr; ++cnt)
{
const unsigned char *cp = (const unsigned char *) str[cnt];
mnemonic_maxlen = MAX (mnemonic_maxlen, strlen ((char *) cp));
mnemonic_minlen = MIN (mnemonic_minlen, strlen ((char *) cp));
do
used_char[*cp++] = 1;
while (*cp != '\0');
}
size_t nused_char = 0;
for (size_t cnt = 0; cnt < 256; ++cnt)
if (used_char[cnt] != 0)
++nused_char;
return nused_char;
}
static const char **mnemonic_strs;
static size_t nmnemonic_strs;
static void
add_mnemonics (const void *nodep, VISIT value,
int level __attribute__ ((unused)))
{
if (value == leaf || value == postorder)
mnemonic_strs[nmnemonic_strs++] = *(const char **) nodep;
}
struct charfreq
{
char ch;
int freq;
};
static struct charfreq pfxfreq[256];
static struct charfreq sfxfreq[256];
static int
compare_freq (const void *p1, const void *p2)
{
const struct charfreq *c1 = (const struct charfreq *) p1;
const struct charfreq *c2 = (const struct charfreq *) p2;
if (c1->freq > c2->freq)
return -1;
if (c1->freq < c2->freq)
return 1;
return 0;
}
static size_t
compute_pfxfreq (const char *str[], size_t nstr)
{
memset (pfxfreq, '\0', sizeof (pfxfreq));
for (size_t i = 0; i < nstr; ++i)
pfxfreq[i].ch = i;
for (size_t i = 0; i < nstr; ++i)
++pfxfreq[*((const unsigned char *) str[i])].freq;
qsort (pfxfreq, 256, sizeof (struct charfreq), compare_freq);
size_t n = 0;
while (n < 256 && pfxfreq[n].freq != 0)
++n;
return n;
}
struct strsnlen
{
const char *str;
size_t len;
};
static size_t
compute_sfxfreq (size_t nstr, struct strsnlen *strsnlen)
{
memset (sfxfreq, '\0', sizeof (sfxfreq));
for (size_t i = 0; i < nstr; ++i)
sfxfreq[i].ch = i;
for (size_t i = 0; i < nstr; ++i)
++sfxfreq[((const unsigned char *) strchrnul (strsnlen[i].str, '\0'))[-1]].freq;
qsort (sfxfreq, 256, sizeof (struct charfreq), compare_freq);
size_t n = 0;
while (n < 256 && sfxfreq[n].freq != 0)
++n;
return n;
}
static void
create_mnemonic_table (void)
{
mnemonic_strs = xmalloc (nmnemonics * sizeof (char *));
twalk (mnemonics, add_mnemonics);
(void) which_chars (mnemonic_strs, nmnemonic_strs);
size_t best_so_far = 100000000;
char *best_prefix = NULL;
char *best_suffix = NULL;
char *best_table = NULL;
size_t best_table_size = 0;
size_t best_table_bits = 0;
size_t best_prefix_bits = 0;
/* We can precompute the prefix characters. */
size_t npfx_char = compute_pfxfreq (mnemonic_strs, nmnemonic_strs);
/* Compute best size for string representation including explicit NUL. */
for (size_t pfxbits = 0; (1u << pfxbits) < 2 * npfx_char; ++pfxbits)
{
char prefix[1 << pfxbits];
size_t i;
for (i = 0; i < (1u << pfxbits) - 1; ++i)
prefix[i] = pfxfreq[i].ch;
prefix[i] = '\0';
struct strsnlen strsnlen[nmnemonic_strs];
for (i = 0; i < nmnemonic_strs; ++i)
{
if (strchr (prefix, *mnemonic_strs[i]) != NULL)
strsnlen[i].str = mnemonic_strs[i] + 1;
else
strsnlen[i].str = mnemonic_strs[i];
strsnlen[i].len = strlen (strsnlen[i].str);
}
/* With the prefixes gone, try to combine strings. */
size_t nstrsnlen = 1;
for (i = 1; i < nmnemonic_strs; ++i)
{
size_t j;
for (j = 0; j < nstrsnlen; ++j)
if (strsnlen[i].len > strsnlen[j].len
&& strcmp (strsnlen[j].str,
strsnlen[i].str + (strsnlen[i].len
- strsnlen[j].len)) == 0)
{
strsnlen[j] = strsnlen[i];
break;
}
else if (strsnlen[i].len < strsnlen[j].len
&& strcmp (strsnlen[i].str,
strsnlen[j].str + (strsnlen[j].len
- strsnlen[i].len)) == 0)
break;
;
if (j == nstrsnlen)
strsnlen[nstrsnlen++] = strsnlen[i];
}
size_t nsfx_char = compute_sfxfreq (nstrsnlen, strsnlen);
for (size_t sfxbits = 0; (1u << sfxbits) < 2 * nsfx_char; ++sfxbits)
{
char suffix[1 << sfxbits];
for (i = 0; i < (1u << sfxbits) - 1; ++i)
suffix[i] = sfxfreq[i].ch;
suffix[i] = '\0';
size_t newlen[nstrsnlen];
for (i = 0; i < nstrsnlen; ++i)
if (strchr (suffix, strsnlen[i].str[strsnlen[i].len - 1]) != NULL)
newlen[i] = strsnlen[i].len - 1;
else
newlen[i] = strsnlen[i].len;
char charused[256];
memset (charused, '\0', sizeof (charused));
size_t ncharused = 0;
const char *tablestr[nstrsnlen];
size_t ntablestr = 1;
tablestr[0] = strsnlen[0].str;
size_t table = newlen[0] + 1;
for (i = 1; i < nstrsnlen; ++i)
{
size_t j;
for (j = 0; j < ntablestr; ++j)
if (newlen[i] > newlen[j]
&& memcmp (tablestr[j],
strsnlen[i].str + (newlen[i] - newlen[j]),
newlen[j]) == 0)
{
table += newlen[i] - newlen[j];
tablestr[j] = strsnlen[i].str;
newlen[j] = newlen[i];
break;
}
else if (newlen[i] < newlen[j]
&& memcmp (strsnlen[i].str,
tablestr[j] + (newlen[j] - newlen[i]),
newlen[i]) == 0)
break;
if (j == ntablestr)
{
table += newlen[i] + 1;
tablestr[ntablestr] = strsnlen[i].str;
newlen[ntablestr] = newlen[i];
++ntablestr;
}
for (size_t x = 0; x < newlen[j]; ++x)
if (charused[((const unsigned char *) tablestr[j])[x]]++ == 0)
++ncharused;
}
size_t ncharused_bits = 0;
i = 1;
while (i < ncharused)
{
i *= 2;
++ncharused_bits;
}
size_t table_bits = 0;
i = 1;
while (i < table)
{
i *= 2;
++table_bits;
}
size_t mnemonic_bits = table_bits + pfxbits + sfxbits;
size_t new_total = (((table + 7) / 8) * ncharused_bits + ncharused
+ (pfxbits == 0 ? 0 : (1 << pfxbits) - 1)
+ (sfxbits == 0 ? 0 : (1 << sfxbits) - 1)
+ (((total_bits + mnemonic_bits + 7) / 8)
* ninstructions));
if (new_total < best_so_far)
{
best_so_far = new_total;
best_mnemonic_bits = mnemonic_bits;
free (best_suffix);
best_suffix = xstrdup (suffix);
free (best_prefix);
best_prefix = xstrdup (prefix);
best_prefix_bits = pfxbits;
best_table_size = table;
best_table_bits = table_bits;
char *cp = best_table = xrealloc (best_table, table);
for (i = 0; i < ntablestr; ++i)
{
assert (cp + newlen[i] + 1 <= best_table + table);
cp = mempcpy (cp, tablestr[i], newlen[i]);
*cp++ = '\0';
}
assert (cp == best_table + table);
}
}
}
fputs ("static const char mnemonic_table[] =\n\"", outfile);
for (size_t i = 0; i < best_table_size; ++i)
{
if (((i + 1) % 60) == 0)
fputs ("\"\n\"", outfile);
if (!isascii (best_table[i]) || !isprint (best_table[i]))
fprintf (outfile, "\\%03o", best_table[i]);
else
fputc (best_table[i], outfile);
}
fputs ("\";\n", outfile);
if (best_prefix[0] != '\0')
fprintf (outfile,
"static const char prefix[%zu] = \"%s\";\n"
"#define PREFIXCHAR_BITS %zu\n",
strlen (best_prefix), best_prefix, best_prefix_bits);
else
fputs ("#define NO_PREFIX\n", outfile);
if (best_suffix[0] != '\0')
fprintf (outfile, "static const char suffix[%zu] = \"%s\";\n",
strlen (best_suffix), best_suffix);
else
fputs ("#define NO_SUFFIX\n", outfile);
for (size_t i = 0; i < nmnemonic_strs; ++i)
{
const char *mne = mnemonic_strs[i];
size_t pfxval = 0;
char *cp = strchr (best_prefix, *mne);
if (cp != NULL)
{
pfxval = 1 + (cp - best_prefix);
++mne;
}
size_t l = strlen (mne);
size_t sfxval = 0;
cp = strchr (best_suffix, mne[l - 1]);
if (cp != NULL)
{
sfxval = 1 + (cp - best_suffix);
--l;
}
char *off = memmem (best_table, best_table_size, mne, l);
while (off[l] != '\0')
{
off = memmem (off + 1, best_table_size, mne, l);
assert (off != NULL);
}
fprintf (outfile, "#define MNE_%s %#zx\n",
mnemonic_strs[i],
(off - best_table)
+ ((pfxval + (sfxval << best_prefix_bits)) << best_table_bits));
}
}
#endif