/* * WPA Supplicant - WPA state machine and EAPOL-Key processing * Copyright (c) 2003-2018, Jouni Malinen * Copyright(c) 2015 Intel Deutschland GmbH * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include "common.h" #include "crypto/aes.h" #include "crypto/aes_wrap.h" #include "crypto/crypto.h" #include "crypto/random.h" #include "crypto/aes_siv.h" #include "crypto/sha256.h" #include "crypto/sha384.h" #include "crypto/sha512.h" #include "common/ieee802_11_defs.h" #include "common/ieee802_11_common.h" #include "common/ocv.h" #include "common/dpp.h" #include "common/wpa_ctrl.h" #include "eap_common/eap_defs.h" #include "eapol_supp/eapol_supp_sm.h" #include "drivers/driver.h" #include "wpa.h" #include "eloop.h" #include "preauth.h" #include "pmksa_cache.h" #include "wpa_i.h" #include "wpa_ie.h" static const u8 null_rsc[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; static void _wpa_hexdump_link(int level, u8 link_id, const char *title, const void *buf, size_t len, bool key) { char *link_title = NULL; if (link_id >= MAX_NUM_MLD_LINKS) goto out; link_title = os_malloc(os_strlen(title) + 20); if (!link_title) goto out; os_snprintf(link_title, os_strlen(title) + 20, "MLO link[%u]: %s", link_id, title); out: if (key) wpa_hexdump_key(level, link_title ? link_title : title, buf, len); else wpa_hexdump(level, link_title ? link_title : title, buf, len); os_free(link_title); } static void wpa_hexdump_link(int level, u8 link_id, const char *title, const void *buf, size_t len) { _wpa_hexdump_link(level, link_id, title, buf, len, false); } static void wpa_hexdump_link_key(int level, u8 link_id, const char *title, const void *buf, size_t len) { _wpa_hexdump_link(level, link_id, title, buf, len, true); } /** * wpa_eapol_key_send - Send WPA/RSN EAPOL-Key message * @sm: Pointer to WPA state machine data from wpa_sm_init() * @ptk: PTK for Key Confirmation/Encryption Key * @ver: Version field from Key Info * @dest: Destination address for the frame * @proto: Ethertype (usually ETH_P_EAPOL) * @msg: EAPOL-Key message * @msg_len: Length of message * @key_mic: Pointer to the buffer to which the EAPOL-Key MIC is written * Returns: >= 0 on success, < 0 on failure */ int wpa_eapol_key_send(struct wpa_sm *sm, struct wpa_ptk *ptk, int ver, const u8 *dest, u16 proto, u8 *msg, size_t msg_len, u8 *key_mic) { int ret = -1; size_t mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len); wpa_printf(MSG_DEBUG, "WPA: Send EAPOL-Key frame to " MACSTR " ver=%d mic_len=%d key_mgmt=0x%x", MAC2STR(dest), ver, (int) mic_len, sm->key_mgmt); if (is_zero_ether_addr(dest) && is_zero_ether_addr(sm->bssid)) { /* * Association event was not yet received; try to fetch * BSSID from the driver. */ if (wpa_sm_get_bssid(sm, sm->bssid) < 0) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Failed to read BSSID for " "EAPOL-Key destination address"); } else { dest = sm->bssid; wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Use BSSID (" MACSTR ") as the destination for EAPOL-Key", MAC2STR(dest)); } } if (mic_len) { if (key_mic && (!ptk || !ptk->kck_len)) goto out; if (key_mic && wpa_eapol_key_mic(ptk->kck, ptk->kck_len, sm->key_mgmt, ver, msg, msg_len, key_mic)) { wpa_msg(sm->ctx->msg_ctx, MSG_ERROR, "WPA: Failed to generate EAPOL-Key version %d key_mgmt 0x%x MIC", ver, sm->key_mgmt); goto out; } if (ptk) wpa_hexdump_key(MSG_DEBUG, "WPA: KCK", ptk->kck, ptk->kck_len); wpa_hexdump(MSG_DEBUG, "WPA: Derived Key MIC", key_mic, mic_len); } else { #ifdef CONFIG_FILS /* AEAD cipher - Key MIC field not used */ struct ieee802_1x_hdr *s_hdr, *hdr; struct wpa_eapol_key *s_key, *key; u8 *buf, *s_key_data, *key_data; size_t buf_len = msg_len + AES_BLOCK_SIZE; size_t key_data_len; u16 eapol_len; const u8 *aad[1]; size_t aad_len[1]; if (!ptk || !ptk->kek_len) goto out; key_data_len = msg_len - sizeof(struct ieee802_1x_hdr) - sizeof(struct wpa_eapol_key) - 2; buf = os_malloc(buf_len); if (!buf) goto out; os_memcpy(buf, msg, msg_len); hdr = (struct ieee802_1x_hdr *) buf; key = (struct wpa_eapol_key *) (hdr + 1); key_data = ((u8 *) (key + 1)) + 2; /* Update EAPOL header to include AES-SIV overhead */ eapol_len = be_to_host16(hdr->length); eapol_len += AES_BLOCK_SIZE; hdr->length = host_to_be16(eapol_len); /* Update Key Data Length field to include AES-SIV overhead */ WPA_PUT_BE16((u8 *) (key + 1), AES_BLOCK_SIZE + key_data_len); s_hdr = (struct ieee802_1x_hdr *) msg; s_key = (struct wpa_eapol_key *) (s_hdr + 1); s_key_data = ((u8 *) (s_key + 1)) + 2; wpa_hexdump_key(MSG_DEBUG, "WPA: Plaintext Key Data", s_key_data, key_data_len); wpa_hexdump_key(MSG_DEBUG, "WPA: KEK", ptk->kek, ptk->kek_len); /* AES-SIV AAD from EAPOL protocol version field (inclusive) to * to Key Data (exclusive). */ aad[0] = buf; aad_len[0] = key_data - buf; if (aes_siv_encrypt(ptk->kek, ptk->kek_len, s_key_data, key_data_len, 1, aad, aad_len, key_data) < 0) { os_free(buf); goto out; } wpa_hexdump(MSG_DEBUG, "WPA: Encrypted Key Data from SIV", key_data, AES_BLOCK_SIZE + key_data_len); os_free(msg); msg = buf; msg_len = buf_len; #else /* CONFIG_FILS */ goto out; #endif /* CONFIG_FILS */ } wpa_hexdump(MSG_MSGDUMP, "WPA: TX EAPOL-Key", msg, msg_len); ret = wpa_sm_ether_send(sm, dest, proto, msg, msg_len); eapol_sm_notify_tx_eapol_key(sm->eapol); out: os_free(msg); return ret; } /** * wpa_sm_key_request - Send EAPOL-Key Request * @sm: Pointer to WPA state machine data from wpa_sm_init() * @error: Indicate whether this is an Michael MIC error report * @pairwise: 1 = error report for pairwise packet, 0 = for group packet * * Send an EAPOL-Key Request to the current authenticator. This function is * used to request rekeying and it is usually called when a local Michael MIC * failure is detected. */ void wpa_sm_key_request(struct wpa_sm *sm, int error, int pairwise) { size_t mic_len, hdrlen, rlen; struct wpa_eapol_key *reply; int key_info, ver; u8 bssid[ETH_ALEN], *rbuf, *key_mic, *mic; if (pairwise && sm->wpa_deny_ptk0_rekey && !sm->use_ext_key_id && wpa_sm_get_state(sm) == WPA_COMPLETED && !error) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: PTK0 rekey not allowed, reconnecting"); wpa_sm_reconnect(sm); return; } if (wpa_use_akm_defined(sm->key_mgmt)) ver = WPA_KEY_INFO_TYPE_AKM_DEFINED; else if (wpa_key_mgmt_ft(sm->key_mgmt) || wpa_key_mgmt_sha256(sm->key_mgmt)) ver = WPA_KEY_INFO_TYPE_AES_128_CMAC; else if (sm->pairwise_cipher != WPA_CIPHER_TKIP) ver = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES; else ver = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4; if (wpa_sm_get_bssid(sm, bssid) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "Failed to read BSSID for EAPOL-Key request"); return; } mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len); hdrlen = sizeof(*reply) + mic_len + 2; rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, hdrlen, &rlen, (void *) &reply); if (rbuf == NULL) return; reply->type = (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) ? EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA; key_info = WPA_KEY_INFO_REQUEST | ver; if (sm->ptk_set) key_info |= WPA_KEY_INFO_SECURE; if (sm->ptk_set && mic_len) key_info |= WPA_KEY_INFO_MIC; if (error) key_info |= WPA_KEY_INFO_ERROR; if (pairwise) key_info |= WPA_KEY_INFO_KEY_TYPE; WPA_PUT_BE16(reply->key_info, key_info); WPA_PUT_BE16(reply->key_length, 0); os_memcpy(reply->replay_counter, sm->request_counter, WPA_REPLAY_COUNTER_LEN); inc_byte_array(sm->request_counter, WPA_REPLAY_COUNTER_LEN); mic = (u8 *) (reply + 1); WPA_PUT_BE16(mic + mic_len, 0); if (!(key_info & WPA_KEY_INFO_MIC)) key_mic = NULL; else key_mic = mic; wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Sending EAPOL-Key Request (error=%d " "pairwise=%d ptk_set=%d len=%lu)", error, pairwise, sm->ptk_set, (unsigned long) rlen); wpa_eapol_key_send(sm, &sm->ptk, ver, bssid, ETH_P_EAPOL, rbuf, rlen, key_mic); } static void wpa_supplicant_key_mgmt_set_pmk(struct wpa_sm *sm) { #ifdef CONFIG_IEEE80211R if (sm->key_mgmt == WPA_KEY_MGMT_FT_IEEE8021X) { if (wpa_sm_key_mgmt_set_pmk(sm, sm->xxkey, sm->xxkey_len)) wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Cannot set low order 256 bits of MSK for key management offload"); } else { #endif /* CONFIG_IEEE80211R */ if (wpa_sm_key_mgmt_set_pmk(sm, sm->pmk, sm->pmk_len)) wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Cannot set PMK for key management offload"); #ifdef CONFIG_IEEE80211R } #endif /* CONFIG_IEEE80211R */ } static int wpa_supplicant_get_pmk(struct wpa_sm *sm, const unsigned char *src_addr, const u8 *pmkid) { int abort_cached = 0; if (pmkid && !sm->cur_pmksa) { /* When using drivers that generate RSN IE, wpa_supplicant may * not have enough time to get the association information * event before receiving this 1/4 message, so try to find a * matching PMKSA cache entry here. */ sm->cur_pmksa = pmksa_cache_get(sm->pmksa, src_addr, sm->own_addr, pmkid, NULL, 0); if (sm->cur_pmksa) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: found matching PMKID from PMKSA cache"); } else { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: no matching PMKID found"); abort_cached = 1; } } if (pmkid && sm->cur_pmksa && os_memcmp_const(pmkid, sm->cur_pmksa->pmkid, PMKID_LEN) == 0) { wpa_hexdump(MSG_DEBUG, "RSN: matched PMKID", pmkid, PMKID_LEN); wpa_sm_set_pmk_from_pmksa(sm); wpa_hexdump_key(MSG_DEBUG, "RSN: PMK from PMKSA cache", sm->pmk, sm->pmk_len); eapol_sm_notify_cached(sm->eapol); #ifdef CONFIG_IEEE80211R sm->xxkey_len = 0; #ifdef CONFIG_SAE if ((sm->key_mgmt == WPA_KEY_MGMT_FT_SAE || sm->key_mgmt == WPA_KEY_MGMT_FT_SAE_EXT_KEY) && sm->pmk_len == PMK_LEN) { /* Need to allow FT key derivation to proceed with * PMK from SAE being used as the XXKey in cases where * the PMKID in msg 1/4 matches the PMKSA entry that was * just added based on SAE authentication for the * initial mobility domain association. */ os_memcpy(sm->xxkey, sm->pmk, sm->pmk_len); sm->xxkey_len = sm->pmk_len; } #endif /* CONFIG_SAE */ #endif /* CONFIG_IEEE80211R */ } else if (wpa_key_mgmt_wpa_ieee8021x(sm->key_mgmt) && sm->eapol) { int res, pmk_len; #ifdef CONFIG_IEEE80211R u8 buf[2 * PMK_LEN]; #endif /* CONFIG_IEEE80211R */ if (wpa_key_mgmt_sha384(sm->key_mgmt)) pmk_len = PMK_LEN_SUITE_B_192; else pmk_len = PMK_LEN; res = eapol_sm_get_key(sm->eapol, sm->pmk, pmk_len); if (res) { if (pmk_len == PMK_LEN) { /* * EAP-LEAP is an exception from other EAP * methods: it uses only 16-byte PMK. */ res = eapol_sm_get_key(sm->eapol, sm->pmk, 16); pmk_len = 16; } } #ifdef CONFIG_IEEE80211R if (res == 0 && eapol_sm_get_key(sm->eapol, buf, 2 * PMK_LEN) == 0) { if (wpa_key_mgmt_sha384(sm->key_mgmt)) { os_memcpy(sm->xxkey, buf, SHA384_MAC_LEN); sm->xxkey_len = SHA384_MAC_LEN; } else { os_memcpy(sm->xxkey, buf + PMK_LEN, PMK_LEN); sm->xxkey_len = PMK_LEN; } forced_memzero(buf, sizeof(buf)); if (sm->proto == WPA_PROTO_RSN && wpa_key_mgmt_ft(sm->key_mgmt)) { struct rsn_pmksa_cache_entry *sa = NULL; const u8 *fils_cache_id = NULL; #ifdef CONFIG_FILS if (sm->fils_cache_id_set) fils_cache_id = sm->fils_cache_id; #endif /* CONFIG_FILS */ wpa_hexdump_key(MSG_DEBUG, "FT: Cache XXKey/MPMK", sm->xxkey, sm->xxkey_len); sa = pmksa_cache_add(sm->pmksa, sm->xxkey, sm->xxkey_len, NULL, NULL, 0, src_addr, sm->own_addr, sm->network_ctx, sm->key_mgmt, fils_cache_id); if (!sm->cur_pmksa) sm->cur_pmksa = sa; } } #endif /* CONFIG_IEEE80211R */ if (res == 0) { struct rsn_pmksa_cache_entry *sa = NULL; const u8 *fils_cache_id = NULL; #ifdef CONFIG_FILS if (sm->fils_cache_id_set) fils_cache_id = sm->fils_cache_id; #endif /* CONFIG_FILS */ wpa_hexdump_key(MSG_DEBUG, "WPA: PMK from EAPOL state " "machines", sm->pmk, pmk_len); sm->pmk_len = pmk_len; wpa_supplicant_key_mgmt_set_pmk(sm); if (sm->proto == WPA_PROTO_RSN && !wpa_key_mgmt_suite_b(sm->key_mgmt) && !wpa_key_mgmt_ft(sm->key_mgmt)) { sa = pmksa_cache_add(sm->pmksa, sm->pmk, pmk_len, NULL, NULL, 0, src_addr, sm->own_addr, sm->network_ctx, sm->key_mgmt, fils_cache_id); } if (!sm->cur_pmksa && pmkid && pmksa_cache_get(sm->pmksa, src_addr, sm->own_addr, pmkid, NULL, 0)) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: the new PMK matches with the " "PMKID"); abort_cached = 0; } else if (sa && !sm->cur_pmksa && pmkid) { /* * It looks like the authentication server * derived mismatching MSK. This should not * really happen, but bugs happen.. There is not * much we can do here without knowing what * exactly caused the server to misbehave. */ wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: PMKID mismatch - authentication server may have derived different MSK?!"); return -1; } if (!sm->cur_pmksa) sm->cur_pmksa = sa; #ifdef CONFIG_IEEE80211R } else if (wpa_key_mgmt_ft(sm->key_mgmt) && sm->ft_protocol) { wpa_printf(MSG_DEBUG, "FT: Continue 4-way handshake without PMK/PMKID for association using FT protocol"); #endif /* CONFIG_IEEE80211R */ } else { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Failed to get master session key from " "EAPOL state machines - key handshake " "aborted"); if (sm->cur_pmksa) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Cancelled PMKSA caching " "attempt"); sm->cur_pmksa = NULL; abort_cached = 1; } else if (!abort_cached) { return -1; } } } if (abort_cached && wpa_key_mgmt_wpa_ieee8021x(sm->key_mgmt) && !wpa_key_mgmt_suite_b(sm->key_mgmt) && !wpa_key_mgmt_ft(sm->key_mgmt) && sm->key_mgmt != WPA_KEY_MGMT_OSEN) { /* Send EAPOL-Start to trigger full EAP authentication. */ u8 *buf; size_t buflen; wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: no PMKSA entry found - trigger " "full EAP authentication"); buf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_START, NULL, 0, &buflen, NULL); if (buf) { /* Set and reset eapFail to allow EAP state machine to * proceed with new authentication. */ eapol_sm_notify_eap_fail(sm->eapol, true); eapol_sm_notify_eap_fail(sm->eapol, false); wpa_sm_ether_send(sm, sm->bssid, ETH_P_EAPOL, buf, buflen); os_free(buf); return -2; } return -1; } return 0; } /** * wpa_supplicant_send_2_of_4 - Send message 2 of WPA/RSN 4-Way Handshake * @sm: Pointer to WPA state machine data from wpa_sm_init() * @dst: Destination address for the frame * @key: Pointer to the EAPOL-Key frame header * @ver: Version bits from EAPOL-Key Key Info * @nonce: Nonce value for the EAPOL-Key frame * @wpa_ie: WPA/RSN IE * @wpa_ie_len: Length of the WPA/RSN IE * @ptk: PTK to use for keyed hash and encryption * Returns: >= 0 on success, < 0 on failure */ int wpa_supplicant_send_2_of_4(struct wpa_sm *sm, const unsigned char *dst, const struct wpa_eapol_key *key, int ver, const u8 *nonce, const u8 *wpa_ie, size_t wpa_ie_len, struct wpa_ptk *ptk) { size_t mic_len, hdrlen, rlen; struct wpa_eapol_key *reply; u8 *rbuf, *key_mic; u8 *rsn_ie_buf = NULL; u16 key_info; if (wpa_ie == NULL) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: No wpa_ie set - " "cannot generate msg 2/4"); return -1; } #ifdef CONFIG_IEEE80211R if (wpa_key_mgmt_ft(sm->key_mgmt)) { int res; wpa_hexdump(MSG_DEBUG, "WPA: WPA IE before FT processing", wpa_ie, wpa_ie_len); /* * Add PMKR1Name into RSN IE (PMKID-List) and add MDIE and * FTIE from (Re)Association Response. */ rsn_ie_buf = os_malloc(wpa_ie_len + 2 + 2 + PMKID_LEN + sm->assoc_resp_ies_len); if (rsn_ie_buf == NULL) return -1; os_memcpy(rsn_ie_buf, wpa_ie, wpa_ie_len); res = wpa_insert_pmkid(rsn_ie_buf, &wpa_ie_len, sm->pmk_r1_name); if (res < 0) { os_free(rsn_ie_buf); return -1; } wpa_hexdump(MSG_DEBUG, "WPA: WPA IE after PMKID[PMKR1Name] addition into RSNE", rsn_ie_buf, wpa_ie_len); if (sm->assoc_resp_ies) { wpa_hexdump(MSG_DEBUG, "WPA: Add assoc_resp_ies", sm->assoc_resp_ies, sm->assoc_resp_ies_len); os_memcpy(rsn_ie_buf + wpa_ie_len, sm->assoc_resp_ies, sm->assoc_resp_ies_len); wpa_ie_len += sm->assoc_resp_ies_len; } wpa_ie = rsn_ie_buf; } #endif /* CONFIG_IEEE80211R */ wpa_hexdump(MSG_DEBUG, "WPA: WPA IE for msg 2/4", wpa_ie, wpa_ie_len); mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len); hdrlen = sizeof(*reply) + mic_len + 2; rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, hdrlen + wpa_ie_len, &rlen, (void *) &reply); if (rbuf == NULL) { os_free(rsn_ie_buf); return -1; } reply->type = (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) ? EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA; key_info = ver | WPA_KEY_INFO_KEY_TYPE; if (sm->ptk_set && sm->proto != WPA_PROTO_WPA) key_info |= WPA_KEY_INFO_SECURE; if (mic_len) key_info |= WPA_KEY_INFO_MIC; else key_info |= WPA_KEY_INFO_ENCR_KEY_DATA; WPA_PUT_BE16(reply->key_info, key_info); if (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) WPA_PUT_BE16(reply->key_length, 0); else os_memcpy(reply->key_length, key->key_length, 2); os_memcpy(reply->replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); wpa_hexdump(MSG_DEBUG, "WPA: Replay Counter", reply->replay_counter, WPA_REPLAY_COUNTER_LEN); key_mic = (u8 *) (reply + 1); WPA_PUT_BE16(key_mic + mic_len, wpa_ie_len); /* Key Data Length */ os_memcpy(key_mic + mic_len + 2, wpa_ie, wpa_ie_len); /* Key Data */ os_free(rsn_ie_buf); os_memcpy(reply->key_nonce, nonce, WPA_NONCE_LEN); wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Sending EAPOL-Key 2/4"); return wpa_eapol_key_send(sm, ptk, ver, dst, ETH_P_EAPOL, rbuf, rlen, key_mic); } static int wpa_derive_ptk(struct wpa_sm *sm, const unsigned char *src_addr, const struct wpa_eapol_key *key, struct wpa_ptk *ptk) { int ret; const u8 *z = NULL; size_t z_len = 0, kdk_len; int akmp; #ifdef CONFIG_IEEE80211R if (wpa_key_mgmt_ft(sm->key_mgmt)) return wpa_derive_ptk_ft(sm, src_addr, key, ptk); #endif /* CONFIG_IEEE80211R */ #ifdef CONFIG_DPP2 if (sm->key_mgmt == WPA_KEY_MGMT_DPP && sm->dpp_z) { z = wpabuf_head(sm->dpp_z); z_len = wpabuf_len(sm->dpp_z); } #endif /* CONFIG_DPP2 */ akmp = sm->key_mgmt; #ifdef CONFIG_OWE if (sm->owe_ptk_workaround && akmp == WPA_KEY_MGMT_OWE && sm->pmk_len > 32) { wpa_printf(MSG_DEBUG, "OWE: Force SHA256 for PTK derivation"); akmp |= WPA_KEY_MGMT_PSK_SHA256; } #endif /* CONFIG_OWE */ if (sm->force_kdk_derivation || (sm->secure_ltf && ieee802_11_rsnx_capab(sm->ap_rsnxe, WLAN_RSNX_CAPAB_SECURE_LTF))) kdk_len = WPA_KDK_MAX_LEN; else kdk_len = 0; ret = wpa_pmk_to_ptk(sm->pmk, sm->pmk_len, "Pairwise key expansion", sm->own_addr, wpa_sm_get_auth_addr(sm), sm->snonce, key->key_nonce, ptk, akmp, sm->pairwise_cipher, z, z_len, kdk_len); if (ret) { wpa_printf(MSG_ERROR, "WPA: PTK derivation failed"); return ret; } #ifdef CONFIG_PASN if (sm->secure_ltf && ieee802_11_rsnx_capab(sm->ap_rsnxe, WLAN_RSNX_CAPAB_SECURE_LTF)) ret = wpa_ltf_keyseed(ptk, akmp, sm->pairwise_cipher); #endif /* CONFIG_PASN */ return ret; } static int wpa_handle_ext_key_id(struct wpa_sm *sm, struct wpa_eapol_ie_parse *kde) { if (sm->ext_key_id) { u16 key_id; if (!kde->key_id) { wpa_msg(sm->ctx->msg_ctx, sm->use_ext_key_id ? MSG_INFO : MSG_DEBUG, "RSN: No Key ID in Extended Key ID handshake"); sm->keyidx_active = 0; return sm->use_ext_key_id ? -1 : 0; } key_id = kde->key_id[0] & 0x03; if (key_id > 1) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Invalid Extended Key ID: %d", key_id); return -1; } wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Using Extended Key ID %d", key_id); sm->keyidx_active = key_id; sm->use_ext_key_id = 1; } else { if (kde->key_id && (kde->key_id[0] & 0x03)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Non-zero Extended Key ID Key ID in PTK0 handshake"); return -1; } if (kde->key_id) { /* This is not supposed to be included here, but ignore * the case of matching Key ID 0 just in case. */ wpa_msg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Extended Key ID Key ID 0 in PTK0 handshake"); } sm->keyidx_active = 0; sm->use_ext_key_id = 0; } return 0; } static u8 * rsn_add_kde(u8 *pos, u32 kde, const u8 *data, size_t data_len) { *pos++ = WLAN_EID_VENDOR_SPECIFIC; *pos++ = RSN_SELECTOR_LEN + data_len; RSN_SELECTOR_PUT(pos, kde); pos += RSN_SELECTOR_LEN; os_memcpy(pos, data, data_len); pos += data_len; return pos; } static size_t wpa_mlo_link_kde_len(struct wpa_sm *sm) { int i; unsigned int num_links = 0; for (i = 0; i < MAX_NUM_MLO_LINKS; i++) { if (sm->mlo.assoc_link_id != i && (sm->mlo.req_links & BIT(i))) num_links++; } return num_links * (RSN_SELECTOR_LEN + 1 + ETH_ALEN + 2); } static u8 * wpa_mlo_link_kde(struct wpa_sm *sm, u8 *pos) { int i; u8 hdr[1 + ETH_ALEN]; for (i = 0; i < MAX_NUM_MLO_LINKS; i++) { if (sm->mlo.assoc_link_id == i || !(sm->mlo.req_links & BIT(i))) continue; wpa_printf(MSG_DEBUG, "MLO: Add MLO Link %d KDE in EAPOL-Key 2/4", i); hdr[0] = i & 0xF; /* LinkID; no RSNE or RSNXE */ os_memcpy(&hdr[1], sm->mlo.links[i].addr, ETH_ALEN); pos = rsn_add_kde(pos, RSN_KEY_DATA_MLO_LINK, hdr, sizeof(hdr)); } return pos; } static bool is_valid_ap_mld_mac_kde(struct wpa_sm *sm, const u8 *mac_kde) { return mac_kde && os_memcmp(mac_kde, sm->mlo.ap_mld_addr, ETH_ALEN) == 0; } static void wpas_swap_tkip_mic_keys(struct wpa_ptk *ptk) { u8 buf[8]; /* Supplicant: swap tx/rx Mic keys */ os_memcpy(buf, &ptk->tk[16], 8); os_memcpy(&ptk->tk[16], &ptk->tk[24], 8); os_memcpy(&ptk->tk[24], buf, 8); forced_memzero(buf, sizeof(buf)); } static void wpa_supplicant_process_1_of_4_wpa(struct wpa_sm *sm, const unsigned char *src_addr, const struct wpa_eapol_key *key, u16 ver, const u8 *key_data, size_t key_data_len, enum frame_encryption encrypted) { struct wpa_eapol_ie_parse ie; struct wpa_ptk *ptk; int res; if (wpa_sm_get_network_ctx(sm) == NULL) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: No SSID info found (msg 1 of 4)"); return; } wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: RX message 1 of 4-Way Handshake from " MACSTR " (ver=%d)", MAC2STR(src_addr), ver); os_memset(&ie, 0, sizeof(ie)); res = wpa_supplicant_get_pmk(sm, src_addr, ie.pmkid); if (res == -2) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Do not reply to msg 1/4 - requesting full EAP authentication"); return; } if (res) goto failed; wpa_sm_set_state(sm, WPA_4WAY_HANDSHAKE); if (sm->renew_snonce) { if (random_get_bytes(sm->snonce, WPA_NONCE_LEN)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Failed to get random data for SNonce"); goto failed; } sm->renew_snonce = 0; wpa_hexdump(MSG_DEBUG, "WPA: Renewed SNonce", sm->snonce, WPA_NONCE_LEN); } /* Calculate PTK which will be stored as a temporary PTK until it has * been verified when processing message 3/4. */ ptk = &sm->tptk; if (wpa_derive_ptk(sm, src_addr, key, ptk) < 0) goto failed; if (sm->pairwise_cipher == WPA_CIPHER_TKIP) wpas_swap_tkip_mic_keys(ptk); sm->tptk_set = 1; if (wpa_supplicant_send_2_of_4(sm, wpa_sm_get_auth_addr(sm), key, ver, sm->snonce, sm->assoc_wpa_ie, sm->assoc_wpa_ie_len, ptk) < 0) goto failed; os_memcpy(sm->anonce, key->key_nonce, WPA_NONCE_LEN); return; failed: wpa_sm_deauthenticate(sm, WLAN_REASON_UNSPECIFIED); } static void wpa_supplicant_process_1_of_4(struct wpa_sm *sm, const unsigned char *src_addr, const struct wpa_eapol_key *key, u16 ver, const u8 *key_data, size_t key_data_len, enum frame_encryption encrypted) { struct wpa_eapol_ie_parse ie; struct wpa_ptk *ptk; int res; u8 *kde, *kde_buf = NULL; size_t kde_len; size_t mlo_kde_len = 0; if (encrypted == FRAME_NOT_ENCRYPTED && sm->tk_set && wpa_sm_pmf_enabled(sm)) { wpa_printf(MSG_DEBUG, "RSN: Discard unencrypted EAPOL-Key msg 1/4 when TK is set and PMF is enabled"); return; } if (wpa_sm_get_network_ctx(sm) == NULL) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: No SSID info " "found (msg 1 of 4)"); return; } if (sm->wpa_deny_ptk0_rekey && !sm->use_ext_key_id && wpa_sm_get_state(sm) == WPA_COMPLETED) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: PTK0 rekey not allowed, reconnecting"); wpa_sm_reconnect(sm); return; } wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: RX message 1 of 4-Way " "Handshake from " MACSTR " (ver=%d)", MAC2STR(src_addr), ver); os_memset(&ie, 0, sizeof(ie)); /* RSN: msg 1/4 should contain PMKID for the selected PMK */ wpa_hexdump(MSG_DEBUG, "RSN: msg 1/4 key data", key_data, key_data_len); if (wpa_supplicant_parse_ies(key_data, key_data_len, &ie) < 0) { wpa_printf(MSG_DEBUG, "RSN: Discard EAPOL-Key msg 1/4 with invalid IEs/KDEs"); return; } if (ie.pmkid) { wpa_hexdump(MSG_DEBUG, "RSN: PMKID from Authenticator", ie.pmkid, PMKID_LEN); } if (sm->mlo.valid_links && !is_valid_ap_mld_mac_kde(sm, ie.mac_addr)) { wpa_printf(MSG_INFO, "RSN: Discard EAPOL-Key msg 1/4 with invalid AP MLD MAC address KDE"); return; } res = wpa_supplicant_get_pmk(sm, src_addr, ie.pmkid); if (res == -2) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Do not reply to " "msg 1/4 - requesting full EAP authentication"); return; } if (res) goto failed; wpa_sm_set_state(sm, WPA_4WAY_HANDSHAKE); if (sm->renew_snonce) { if (random_get_bytes(sm->snonce, WPA_NONCE_LEN)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Failed to get random data for SNonce"); goto failed; } sm->renew_snonce = 0; wpa_hexdump(MSG_DEBUG, "WPA: Renewed SNonce", sm->snonce, WPA_NONCE_LEN); } /* Calculate PTK which will be stored as a temporary PTK until it has * been verified when processing message 3/4. */ ptk = &sm->tptk; if (wpa_derive_ptk(sm, src_addr, key, ptk) < 0) goto failed; if (sm->pairwise_cipher == WPA_CIPHER_TKIP) wpas_swap_tkip_mic_keys(ptk); sm->tptk_set = 1; /* Add MLO Link KDE and MAC KDE in M2 for ML connection */ if (sm->mlo.valid_links) mlo_kde_len = wpa_mlo_link_kde_len(sm) + RSN_SELECTOR_LEN + ETH_ALEN + 2; kde = sm->assoc_wpa_ie; kde_len = sm->assoc_wpa_ie_len; kde_buf = os_malloc(kde_len + 2 + RSN_SELECTOR_LEN + 3 + sm->assoc_rsnxe_len + 2 + RSN_SELECTOR_LEN + 1 + 2 + RSN_SELECTOR_LEN + 2 + mlo_kde_len); if (!kde_buf) goto failed; os_memcpy(kde_buf, kde, kde_len); kde = kde_buf; #ifdef CONFIG_OCV if (wpa_sm_ocv_enabled(sm)) { struct wpa_channel_info ci; u8 *pos; pos = kde + kde_len; if (wpa_sm_channel_info(sm, &ci) != 0) { wpa_printf(MSG_WARNING, "Failed to get channel info for OCI element in EAPOL-Key 2/4"); goto failed; } #ifdef CONFIG_TESTING_OPTIONS if (sm->oci_freq_override_eapol) { wpa_printf(MSG_INFO, "TEST: Override OCI KDE frequency %d -> %d MHz", ci.frequency, sm->oci_freq_override_eapol); ci.frequency = sm->oci_freq_override_eapol; } #endif /* CONFIG_TESTING_OPTIONS */ if (ocv_insert_oci_kde(&ci, &pos) < 0) goto failed; kde_len = pos - kde; } #endif /* CONFIG_OCV */ if (sm->assoc_rsnxe && sm->assoc_rsnxe_len) { os_memcpy(kde + kde_len, sm->assoc_rsnxe, sm->assoc_rsnxe_len); kde_len += sm->assoc_rsnxe_len; } #ifdef CONFIG_P2P if (sm->p2p) { u8 *pos; wpa_printf(MSG_DEBUG, "P2P: Add IP Address Request KDE into EAPOL-Key 2/4"); pos = kde + kde_len; *pos++ = WLAN_EID_VENDOR_SPECIFIC; *pos++ = RSN_SELECTOR_LEN + 1; RSN_SELECTOR_PUT(pos, WFA_KEY_DATA_IP_ADDR_REQ); pos += RSN_SELECTOR_LEN; *pos++ = 0x01; kde_len = pos - kde; } #endif /* CONFIG_P2P */ #ifdef CONFIG_DPP2 if (DPP_VERSION > 1 && sm->key_mgmt == WPA_KEY_MGMT_DPP) { u8 *pos; wpa_printf(MSG_DEBUG, "DPP: Add DPP KDE into EAPOL-Key 2/4"); pos = kde + kde_len; *pos++ = WLAN_EID_VENDOR_SPECIFIC; *pos++ = RSN_SELECTOR_LEN + 2; RSN_SELECTOR_PUT(pos, WFA_KEY_DATA_DPP); pos += RSN_SELECTOR_LEN; *pos++ = DPP_VERSION; /* Protocol Version */ *pos = 0; /* Flags */ if (sm->dpp_pfs == 0) *pos |= DPP_KDE_PFS_ALLOWED; else if (sm->dpp_pfs == 1) *pos |= DPP_KDE_PFS_ALLOWED | DPP_KDE_PFS_REQUIRED; pos++; kde_len = pos - kde; } #endif /* CONFIG_DPP2 */ if (sm->mlo.valid_links) { u8 *pos; /* Add MAC KDE */ wpa_printf(MSG_DEBUG, "MLO: Add MAC KDE into EAPOL-Key 2/4"); pos = kde + kde_len; pos = rsn_add_kde(pos, RSN_KEY_DATA_MAC_ADDR, sm->own_addr, ETH_ALEN); /* Add MLO Link KDE */ wpa_printf(MSG_DEBUG, "Add MLO Link KDE(s) into EAPOL-Key 2/4"); pos = wpa_mlo_link_kde(sm, pos); kde_len = pos - kde; } if (wpa_supplicant_send_2_of_4(sm, wpa_sm_get_auth_addr(sm), key, ver, sm->snonce, kde, kde_len, ptk) < 0) goto failed; os_free(kde_buf); os_memcpy(sm->anonce, key->key_nonce, WPA_NONCE_LEN); return; failed: os_free(kde_buf); wpa_sm_deauthenticate(sm, WLAN_REASON_UNSPECIFIED); } static void wpa_sm_start_preauth(void *eloop_ctx, void *timeout_ctx) { struct wpa_sm *sm = eloop_ctx; rsn_preauth_candidate_process(sm); } static void wpa_supplicant_key_neg_complete(struct wpa_sm *sm, const u8 *addr, int secure) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Key negotiation completed with " MACSTR " [PTK=%s GTK=%s]", MAC2STR(addr), wpa_cipher_txt(sm->pairwise_cipher), wpa_cipher_txt(sm->group_cipher)); wpa_sm_cancel_auth_timeout(sm); wpa_sm_set_state(sm, WPA_COMPLETED); if (secure) { wpa_sm_mlme_setprotection( sm, addr, MLME_SETPROTECTION_PROTECT_TYPE_RX_TX, MLME_SETPROTECTION_KEY_TYPE_PAIRWISE); eapol_sm_notify_portValid(sm->eapol, true); if (wpa_key_mgmt_wpa_psk(sm->key_mgmt) || sm->key_mgmt == WPA_KEY_MGMT_DPP || sm->key_mgmt == WPA_KEY_MGMT_OWE) eapol_sm_notify_eap_success(sm->eapol, true); /* * Start preauthentication after a short wait to avoid a * possible race condition between the data receive and key * configuration after the 4-Way Handshake. This increases the * likelihood of the first preauth EAPOL-Start frame getting to * the target AP. */ if (!dl_list_empty(&sm->pmksa_candidates)) eloop_register_timeout(1, 0, wpa_sm_start_preauth, sm, NULL); } if (sm->cur_pmksa && sm->cur_pmksa->opportunistic) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Authenticator accepted " "opportunistic PMKSA entry - marking it valid"); sm->cur_pmksa->opportunistic = 0; } #ifdef CONFIG_IEEE80211R if (wpa_key_mgmt_ft(sm->key_mgmt)) { /* Prepare for the next transition */ wpa_ft_prepare_auth_request(sm, NULL); } #endif /* CONFIG_IEEE80211R */ } static void wpa_sm_rekey_ptk(void *eloop_ctx, void *timeout_ctx) { struct wpa_sm *sm = eloop_ctx; wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Request PTK rekeying"); wpa_sm_key_request(sm, 0, 1); } static int wpa_supplicant_install_ptk(struct wpa_sm *sm, const struct wpa_eapol_key *key, enum key_flag key_flag) { int keylen, rsclen; enum wpa_alg alg; const u8 *key_rsc; if (sm->ptk.installed) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Do not re-install same PTK to the driver"); return 0; } wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Installing PTK to the driver"); if (sm->pairwise_cipher == WPA_CIPHER_NONE) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Pairwise Cipher " "Suite: NONE - do not use pairwise keys"); return 0; } if (!wpa_cipher_valid_pairwise(sm->pairwise_cipher)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Unsupported pairwise cipher %d", sm->pairwise_cipher); return -1; } alg = wpa_cipher_to_alg(sm->pairwise_cipher); keylen = wpa_cipher_key_len(sm->pairwise_cipher); if (keylen <= 0 || (unsigned int) keylen != sm->ptk.tk_len) { wpa_printf(MSG_DEBUG, "WPA: TK length mismatch: %d != %lu", keylen, (long unsigned int) sm->ptk.tk_len); return -1; } rsclen = wpa_cipher_rsc_len(sm->pairwise_cipher); if (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) { key_rsc = null_rsc; } else { key_rsc = key->key_rsc; wpa_hexdump(MSG_DEBUG, "WPA: RSC", key_rsc, rsclen); } if (wpa_sm_set_key(sm, -1, alg, wpa_sm_get_auth_addr(sm), sm->keyidx_active, 1, key_rsc, rsclen, sm->ptk.tk, keylen, KEY_FLAG_PAIRWISE | key_flag) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Failed to set PTK to the driver (alg=%d keylen=%d auth_addr=" MACSTR " idx=%d key_flag=0x%x)", alg, keylen, MAC2STR(wpa_sm_get_auth_addr(sm)), sm->keyidx_active, key_flag); return -1; } #ifdef CONFIG_PASN if (sm->secure_ltf && ieee802_11_rsnx_capab(sm->ap_rsnxe, WLAN_RSNX_CAPAB_SECURE_LTF) && wpa_sm_set_ltf_keyseed(sm, sm->own_addr, sm->bssid, sm->ptk.ltf_keyseed_len, sm->ptk.ltf_keyseed) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Failed to set LTF keyseed to the driver (keylen=%zu bssid=" MACSTR ")", sm->ptk.ltf_keyseed_len, MAC2STR(sm->bssid)); return -1; } #endif /* CONFIG_PASN */ wpa_sm_store_ptk(sm, sm->bssid, sm->pairwise_cipher, sm->dot11RSNAConfigPMKLifetime, &sm->ptk); /* TK is not needed anymore in supplicant */ os_memset(sm->ptk.tk, 0, WPA_TK_MAX_LEN); sm->ptk.tk_len = 0; sm->ptk.installed = 1; sm->tk_set = true; if (sm->wpa_ptk_rekey) { eloop_cancel_timeout(wpa_sm_rekey_ptk, sm, NULL); eloop_register_timeout(sm->wpa_ptk_rekey, 0, wpa_sm_rekey_ptk, sm, NULL); } return 0; } static int wpa_supplicant_activate_ptk(struct wpa_sm *sm) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Activate PTK (idx=%d auth_addr=" MACSTR ")", sm->keyidx_active, MAC2STR(wpa_sm_get_auth_addr(sm))); if (wpa_sm_set_key(sm, -1, 0, wpa_sm_get_auth_addr(sm), sm->keyidx_active, 0, NULL, 0, NULL, 0, KEY_FLAG_PAIRWISE_RX_TX_MODIFY) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Failed to activate PTK for TX (idx=%d auth_addr=" MACSTR ")", sm->keyidx_active, MAC2STR(wpa_sm_get_auth_addr(sm))); return -1; } return 0; } static int wpa_supplicant_check_group_cipher(struct wpa_sm *sm, int group_cipher, int keylen, int maxkeylen, int *key_rsc_len, enum wpa_alg *alg) { int klen; *alg = wpa_cipher_to_alg(group_cipher); if (*alg == WPA_ALG_NONE) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Unsupported Group Cipher %d", group_cipher); return -1; } *key_rsc_len = wpa_cipher_rsc_len(group_cipher); klen = wpa_cipher_key_len(group_cipher); if (keylen != klen || maxkeylen < klen) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Unsupported %s Group Cipher key length %d (%d)", wpa_cipher_txt(group_cipher), keylen, maxkeylen); return -1; } return 0; } struct wpa_gtk_data { enum wpa_alg alg; int tx, key_rsc_len, keyidx; u8 gtk[32]; int gtk_len; }; static int wpa_supplicant_install_gtk(struct wpa_sm *sm, const struct wpa_gtk_data *gd, const u8 *key_rsc, int wnm_sleep) { const u8 *_gtk = gd->gtk; u8 gtk_buf[32]; /* Detect possible key reinstallation */ if ((sm->gtk.gtk_len == (size_t) gd->gtk_len && os_memcmp(sm->gtk.gtk, gd->gtk, sm->gtk.gtk_len) == 0) || (sm->gtk_wnm_sleep.gtk_len == (size_t) gd->gtk_len && os_memcmp(sm->gtk_wnm_sleep.gtk, gd->gtk, sm->gtk_wnm_sleep.gtk_len) == 0)) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Not reinstalling already in-use GTK to the driver (keyidx=%d tx=%d len=%d)", gd->keyidx, gd->tx, gd->gtk_len); return 0; } wpa_hexdump_key(MSG_DEBUG, "WPA: Group Key", gd->gtk, gd->gtk_len); wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Installing GTK to the driver (keyidx=%d tx=%d len=%d)", gd->keyidx, gd->tx, gd->gtk_len); wpa_hexdump(MSG_DEBUG, "WPA: RSC", key_rsc, gd->key_rsc_len); if (sm->group_cipher == WPA_CIPHER_TKIP) { /* Swap Tx/Rx keys for Michael MIC */ os_memcpy(gtk_buf, gd->gtk, 16); os_memcpy(gtk_buf + 16, gd->gtk + 24, 8); os_memcpy(gtk_buf + 24, gd->gtk + 16, 8); _gtk = gtk_buf; } if (sm->pairwise_cipher == WPA_CIPHER_NONE) { if (wpa_sm_set_key(sm, -1, gd->alg, NULL, gd->keyidx, 1, key_rsc, gd->key_rsc_len, _gtk, gd->gtk_len, KEY_FLAG_GROUP_RX_TX_DEFAULT) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Failed to set GTK to the driver " "(Group only)"); forced_memzero(gtk_buf, sizeof(gtk_buf)); return -1; } } else if (wpa_sm_set_key(sm, -1, gd->alg, broadcast_ether_addr, gd->keyidx, gd->tx, key_rsc, gd->key_rsc_len, _gtk, gd->gtk_len, KEY_FLAG_GROUP_RX) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Failed to set GTK to " "the driver (alg=%d keylen=%d keyidx=%d)", gd->alg, gd->gtk_len, gd->keyidx); forced_memzero(gtk_buf, sizeof(gtk_buf)); return -1; } forced_memzero(gtk_buf, sizeof(gtk_buf)); if (wnm_sleep) { sm->gtk_wnm_sleep.gtk_len = gd->gtk_len; os_memcpy(sm->gtk_wnm_sleep.gtk, gd->gtk, sm->gtk_wnm_sleep.gtk_len); } else { sm->gtk.gtk_len = gd->gtk_len; os_memcpy(sm->gtk.gtk, gd->gtk, sm->gtk.gtk_len); } return 0; } static int wpa_supplicant_install_mlo_gtk(struct wpa_sm *sm, u8 link_id, const struct wpa_gtk_data *gd, const u8 *key_rsc, int wnm_sleep) { const u8 *gtk = gd->gtk; /* Detect possible key reinstallation */ if ((sm->mlo.links[link_id].gtk.gtk_len == (size_t) gd->gtk_len && os_memcmp(sm->mlo.links[link_id].gtk.gtk, gd->gtk, sm->mlo.links[link_id].gtk.gtk_len) == 0) || (sm->mlo.links[link_id].gtk_wnm_sleep.gtk_len == (size_t) gd->gtk_len && os_memcmp(sm->mlo.links[link_id].gtk_wnm_sleep.gtk, gd->gtk, sm->mlo.links[link_id].gtk_wnm_sleep.gtk_len) == 0)) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Not reinstalling already in-use GTK to the driver (link_id=%d keyidx=%d tx=%d len=%d)", link_id, gd->keyidx, gd->tx, gd->gtk_len); return 0; } wpa_hexdump_link_key(MSG_DEBUG, link_id, "RSN: Group Key", gd->gtk, gd->gtk_len); wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Installing GTK to the driver (link_id=%d keyidx=%d tx=%d len=%d)", link_id, gd->keyidx, gd->tx, gd->gtk_len); wpa_hexdump_link(MSG_DEBUG, link_id, "RSN: RSC", key_rsc, gd->key_rsc_len); if (wpa_sm_set_key(sm, link_id, gd->alg, broadcast_ether_addr, gd->keyidx, gd->tx, key_rsc, gd->key_rsc_len, gtk, gd->gtk_len, KEY_FLAG_GROUP_RX) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "RSN: Failed to set GTK to the driver (link_id=%d alg=%d keylen=%d keyidx=%d)", link_id, gd->alg, gd->gtk_len, gd->keyidx); return -1; } if (wnm_sleep) { sm->mlo.links[link_id].gtk_wnm_sleep.gtk_len = gd->gtk_len; os_memcpy(sm->mlo.links[link_id].gtk_wnm_sleep.gtk, gd->gtk, sm->mlo.links[link_id].gtk_wnm_sleep.gtk_len); } else { sm->mlo.links[link_id].gtk.gtk_len = gd->gtk_len; os_memcpy(sm->mlo.links[link_id].gtk.gtk, gd->gtk, sm->mlo.links[link_id].gtk.gtk_len); } return 0; } static int wpa_supplicant_gtk_tx_bit_workaround(const struct wpa_sm *sm, int tx) { if (tx && sm->pairwise_cipher != WPA_CIPHER_NONE) { /* Ignore Tx bit for GTK if a pairwise key is used. One AP * seemed to set this bit (incorrectly, since Tx is only when * doing Group Key only APs) and without this workaround, the * data connection does not work because wpa_supplicant * configured non-zero keyidx to be used for unicast. */ wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Tx bit set for GTK, but pairwise " "keys are used - ignore Tx bit"); return 0; } return tx; } static int wpa_supplicant_rsc_relaxation(const struct wpa_sm *sm, const u8 *rsc) { int rsclen; if (!sm->wpa_rsc_relaxation) return 0; rsclen = wpa_cipher_rsc_len(sm->group_cipher); /* * Try to detect RSC (endian) corruption issue where the AP sends * the RSC bytes in EAPOL-Key message in the wrong order, both if * it's actually a 6-byte field (as it should be) and if it treats * it as an 8-byte field. * An AP model known to have this bug is the Sapido RB-1632. */ if (rsclen == 6 && ((rsc[5] && !rsc[0]) || rsc[6] || rsc[7])) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "RSC %02x%02x%02x%02x%02x%02x%02x%02x is likely bogus, using 0", rsc[0], rsc[1], rsc[2], rsc[3], rsc[4], rsc[5], rsc[6], rsc[7]); return 1; } return 0; } static int wpa_supplicant_mlo_gtk(struct wpa_sm *sm, u8 link_id, const u8 *gtk, size_t gtk_len, int key_info) { struct wpa_gtk_data gd; const u8 *key_rsc; int ret; /* * MLO GTK KDE format: * KeyID[bits 0-1], Tx [bit 2], Reserved [bit 3], link id [4-7] * PN * GTK */ os_memset(&gd, 0, sizeof(gd)); wpa_hexdump_link_key(MSG_DEBUG, link_id, "RSN: received GTK in pairwise handshake", gtk, gtk_len); if (gtk_len < RSN_MLO_GTK_KDE_PREFIX_LENGTH || gtk_len - RSN_MLO_GTK_KDE_PREFIX_LENGTH > sizeof(gd.gtk)) return -1; gd.keyidx = gtk[0] & 0x3; gtk += 1; gtk_len -= 1; key_rsc = gtk; gtk += 6; gtk_len -= 6; os_memcpy(gd.gtk, gtk, gtk_len); gd.gtk_len = gtk_len; ret = 0; if (wpa_supplicant_check_group_cipher(sm, sm->group_cipher, gtk_len, gtk_len, &gd.key_rsc_len, &gd.alg) || wpa_supplicant_install_mlo_gtk(sm, link_id, &gd, key_rsc, 0)) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Failed to install GTK for MLO Link ID %u", link_id); ret = -1; goto out; } out: forced_memzero(&gd, sizeof(gd)); return ret; } static int wpa_supplicant_pairwise_mlo_gtk(struct wpa_sm *sm, const struct wpa_eapol_key *key, struct wpa_eapol_ie_parse *ie, int key_info) { u8 i; for (i = 0; i < MAX_NUM_MLO_LINKS; i++) { if (!(sm->mlo.valid_links & BIT(i))) continue; if (!ie->mlo_gtk[i]) { wpa_msg(sm->ctx->msg_ctx, MSG_ERROR, "MLO RSN: GTK not found for link ID %u", i); return -1; } if (wpa_supplicant_mlo_gtk(sm, i, ie->mlo_gtk[i], ie->mlo_gtk_len[i], key_info)) return -1; } return 0; } static int wpa_supplicant_pairwise_gtk(struct wpa_sm *sm, const struct wpa_eapol_key *key, const u8 *gtk, size_t gtk_len, int key_info) { struct wpa_gtk_data gd; const u8 *key_rsc; /* * IEEE Std 802.11i-2004 - 8.5.2 EAPOL-Key frames - Figure 43x * GTK KDE format: * KeyID[bits 0-1], Tx [bit 2], Reserved [bits 3-7] * Reserved [bits 0-7] * GTK */ os_memset(&gd, 0, sizeof(gd)); wpa_hexdump_key(MSG_DEBUG, "RSN: received GTK in pairwise handshake", gtk, gtk_len); if (gtk_len < 2 || gtk_len - 2 > sizeof(gd.gtk)) return -1; gd.keyidx = gtk[0] & 0x3; gd.tx = wpa_supplicant_gtk_tx_bit_workaround(sm, !!(gtk[0] & BIT(2))); gtk += 2; gtk_len -= 2; os_memcpy(gd.gtk, gtk, gtk_len); gd.gtk_len = gtk_len; key_rsc = key->key_rsc; if (wpa_supplicant_rsc_relaxation(sm, key->key_rsc)) key_rsc = null_rsc; if (sm->group_cipher != WPA_CIPHER_GTK_NOT_USED && (wpa_supplicant_check_group_cipher(sm, sm->group_cipher, gtk_len, gtk_len, &gd.key_rsc_len, &gd.alg) || wpa_supplicant_install_gtk(sm, &gd, key_rsc, 0))) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Failed to install GTK"); forced_memzero(&gd, sizeof(gd)); return -1; } forced_memzero(&gd, sizeof(gd)); return 0; } static int wpa_supplicant_install_igtk(struct wpa_sm *sm, const struct wpa_igtk_kde *igtk, int wnm_sleep) { size_t len = wpa_cipher_key_len(sm->mgmt_group_cipher); u16 keyidx = WPA_GET_LE16(igtk->keyid); /* Detect possible key reinstallation */ if ((sm->igtk.igtk_len == len && os_memcmp(sm->igtk.igtk, igtk->igtk, sm->igtk.igtk_len) == 0) || (sm->igtk_wnm_sleep.igtk_len == len && os_memcmp(sm->igtk_wnm_sleep.igtk, igtk->igtk, sm->igtk_wnm_sleep.igtk_len) == 0)) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Not reinstalling already in-use IGTK to the driver (keyidx=%d)", keyidx); return 0; } wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: IGTK keyid %d pn " COMPACT_MACSTR, keyidx, MAC2STR(igtk->pn)); wpa_hexdump_key(MSG_DEBUG, "WPA: IGTK", igtk->igtk, len); if (keyidx > 4095) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Invalid IGTK KeyID %d", keyidx); return -1; } if (wpa_sm_set_key(sm, -1, wpa_cipher_to_alg(sm->mgmt_group_cipher), broadcast_ether_addr, keyidx, 0, igtk->pn, sizeof(igtk->pn), igtk->igtk, len, KEY_FLAG_GROUP_RX) < 0) { if (keyidx == 0x0400 || keyidx == 0x0500) { /* Assume the AP has broken PMF implementation since it * seems to have swapped the KeyID bytes. The AP cannot * be trusted to implement BIP correctly or provide a * valid IGTK, so do not try to configure this key with * swapped KeyID bytes. Instead, continue without * configuring the IGTK so that the driver can drop any * received group-addressed robust management frames due * to missing keys. * * Normally, this error behavior would result in us * disconnecting, but there are number of deployed APs * with this broken behavior, so as an interoperability * workaround, allow the connection to proceed. */ wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Ignore IGTK configuration error due to invalid IGTK KeyID byte order"); } else { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Failed to configure IGTK to the driver"); return -1; } } if (wnm_sleep) { sm->igtk_wnm_sleep.igtk_len = len; os_memcpy(sm->igtk_wnm_sleep.igtk, igtk->igtk, sm->igtk_wnm_sleep.igtk_len); } else { sm->igtk.igtk_len = len; os_memcpy(sm->igtk.igtk, igtk->igtk, sm->igtk.igtk_len); } return 0; } static int wpa_supplicant_install_bigtk(struct wpa_sm *sm, const struct wpa_bigtk_kde *bigtk, int wnm_sleep) { size_t len = wpa_cipher_key_len(sm->mgmt_group_cipher); u16 keyidx = WPA_GET_LE16(bigtk->keyid); /* Detect possible key reinstallation */ if ((sm->bigtk.bigtk_len == len && os_memcmp(sm->bigtk.bigtk, bigtk->bigtk, sm->bigtk.bigtk_len) == 0) || (sm->bigtk_wnm_sleep.bigtk_len == len && os_memcmp(sm->bigtk_wnm_sleep.bigtk, bigtk->bigtk, sm->bigtk_wnm_sleep.bigtk_len) == 0)) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Not reinstalling already in-use BIGTK to the driver (keyidx=%d)", keyidx); return 0; } wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: BIGTK keyid %d pn " COMPACT_MACSTR, keyidx, MAC2STR(bigtk->pn)); wpa_hexdump_key(MSG_DEBUG, "WPA: BIGTK", bigtk->bigtk, len); if (keyidx < 6 || keyidx > 7) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Invalid BIGTK KeyID %d", keyidx); return -1; } if (wpa_sm_set_key(sm, -1, wpa_cipher_to_alg(sm->mgmt_group_cipher), broadcast_ether_addr, keyidx, 0, bigtk->pn, sizeof(bigtk->pn), bigtk->bigtk, len, KEY_FLAG_GROUP_RX) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Failed to configure BIGTK to the driver"); return -1; } if (wnm_sleep) { sm->bigtk_wnm_sleep.bigtk_len = len; os_memcpy(sm->bigtk_wnm_sleep.bigtk, bigtk->bigtk, sm->bigtk_wnm_sleep.bigtk_len); } else { sm->bigtk.bigtk_len = len; os_memcpy(sm->bigtk.bigtk, bigtk->bigtk, sm->bigtk.bigtk_len); } return 0; } static int wpa_supplicant_install_mlo_igtk(struct wpa_sm *sm, u8 link_id, const struct rsn_mlo_igtk_kde *igtk, int wnm_sleep) { size_t len = wpa_cipher_key_len(sm->mgmt_group_cipher); u16 keyidx = WPA_GET_LE16(igtk->keyid); /* Detect possible key reinstallation */ if ((sm->mlo.links[link_id].igtk.igtk_len == len && os_memcmp(sm->mlo.links[link_id].igtk.igtk, igtk->igtk, sm->mlo.links[link_id].igtk.igtk_len) == 0) || (sm->mlo.links[link_id].igtk_wnm_sleep.igtk_len == len && os_memcmp(sm->mlo.links[link_id].igtk_wnm_sleep.igtk, igtk->igtk, sm->mlo.links[link_id].igtk_wnm_sleep.igtk_len) == 0)) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Not reinstalling already in-use IGTK to the driver (link_id=%d keyidx=%d)", link_id, keyidx); return 0; } wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: MLO Link %u IGTK keyid %d pn " COMPACT_MACSTR, link_id, keyidx, MAC2STR(igtk->pn)); wpa_hexdump_link_key(MSG_DEBUG, link_id, "RSN: IGTK", igtk->igtk, len); if (keyidx > 4095) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "RSN: Invalid MLO Link %d IGTK KeyID %d", link_id, keyidx); return -1; } if (wpa_sm_set_key(sm, link_id, wpa_cipher_to_alg(sm->mgmt_group_cipher), broadcast_ether_addr, keyidx, 0, igtk->pn, sizeof(igtk->pn), igtk->igtk, len, KEY_FLAG_GROUP_RX) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "RSN: Failed to configure MLO Link %d IGTK to the driver", link_id); return -1; } if (wnm_sleep) { sm->mlo.links[link_id].igtk_wnm_sleep.igtk_len = len; os_memcpy(sm->mlo.links[link_id].igtk_wnm_sleep.igtk, igtk->igtk, sm->mlo.links[link_id].igtk_wnm_sleep.igtk_len); } else { sm->mlo.links[link_id].igtk.igtk_len = len; os_memcpy(sm->mlo.links[link_id].igtk.igtk, igtk->igtk, sm->mlo.links[link_id].igtk.igtk_len); } return 0; } static int wpa_supplicant_install_mlo_bigtk(struct wpa_sm *sm, u8 link_id, const struct rsn_mlo_bigtk_kde *bigtk, int wnm_sleep) { size_t len = wpa_cipher_key_len(sm->mgmt_group_cipher); u16 keyidx = WPA_GET_LE16(bigtk->keyid); /* Detect possible key reinstallation */ if ((sm->mlo.links[link_id].bigtk.bigtk_len == len && os_memcmp(sm->mlo.links[link_id].bigtk.bigtk, bigtk->bigtk, sm->mlo.links[link_id].bigtk.bigtk_len) == 0) || (sm->mlo.links[link_id].bigtk_wnm_sleep.bigtk_len == len && os_memcmp(sm->mlo.links[link_id].bigtk_wnm_sleep.bigtk, bigtk->bigtk, sm->mlo.links[link_id].bigtk_wnm_sleep.bigtk_len) == 0)) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Not reinstalling already in-use BIGTK to the driver (link_id=%d keyidx=%d)", link_id, keyidx); return 0; } wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: MLO Link %u BIGTK keyid %d pn " COMPACT_MACSTR, link_id, keyidx, MAC2STR(bigtk->pn)); wpa_hexdump_link_key(MSG_DEBUG, link_id, "RSN: BIGTK", bigtk->bigtk, len); if (keyidx < 6 || keyidx > 7) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "RSN: Invalid MLO Link %d BIGTK KeyID %d", link_id, keyidx); return -1; } if (wpa_sm_set_key(sm, link_id, wpa_cipher_to_alg(sm->mgmt_group_cipher), broadcast_ether_addr, keyidx, 0, bigtk->pn, sizeof(bigtk->pn), bigtk->bigtk, len, KEY_FLAG_GROUP_RX) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "RSN: Failed to configure MLO Link %d BIGTK to the driver", link_id); return -1; } if (wnm_sleep) { sm->mlo.links[link_id].bigtk_wnm_sleep.bigtk_len = len; os_memcpy(sm->mlo.links[link_id].bigtk_wnm_sleep.bigtk, bigtk->bigtk, sm->mlo.links[link_id].bigtk_wnm_sleep.bigtk_len); } else { sm->mlo.links[link_id].bigtk.bigtk_len = len; os_memcpy(sm->mlo.links[link_id].bigtk.bigtk, bigtk->bigtk, sm->mlo.links[link_id].bigtk.bigtk_len); } return 0; } static int _mlo_ieee80211w_set_keys(struct wpa_sm *sm, u8 link_id, struct wpa_eapol_ie_parse *ie) { size_t len; if (ie->mlo_igtk[link_id]) { len = wpa_cipher_key_len(sm->mgmt_group_cipher); if (ie->mlo_igtk_len[link_id] != RSN_MLO_IGTK_KDE_PREFIX_LENGTH + len) return -1; if (wpa_supplicant_install_mlo_igtk( sm, link_id, (const struct rsn_mlo_igtk_kde *) ie->mlo_igtk[link_id], 0) < 0) return -1; } if (ie->mlo_bigtk[link_id] && sm->beacon_prot) { len = wpa_cipher_key_len(sm->mgmt_group_cipher); if (ie->mlo_bigtk_len[link_id] != RSN_MLO_BIGTK_KDE_PREFIX_LENGTH + len) return -1; if (wpa_supplicant_install_mlo_bigtk( sm, link_id, (const struct rsn_mlo_bigtk_kde *) ie->mlo_bigtk[link_id], 0) < 0) return -1; } return 0; } static int mlo_ieee80211w_set_keys(struct wpa_sm *sm, struct wpa_eapol_ie_parse *ie) { u8 i; if (!wpa_cipher_valid_mgmt_group(sm->mgmt_group_cipher) || sm->mgmt_group_cipher == WPA_CIPHER_GTK_NOT_USED) return 0; for (i = 0; i < MAX_NUM_MLO_LINKS; i++) { if (!(sm->mlo.valid_links & BIT(i))) continue; if (_mlo_ieee80211w_set_keys(sm, i, ie)) return -1; } return 0; } static int ieee80211w_set_keys(struct wpa_sm *sm, struct wpa_eapol_ie_parse *ie) { size_t len; if (!wpa_cipher_valid_mgmt_group(sm->mgmt_group_cipher) || sm->mgmt_group_cipher == WPA_CIPHER_GTK_NOT_USED) return 0; if (ie->igtk) { const struct wpa_igtk_kde *igtk; len = wpa_cipher_key_len(sm->mgmt_group_cipher); if (ie->igtk_len != WPA_IGTK_KDE_PREFIX_LEN + len) return -1; igtk = (const struct wpa_igtk_kde *) ie->igtk; if (wpa_supplicant_install_igtk(sm, igtk, 0) < 0) return -1; } if (ie->bigtk && sm->beacon_prot) { const struct wpa_bigtk_kde *bigtk; len = wpa_cipher_key_len(sm->mgmt_group_cipher); if (ie->bigtk_len != WPA_BIGTK_KDE_PREFIX_LEN + len) return -1; bigtk = (const struct wpa_bigtk_kde *) ie->bigtk; if (wpa_supplicant_install_bigtk(sm, bigtk, 0) < 0) return -1; } return 0; } static void wpa_report_ie_mismatch(struct wpa_sm *sm, const char *reason, const u8 *src_addr, const u8 *wpa_ie, size_t wpa_ie_len, const u8 *rsn_ie, size_t rsn_ie_len) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: %s (src=" MACSTR ")", reason, MAC2STR(src_addr)); if (sm->ap_wpa_ie) { wpa_hexdump(MSG_INFO, "WPA: WPA IE in Beacon/ProbeResp", sm->ap_wpa_ie, sm->ap_wpa_ie_len); } if (wpa_ie) { if (!sm->ap_wpa_ie) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: No WPA IE in Beacon/ProbeResp"); } wpa_hexdump(MSG_INFO, "WPA: WPA IE in 3/4 msg", wpa_ie, wpa_ie_len); } if (sm->ap_rsn_ie) { wpa_hexdump(MSG_INFO, "WPA: RSN IE in Beacon/ProbeResp", sm->ap_rsn_ie, sm->ap_rsn_ie_len); } if (rsn_ie) { if (!sm->ap_rsn_ie) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: No RSN IE in Beacon/ProbeResp"); } wpa_hexdump(MSG_INFO, "WPA: RSN IE in 3/4 msg", rsn_ie, rsn_ie_len); } wpa_sm_deauthenticate(sm, WLAN_REASON_IE_IN_4WAY_DIFFERS); } #ifdef CONFIG_IEEE80211R static int ft_validate_mdie(struct wpa_sm *sm, const unsigned char *src_addr, struct wpa_eapol_ie_parse *ie, const u8 *assoc_resp_mdie) { struct rsn_mdie *mdie; mdie = (struct rsn_mdie *) (ie->mdie + 2); if (ie->mdie == NULL || ie->mdie_len < 2 + sizeof(*mdie) || os_memcmp(mdie->mobility_domain, sm->mobility_domain, MOBILITY_DOMAIN_ID_LEN) != 0) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "FT: MDIE in msg 3/4 did " "not match with the current mobility domain"); return -1; } if (assoc_resp_mdie && (assoc_resp_mdie[1] != ie->mdie[1] || os_memcmp(assoc_resp_mdie, ie->mdie, 2 + ie->mdie[1]) != 0)) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "FT: MDIE mismatch"); wpa_hexdump(MSG_DEBUG, "FT: MDIE in EAPOL-Key msg 3/4", ie->mdie, 2 + ie->mdie[1]); wpa_hexdump(MSG_DEBUG, "FT: MDIE in (Re)Association Response", assoc_resp_mdie, 2 + assoc_resp_mdie[1]); return -1; } return 0; } static int ft_validate_ftie(struct wpa_sm *sm, const unsigned char *src_addr, struct wpa_eapol_ie_parse *ie, const u8 *assoc_resp_ftie) { if (ie->ftie == NULL) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "FT: No FTIE in EAPOL-Key msg 3/4"); return -1; } if (assoc_resp_ftie == NULL) return 0; if (assoc_resp_ftie[1] != ie->ftie[1] || os_memcmp(assoc_resp_ftie, ie->ftie, 2 + ie->ftie[1]) != 0) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "FT: FTIE mismatch"); wpa_hexdump(MSG_DEBUG, "FT: FTIE in EAPOL-Key msg 3/4", ie->ftie, 2 + ie->ftie[1]); wpa_hexdump(MSG_DEBUG, "FT: FTIE in (Re)Association Response", assoc_resp_ftie, 2 + assoc_resp_ftie[1]); return -1; } return 0; } static int ft_validate_rsnie(struct wpa_sm *sm, const unsigned char *src_addr, struct wpa_eapol_ie_parse *ie) { struct wpa_ie_data rsn; if (!ie->rsn_ie) return 0; /* * Verify that PMKR1Name from EAPOL-Key message 3/4 * matches with the value we derived. */ if (wpa_parse_wpa_ie_rsn(ie->rsn_ie, ie->rsn_ie_len, &rsn) < 0 || rsn.num_pmkid != 1 || rsn.pmkid == NULL) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "FT: No PMKR1Name in " "FT 4-way handshake message 3/4"); return -1; } if (os_memcmp_const(rsn.pmkid, sm->pmk_r1_name, WPA_PMK_NAME_LEN) != 0) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "FT: PMKR1Name mismatch in " "FT 4-way handshake message 3/4"); wpa_hexdump(MSG_DEBUG, "FT: PMKR1Name from Authenticator", rsn.pmkid, WPA_PMK_NAME_LEN); wpa_hexdump(MSG_DEBUG, "FT: Derived PMKR1Name", sm->pmk_r1_name, WPA_PMK_NAME_LEN); return -1; } return 0; } static int wpa_supplicant_validate_ie_ft(struct wpa_sm *sm, const unsigned char *src_addr, struct wpa_eapol_ie_parse *ie) { const u8 *pos, *end, *mdie = NULL, *ftie = NULL; if (sm->assoc_resp_ies) { pos = sm->assoc_resp_ies; end = pos + sm->assoc_resp_ies_len; while (end - pos > 2) { if (2 + pos[1] > end - pos) break; switch (*pos) { case WLAN_EID_MOBILITY_DOMAIN: mdie = pos; break; case WLAN_EID_FAST_BSS_TRANSITION: ftie = pos; break; } pos += 2 + pos[1]; } } if (ft_validate_mdie(sm, src_addr, ie, mdie) < 0 || ft_validate_ftie(sm, src_addr, ie, ftie) < 0 || ft_validate_rsnie(sm, src_addr, ie) < 0) return -1; return 0; } #endif /* CONFIG_IEEE80211R */ static int wpa_supplicant_validate_ie(struct wpa_sm *sm, const unsigned char *src_addr, struct wpa_eapol_ie_parse *ie) { if (sm->ap_wpa_ie == NULL && sm->ap_rsn_ie == NULL) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: No WPA/RSN IE for this AP known. " "Trying to get from scan results"); if (wpa_sm_get_beacon_ie(sm) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Could not find AP from " "the scan results"); return -1; } wpa_msg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Found the current AP from updated scan results"); } if (ie->wpa_ie == NULL && ie->rsn_ie == NULL && (sm->ap_wpa_ie || sm->ap_rsn_ie)) { wpa_report_ie_mismatch(sm, "IE in 3/4 msg does not match " "with IE in Beacon/ProbeResp (no IE?)", src_addr, ie->wpa_ie, ie->wpa_ie_len, ie->rsn_ie, ie->rsn_ie_len); return -1; } if ((ie->wpa_ie && sm->ap_wpa_ie && (ie->wpa_ie_len != sm->ap_wpa_ie_len || os_memcmp(ie->wpa_ie, sm->ap_wpa_ie, ie->wpa_ie_len) != 0)) || (ie->rsn_ie && sm->ap_rsn_ie && wpa_compare_rsn_ie(wpa_key_mgmt_ft(sm->key_mgmt), sm->ap_rsn_ie, sm->ap_rsn_ie_len, ie->rsn_ie, ie->rsn_ie_len))) { wpa_report_ie_mismatch(sm, "IE in 3/4 msg does not match " "with IE in Beacon/ProbeResp", src_addr, ie->wpa_ie, ie->wpa_ie_len, ie->rsn_ie, ie->rsn_ie_len); return -1; } if (sm->proto == WPA_PROTO_WPA && ie->rsn_ie && sm->ap_rsn_ie == NULL && sm->rsn_enabled) { wpa_report_ie_mismatch(sm, "Possible downgrade attack " "detected - RSN was enabled and RSN IE " "was in msg 3/4, but not in " "Beacon/ProbeResp", src_addr, ie->wpa_ie, ie->wpa_ie_len, ie->rsn_ie, ie->rsn_ie_len); return -1; } if (sm->proto == WPA_PROTO_RSN && ((sm->ap_rsnxe && !ie->rsnxe) || (!sm->ap_rsnxe && ie->rsnxe) || (sm->ap_rsnxe && ie->rsnxe && (sm->ap_rsnxe_len != ie->rsnxe_len || os_memcmp(sm->ap_rsnxe, ie->rsnxe, sm->ap_rsnxe_len) != 0)))) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: RSNXE mismatch between Beacon/ProbeResp and EAPOL-Key msg 3/4"); wpa_hexdump(MSG_INFO, "RSNXE in Beacon/ProbeResp", sm->ap_rsnxe, sm->ap_rsnxe_len); wpa_hexdump(MSG_INFO, "RSNXE in EAPOL-Key msg 3/4", ie->rsnxe, ie->rsnxe_len); wpa_sm_deauthenticate(sm, WLAN_REASON_IE_IN_4WAY_DIFFERS); return -1; } #ifdef CONFIG_IEEE80211R if (wpa_key_mgmt_ft(sm->key_mgmt) && wpa_supplicant_validate_ie_ft(sm, src_addr, ie) < 0) return -1; #endif /* CONFIG_IEEE80211R */ return 0; } /** * wpa_supplicant_send_4_of_4 - Send message 4 of WPA/RSN 4-Way Handshake * @sm: Pointer to WPA state machine data from wpa_sm_init() * @dst: Destination address for the frame * @key: Pointer to the EAPOL-Key frame header * @ver: Version bits from EAPOL-Key Key Info * @key_info: Key Info * @ptk: PTK to use for keyed hash and encryption * Returns: >= 0 on success, < 0 on failure */ int wpa_supplicant_send_4_of_4(struct wpa_sm *sm, const unsigned char *dst, const struct wpa_eapol_key *key, u16 ver, u16 key_info, struct wpa_ptk *ptk) { size_t mic_len, hdrlen, rlen; struct wpa_eapol_key *reply; u8 *rbuf, *key_mic; u8 *kde = NULL; size_t kde_len = 0; if (sm->mlo.valid_links) { u8 *pos; kde = os_malloc(RSN_SELECTOR_LEN + ETH_ALEN + 2); if (!kde) return -1; /* Add MAC KDE */ wpa_printf(MSG_DEBUG, "MLO: Add MAC KDE into EAPOL-Key 4/4"); pos = kde; pos = rsn_add_kde(pos, RSN_KEY_DATA_MAC_ADDR, sm->own_addr, ETH_ALEN); kde_len = pos - kde; } mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len); hdrlen = sizeof(*reply) + mic_len + 2; rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, hdrlen + kde_len, &rlen, (void *) &reply); if (!rbuf) { os_free(kde); return -1; } reply->type = (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) ? EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA; key_info &= WPA_KEY_INFO_SECURE; key_info |= ver | WPA_KEY_INFO_KEY_TYPE; if (mic_len) key_info |= WPA_KEY_INFO_MIC; else key_info |= WPA_KEY_INFO_ENCR_KEY_DATA; WPA_PUT_BE16(reply->key_info, key_info); if (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) WPA_PUT_BE16(reply->key_length, 0); else os_memcpy(reply->key_length, key->key_length, 2); os_memcpy(reply->replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); key_mic = (u8 *) (reply + 1); WPA_PUT_BE16(key_mic + mic_len, kde_len); /* Key Data length */ if (kde) { os_memcpy(key_mic + mic_len + 2, kde, kde_len); /* Key Data */ os_free(kde); } wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Sending EAPOL-Key 4/4"); return wpa_eapol_key_send(sm, ptk, ver, dst, ETH_P_EAPOL, rbuf, rlen, key_mic); } static int wpa_supplicant_validate_link_kde(struct wpa_sm *sm, u8 link_id, const u8 *link_kde, size_t link_kde_len) { size_t rsne_len = 0, rsnxe_len = 0; const u8 *rsne = NULL, *rsnxe = NULL; if (!link_kde || link_kde_len < RSN_MLO_LINK_KDE_LINK_MAC_INDEX + ETH_ALEN) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: MLO Link KDE is not found for link ID %d", link_id); return -1; } if (os_memcmp(sm->mlo.links[link_id].bssid, &link_kde[RSN_MLO_LINK_KDE_LINK_MAC_INDEX], ETH_ALEN) != 0) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: MLO Link %u MAC address (" MACSTR ") not matching association response (" MACSTR ")", link_id, MAC2STR(&link_kde[RSN_MLO_LINK_KDE_LINK_MAC_INDEX]), MAC2STR(sm->mlo.links[link_id].bssid)); return -1; } if (link_kde[0] & RSN_MLO_LINK_KDE_LI_RSNE_INFO) { rsne = link_kde + RSN_MLO_LINK_KDE_FIXED_LENGTH; if (link_kde_len < RSN_MLO_LINK_KDE_FIXED_LENGTH + 2 || link_kde_len < (size_t) (RSN_MLO_LINK_KDE_FIXED_LENGTH + 2 + rsne[1])) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: No room for link %u RSNE in MLO Link KDE", link_id); return -1; } rsne_len = rsne[1] + 2; } if (!rsne) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: RSNE not present in MLO Link %u KDE", link_id); return -1; } if (link_kde[0] & RSN_MLO_LINK_KDE_LI_RSNXE_INFO) { rsnxe = link_kde + RSN_MLO_LINK_KDE_FIXED_LENGTH + rsne_len; if (link_kde_len < (RSN_MLO_LINK_KDE_FIXED_LENGTH + rsne_len + 2) || link_kde_len < (RSN_MLO_LINK_KDE_FIXED_LENGTH + rsne_len + 2 + rsnxe[1])) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: No room for link %u RSNXE in MLO Link KDE", link_id); return -1; } rsnxe_len = rsnxe[1] + 2; } if (wpa_compare_rsn_ie(wpa_key_mgmt_ft(sm->key_mgmt), sm->mlo.links[link_id].ap_rsne, sm->mlo.links[link_id].ap_rsne_len, rsne, rsne_len)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN MLO: IE in 3/4 msg does not match with IE in Beacon/ProbeResp for link ID %u", link_id); wpa_hexdump(MSG_INFO, "RSNE in Beacon/ProbeResp", sm->mlo.links[link_id].ap_rsne, sm->mlo.links[link_id].ap_rsne_len); wpa_hexdump(MSG_INFO, "RSNE in EAPOL-Key msg 3/4", rsne, rsne_len); return -1; } if ((sm->mlo.links[link_id].ap_rsnxe && !rsnxe) || (!sm->mlo.links[link_id].ap_rsnxe && rsnxe) || (sm->mlo.links[link_id].ap_rsnxe && rsnxe && (sm->mlo.links[link_id].ap_rsnxe_len != rsnxe_len || os_memcmp(sm->mlo.links[link_id].ap_rsnxe, rsnxe, sm->mlo.links[link_id].ap_rsnxe_len) != 0))) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN MLO: RSNXE mismatch between Beacon/ProbeResp and EAPOL-Key msg 3/4 for link ID %u", link_id); wpa_hexdump(MSG_INFO, "RSNXE in Beacon/ProbeResp", sm->mlo.links[link_id].ap_rsnxe, sm->mlo.links[link_id].ap_rsnxe_len); wpa_hexdump(MSG_INFO, "RSNXE in EAPOL-Key msg 3/4", rsnxe, rsnxe_len); wpa_sm_deauthenticate(sm, WLAN_REASON_IE_IN_4WAY_DIFFERS); return -1; } return 0; } static int wpa_validate_mlo_ieee80211w_kdes(struct wpa_sm *sm, u8 link_id, struct wpa_eapol_ie_parse *ie) { if (ie->mlo_igtk[link_id] && ie->mlo_igtk_len[link_id] != RSN_MLO_IGTK_KDE_PREFIX_LENGTH + (unsigned int) wpa_cipher_key_len(sm->mgmt_group_cipher)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN MLO: Invalid IGTK KDE length %lu for link ID %u", (unsigned long) ie->mlo_igtk_len, link_id); return -1; } if (!sm->beacon_prot) return 0; if (ie->mlo_bigtk[link_id] && ie->mlo_bigtk_len[link_id] != RSN_MLO_BIGTK_KDE_PREFIX_LENGTH + (unsigned int) wpa_cipher_key_len(sm->mgmt_group_cipher)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "RSN MLO: Invalid BIGTK KDE length %lu for link ID %u", (unsigned long) ie->mlo_bigtk_len, link_id); return -1; } return 0; } static void wpa_supplicant_process_3_of_4_wpa(struct wpa_sm *sm, const struct wpa_eapol_key *key, u16 ver, const u8 *key_data, size_t key_data_len) { u16 key_info, keylen; struct wpa_eapol_ie_parse ie; wpa_sm_set_state(sm, WPA_4WAY_HANDSHAKE); wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: RX message 3 of 4-Way Handshake from " MACSTR " (ver=%d)", MAC2STR(sm->bssid), ver); key_info = WPA_GET_BE16(key->key_info); wpa_hexdump(MSG_DEBUG, "WPA: IE KeyData", key_data, key_data_len); if (wpa_supplicant_parse_ies(key_data, key_data_len, &ie) < 0) goto failed; if (wpa_supplicant_validate_ie(sm, sm->bssid, &ie) < 0) goto failed; if (os_memcmp(sm->anonce, key->key_nonce, WPA_NONCE_LEN) != 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: ANonce from message 1 of 4-Way Handshake differs from 3 of 4-Way Handshake - drop packet (src=" MACSTR ")", MAC2STR(sm->bssid)); goto failed; } keylen = WPA_GET_BE16(key->key_length); if (keylen != wpa_cipher_key_len(sm->pairwise_cipher)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Invalid %s key length %d (src=" MACSTR ")", wpa_cipher_txt(sm->pairwise_cipher), keylen, MAC2STR(sm->bssid)); goto failed; } if (wpa_supplicant_send_4_of_4(sm, wpa_sm_get_auth_addr(sm), key, ver, key_info, &sm->ptk) < 0) goto failed; /* SNonce was successfully used in msg 3/4, so mark it to be renewed * for the next 4-Way Handshake. If msg 3 is received again, the old * SNonce will still be used to avoid changing PTK. */ sm->renew_snonce = 1; if ((key_info & WPA_KEY_INFO_INSTALL) && wpa_supplicant_install_ptk(sm, key, KEY_FLAG_RX_TX)) goto failed; if (key_info & WPA_KEY_INFO_SECURE) { wpa_sm_mlme_setprotection( sm, sm->bssid, MLME_SETPROTECTION_PROTECT_TYPE_RX, MLME_SETPROTECTION_KEY_TYPE_PAIRWISE); eapol_sm_notify_portValid(sm->eapol, true); } wpa_sm_set_state(sm, WPA_GROUP_HANDSHAKE); sm->msg_3_of_4_ok = 1; return; failed: wpa_sm_deauthenticate(sm, WLAN_REASON_UNSPECIFIED); } static void wpa_supplicant_process_3_of_4(struct wpa_sm *sm, const struct wpa_eapol_key *key, u16 ver, const u8 *key_data, size_t key_data_len) { u16 key_info, keylen; struct wpa_eapol_ie_parse ie; bool mlo = sm->mlo.valid_links; int i; wpa_sm_set_state(sm, WPA_4WAY_HANDSHAKE); wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: RX message 3 of 4-Way Handshake from " MACSTR " (ver=%d)%s", MAC2STR(sm->bssid), ver, mlo ? " (MLO)" : ""); key_info = WPA_GET_BE16(key->key_info); wpa_hexdump(MSG_DEBUG, "WPA: IE KeyData", key_data, key_data_len); if (wpa_supplicant_parse_ies(key_data, key_data_len, &ie) < 0) goto failed; if (mlo && !ie.valid_mlo_gtks) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "MLO RSN: No GTK KDE included in EAPOL-Key msg 3/4"); goto failed; } if (mlo && (key_info & (WPA_KEY_INFO_ENCR_KEY_DATA | WPA_KEY_INFO_INSTALL | WPA_KEY_INFO_SECURE)) != (WPA_KEY_INFO_ENCR_KEY_DATA | WPA_KEY_INFO_INSTALL | WPA_KEY_INFO_SECURE)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "RSN MLO: Invalid key info (0x%x) in EAPOL-Key msg 3/4", key_info); goto failed; } if (mlo && !is_valid_ap_mld_mac_kde(sm, ie.mac_addr)) { wpa_printf(MSG_DEBUG, "RSN: Invalid AP MLD MAC address KDE"); goto failed; } for (i = 0; mlo && i < MAX_NUM_MLD_LINKS; i++) { if (!(sm->mlo.req_links & BIT(i))) continue; if (wpa_supplicant_validate_link_kde(sm, i, ie.mlo_link[i], ie.mlo_link_len[i]) < 0) goto failed; if (!(sm->mlo.valid_links & BIT(i))) continue; if (!ie.mlo_gtk[i]) { wpa_msg(sm->ctx->msg_ctx, MSG_ERROR, "RSN: GTK not found for link ID %u", i); goto failed; } if (sm->mgmt_group_cipher != WPA_CIPHER_GTK_NOT_USED && wpa_cipher_valid_mgmt_group(sm->mgmt_group_cipher) && wpa_validate_mlo_ieee80211w_kdes(sm, i, &ie) < 0) goto failed; } #ifdef CONFIG_IEEE80211R if (mlo && wpa_key_mgmt_ft(sm->key_mgmt) && wpa_supplicant_validate_ie_ft(sm, sm->bssid, &ie) < 0) goto failed; #endif /* CONFIG_IEEE80211R */ if (!mlo && ie.gtk && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: GTK IE in unencrypted key data"); goto failed; } if (!mlo && ie.igtk && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: IGTK KDE in unencrypted key data"); goto failed; } if (!mlo && ie.igtk && sm->mgmt_group_cipher != WPA_CIPHER_GTK_NOT_USED && wpa_cipher_valid_mgmt_group(sm->mgmt_group_cipher) && ie.igtk_len != WPA_IGTK_KDE_PREFIX_LEN + (unsigned int) wpa_cipher_key_len(sm->mgmt_group_cipher)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Invalid IGTK KDE length %lu", (unsigned long) ie.igtk_len); goto failed; } if (!mlo && wpa_supplicant_validate_ie(sm, sm->bssid, &ie) < 0) goto failed; if (wpa_handle_ext_key_id(sm, &ie)) goto failed; if (os_memcmp(sm->anonce, key->key_nonce, WPA_NONCE_LEN) != 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: ANonce from message 1 of 4-Way Handshake " "differs from 3 of 4-Way Handshake - drop packet (src=" MACSTR ")", MAC2STR(sm->bssid)); goto failed; } keylen = WPA_GET_BE16(key->key_length); if (keylen != wpa_cipher_key_len(sm->pairwise_cipher)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Invalid %s key length %d (src=" MACSTR ")", wpa_cipher_txt(sm->pairwise_cipher), keylen, MAC2STR(sm->bssid)); goto failed; } #ifdef CONFIG_P2P if (ie.ip_addr_alloc) { os_memcpy(sm->p2p_ip_addr, ie.ip_addr_alloc, 3 * 4); wpa_hexdump(MSG_DEBUG, "P2P: IP address info", sm->p2p_ip_addr, sizeof(sm->p2p_ip_addr)); } #endif /* CONFIG_P2P */ #ifdef CONFIG_OCV if (wpa_sm_ocv_enabled(sm)) { struct wpa_channel_info ci; if (wpa_sm_channel_info(sm, &ci) != 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "Failed to get channel info to validate received OCI in EAPOL-Key 3/4"); return; } if (ocv_verify_tx_params(ie.oci, ie.oci_len, &ci, channel_width_to_int(ci.chanwidth), ci.seg1_idx) != OCI_SUCCESS) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, OCV_FAILURE "addr=" MACSTR " frame=eapol-key-m3 error=%s", MAC2STR(sm->bssid), ocv_errorstr); return; } } #endif /* CONFIG_OCV */ #ifdef CONFIG_DPP2 if (DPP_VERSION > 1 && ie.dpp_kde) { wpa_printf(MSG_DEBUG, "DPP: peer Protocol Version %u Flags 0x%x", ie.dpp_kde[0], ie.dpp_kde[1]); if (sm->key_mgmt == WPA_KEY_MGMT_DPP && sm->dpp_pfs != 2 && (ie.dpp_kde[1] & DPP_KDE_PFS_ALLOWED) && !sm->dpp_z) { wpa_printf(MSG_INFO, "DPP: Peer indicated it supports PFS and local configuration allows this, but PFS was not negotiated for the association"); goto failed; } } #endif /* CONFIG_DPP2 */ if (sm->use_ext_key_id && wpa_supplicant_install_ptk(sm, key, KEY_FLAG_RX)) goto failed; if (wpa_supplicant_send_4_of_4(sm, wpa_sm_get_auth_addr(sm), key, ver, key_info, &sm->ptk) < 0) goto failed; /* SNonce was successfully used in msg 3/4, so mark it to be renewed * for the next 4-Way Handshake. If msg 3 is received again, the old * SNonce will still be used to avoid changing PTK. */ sm->renew_snonce = 1; if (key_info & WPA_KEY_INFO_INSTALL) { int res; if (sm->use_ext_key_id) res = wpa_supplicant_activate_ptk(sm); else res = wpa_supplicant_install_ptk(sm, key, KEY_FLAG_RX_TX); if (res) goto failed; } if (key_info & WPA_KEY_INFO_SECURE) { wpa_sm_mlme_setprotection( sm, sm->bssid, MLME_SETPROTECTION_PROTECT_TYPE_RX, MLME_SETPROTECTION_KEY_TYPE_PAIRWISE); eapol_sm_notify_portValid(sm->eapol, true); } wpa_sm_set_state(sm, WPA_GROUP_HANDSHAKE); if (mlo) { if (wpa_supplicant_pairwise_mlo_gtk(sm, key, &ie, key_info) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "MLO RSN: Failed to configure MLO GTKs"); goto failed; } } else if (sm->group_cipher == WPA_CIPHER_GTK_NOT_USED) { /* No GTK to be set to the driver */ } else if (!ie.gtk && sm->proto == WPA_PROTO_RSN) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: No GTK KDE included in EAPOL-Key msg 3/4"); goto failed; } else if (ie.gtk && wpa_supplicant_pairwise_gtk(sm, key, ie.gtk, ie.gtk_len, key_info) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Failed to configure GTK"); goto failed; } if ((mlo && mlo_ieee80211w_set_keys(sm, &ie) < 0) || (!mlo && ieee80211w_set_keys(sm, &ie) < 0)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Failed to configure IGTK"); goto failed; } if (mlo || sm->group_cipher == WPA_CIPHER_GTK_NOT_USED || ie.gtk) wpa_supplicant_key_neg_complete(sm, sm->bssid, key_info & WPA_KEY_INFO_SECURE); if (mlo || ie.gtk) wpa_sm_set_rekey_offload(sm); /* Add PMKSA cache entry for Suite B AKMs here since PMKID can be * calculated only after KCK has been derived. Though, do not replace an * existing PMKSA entry after each 4-way handshake (i.e., new KCK/PMKID) * to avoid unnecessary changes of PMKID while continuing to use the * same PMK. */ if (sm->proto == WPA_PROTO_RSN && wpa_key_mgmt_suite_b(sm->key_mgmt) && !sm->cur_pmksa) { struct rsn_pmksa_cache_entry *sa; sa = pmksa_cache_add(sm->pmksa, sm->pmk, sm->pmk_len, NULL, sm->ptk.kck, sm->ptk.kck_len, wpa_sm_get_auth_addr(sm), sm->own_addr, sm->network_ctx, sm->key_mgmt, NULL); if (!sm->cur_pmksa) sm->cur_pmksa = sa; } if (ie.transition_disable) wpa_sm_transition_disable(sm, ie.transition_disable[0]); sm->msg_3_of_4_ok = 1; return; failed: wpa_sm_deauthenticate(sm, WLAN_REASON_UNSPECIFIED); } static int wpa_supplicant_send_2_of_2(struct wpa_sm *sm, const struct wpa_eapol_key *key, int ver, u16 key_info) { size_t mic_len, hdrlen, rlen; struct wpa_eapol_key *reply; u8 *rbuf, *key_mic; size_t kde_len = 0; #ifdef CONFIG_TESTING_OPTIONS if (sm->disable_eapol_g2_tx) { wpa_printf(MSG_INFO, "TEST: Disable sending EAPOL-Key 2/2"); return 0; } #endif /* CONFIG_TESTING_OPTIONS */ #ifdef CONFIG_OCV if (wpa_sm_ocv_enabled(sm)) kde_len = OCV_OCI_KDE_LEN; #endif /* CONFIG_OCV */ mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len); hdrlen = sizeof(*reply) + mic_len + 2; rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, hdrlen + kde_len, &rlen, (void *) &reply); if (rbuf == NULL) return -1; reply->type = (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) ? EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA; key_info &= WPA_KEY_INFO_KEY_INDEX_MASK; key_info |= ver | WPA_KEY_INFO_SECURE; if (mic_len) key_info |= WPA_KEY_INFO_MIC; else key_info |= WPA_KEY_INFO_ENCR_KEY_DATA; WPA_PUT_BE16(reply->key_info, key_info); if (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) WPA_PUT_BE16(reply->key_length, 0); else os_memcpy(reply->key_length, key->key_length, 2); os_memcpy(reply->replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); key_mic = (u8 *) (reply + 1); WPA_PUT_BE16(key_mic + mic_len, kde_len); /* Key Data Length */ #ifdef CONFIG_OCV if (wpa_sm_ocv_enabled(sm)) { struct wpa_channel_info ci; u8 *pos; if (wpa_sm_channel_info(sm, &ci) != 0) { wpa_printf(MSG_WARNING, "Failed to get channel info for OCI element in EAPOL-Key 2/2"); os_free(rbuf); return -1; } #ifdef CONFIG_TESTING_OPTIONS if (sm->oci_freq_override_eapol_g2) { wpa_printf(MSG_INFO, "TEST: Override OCI KDE frequency %d -> %d MHz", ci.frequency, sm->oci_freq_override_eapol_g2); ci.frequency = sm->oci_freq_override_eapol_g2; } #endif /* CONFIG_TESTING_OPTIONS */ pos = key_mic + mic_len + 2; /* Key Data */ if (ocv_insert_oci_kde(&ci, &pos) < 0) { os_free(rbuf); return -1; } } #endif /* CONFIG_OCV */ wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Sending EAPOL-Key 2/2"); return wpa_eapol_key_send(sm, &sm->ptk, ver, sm->bssid, ETH_P_EAPOL, rbuf, rlen, key_mic); } static void wpa_supplicant_process_mlo_1_of_2(struct wpa_sm *sm, const unsigned char *src_addr, const struct wpa_eapol_key *key, const u8 *key_data, size_t key_data_len, u16 ver) { u16 key_info; u8 i; struct wpa_eapol_ie_parse ie; if (!sm->msg_3_of_4_ok && !wpa_fils_is_completed(sm)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "MLO RSN: Group Key Handshake started prior to completion of 4-way handshake"); goto failed; } wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "MLO RSN: RX message 1 of Group " "Key Handshake from " MACSTR " (ver=%d)", MAC2STR(src_addr), ver); key_info = WPA_GET_BE16(key->key_info); wpa_sm_set_state(sm, WPA_GROUP_HANDSHAKE); wpa_hexdump_key(MSG_DEBUG, "MLO RSN: msg 1/2 key data", key_data, key_data_len); if (wpa_supplicant_parse_ies(key_data, key_data_len, &ie) < 0) goto failed; if (!ie.valid_mlo_gtks) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "MLO RSN: No MLO GTK KDE in Group Key msg 1/2"); goto failed; } if (!(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "MLO RSN: MLO GTK KDE in unencrypted key data"); goto failed; } #ifdef CONFIG_OCV if (wpa_sm_ocv_enabled(sm)) { struct wpa_channel_info ci; if (wpa_sm_channel_info(sm, &ci) != 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "Failed to get channel info to validate received OCI in EAPOL-Key group msg 1/2"); goto failed; } if (ocv_verify_tx_params(ie.oci, ie.oci_len, &ci, channel_width_to_int(ci.chanwidth), ci.seg1_idx) != OCI_SUCCESS) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, OCV_FAILURE "addr=" MACSTR " frame=eapol-key-g1 error=%s", MAC2STR(sm->bssid), ocv_errorstr); goto failed; } } #endif /* CONFIG_OCV */ if (mlo_ieee80211w_set_keys(sm, &ie) < 0) wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "MLO RSN: Failed to configure MLO IGTK"); for (i = 0; i < MAX_NUM_MLO_LINKS; i++) { if (!(sm->mlo.valid_links & BIT(i))) continue; /* * AP may send group keys for subset of the all links during * rekey */ if (!ie.mlo_gtk[i]) continue; if (wpa_supplicant_mlo_gtk(sm, i, ie.mlo_gtk[i], ie.mlo_gtk_len[i], key_info)) goto failed; } if (wpa_supplicant_send_2_of_2(sm, key, ver, key_info) < 0) goto failed; wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "MLO RSN: Group rekeying completed " "with " MACSTR " [GTK=%s]", MAC2STR(sm->mlo.ap_mld_addr), wpa_cipher_txt(sm->group_cipher)); wpa_sm_cancel_auth_timeout(sm); wpa_sm_set_state(sm, WPA_COMPLETED); wpa_sm_set_rekey_offload(sm); return; failed: wpa_sm_deauthenticate(sm, WLAN_REASON_UNSPECIFIED); } static void wpa_supplicant_process_1_of_2_wpa(struct wpa_sm *sm, const unsigned char *src_addr, const struct wpa_eapol_key *key, const u8 *key_data, size_t key_data_len, u16 ver) { u16 key_info; int rekey; struct wpa_gtk_data gd; const u8 *key_rsc; size_t maxkeylen; u16 gtk_len; if (!sm->msg_3_of_4_ok) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Group Key Handshake started prior to completion of 4-way handshake"); goto failed; } os_memset(&gd, 0, sizeof(gd)); rekey = wpa_sm_get_state(sm) == WPA_COMPLETED; wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: RX message 1 of Group Key Handshake from " MACSTR " (ver=%d)", MAC2STR(src_addr), ver); key_info = WPA_GET_BE16(key->key_info); gtk_len = WPA_GET_BE16(key->key_length); maxkeylen = key_data_len; if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { if (maxkeylen < 8) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Too short maxkeylen (%lu)", (unsigned long) maxkeylen); goto failed; } maxkeylen -= 8; } if (gtk_len > maxkeylen || wpa_supplicant_check_group_cipher(sm, sm->group_cipher, gtk_len, maxkeylen, &gd.key_rsc_len, &gd.alg)) goto failed; wpa_sm_set_state(sm, WPA_GROUP_HANDSHAKE); gd.gtk_len = gtk_len; gd.keyidx = (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) >> WPA_KEY_INFO_KEY_INDEX_SHIFT; if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 && sm->ptk.kek_len == 16) { #if defined(CONFIG_NO_RC4) || defined(CONFIG_FIPS) wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: RC4 not supported in the build"); goto failed; #else /* CONFIG_NO_RC4 || CONFIG_FIPS */ u8 ek[32]; if (key_data_len > sizeof(gd.gtk)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: RC4 key data too long (%lu)", (unsigned long) key_data_len); goto failed; } os_memcpy(ek, key->key_iv, 16); os_memcpy(ek + 16, sm->ptk.kek, sm->ptk.kek_len); os_memcpy(gd.gtk, key_data, key_data_len); if (rc4_skip(ek, 32, 256, gd.gtk, key_data_len)) { forced_memzero(ek, sizeof(ek)); wpa_msg(sm->ctx->msg_ctx, MSG_ERROR, "WPA: RC4 failed"); goto failed; } forced_memzero(ek, sizeof(ek)); #endif /* CONFIG_NO_RC4 || CONFIG_FIPS */ } else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { if (maxkeylen % 8) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Unsupported AES-WRAP len %lu", (unsigned long) maxkeylen); goto failed; } if (maxkeylen > sizeof(gd.gtk)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: AES-WRAP key data " "too long (keydatalen=%lu maxkeylen=%lu)", (unsigned long) key_data_len, (unsigned long) maxkeylen); goto failed; } if (aes_unwrap(sm->ptk.kek, sm->ptk.kek_len, maxkeylen / 8, key_data, gd.gtk)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: AES unwrap failed - could not decrypt " "GTK"); goto failed; } } else { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Unsupported key_info type %d", ver); goto failed; } gd.tx = wpa_supplicant_gtk_tx_bit_workaround( sm, !!(key_info & WPA_KEY_INFO_TXRX)); key_rsc = key->key_rsc; if (wpa_supplicant_rsc_relaxation(sm, key->key_rsc)) key_rsc = null_rsc; if (wpa_supplicant_install_gtk(sm, &gd, key_rsc, 0) || wpa_supplicant_send_2_of_2(sm, key, ver, key_info) < 0) goto failed; forced_memzero(&gd, sizeof(gd)); if (rekey) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Group rekeying completed with " MACSTR " [GTK=%s]", MAC2STR(sm->bssid), wpa_cipher_txt(sm->group_cipher)); wpa_sm_cancel_auth_timeout(sm); wpa_sm_set_state(sm, WPA_COMPLETED); } else { wpa_supplicant_key_neg_complete(sm, sm->bssid, key_info & WPA_KEY_INFO_SECURE); } wpa_sm_set_rekey_offload(sm); return; failed: forced_memzero(&gd, sizeof(gd)); wpa_sm_deauthenticate(sm, WLAN_REASON_UNSPECIFIED); } static void wpa_supplicant_process_1_of_2(struct wpa_sm *sm, const unsigned char *src_addr, const struct wpa_eapol_key *key, const u8 *key_data, size_t key_data_len, u16 ver) { u16 key_info; struct wpa_gtk_data gd; const u8 *key_rsc; int maxkeylen; struct wpa_eapol_ie_parse ie; u16 gtk_len; if (!sm->msg_3_of_4_ok && !wpa_fils_is_completed(sm)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Group Key Handshake started prior to completion of 4-way handshake"); goto failed; } os_memset(&gd, 0, sizeof(gd)); wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: RX message 1 of Group Key Handshake from " MACSTR " (ver=%d)", MAC2STR(src_addr), ver); key_info = WPA_GET_BE16(key->key_info); wpa_hexdump_key(MSG_DEBUG, "RSN: msg 1/2 key data", key_data, key_data_len); if (wpa_supplicant_parse_ies(key_data, key_data_len, &ie) < 0) goto failed; wpa_sm_set_state(sm, WPA_GROUP_HANDSHAKE); if (ie.gtk && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "RSN: GTK KDE in unencrypted key data"); goto failed; } if (!ie.gtk) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: No GTK KDE in Group Key msg 1/2"); goto failed; } gtk_len = ie.gtk_len; if (gtk_len < 2) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Invalid GTK KDE length (%u) in Group Key msg 1/2", gtk_len); goto failed; } gtk_len -= 2; if (gtk_len > sizeof(gd.gtk)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Too long GTK in GTK KDE (len=%u)", gtk_len); goto failed; } maxkeylen = gd.gtk_len = gtk_len; #ifdef CONFIG_OCV if (wpa_sm_ocv_enabled(sm)) { struct wpa_channel_info ci; if (wpa_sm_channel_info(sm, &ci) != 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "Failed to get channel info to validate received OCI in EAPOL-Key group msg 1/2"); goto failed; } if (ocv_verify_tx_params(ie.oci, ie.oci_len, &ci, channel_width_to_int(ci.chanwidth), ci.seg1_idx) != OCI_SUCCESS) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, OCV_FAILURE "addr=" MACSTR " frame=eapol-key-g1 error=%s", MAC2STR(sm->bssid), ocv_errorstr); goto failed; } } #endif /* CONFIG_OCV */ if (wpa_supplicant_check_group_cipher(sm, sm->group_cipher, gtk_len, maxkeylen, &gd.key_rsc_len, &gd.alg)) goto failed; wpa_hexdump_key(MSG_DEBUG, "RSN: received GTK in group key handshake", ie.gtk, 2 + gtk_len); gd.keyidx = ie.gtk[0] & 0x3; gd.tx = wpa_supplicant_gtk_tx_bit_workaround(sm, !!(ie.gtk[0] & BIT(2))); os_memcpy(gd.gtk, ie.gtk + 2, gtk_len); if (ieee80211w_set_keys(sm, &ie) < 0) wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Failed to configure IGTK"); key_rsc = key->key_rsc; if (wpa_supplicant_rsc_relaxation(sm, key->key_rsc)) key_rsc = null_rsc; if (wpa_supplicant_install_gtk(sm, &gd, key_rsc, 0) || wpa_supplicant_send_2_of_2(sm, key, ver, key_info) < 0) goto failed; forced_memzero(&gd, sizeof(gd)); wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Group rekeying completed with " MACSTR " [GTK=%s]", MAC2STR(sm->bssid), wpa_cipher_txt(sm->group_cipher)); wpa_sm_cancel_auth_timeout(sm); wpa_sm_set_state(sm, WPA_COMPLETED); wpa_sm_set_rekey_offload(sm); return; failed: forced_memzero(&gd, sizeof(gd)); wpa_sm_deauthenticate(sm, WLAN_REASON_UNSPECIFIED); } static int wpa_supplicant_verify_eapol_key_mic(struct wpa_sm *sm, struct wpa_eapol_key *key, u16 ver, const u8 *buf, size_t len) { u8 mic[WPA_EAPOL_KEY_MIC_MAX_LEN]; int ok = 0; size_t mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len); os_memcpy(mic, key + 1, mic_len); if (sm->tptk_set) { os_memset(key + 1, 0, mic_len); if (wpa_eapol_key_mic(sm->tptk.kck, sm->tptk.kck_len, sm->key_mgmt, ver, buf, len, (u8 *) (key + 1)) < 0 || os_memcmp_const(mic, key + 1, mic_len) != 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Invalid EAPOL-Key MIC " "when using TPTK - ignoring TPTK"); #ifdef TEST_FUZZ wpa_printf(MSG_INFO, "TEST: Ignore Key MIC failure for fuzz testing"); goto continue_fuzz; #endif /* TEST_FUZZ */ } else { #ifdef TEST_FUZZ continue_fuzz: #endif /* TEST_FUZZ */ ok = 1; sm->tptk_set = 0; sm->ptk_set = 1; os_memcpy(&sm->ptk, &sm->tptk, sizeof(sm->ptk)); os_memset(&sm->tptk, 0, sizeof(sm->tptk)); /* * This assures the same TPTK in sm->tptk can never be * copied twice to sm->ptk as the new PTK. In * combination with the installed flag in the wpa_ptk * struct, this assures the same PTK is only installed * once. */ sm->renew_snonce = 1; } } if (!ok && sm->ptk_set) { os_memset(key + 1, 0, mic_len); if (wpa_eapol_key_mic(sm->ptk.kck, sm->ptk.kck_len, sm->key_mgmt, ver, buf, len, (u8 *) (key + 1)) < 0 || os_memcmp_const(mic, key + 1, mic_len) != 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Invalid EAPOL-Key MIC - " "dropping packet"); #ifdef TEST_FUZZ wpa_printf(MSG_INFO, "TEST: Ignore Key MIC failure for fuzz testing"); goto continue_fuzz2; #endif /* TEST_FUZZ */ return -1; } #ifdef TEST_FUZZ continue_fuzz2: #endif /* TEST_FUZZ */ ok = 1; } if (!ok) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Could not verify EAPOL-Key MIC - " "dropping packet"); return -1; } os_memcpy(sm->rx_replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); sm->rx_replay_counter_set = 1; return 0; } /* Decrypt RSN EAPOL-Key key data (RC4 or AES-WRAP) */ static int wpa_supplicant_decrypt_key_data(struct wpa_sm *sm, struct wpa_eapol_key *key, size_t mic_len, u16 ver, u8 *key_data, size_t *key_data_len) { wpa_hexdump(MSG_DEBUG, "RSN: encrypted key data", key_data, *key_data_len); if (!sm->ptk_set) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: PTK not available, cannot decrypt EAPOL-Key Key " "Data"); return -1; } /* Decrypt key data here so that this operation does not need * to be implemented separately for each message type. */ if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 && sm->ptk.kek_len == 16) { #if defined(CONFIG_NO_RC4) || defined(CONFIG_FIPS) wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: RC4 not supported in the build"); return -1; #else /* CONFIG_NO_RC4 || CONFIG_FIPS */ u8 ek[32]; wpa_printf(MSG_DEBUG, "WPA: Decrypt Key Data using RC4"); os_memcpy(ek, key->key_iv, 16); os_memcpy(ek + 16, sm->ptk.kek, sm->ptk.kek_len); if (rc4_skip(ek, 32, 256, key_data, *key_data_len)) { forced_memzero(ek, sizeof(ek)); wpa_msg(sm->ctx->msg_ctx, MSG_ERROR, "WPA: RC4 failed"); return -1; } forced_memzero(ek, sizeof(ek)); #endif /* CONFIG_NO_RC4 || CONFIG_FIPS */ } else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES || ver == WPA_KEY_INFO_TYPE_AES_128_CMAC || wpa_use_aes_key_wrap(sm->key_mgmt)) { u8 *buf; wpa_printf(MSG_DEBUG, "WPA: Decrypt Key Data using AES-UNWRAP (KEK length %u)", (unsigned int) sm->ptk.kek_len); if (*key_data_len < 8 || *key_data_len % 8) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Unsupported AES-WRAP len %u", (unsigned int) *key_data_len); return -1; } *key_data_len -= 8; /* AES-WRAP adds 8 bytes */ buf = os_malloc(*key_data_len); if (buf == NULL) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: No memory for AES-UNWRAP buffer"); return -1; } #ifdef TEST_FUZZ os_memset(buf, 0x11, *key_data_len); #endif /* TEST_FUZZ */ if (aes_unwrap(sm->ptk.kek, sm->ptk.kek_len, *key_data_len / 8, key_data, buf)) { #ifdef TEST_FUZZ wpa_printf(MSG_INFO, "TEST: Ignore AES unwrap failure for fuzz testing"); goto continue_fuzz; #endif /* TEST_FUZZ */ bin_clear_free(buf, *key_data_len); wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: AES unwrap failed - " "could not decrypt EAPOL-Key key data"); return -1; } #ifdef TEST_FUZZ continue_fuzz: #endif /* TEST_FUZZ */ os_memcpy(key_data, buf, *key_data_len); bin_clear_free(buf, *key_data_len); WPA_PUT_BE16(((u8 *) (key + 1)) + mic_len, *key_data_len); } else { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Unsupported key_info type %d", ver); return -1; } wpa_hexdump_key(MSG_DEBUG, "WPA: decrypted EAPOL-Key key data", key_data, *key_data_len); return 0; } /** * wpa_sm_aborted_cached - Notify WPA that PMKSA caching was aborted * @sm: Pointer to WPA state machine data from wpa_sm_init() */ void wpa_sm_aborted_cached(struct wpa_sm *sm) { if (sm && sm->cur_pmksa) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Cancelling PMKSA caching attempt"); sm->cur_pmksa = NULL; } } void wpa_sm_aborted_external_cached(struct wpa_sm *sm) { if (sm && sm->cur_pmksa && sm->cur_pmksa->external) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Cancelling external PMKSA caching attempt"); sm->cur_pmksa = NULL; } } static void wpa_eapol_key_dump(struct wpa_sm *sm, const struct wpa_eapol_key *key, unsigned int key_data_len, const u8 *mic, unsigned int mic_len) { #ifndef CONFIG_NO_STDOUT_DEBUG u16 key_info = WPA_GET_BE16(key->key_info); wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, " EAPOL-Key type=%d", key->type); wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, " key_info 0x%x (ver=%d keyidx=%d rsvd=%d %s%s%s%s%s%s%s%s)", key_info, key_info & WPA_KEY_INFO_TYPE_MASK, (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) >> WPA_KEY_INFO_KEY_INDEX_SHIFT, (key_info & (BIT(13) | BIT(14) | BIT(15))) >> 13, key_info & WPA_KEY_INFO_KEY_TYPE ? "Pairwise" : "Group", key_info & WPA_KEY_INFO_INSTALL ? " Install" : "", key_info & WPA_KEY_INFO_ACK ? " Ack" : "", key_info & WPA_KEY_INFO_MIC ? " MIC" : "", key_info & WPA_KEY_INFO_SECURE ? " Secure" : "", key_info & WPA_KEY_INFO_ERROR ? " Error" : "", key_info & WPA_KEY_INFO_REQUEST ? " Request" : "", key_info & WPA_KEY_INFO_ENCR_KEY_DATA ? " Encr" : ""); wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, " key_length=%u key_data_length=%u", WPA_GET_BE16(key->key_length), key_data_len); wpa_hexdump(MSG_DEBUG, " replay_counter", key->replay_counter, WPA_REPLAY_COUNTER_LEN); wpa_hexdump(MSG_DEBUG, " key_nonce", key->key_nonce, WPA_NONCE_LEN); wpa_hexdump(MSG_DEBUG, " key_iv", key->key_iv, 16); wpa_hexdump(MSG_DEBUG, " key_rsc", key->key_rsc, 8); wpa_hexdump(MSG_DEBUG, " key_id (reserved)", key->key_id, 8); wpa_hexdump(MSG_DEBUG, " key_mic", mic, mic_len); #endif /* CONFIG_NO_STDOUT_DEBUG */ } #ifdef CONFIG_FILS static int wpa_supp_aead_decrypt(struct wpa_sm *sm, u8 *buf, size_t buf_len, size_t *key_data_len) { struct wpa_ptk *ptk; struct ieee802_1x_hdr *hdr; struct wpa_eapol_key *key; u8 *pos, *tmp; const u8 *aad[1]; size_t aad_len[1]; if (*key_data_len < AES_BLOCK_SIZE) { wpa_printf(MSG_INFO, "No room for AES-SIV data in the frame"); return -1; } if (sm->tptk_set) ptk = &sm->tptk; else if (sm->ptk_set) ptk = &sm->ptk; else return -1; hdr = (struct ieee802_1x_hdr *) buf; key = (struct wpa_eapol_key *) (hdr + 1); pos = (u8 *) (key + 1); pos += 2; /* Pointing at the Encrypted Key Data field */ tmp = os_malloc(*key_data_len); if (!tmp) return -1; /* AES-SIV AAD from EAPOL protocol version field (inclusive) to * to Key Data (exclusive). */ aad[0] = buf; aad_len[0] = pos - buf; if (aes_siv_decrypt(ptk->kek, ptk->kek_len, pos, *key_data_len, 1, aad, aad_len, tmp) < 0) { wpa_printf(MSG_INFO, "Invalid AES-SIV data in the frame"); bin_clear_free(tmp, *key_data_len); return -1; } /* AEAD decryption and validation completed successfully */ (*key_data_len) -= AES_BLOCK_SIZE; wpa_hexdump_key(MSG_DEBUG, "WPA: Decrypted Key Data", tmp, *key_data_len); /* Replace Key Data field with the decrypted version */ os_memcpy(pos, tmp, *key_data_len); pos -= 2; /* Key Data Length field */ WPA_PUT_BE16(pos, *key_data_len); bin_clear_free(tmp, *key_data_len); if (sm->tptk_set) { sm->tptk_set = 0; sm->ptk_set = 1; os_memcpy(&sm->ptk, &sm->tptk, sizeof(sm->ptk)); os_memset(&sm->tptk, 0, sizeof(sm->tptk)); } os_memcpy(sm->rx_replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); sm->rx_replay_counter_set = 1; return 0; } #endif /* CONFIG_FILS */ static int wpa_sm_rx_eapol_wpa(struct wpa_sm *sm, const u8 *src_addr, struct wpa_eapol_key *key, enum frame_encryption encrypted, const u8 *tmp, size_t data_len, u8 *key_data, size_t key_data_len) { u16 key_info, ver; key_info = WPA_GET_BE16(key->key_info); if (key->type != EAPOL_KEY_TYPE_WPA) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Unsupported EAPOL-Key type %d", key->type); return -1; } ver = key_info & WPA_KEY_INFO_TYPE_MASK; if (ver != WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 && ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Unsupported EAPOL-Key descriptor version %d", ver); return -1; } if (sm->pairwise_cipher == WPA_CIPHER_CCMP && ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: CCMP is used, but EAPOL-Key descriptor version (%d) is not 2", ver); if (sm->group_cipher != WPA_CIPHER_CCMP && !(key_info & WPA_KEY_INFO_KEY_TYPE)) { /* Earlier versions of IEEE 802.11i did not explicitly * require version 2 descriptor for all EAPOL-Key * packets, so allow group keys to use version 1 if * CCMP is not used for them. */ wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Backwards compatibility: allow invalid version for non-CCMP group keys"); } else return -1; } if ((key_info & WPA_KEY_INFO_MIC) && wpa_supplicant_verify_eapol_key_mic(sm, key, ver, tmp, data_len)) return -1; if (key_info & WPA_KEY_INFO_KEY_TYPE) { if (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Ignored EAPOL-Key (Pairwise) with non-zero key index"); return -1; } if (key_info & (WPA_KEY_INFO_MIC | WPA_KEY_INFO_ENCR_KEY_DATA)) { /* 3/4 4-Way Handshake */ wpa_supplicant_process_3_of_4_wpa(sm, key, ver, key_data, key_data_len); } else { /* 1/4 4-Way Handshake */ wpa_supplicant_process_1_of_4_wpa(sm, src_addr, key, ver, key_data, key_data_len, encrypted); } } else { if (key_info & WPA_KEY_INFO_MIC) { /* 1/2 Group Key Handshake */ wpa_supplicant_process_1_of_2_wpa(sm, src_addr, key, key_data, key_data_len, ver); } else { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: EAPOL-Key (Group) without Mic/Encr bit - dropped"); } } return 1; } /** * wpa_sm_rx_eapol - Process received WPA EAPOL frames * @sm: Pointer to WPA state machine data from wpa_sm_init() * @src_addr: Source MAC address of the EAPOL packet * @buf: Pointer to the beginning of the EAPOL data (EAPOL header) * @len: Length of the EAPOL frame * @encrypted: Whether the frame was encrypted * Returns: 1 = WPA EAPOL-Key processed, 0 = not a WPA EAPOL-Key, -1 failure * * This function is called for each received EAPOL frame. Other than EAPOL-Key * frames can be skipped if filtering is done elsewhere. wpa_sm_rx_eapol() is * only processing WPA and WPA2 EAPOL-Key frames. * * The received EAPOL-Key packets are validated and valid packets are replied * to. In addition, key material (PTK, GTK) is configured at the end of a * successful key handshake. */ int wpa_sm_rx_eapol(struct wpa_sm *sm, const u8 *src_addr, const u8 *buf, size_t len, enum frame_encryption encrypted) { size_t plen, data_len, key_data_len; const struct ieee802_1x_hdr *hdr; struct wpa_eapol_key *key; u16 key_info, ver; u8 *tmp = NULL; int ret = -1; u8 *mic, *key_data; size_t mic_len, keyhdrlen, pmk_len; #ifdef CONFIG_IEEE80211R sm->ft_completed = 0; #endif /* CONFIG_IEEE80211R */ pmk_len = sm->pmk_len; if (!pmk_len && sm->cur_pmksa) pmk_len = sm->cur_pmksa->pmk_len; mic_len = wpa_mic_len(sm->key_mgmt, pmk_len); keyhdrlen = sizeof(*key) + mic_len + 2; if (len < sizeof(*hdr) + keyhdrlen) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: EAPOL frame too short to be a WPA " "EAPOL-Key (len %lu, expecting at least %lu)", (unsigned long) len, (unsigned long) sizeof(*hdr) + keyhdrlen); return 0; } hdr = (const struct ieee802_1x_hdr *) buf; plen = be_to_host16(hdr->length); data_len = plen + sizeof(*hdr); wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "IEEE 802.1X RX: version=%d type=%d length=%lu", hdr->version, hdr->type, (unsigned long) plen); if (hdr->version < EAPOL_VERSION) { /* TODO: backwards compatibility */ } if (hdr->type != IEEE802_1X_TYPE_EAPOL_KEY) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: EAPOL frame (type %u) discarded, " "not a Key frame", hdr->type); ret = 0; goto out; } wpa_hexdump(MSG_MSGDUMP, "WPA: RX EAPOL-Key", buf, len); if (plen > len - sizeof(*hdr) || plen < keyhdrlen) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: EAPOL frame payload size %lu " "invalid (frame size %lu)", (unsigned long) plen, (unsigned long) len); ret = 0; goto out; } if (data_len < len) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: ignoring %lu bytes after the IEEE 802.1X data", (unsigned long) len - data_len); } /* * Make a copy of the frame since we need to modify the buffer during * MAC validation and Key Data decryption. */ tmp = os_memdup(buf, data_len); if (tmp == NULL) goto out; key = (struct wpa_eapol_key *) (tmp + sizeof(struct ieee802_1x_hdr)); mic = (u8 *) (key + 1); key_data = mic + mic_len + 2; if (key->type != EAPOL_KEY_TYPE_WPA && key->type != EAPOL_KEY_TYPE_RSN) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: EAPOL-Key type (%d) unknown, discarded", key->type); ret = 0; goto out; } key_data_len = WPA_GET_BE16(mic + mic_len); wpa_eapol_key_dump(sm, key, key_data_len, mic, mic_len); if (key_data_len > plen - keyhdrlen) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Invalid EAPOL-Key " "frame - key_data overflow (%u > %u)", (unsigned int) key_data_len, (unsigned int) (plen - keyhdrlen)); goto out; } if (sm->rx_replay_counter_set && os_memcmp(key->replay_counter, sm->rx_replay_counter, WPA_REPLAY_COUNTER_LEN) <= 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: EAPOL-Key Replay Counter did not increase - dropping packet"); goto out; } eapol_sm_notify_lower_layer_success(sm->eapol, 0); key_info = WPA_GET_BE16(key->key_info); if (key_info & WPA_KEY_INFO_SMK_MESSAGE) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Unsupported SMK bit in key_info"); goto out; } if (!(key_info & WPA_KEY_INFO_ACK)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: No Ack bit in key_info"); goto out; } if (key_info & WPA_KEY_INFO_REQUEST) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: EAPOL-Key with Request bit - dropped"); goto out; } if (sm->proto == WPA_PROTO_WPA) { ret = wpa_sm_rx_eapol_wpa(sm, src_addr, key, encrypted, tmp, data_len, key_data, key_data_len); goto out; } if (key->type != EAPOL_KEY_TYPE_RSN) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Unsupported EAPOL-Key type %d", key->type); goto out; } ver = key_info & WPA_KEY_INFO_TYPE_MASK; if (ver != WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 && ver != WPA_KEY_INFO_TYPE_AES_128_CMAC && ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES && !wpa_use_akm_defined(sm->key_mgmt)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Unsupported EAPOL-Key descriptor version %d", ver); goto out; } if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 && sm->pairwise_cipher != WPA_CIPHER_TKIP) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: EAPOL-Key descriptor version %d not allowed without TKIP as the pairwise cipher", ver); goto out; } if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES && (sm->key_mgmt != WPA_KEY_MGMT_IEEE8021X && sm->key_mgmt != WPA_KEY_MGMT_PSK)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: EAPOL-Key descriptor version %d not allowed due to negotiated AKM (0x%x)", ver, sm->key_mgmt); goto out; } if (wpa_use_akm_defined(sm->key_mgmt) && ver != WPA_KEY_INFO_TYPE_AKM_DEFINED) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Unsupported EAPOL-Key descriptor version %d (expected AKM defined = 0)", ver); goto out; } #ifdef CONFIG_IEEE80211R if (wpa_key_mgmt_ft(sm->key_mgmt)) { /* IEEE 802.11r uses a new key_info type (AES-128-CMAC). */ if (ver != WPA_KEY_INFO_TYPE_AES_128_CMAC && !wpa_use_akm_defined(sm->key_mgmt)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "FT: AP did not use AES-128-CMAC"); goto out; } } else #endif /* CONFIG_IEEE80211R */ if (wpa_key_mgmt_sha256(sm->key_mgmt)) { if (ver != WPA_KEY_INFO_TYPE_AES_128_CMAC && !wpa_use_akm_defined(sm->key_mgmt)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: AP did not use the negotiated AES-128-CMAC"); goto out; } } else if (sm->pairwise_cipher == WPA_CIPHER_CCMP && !wpa_use_akm_defined(sm->key_mgmt) && ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: CCMP is used, but EAPOL-Key descriptor version (%d) is not 2", ver); if (ver == WPA_KEY_INFO_TYPE_AES_128_CMAC) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Interoperability workaround: allow incorrect (should have been HMAC-SHA1), but stronger (is AES-128-CMAC), descriptor version to be used"); } else { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: Unexpected descriptor version %u", ver); goto out; } } else if (sm->pairwise_cipher == WPA_CIPHER_GCMP && !wpa_use_akm_defined(sm->key_mgmt) && ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "RSN: GCMP is used, but EAPOL-Key descriptor version (%d) is not 2", ver); goto out; } if ((key_info & WPA_KEY_INFO_MIC) && wpa_supplicant_verify_eapol_key_mic(sm, key, ver, tmp, data_len)) goto out; #ifdef CONFIG_FILS if (!mic_len && (key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) { if (wpa_supp_aead_decrypt(sm, tmp, data_len, &key_data_len)) goto out; } #endif /* CONFIG_FILS */ if ((sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) && (key_info & WPA_KEY_INFO_ENCR_KEY_DATA) && mic_len) { /* * Only decrypt the Key Data field if the frame's authenticity * was verified. When using AES-SIV (FILS), the MIC flag is not * set, so this check should only be performed if mic_len != 0 * which is the case in this code branch. */ if (!(key_info & WPA_KEY_INFO_MIC)) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: Ignore EAPOL-Key with encrypted but unauthenticated data"); goto out; } if (wpa_supplicant_decrypt_key_data(sm, key, mic_len, ver, key_data, &key_data_len)) goto out; } if (key_info & WPA_KEY_INFO_KEY_TYPE) { if (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "RSN: Ignored EAPOL-Key (Pairwise) with non-zero key index"); goto out; } if (key_info & (WPA_KEY_INFO_MIC | WPA_KEY_INFO_ENCR_KEY_DATA)) { /* 3/4 4-Way Handshake */ wpa_supplicant_process_3_of_4(sm, key, ver, key_data, key_data_len); } else { /* 1/4 4-Way Handshake */ wpa_supplicant_process_1_of_4(sm, src_addr, key, ver, key_data, key_data_len, encrypted); } } else { if ((mic_len && (key_info & WPA_KEY_INFO_MIC)) || (!mic_len && (key_info & WPA_KEY_INFO_ENCR_KEY_DATA))) { /* 1/2 Group Key Handshake */ if (sm->mlo.valid_links) wpa_supplicant_process_mlo_1_of_2(sm, src_addr, key, key_data, key_data_len, ver); else wpa_supplicant_process_1_of_2(sm, src_addr, key, key_data, key_data_len, ver); } else { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "RSN: EAPOL-Key (Group) without Mic/Encr bit - dropped"); } } ret = 1; out: bin_clear_free(tmp, data_len); return ret; } #ifdef CONFIG_CTRL_IFACE static u32 wpa_key_mgmt_suite(struct wpa_sm *sm) { switch (sm->key_mgmt) { case WPA_KEY_MGMT_IEEE8021X: return ((sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) ? RSN_AUTH_KEY_MGMT_UNSPEC_802_1X : WPA_AUTH_KEY_MGMT_UNSPEC_802_1X); case WPA_KEY_MGMT_PSK: return (sm->proto == WPA_PROTO_RSN ? RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X : WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X); #ifdef CONFIG_IEEE80211R case WPA_KEY_MGMT_FT_IEEE8021X: return RSN_AUTH_KEY_MGMT_FT_802_1X; case WPA_KEY_MGMT_FT_PSK: return RSN_AUTH_KEY_MGMT_FT_PSK; #endif /* CONFIG_IEEE80211R */ case WPA_KEY_MGMT_IEEE8021X_SHA256: return RSN_AUTH_KEY_MGMT_802_1X_SHA256; case WPA_KEY_MGMT_PSK_SHA256: return RSN_AUTH_KEY_MGMT_PSK_SHA256; case WPA_KEY_MGMT_CCKM: return (sm->proto == WPA_PROTO_RSN ? RSN_AUTH_KEY_MGMT_CCKM: WPA_AUTH_KEY_MGMT_CCKM); case WPA_KEY_MGMT_WPA_NONE: return WPA_AUTH_KEY_MGMT_NONE; case WPA_KEY_MGMT_IEEE8021X_SUITE_B: return RSN_AUTH_KEY_MGMT_802_1X_SUITE_B; case WPA_KEY_MGMT_IEEE8021X_SUITE_B_192: return RSN_AUTH_KEY_MGMT_802_1X_SUITE_B_192; default: return 0; } } #ifdef CONFIG_CTRL_IFACE_MIB #define RSN_SUITE "%02x-%02x-%02x-%d" #define RSN_SUITE_ARG(s) \ ((s) >> 24) & 0xff, ((s) >> 16) & 0xff, ((s) >> 8) & 0xff, (s) & 0xff /** * wpa_sm_get_mib - Dump text list of MIB entries * @sm: Pointer to WPA state machine data from wpa_sm_init() * @buf: Buffer for the list * @buflen: Length of the buffer * Returns: Number of bytes written to buffer * * This function is used fetch dot11 MIB variables. */ int wpa_sm_get_mib(struct wpa_sm *sm, char *buf, size_t buflen) { char pmkid_txt[PMKID_LEN * 2 + 1]; bool rsna; int ret; size_t len; if (sm->cur_pmksa) { wpa_snprintf_hex(pmkid_txt, sizeof(pmkid_txt), sm->cur_pmksa->pmkid, PMKID_LEN); } else pmkid_txt[0] = '\0'; rsna = (wpa_key_mgmt_wpa_psk(sm->key_mgmt) || wpa_key_mgmt_wpa_ieee8021x(sm->key_mgmt)) && sm->proto == WPA_PROTO_RSN; ret = os_snprintf(buf, buflen, "dot11RSNAOptionImplemented=TRUE\n" "dot11RSNAPreauthenticationImplemented=TRUE\n" "dot11RSNAEnabled=%s\n" "dot11RSNAPreauthenticationEnabled=%s\n" "dot11RSNAConfigVersion=%d\n" "dot11RSNAConfigPairwiseKeysSupported=5\n" "dot11RSNAConfigGroupCipherSize=%d\n" "dot11RSNAConfigPMKLifetime=%d\n" "dot11RSNAConfigPMKReauthThreshold=%d\n" "dot11RSNAConfigNumberOfPTKSAReplayCounters=1\n" "dot11RSNAConfigSATimeout=%d\n", rsna ? "TRUE" : "FALSE", rsna ? "TRUE" : "FALSE", RSN_VERSION, wpa_cipher_key_len(sm->group_cipher) * 8, sm->dot11RSNAConfigPMKLifetime, sm->dot11RSNAConfigPMKReauthThreshold, sm->dot11RSNAConfigSATimeout); if (os_snprintf_error(buflen, ret)) return 0; len = ret; ret = os_snprintf( buf + len, buflen - len, "dot11RSNAAuthenticationSuiteSelected=" RSN_SUITE "\n" "dot11RSNAPairwiseCipherSelected=" RSN_SUITE "\n" "dot11RSNAGroupCipherSelected=" RSN_SUITE "\n" "dot11RSNAPMKIDUsed=%s\n" "dot11RSNAAuthenticationSuiteRequested=" RSN_SUITE "\n" "dot11RSNAPairwiseCipherRequested=" RSN_SUITE "\n" "dot11RSNAGroupCipherRequested=" RSN_SUITE "\n" "dot11RSNAConfigNumberOfGTKSAReplayCounters=0\n" "dot11RSNA4WayHandshakeFailures=%u\n", RSN_SUITE_ARG(wpa_key_mgmt_suite(sm)), RSN_SUITE_ARG(wpa_cipher_to_suite(sm->proto, sm->pairwise_cipher)), RSN_SUITE_ARG(wpa_cipher_to_suite(sm->proto, sm->group_cipher)), pmkid_txt, RSN_SUITE_ARG(wpa_key_mgmt_suite(sm)), RSN_SUITE_ARG(wpa_cipher_to_suite(sm->proto, sm->pairwise_cipher)), RSN_SUITE_ARG(wpa_cipher_to_suite(sm->proto, sm->group_cipher)), sm->dot11RSNA4WayHandshakeFailures); if (!os_snprintf_error(buflen - len, ret)) len += ret; return (int) len; } #endif #endif /* CONFIG_CTRL_IFACE */ static void wpa_sm_pmksa_free_cb(struct rsn_pmksa_cache_entry *entry, void *ctx, enum pmksa_free_reason reason) { struct wpa_sm *sm = ctx; int deauth = 0; wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: PMKSA cache entry free_cb: " MACSTR " reason=%d", MAC2STR(entry->aa), reason); if (sm->cur_pmksa == entry) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: %s current PMKSA entry", reason == PMKSA_REPLACE ? "replaced" : "removed"); pmksa_cache_clear_current(sm); /* * If an entry is simply being replaced, there's no need to * deauthenticate because it will be immediately re-added. * This happens when EAP authentication is completed again * (reauth or failed PMKSA caching attempt). */ if (reason != PMKSA_REPLACE) deauth = 1; } if (reason == PMKSA_EXPIRE && (sm->pmk_len == entry->pmk_len && os_memcmp(sm->pmk, entry->pmk, sm->pmk_len) == 0)) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: deauthenticating due to expired PMK"); pmksa_cache_clear_current(sm); deauth = 1; } if (deauth) { sm->pmk_len = 0; os_memset(sm->pmk, 0, sizeof(sm->pmk)); wpa_sm_deauthenticate(sm, WLAN_REASON_UNSPECIFIED); } } static bool wpa_sm_pmksa_is_current_cb(struct rsn_pmksa_cache_entry *entry, void *ctx) { struct wpa_sm *sm = ctx; return sm->cur_pmksa == entry; } static void wpa_sm_pmksa_notify_cb(struct rsn_pmksa_cache_entry *entry, void *ctx) { struct wpa_sm *sm = ctx; wpa_sm_notify_pmksa_cache_entry(sm, entry); } /** * wpa_sm_init - Initialize WPA state machine * @ctx: Context pointer for callbacks; this needs to be an allocated buffer * Returns: Pointer to the allocated WPA state machine data * * This function is used to allocate a new WPA state machine and the returned * value is passed to all WPA state machine calls. */ struct wpa_sm * wpa_sm_init(struct wpa_sm_ctx *ctx) { struct wpa_sm *sm; sm = os_zalloc(sizeof(*sm)); if (sm == NULL) return NULL; dl_list_init(&sm->pmksa_candidates); sm->renew_snonce = 1; sm->ctx = ctx; sm->dot11RSNAConfigPMKLifetime = 43200; sm->dot11RSNAConfigPMKReauthThreshold = 70; sm->dot11RSNAConfigSATimeout = 60; sm->pmksa = pmksa_cache_init(wpa_sm_pmksa_free_cb, wpa_sm_pmksa_is_current_cb, wpa_sm_pmksa_notify_cb, sm, sm); if (sm->pmksa == NULL) { wpa_msg(sm->ctx->msg_ctx, MSG_ERROR, "RSN: PMKSA cache initialization failed"); os_free(sm); return NULL; } return sm; } /** * wpa_sm_deinit - Deinitialize WPA state machine * @sm: Pointer to WPA state machine data from wpa_sm_init() */ void wpa_sm_deinit(struct wpa_sm *sm) { int i; if (sm == NULL) return; pmksa_cache_deinit(sm->pmksa); eloop_cancel_timeout(wpa_sm_start_preauth, sm, NULL); eloop_cancel_timeout(wpa_sm_rekey_ptk, sm, NULL); os_free(sm->assoc_wpa_ie); os_free(sm->assoc_rsnxe); os_free(sm->ap_wpa_ie); os_free(sm->ap_rsn_ie); os_free(sm->ap_rsnxe); for (i = 0; i < MAX_NUM_MLD_LINKS; i++) { os_free(sm->mlo.links[i].ap_rsne); os_free(sm->mlo.links[i].ap_rsnxe); } wpa_sm_drop_sa(sm); os_free(sm->ctx); #ifdef CONFIG_IEEE80211R os_free(sm->assoc_resp_ies); #endif /* CONFIG_IEEE80211R */ #ifdef CONFIG_TESTING_OPTIONS wpabuf_free(sm->test_assoc_ie); #endif /* CONFIG_TESTING_OPTIONS */ #ifdef CONFIG_FILS_SK_PFS crypto_ecdh_deinit(sm->fils_ecdh); #endif /* CONFIG_FILS_SK_PFS */ #ifdef CONFIG_FILS wpabuf_free(sm->fils_ft_ies); #endif /* CONFIG_FILS */ #ifdef CONFIG_OWE crypto_ecdh_deinit(sm->owe_ecdh); #endif /* CONFIG_OWE */ #ifdef CONFIG_DPP2 wpabuf_clear_free(sm->dpp_z); #endif /* CONFIG_DPP2 */ os_free(sm); } static void wpa_sm_clear_ptk(struct wpa_sm *sm) { int i; sm->ptk_set = 0; os_memset(&sm->ptk, 0, sizeof(sm->ptk)); sm->tptk_set = 0; os_memset(&sm->tptk, 0, sizeof(sm->tptk)); os_memset(&sm->gtk, 0, sizeof(sm->gtk)); os_memset(&sm->gtk_wnm_sleep, 0, sizeof(sm->gtk_wnm_sleep)); os_memset(&sm->igtk, 0, sizeof(sm->igtk)); os_memset(&sm->igtk_wnm_sleep, 0, sizeof(sm->igtk_wnm_sleep)); os_memset(&sm->bigtk, 0, sizeof(sm->bigtk)); os_memset(&sm->bigtk_wnm_sleep, 0, sizeof(sm->bigtk_wnm_sleep)); sm->tk_set = false; for (i = 0; i < MAX_NUM_MLD_LINKS; i++) { os_memset(&sm->mlo.links[i].gtk, 0, sizeof(sm->mlo.links[i].gtk)); os_memset(&sm->mlo.links[i].gtk_wnm_sleep, 0, sizeof(sm->mlo.links[i].gtk_wnm_sleep)); os_memset(&sm->mlo.links[i].igtk, 0, sizeof(sm->mlo.links[i].igtk)); os_memset(&sm->mlo.links[i].igtk_wnm_sleep, 0, sizeof(sm->mlo.links[i].igtk_wnm_sleep)); os_memset(&sm->mlo.links[i].bigtk, 0, sizeof(sm->mlo.links[i].bigtk)); os_memset(&sm->mlo.links[i].bigtk_wnm_sleep, 0, sizeof(sm->mlo.links[i].bigtk_wnm_sleep)); } } /** * wpa_sm_notify_assoc - Notify WPA state machine about association * @sm: Pointer to WPA state machine data from wpa_sm_init() * @bssid: The BSSID of the new association * * This function is called to let WPA state machine know that the connection * was established. */ void wpa_sm_notify_assoc(struct wpa_sm *sm, const u8 *bssid) { int clear_keys = 1; if (sm == NULL) return; wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Association event - clear replay counter"); os_memcpy(sm->bssid, bssid, ETH_ALEN); os_memset(sm->rx_replay_counter, 0, WPA_REPLAY_COUNTER_LEN); sm->rx_replay_counter_set = 0; sm->renew_snonce = 1; if (os_memcmp(sm->preauth_bssid, bssid, ETH_ALEN) == 0) rsn_preauth_deinit(sm); #ifdef CONFIG_IEEE80211R if (wpa_ft_is_completed(sm)) { /* * Clear portValid to kick EAPOL state machine to re-enter * AUTHENTICATED state to get the EAPOL port Authorized. */ eapol_sm_notify_portValid(sm->eapol, false); wpa_supplicant_key_neg_complete(sm, sm->bssid, 1); /* Prepare for the next transition */ wpa_ft_prepare_auth_request(sm, NULL); clear_keys = 0; sm->ft_protocol = 1; } else { sm->ft_protocol = 0; } #endif /* CONFIG_IEEE80211R */ #ifdef CONFIG_FILS if (sm->fils_completed) { /* * Clear portValid to kick EAPOL state machine to re-enter * AUTHENTICATED state to get the EAPOL port Authorized. */ wpa_supplicant_key_neg_complete(sm, sm->bssid, 1); clear_keys = 0; } #endif /* CONFIG_FILS */ if (clear_keys) { /* * IEEE 802.11, 8.4.10: Delete PTK SA on (re)association if * this is not part of a Fast BSS Transition. */ wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Clear old PTK"); wpa_sm_clear_ptk(sm); } #ifdef CONFIG_TDLS wpa_tdls_assoc(sm); #endif /* CONFIG_TDLS */ #ifdef CONFIG_P2P os_memset(sm->p2p_ip_addr, 0, sizeof(sm->p2p_ip_addr)); #endif /* CONFIG_P2P */ sm->keyidx_active = 0; } /** * wpa_sm_notify_disassoc - Notify WPA state machine about disassociation * @sm: Pointer to WPA state machine data from wpa_sm_init() * * This function is called to let WPA state machine know that the connection * was lost. This will abort any existing pre-authentication session. */ void wpa_sm_notify_disassoc(struct wpa_sm *sm) { eloop_cancel_timeout(wpa_sm_start_preauth, sm, NULL); eloop_cancel_timeout(wpa_sm_rekey_ptk, sm, NULL); rsn_preauth_deinit(sm); pmksa_cache_clear_current(sm); if (wpa_sm_get_state(sm) == WPA_4WAY_HANDSHAKE) sm->dot11RSNA4WayHandshakeFailures++; #ifdef CONFIG_TDLS wpa_tdls_disassoc(sm); #endif /* CONFIG_TDLS */ #ifdef CONFIG_FILS sm->fils_completed = 0; #endif /* CONFIG_FILS */ #ifdef CONFIG_IEEE80211R sm->ft_reassoc_completed = 0; sm->ft_protocol = 0; #endif /* CONFIG_IEEE80211R */ /* Keys are not needed in the WPA state machine anymore */ wpa_sm_drop_sa(sm); sm->keyidx_active = 0; sm->msg_3_of_4_ok = 0; os_memset(sm->bssid, 0, ETH_ALEN); } /** * wpa_sm_set_pmk - Set PMK * @sm: Pointer to WPA state machine data from wpa_sm_init() * @pmk: The new PMK * @pmk_len: The length of the new PMK in bytes * @pmkid: Calculated PMKID * @bssid: AA to add into PMKSA cache or %NULL to not cache the PMK * * Configure the PMK for WPA state machine. */ void wpa_sm_set_pmk(struct wpa_sm *sm, const u8 *pmk, size_t pmk_len, const u8 *pmkid, const u8 *bssid) { if (sm == NULL) return; wpa_hexdump_key(MSG_DEBUG, "WPA: Set PMK based on external data", pmk, pmk_len); sm->pmk_len = pmk_len; os_memcpy(sm->pmk, pmk, pmk_len); #ifdef CONFIG_IEEE80211R /* Set XXKey to be PSK for FT key derivation */ sm->xxkey_len = pmk_len; os_memcpy(sm->xxkey, pmk, pmk_len); #endif /* CONFIG_IEEE80211R */ if (bssid) { sm->cur_pmksa = pmksa_cache_add(sm->pmksa, pmk, pmk_len, pmkid, NULL, 0, bssid, sm->own_addr, sm->network_ctx, sm->key_mgmt, NULL); } } /** * wpa_sm_set_pmk_from_pmksa - Set PMK based on the current PMKSA * @sm: Pointer to WPA state machine data from wpa_sm_init() * * Take the PMK from the current PMKSA into use. If no PMKSA is active, the PMK * will be cleared. */ void wpa_sm_set_pmk_from_pmksa(struct wpa_sm *sm) { if (sm == NULL) return; if (sm->cur_pmksa) { wpa_hexdump_key(MSG_DEBUG, "WPA: Set PMK based on current PMKSA", sm->cur_pmksa->pmk, sm->cur_pmksa->pmk_len); sm->pmk_len = sm->cur_pmksa->pmk_len; os_memcpy(sm->pmk, sm->cur_pmksa->pmk, sm->pmk_len); } else { wpa_printf(MSG_DEBUG, "WPA: No current PMKSA - clear PMK"); sm->pmk_len = 0; os_memset(sm->pmk, 0, PMK_LEN_MAX); } } /** * wpa_sm_set_fast_reauth - Set fast reauthentication (EAP) enabled/disabled * @sm: Pointer to WPA state machine data from wpa_sm_init() * @fast_reauth: Whether fast reauthentication (EAP) is allowed */ void wpa_sm_set_fast_reauth(struct wpa_sm *sm, int fast_reauth) { if (sm) sm->fast_reauth = fast_reauth; } /** * wpa_sm_set_scard_ctx - Set context pointer for smartcard callbacks * @sm: Pointer to WPA state machine data from wpa_sm_init() * @scard_ctx: Context pointer for smartcard related callback functions */ void wpa_sm_set_scard_ctx(struct wpa_sm *sm, void *scard_ctx) { if (sm == NULL) return; sm->scard_ctx = scard_ctx; if (sm->preauth_eapol) eapol_sm_register_scard_ctx(sm->preauth_eapol, scard_ctx); } /** * wpa_sm_set_config - Notification of current configuration change * @sm: Pointer to WPA state machine data from wpa_sm_init() * @config: Pointer to current network configuration * * Notify WPA state machine that configuration has changed. config will be * stored as a backpointer to network configuration. This can be %NULL to clear * the stored pointed. */ void wpa_sm_set_config(struct wpa_sm *sm, struct rsn_supp_config *config) { if (!sm) return; if (config) { sm->network_ctx = config->network_ctx; sm->allowed_pairwise_cipher = config->allowed_pairwise_cipher; sm->proactive_key_caching = config->proactive_key_caching; sm->eap_workaround = config->eap_workaround; sm->eap_conf_ctx = config->eap_conf_ctx; if (config->ssid) { os_memcpy(sm->ssid, config->ssid, config->ssid_len); sm->ssid_len = config->ssid_len; } else sm->ssid_len = 0; sm->wpa_ptk_rekey = config->wpa_ptk_rekey; sm->p2p = config->p2p; sm->wpa_rsc_relaxation = config->wpa_rsc_relaxation; sm->owe_ptk_workaround = config->owe_ptk_workaround; sm->force_kdk_derivation = config->force_kdk_derivation; #ifdef CONFIG_FILS if (config->fils_cache_id) { sm->fils_cache_id_set = 1; os_memcpy(sm->fils_cache_id, config->fils_cache_id, FILS_CACHE_ID_LEN); } else { sm->fils_cache_id_set = 0; } #endif /* CONFIG_FILS */ sm->beacon_prot = config->beacon_prot; } else { sm->network_ctx = NULL; sm->allowed_pairwise_cipher = 0; sm->proactive_key_caching = 0; sm->eap_workaround = 0; sm->eap_conf_ctx = NULL; sm->ssid_len = 0; sm->wpa_ptk_rekey = 0; sm->p2p = 0; sm->wpa_rsc_relaxation = 0; sm->owe_ptk_workaround = 0; sm->beacon_prot = 0; sm->force_kdk_derivation = false; } } int wpa_sm_set_mlo_params(struct wpa_sm *sm, const struct wpa_sm_mlo *mlo) { int i; if (!sm) return -1; os_memcpy(sm->mlo.ap_mld_addr, mlo->ap_mld_addr, ETH_ALEN); sm->mlo.assoc_link_id = mlo->assoc_link_id; sm->mlo.valid_links = mlo->valid_links; sm->mlo.req_links = mlo->req_links; for (i = 0; i < MAX_NUM_MLD_LINKS; i++) { const u8 *ie; size_t len; if (sm->mlo.req_links & BIT(i)) { if (!mlo->links[i].ap_rsne || mlo->links[i].ap_rsne_len == 0) { wpa_dbg(sm->ctx->msg_ctx, MSG_INFO, "RSN: No RSNE for AP MLO link %d with BSSID " MACSTR, i, MAC2STR(mlo->links[i].bssid)); return -1; } os_memcpy(sm->mlo.links[i].addr, mlo->links[i].addr, ETH_ALEN); os_memcpy(sm->mlo.links[i].bssid, mlo->links[i].bssid, ETH_ALEN); } ie = mlo->links[i].ap_rsne; len = mlo->links[i].ap_rsne_len; os_free(sm->mlo.links[i].ap_rsne); if (!ie || len == 0) { if (sm->mlo.links[i].ap_rsne) wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Clearing MLO link[%u] AP RSNE", i); sm->mlo.links[i].ap_rsne = NULL; sm->mlo.links[i].ap_rsne_len = 0; } else { wpa_hexdump_link(MSG_DEBUG, i, "RSN: Set AP RSNE", ie, len); sm->mlo.links[i].ap_rsne = os_memdup(ie, len); if (!sm->mlo.links[i].ap_rsne) { sm->mlo.links[i].ap_rsne_len = 0; return -1; } sm->mlo.links[i].ap_rsne_len = len; } ie = mlo->links[i].ap_rsnxe; len = mlo->links[i].ap_rsnxe_len; os_free(sm->mlo.links[i].ap_rsnxe); if (!ie || len == 0) { if (sm->mlo.links[i].ap_rsnxe) wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Clearing MLO link[%u] AP RSNXE", i); sm->mlo.links[i].ap_rsnxe = NULL; sm->mlo.links[i].ap_rsnxe_len = 0; } else { wpa_hexdump_link(MSG_DEBUG, i, "RSN: Set AP RSNXE", ie, len); sm->mlo.links[i].ap_rsnxe = os_memdup(ie, len); if (!sm->mlo.links[i].ap_rsnxe) { sm->mlo.links[i].ap_rsnxe_len = 0; return -1; } sm->mlo.links[i].ap_rsnxe_len = len; } } return 0; } /** * wpa_sm_set_own_addr - Set own MAC address * @sm: Pointer to WPA state machine data from wpa_sm_init() * @addr: Own MAC address */ void wpa_sm_set_own_addr(struct wpa_sm *sm, const u8 *addr) { if (sm) os_memcpy(sm->own_addr, addr, ETH_ALEN); } /** * wpa_sm_set_ifname - Set network interface name * @sm: Pointer to WPA state machine data from wpa_sm_init() * @ifname: Interface name * @bridge_ifname: Optional bridge interface name (for pre-auth) */ void wpa_sm_set_ifname(struct wpa_sm *sm, const char *ifname, const char *bridge_ifname) { if (sm) { sm->ifname = ifname; sm->bridge_ifname = bridge_ifname; } } /** * wpa_sm_set_eapol - Set EAPOL state machine pointer * @sm: Pointer to WPA state machine data from wpa_sm_init() * @eapol: Pointer to EAPOL state machine allocated with eapol_sm_init() */ void wpa_sm_set_eapol(struct wpa_sm *sm, struct eapol_sm *eapol) { if (sm) sm->eapol = eapol; } /** * wpa_sm_set_param - Set WPA state machine parameters * @sm: Pointer to WPA state machine data from wpa_sm_init() * @param: Parameter field * @value: Parameter value * Returns: 0 on success, -1 on failure */ int wpa_sm_set_param(struct wpa_sm *sm, enum wpa_sm_conf_params param, unsigned int value) { int ret = 0; if (sm == NULL) return -1; switch (param) { case RSNA_PMK_LIFETIME: if (value > 0) sm->dot11RSNAConfigPMKLifetime = value; else ret = -1; break; case RSNA_PMK_REAUTH_THRESHOLD: if (value > 0 && value <= 100) sm->dot11RSNAConfigPMKReauthThreshold = value; else ret = -1; break; case RSNA_SA_TIMEOUT: if (value > 0) sm->dot11RSNAConfigSATimeout = value; else ret = -1; break; case WPA_PARAM_PROTO: sm->proto = value; break; case WPA_PARAM_PAIRWISE: sm->pairwise_cipher = value; break; case WPA_PARAM_GROUP: sm->group_cipher = value; break; case WPA_PARAM_KEY_MGMT: sm->key_mgmt = value; break; case WPA_PARAM_MGMT_GROUP: sm->mgmt_group_cipher = value; break; case WPA_PARAM_RSN_ENABLED: sm->rsn_enabled = value; break; case WPA_PARAM_MFP: sm->mfp = value; break; case WPA_PARAM_OCV: sm->ocv = value; break; case WPA_PARAM_SAE_PWE: sm->sae_pwe = value; break; case WPA_PARAM_SAE_PK: sm->sae_pk = value; break; case WPA_PARAM_DENY_PTK0_REKEY: sm->wpa_deny_ptk0_rekey = value; break; case WPA_PARAM_EXT_KEY_ID: sm->ext_key_id = value; break; case WPA_PARAM_USE_EXT_KEY_ID: sm->use_ext_key_id = value; break; #ifdef CONFIG_TESTING_OPTIONS case WPA_PARAM_FT_RSNXE_USED: sm->ft_rsnxe_used = value; break; case WPA_PARAM_OCI_FREQ_EAPOL: sm->oci_freq_override_eapol = value; break; case WPA_PARAM_OCI_FREQ_EAPOL_G2: sm->oci_freq_override_eapol_g2 = value; break; case WPA_PARAM_OCI_FREQ_FT_ASSOC: sm->oci_freq_override_ft_assoc = value; break; case WPA_PARAM_OCI_FREQ_FILS_ASSOC: sm->oci_freq_override_fils_assoc = value; break; case WPA_PARAM_DISABLE_EAPOL_G2_TX: sm->disable_eapol_g2_tx = value; break; #endif /* CONFIG_TESTING_OPTIONS */ #ifdef CONFIG_DPP2 case WPA_PARAM_DPP_PFS: sm->dpp_pfs = value; break; #endif /* CONFIG_DPP2 */ case WPA_PARAM_WMM_ENABLED: sm->wmm_enabled = value; break; default: break; } return ret; } /** * wpa_sm_get_status - Get WPA state machine * @sm: Pointer to WPA state machine data from wpa_sm_init() * @buf: Buffer for status information * @buflen: Maximum buffer length * @verbose: Whether to include verbose status information * Returns: Number of bytes written to buf. * * Query WPA state machine for status information. This function fills in * a text area with current status information. If the buffer (buf) is not * large enough, status information will be truncated to fit the buffer. */ int wpa_sm_get_status(struct wpa_sm *sm, char *buf, size_t buflen, int verbose) { char *pos = buf, *end = buf + buflen; int ret; ret = os_snprintf(pos, end - pos, "pairwise_cipher=%s\n" "group_cipher=%s\n" "key_mgmt=%s\n", wpa_cipher_txt(sm->pairwise_cipher), wpa_cipher_txt(sm->group_cipher), wpa_key_mgmt_txt(sm->key_mgmt, sm->proto)); if (os_snprintf_error(end - pos, ret)) return pos - buf; pos += ret; #ifdef CONFIG_DPP2 if (sm->key_mgmt == WPA_KEY_MGMT_DPP && sm->dpp_z) { ret = os_snprintf(pos, end - pos, "dpp_pfs=1\n"); if (os_snprintf_error(end - pos, ret)) return pos - buf; pos += ret; } #endif /* CONFIG_DPP2 */ if (sm->mfp != NO_MGMT_FRAME_PROTECTION && sm->ap_rsn_ie) { struct wpa_ie_data rsn; if (wpa_parse_wpa_ie_rsn(sm->ap_rsn_ie, sm->ap_rsn_ie_len, &rsn) >= 0 && rsn.capabilities & (WPA_CAPABILITY_MFPR | WPA_CAPABILITY_MFPC)) { ret = os_snprintf(pos, end - pos, "pmf=%d\n" "mgmt_group_cipher=%s\n", (rsn.capabilities & WPA_CAPABILITY_MFPR) ? 2 : 1, wpa_cipher_txt( sm->mgmt_group_cipher)); if (os_snprintf_error(end - pos, ret)) return pos - buf; pos += ret; } } return pos - buf; } int wpa_sm_pmf_enabled(struct wpa_sm *sm) { struct wpa_ie_data rsn; if (sm->mfp == NO_MGMT_FRAME_PROTECTION || !sm->ap_rsn_ie) return 0; if (wpa_parse_wpa_ie_rsn(sm->ap_rsn_ie, sm->ap_rsn_ie_len, &rsn) >= 0 && rsn.capabilities & (WPA_CAPABILITY_MFPR | WPA_CAPABILITY_MFPC)) return 1; return 0; } int wpa_sm_ext_key_id(struct wpa_sm *sm) { return sm ? sm->ext_key_id : 0; } int wpa_sm_ext_key_id_active(struct wpa_sm *sm) { return sm ? sm->use_ext_key_id : 0; } int wpa_sm_ocv_enabled(struct wpa_sm *sm) { struct wpa_ie_data rsn; if (!sm->ocv || !sm->ap_rsn_ie) return 0; return wpa_parse_wpa_ie_rsn(sm->ap_rsn_ie, sm->ap_rsn_ie_len, &rsn) >= 0 && (rsn.capabilities & WPA_CAPABILITY_OCVC); } /** * wpa_sm_set_assoc_wpa_ie_default - Generate own WPA/RSN IE from configuration * @sm: Pointer to WPA state machine data from wpa_sm_init() * @wpa_ie: Pointer to buffer for WPA/RSN IE * @wpa_ie_len: Pointer to the length of the wpa_ie buffer * Returns: 0 on success, -1 on failure */ int wpa_sm_set_assoc_wpa_ie_default(struct wpa_sm *sm, u8 *wpa_ie, size_t *wpa_ie_len) { int res; if (sm == NULL) return -1; #ifdef CONFIG_TESTING_OPTIONS if (sm->test_assoc_ie) { wpa_printf(MSG_DEBUG, "TESTING: Replace association WPA/RSN IE"); if (*wpa_ie_len < wpabuf_len(sm->test_assoc_ie)) return -1; os_memcpy(wpa_ie, wpabuf_head(sm->test_assoc_ie), wpabuf_len(sm->test_assoc_ie)); res = wpabuf_len(sm->test_assoc_ie); } else #endif /* CONFIG_TESTING_OPTIONS */ res = wpa_gen_wpa_ie(sm, wpa_ie, *wpa_ie_len); if (res < 0) return -1; *wpa_ie_len = res; wpa_hexdump(MSG_DEBUG, "WPA: Set own WPA IE default", wpa_ie, *wpa_ie_len); if (sm->assoc_wpa_ie == NULL) { /* * Make a copy of the WPA/RSN IE so that 4-Way Handshake gets * the correct version of the IE even if PMKSA caching is * aborted (which would remove PMKID from IE generation). */ sm->assoc_wpa_ie = os_memdup(wpa_ie, *wpa_ie_len); if (sm->assoc_wpa_ie == NULL) return -1; sm->assoc_wpa_ie_len = *wpa_ie_len; } else { wpa_hexdump(MSG_DEBUG, "WPA: Leave previously set WPA IE default", sm->assoc_wpa_ie, sm->assoc_wpa_ie_len); } return 0; } /** * wpa_sm_set_assoc_wpa_ie - Set own WPA/RSN IE from (Re)AssocReq * @sm: Pointer to WPA state machine data from wpa_sm_init() * @ie: Pointer to IE data (starting from id) * @len: IE length * Returns: 0 on success, -1 on failure * * Inform WPA state machine about the WPA/RSN IE used in (Re)Association * Request frame. The IE will be used to override the default value generated * with wpa_sm_set_assoc_wpa_ie_default(). */ int wpa_sm_set_assoc_wpa_ie(struct wpa_sm *sm, const u8 *ie, size_t len) { if (sm == NULL) return -1; os_free(sm->assoc_wpa_ie); if (ie == NULL || len == 0) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: clearing own WPA/RSN IE"); sm->assoc_wpa_ie = NULL; sm->assoc_wpa_ie_len = 0; } else { wpa_hexdump(MSG_DEBUG, "WPA: set own WPA/RSN IE", ie, len); sm->assoc_wpa_ie = os_memdup(ie, len); if (sm->assoc_wpa_ie == NULL) return -1; sm->assoc_wpa_ie_len = len; } return 0; } /** * wpa_sm_set_assoc_rsnxe_default - Generate own RSNXE from configuration * @sm: Pointer to WPA state machine data from wpa_sm_init() * @rsnxe: Pointer to buffer for RSNXE * @rsnxe_len: Pointer to the length of the rsne buffer * Returns: 0 on success, -1 on failure */ int wpa_sm_set_assoc_rsnxe_default(struct wpa_sm *sm, u8 *rsnxe, size_t *rsnxe_len) { int res; if (!sm) return -1; res = wpa_gen_rsnxe(sm, rsnxe, *rsnxe_len); if (res < 0) return -1; *rsnxe_len = res; wpa_hexdump(MSG_DEBUG, "RSN: Set own RSNXE default", rsnxe, *rsnxe_len); if (sm->assoc_rsnxe) { wpa_hexdump(MSG_DEBUG, "RSN: Leave previously set RSNXE default", sm->assoc_rsnxe, sm->assoc_rsnxe_len); } else if (*rsnxe_len > 0) { /* * Make a copy of the RSNXE so that 4-Way Handshake gets the * correct version of the IE even if it gets changed. */ sm->assoc_rsnxe = os_memdup(rsnxe, *rsnxe_len); if (!sm->assoc_rsnxe) return -1; sm->assoc_rsnxe_len = *rsnxe_len; } return 0; } /** * wpa_sm_set_assoc_rsnxe - Set own RSNXE from (Re)AssocReq * @sm: Pointer to WPA state machine data from wpa_sm_init() * @ie: Pointer to IE data (starting from id) * @len: IE length * Returns: 0 on success, -1 on failure * * Inform WPA state machine about the RSNXE used in (Re)Association Request * frame. The IE will be used to override the default value generated * with wpa_sm_set_assoc_rsnxe_default(). */ int wpa_sm_set_assoc_rsnxe(struct wpa_sm *sm, const u8 *ie, size_t len) { if (!sm) return -1; os_free(sm->assoc_rsnxe); if (!ie || len == 0) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: clearing own RSNXE"); sm->assoc_rsnxe = NULL; sm->assoc_rsnxe_len = 0; } else { wpa_hexdump(MSG_DEBUG, "RSN: set own RSNXE", ie, len); sm->assoc_rsnxe = os_memdup(ie, len); if (!sm->assoc_rsnxe) return -1; sm->assoc_rsnxe_len = len; } return 0; } /** * wpa_sm_set_ap_wpa_ie - Set AP WPA IE from Beacon/ProbeResp * @sm: Pointer to WPA state machine data from wpa_sm_init() * @ie: Pointer to IE data (starting from id) * @len: IE length * Returns: 0 on success, -1 on failure * * Inform WPA state machine about the WPA IE used in Beacon / Probe Response * frame. */ int wpa_sm_set_ap_wpa_ie(struct wpa_sm *sm, const u8 *ie, size_t len) { if (sm == NULL) return -1; os_free(sm->ap_wpa_ie); if (ie == NULL || len == 0) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: clearing AP WPA IE"); sm->ap_wpa_ie = NULL; sm->ap_wpa_ie_len = 0; } else { wpa_hexdump(MSG_DEBUG, "WPA: set AP WPA IE", ie, len); sm->ap_wpa_ie = os_memdup(ie, len); if (sm->ap_wpa_ie == NULL) return -1; sm->ap_wpa_ie_len = len; } return 0; } /** * wpa_sm_set_ap_rsn_ie - Set AP RSN IE from Beacon/ProbeResp * @sm: Pointer to WPA state machine data from wpa_sm_init() * @ie: Pointer to IE data (starting from id) * @len: IE length * Returns: 0 on success, -1 on failure * * Inform WPA state machine about the RSN IE used in Beacon / Probe Response * frame. */ int wpa_sm_set_ap_rsn_ie(struct wpa_sm *sm, const u8 *ie, size_t len) { if (sm == NULL) return -1; os_free(sm->ap_rsn_ie); if (ie == NULL || len == 0) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: clearing AP RSN IE"); sm->ap_rsn_ie = NULL; sm->ap_rsn_ie_len = 0; } else { wpa_hexdump(MSG_DEBUG, "WPA: set AP RSN IE", ie, len); sm->ap_rsn_ie = os_memdup(ie, len); if (sm->ap_rsn_ie == NULL) return -1; sm->ap_rsn_ie_len = len; } return 0; } /** * wpa_sm_set_ap_rsnxe - Set AP RSNXE from Beacon/ProbeResp * @sm: Pointer to WPA state machine data from wpa_sm_init() * @ie: Pointer to IE data (starting from id) * @len: IE length * Returns: 0 on success, -1 on failure * * Inform WPA state machine about the RSNXE used in Beacon / Probe Response * frame. */ int wpa_sm_set_ap_rsnxe(struct wpa_sm *sm, const u8 *ie, size_t len) { if (!sm) return -1; os_free(sm->ap_rsnxe); if (!ie || len == 0) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: clearing AP RSNXE"); sm->ap_rsnxe = NULL; sm->ap_rsnxe_len = 0; } else { wpa_hexdump(MSG_DEBUG, "WPA: set AP RSNXE", ie, len); sm->ap_rsnxe = os_memdup(ie, len); if (!sm->ap_rsnxe) return -1; sm->ap_rsnxe_len = len; } return 0; } /** * wpa_sm_parse_own_wpa_ie - Parse own WPA/RSN IE * @sm: Pointer to WPA state machine data from wpa_sm_init() * @data: Pointer to data area for parsing results * Returns: 0 on success, -1 if IE is not known, or -2 on parsing failure * * Parse the contents of the own WPA or RSN IE from (Re)AssocReq and write the * parsed data into data. */ int wpa_sm_parse_own_wpa_ie(struct wpa_sm *sm, struct wpa_ie_data *data) { if (sm == NULL) return -1; if (sm->assoc_wpa_ie == NULL) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: No WPA/RSN IE available from association info"); return -1; } if (wpa_parse_wpa_ie(sm->assoc_wpa_ie, sm->assoc_wpa_ie_len, data)) return -2; return 0; } int wpa_sm_pmksa_cache_list(struct wpa_sm *sm, char *buf, size_t len) { return pmksa_cache_list(sm->pmksa, buf, len); } struct rsn_pmksa_cache_entry * wpa_sm_pmksa_cache_head(struct wpa_sm *sm) { return pmksa_cache_head(sm->pmksa); } struct rsn_pmksa_cache_entry * wpa_sm_pmksa_cache_add_entry(struct wpa_sm *sm, struct rsn_pmksa_cache_entry * entry) { return pmksa_cache_add_entry(sm->pmksa, entry); } void wpa_sm_pmksa_cache_add(struct wpa_sm *sm, const u8 *pmk, size_t pmk_len, const u8 *pmkid, const u8 *bssid, const u8 *fils_cache_id) { sm->cur_pmksa = pmksa_cache_add(sm->pmksa, pmk, pmk_len, pmkid, NULL, 0, bssid, sm->own_addr, sm->network_ctx, sm->key_mgmt, fils_cache_id); } int wpa_sm_pmksa_exists(struct wpa_sm *sm, const u8 *bssid, const u8 *own_addr, const void *network_ctx) { return pmksa_cache_get(sm->pmksa, bssid, own_addr, NULL, network_ctx, 0) != NULL; } struct rsn_pmksa_cache_entry * wpa_sm_pmksa_cache_get(struct wpa_sm *sm, const u8 *aa, const u8 *pmkid, const void *network_ctx, int akmp) { return pmksa_cache_get(sm->pmksa, aa, sm->own_addr, pmkid, network_ctx, akmp); } void wpa_sm_pmksa_cache_remove(struct wpa_sm *sm, struct rsn_pmksa_cache_entry *entry) { if (sm && sm->pmksa) pmksa_cache_remove(sm->pmksa, entry); } void wpa_sm_drop_sa(struct wpa_sm *sm) { wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Clear old PMK and PTK"); wpa_sm_clear_ptk(sm); sm->pmk_len = 0; os_memset(sm->pmk, 0, sizeof(sm->pmk)); #ifdef CONFIG_IEEE80211R os_memset(sm->xxkey, 0, sizeof(sm->xxkey)); sm->xxkey_len = 0; os_memset(sm->pmk_r0, 0, sizeof(sm->pmk_r0)); sm->pmk_r0_len = 0; os_memset(sm->pmk_r1, 0, sizeof(sm->pmk_r1)); sm->pmk_r1_len = 0; #ifdef CONFIG_PASN os_free(sm->pasn_r1kh); sm->pasn_r1kh = NULL; sm->n_pasn_r1kh = 0; #endif /* CONFIG_PASN */ #endif /* CONFIG_IEEE80211R */ } #ifdef CONFIG_IEEE80211R bool wpa_sm_has_ft_keys(struct wpa_sm *sm, const u8 *md) { if (!sm) return false; if (!wpa_key_mgmt_ft(sm->key_mgmt) || os_memcmp(md, sm->key_mobility_domain, MOBILITY_DOMAIN_ID_LEN) != 0) { /* Do not allow FT protocol to be used even if we were to have * an PTK since the mobility domain has changed. */ return false; } return sm->ptk_set; } #endif /* CONFIG_IEEE80211R */ int wpa_sm_has_ptk_installed(struct wpa_sm *sm) { if (!sm) return 0; return sm->tk_set || sm->ptk.installed; } void wpa_sm_update_replay_ctr(struct wpa_sm *sm, const u8 *replay_ctr) { os_memcpy(sm->rx_replay_counter, replay_ctr, WPA_REPLAY_COUNTER_LEN); } void wpa_sm_pmksa_cache_flush(struct wpa_sm *sm, void *network_ctx) { pmksa_cache_flush(sm->pmksa, network_ctx, NULL, 0, false); } void wpa_sm_external_pmksa_cache_flush(struct wpa_sm *sm, void *network_ctx) { pmksa_cache_flush(sm->pmksa, network_ctx, NULL, 0, true); } #ifdef CONFIG_WNM int wpa_wnmsleep_install_key(struct wpa_sm *sm, u8 subelem_id, u8 *buf) { u16 keyinfo; u8 keylen; /* plaintext key len */ u8 *key_rsc; if (subelem_id == WNM_SLEEP_SUBELEM_GTK) { struct wpa_gtk_data gd; os_memset(&gd, 0, sizeof(gd)); keylen = wpa_cipher_key_len(sm->group_cipher); gd.key_rsc_len = wpa_cipher_rsc_len(sm->group_cipher); gd.alg = wpa_cipher_to_alg(sm->group_cipher); if (gd.alg == WPA_ALG_NONE) { wpa_printf(MSG_DEBUG, "Unsupported group cipher suite"); return -1; } key_rsc = buf + 5; keyinfo = WPA_GET_LE16(buf + 2); gd.gtk_len = keylen; if (gd.gtk_len != buf[4]) { wpa_printf(MSG_DEBUG, "GTK len mismatch len %d vs %d", gd.gtk_len, buf[4]); return -1; } gd.keyidx = keyinfo & 0x03; /* B0 - B1 */ gd.tx = wpa_supplicant_gtk_tx_bit_workaround( sm, !!(keyinfo & WPA_KEY_INFO_TXRX)); os_memcpy(gd.gtk, buf + 13, gd.gtk_len); wpa_hexdump_key(MSG_DEBUG, "Install GTK (WNM SLEEP)", gd.gtk, gd.gtk_len); if (wpa_supplicant_install_gtk(sm, &gd, key_rsc, 1)) { forced_memzero(&gd, sizeof(gd)); wpa_printf(MSG_DEBUG, "Failed to install the GTK in " "WNM mode"); return -1; } forced_memzero(&gd, sizeof(gd)); } else if (subelem_id == WNM_SLEEP_SUBELEM_IGTK) { const struct wpa_igtk_kde *igtk; igtk = (const struct wpa_igtk_kde *) (buf + 2); if (wpa_supplicant_install_igtk(sm, igtk, 1) < 0) return -1; } else if (subelem_id == WNM_SLEEP_SUBELEM_BIGTK) { const struct wpa_bigtk_kde *bigtk; bigtk = (const struct wpa_bigtk_kde *) (buf + 2); if (sm->beacon_prot && wpa_supplicant_install_bigtk(sm, bigtk, 1) < 0) return -1; } else { wpa_printf(MSG_DEBUG, "Unknown element id"); return -1; } return 0; } #endif /* CONFIG_WNM */ #ifdef CONFIG_P2P int wpa_sm_get_p2p_ip_addr(struct wpa_sm *sm, u8 *buf) { if (sm == NULL || WPA_GET_BE32(sm->p2p_ip_addr) == 0) return -1; os_memcpy(buf, sm->p2p_ip_addr, 3 * 4); return 0; } #endif /* CONFIG_P2P */ void wpa_sm_set_rx_replay_ctr(struct wpa_sm *sm, const u8 *rx_replay_counter) { if (rx_replay_counter == NULL) return; os_memcpy(sm->rx_replay_counter, rx_replay_counter, WPA_REPLAY_COUNTER_LEN); sm->rx_replay_counter_set = 1; wpa_printf(MSG_DEBUG, "Updated key replay counter"); } void wpa_sm_set_ptk_kck_kek(struct wpa_sm *sm, const u8 *ptk_kck, size_t ptk_kck_len, const u8 *ptk_kek, size_t ptk_kek_len) { if (ptk_kck && ptk_kck_len <= WPA_KCK_MAX_LEN) { os_memcpy(sm->ptk.kck, ptk_kck, ptk_kck_len); sm->ptk.kck_len = ptk_kck_len; wpa_printf(MSG_DEBUG, "Updated PTK KCK"); } if (ptk_kek && ptk_kek_len <= WPA_KEK_MAX_LEN) { os_memcpy(sm->ptk.kek, ptk_kek, ptk_kek_len); sm->ptk.kek_len = ptk_kek_len; wpa_printf(MSG_DEBUG, "Updated PTK KEK"); } sm->ptk_set = 1; } #ifdef CONFIG_TESTING_OPTIONS void wpa_sm_set_test_assoc_ie(struct wpa_sm *sm, struct wpabuf *buf) { wpabuf_free(sm->test_assoc_ie); sm->test_assoc_ie = buf; } const u8 * wpa_sm_get_anonce(struct wpa_sm *sm) { return sm->anonce; } #endif /* CONFIG_TESTING_OPTIONS */ unsigned int wpa_sm_get_key_mgmt(struct wpa_sm *sm) { return sm->key_mgmt; } const u8 * wpa_sm_get_auth_addr(struct wpa_sm *sm) { return sm->mlo.valid_links ? sm->mlo.ap_mld_addr : sm->bssid; } #ifdef CONFIG_FILS struct wpabuf * fils_build_auth(struct wpa_sm *sm, int dh_group, const u8 *md) { struct wpabuf *buf = NULL; struct wpabuf *erp_msg; struct wpabuf *pub = NULL; erp_msg = eapol_sm_build_erp_reauth_start(sm->eapol); if (!erp_msg && !sm->cur_pmksa) { wpa_printf(MSG_DEBUG, "FILS: Neither ERP EAP-Initiate/Re-auth nor PMKSA cache entry is available - skip FILS"); goto fail; } wpa_printf(MSG_DEBUG, "FILS: Try to use FILS (erp=%d pmksa_cache=%d)", erp_msg != NULL, sm->cur_pmksa != NULL); sm->fils_completed = 0; if (!sm->assoc_wpa_ie) { wpa_printf(MSG_INFO, "FILS: No own RSN IE set for FILS"); goto fail; } if (random_get_bytes(sm->fils_nonce, FILS_NONCE_LEN) < 0 || random_get_bytes(sm->fils_session, FILS_SESSION_LEN) < 0) goto fail; wpa_hexdump(MSG_DEBUG, "FILS: Generated FILS Nonce", sm->fils_nonce, FILS_NONCE_LEN); wpa_hexdump(MSG_DEBUG, "FILS: Generated FILS Session", sm->fils_session, FILS_SESSION_LEN); #ifdef CONFIG_FILS_SK_PFS sm->fils_dh_group = dh_group; if (dh_group) { crypto_ecdh_deinit(sm->fils_ecdh); sm->fils_ecdh = crypto_ecdh_init(dh_group); if (!sm->fils_ecdh) { wpa_printf(MSG_INFO, "FILS: Could not initialize ECDH with group %d", dh_group); goto fail; } pub = crypto_ecdh_get_pubkey(sm->fils_ecdh, 1); if (!pub) goto fail; wpa_hexdump_buf(MSG_DEBUG, "FILS: Element (DH public key)", pub); sm->fils_dh_elem_len = wpabuf_len(pub); } #endif /* CONFIG_FILS_SK_PFS */ buf = wpabuf_alloc(1000 + sm->assoc_wpa_ie_len + (pub ? wpabuf_len(pub) : 0)); if (!buf) goto fail; /* Fields following the Authentication algorithm number field */ /* Authentication Transaction seq# */ wpabuf_put_le16(buf, 1); /* Status Code */ wpabuf_put_le16(buf, WLAN_STATUS_SUCCESS); /* TODO: FILS PK */ #ifdef CONFIG_FILS_SK_PFS if (dh_group) { /* Finite Cyclic Group */ wpabuf_put_le16(buf, dh_group); /* Element */ wpabuf_put_buf(buf, pub); } #endif /* CONFIG_FILS_SK_PFS */ /* RSNE */ wpa_hexdump(MSG_DEBUG, "FILS: RSNE in FILS Authentication frame", sm->assoc_wpa_ie, sm->assoc_wpa_ie_len); wpabuf_put_data(buf, sm->assoc_wpa_ie, sm->assoc_wpa_ie_len); if (md) { /* MDE when using FILS for FT initial association */ struct rsn_mdie *mdie; wpabuf_put_u8(buf, WLAN_EID_MOBILITY_DOMAIN); wpabuf_put_u8(buf, sizeof(*mdie)); mdie = wpabuf_put(buf, sizeof(*mdie)); os_memcpy(mdie->mobility_domain, md, MOBILITY_DOMAIN_ID_LEN); mdie->ft_capab = 0; } /* FILS Nonce */ wpabuf_put_u8(buf, WLAN_EID_EXTENSION); /* Element ID */ wpabuf_put_u8(buf, 1 + FILS_NONCE_LEN); /* Length */ /* Element ID Extension */ wpabuf_put_u8(buf, WLAN_EID_EXT_FILS_NONCE); wpabuf_put_data(buf, sm->fils_nonce, FILS_NONCE_LEN); /* FILS Session */ wpabuf_put_u8(buf, WLAN_EID_EXTENSION); /* Element ID */ wpabuf_put_u8(buf, 1 + FILS_SESSION_LEN); /* Length */ /* Element ID Extension */ wpabuf_put_u8(buf, WLAN_EID_EXT_FILS_SESSION); wpabuf_put_data(buf, sm->fils_session, FILS_SESSION_LEN); /* Wrapped Data */ sm->fils_erp_pmkid_set = 0; if (erp_msg) { wpabuf_put_u8(buf, WLAN_EID_EXTENSION); /* Element ID */ wpabuf_put_u8(buf, 1 + wpabuf_len(erp_msg)); /* Length */ /* Element ID Extension */ wpabuf_put_u8(buf, WLAN_EID_EXT_WRAPPED_DATA); wpabuf_put_buf(buf, erp_msg); /* Calculate pending PMKID here so that we do not need to * maintain a copy of the EAP-Initiate/Reauth message. */ if (fils_pmkid_erp(sm->key_mgmt, wpabuf_head(erp_msg), wpabuf_len(erp_msg), sm->fils_erp_pmkid) == 0) sm->fils_erp_pmkid_set = 1; } wpa_hexdump_buf(MSG_DEBUG, "RSN: FILS fields for Authentication frame", buf); fail: wpabuf_free(erp_msg); wpabuf_free(pub); return buf; } int fils_process_auth(struct wpa_sm *sm, const u8 *bssid, const u8 *data, size_t len) { const u8 *pos, *end; struct ieee802_11_elems elems; struct wpa_ie_data rsn; int pmkid_match = 0; u8 ick[FILS_ICK_MAX_LEN]; size_t ick_len; int res; struct wpabuf *dh_ss = NULL; const u8 *g_sta = NULL; size_t g_sta_len = 0; const u8 *g_ap = NULL; size_t g_ap_len = 0, kdk_len; struct wpabuf *pub = NULL; #ifdef CONFIG_IEEE80211R struct wpa_ft_ies parse; os_memset(&parse, 0, sizeof(parse)); #endif /* CONFIG_IEEE80211R */ os_memcpy(sm->bssid, bssid, ETH_ALEN); wpa_hexdump(MSG_DEBUG, "FILS: Authentication frame fields", data, len); pos = data; end = data + len; /* TODO: FILS PK */ #ifdef CONFIG_FILS_SK_PFS if (sm->fils_dh_group) { u16 group; /* Using FILS PFS */ /* Finite Cyclic Group */ if (end - pos < 2) { wpa_printf(MSG_DEBUG, "FILS: No room for Finite Cyclic Group"); goto fail; } group = WPA_GET_LE16(pos); pos += 2; if (group != sm->fils_dh_group) { wpa_printf(MSG_DEBUG, "FILS: Unexpected change in Finite Cyclic Group: %u (expected %u)", group, sm->fils_dh_group); goto fail; } /* Element */ if ((size_t) (end - pos) < sm->fils_dh_elem_len) { wpa_printf(MSG_DEBUG, "FILS: No room for Element"); goto fail; } if (!sm->fils_ecdh) { wpa_printf(MSG_DEBUG, "FILS: No ECDH state available"); goto fail; } dh_ss = crypto_ecdh_set_peerkey(sm->fils_ecdh, 1, pos, sm->fils_dh_elem_len); if (!dh_ss) { wpa_printf(MSG_DEBUG, "FILS: ECDH operation failed"); goto fail; } wpa_hexdump_buf_key(MSG_DEBUG, "FILS: DH_SS", dh_ss); g_ap = pos; g_ap_len = sm->fils_dh_elem_len; pos += sm->fils_dh_elem_len; } #endif /* CONFIG_FILS_SK_PFS */ wpa_hexdump(MSG_DEBUG, "FILS: Remaining IEs", pos, end - pos); if (ieee802_11_parse_elems(pos, end - pos, &elems, 1) == ParseFailed) { wpa_printf(MSG_DEBUG, "FILS: Could not parse elements"); goto fail; } /* RSNE */ wpa_hexdump(MSG_DEBUG, "FILS: RSN element", elems.rsn_ie, elems.rsn_ie_len); if (!elems.rsn_ie || wpa_parse_wpa_ie_rsn(elems.rsn_ie - 2, elems.rsn_ie_len + 2, &rsn) < 0) { wpa_printf(MSG_DEBUG, "FILS: No RSN element"); goto fail; } if (!elems.fils_nonce) { wpa_printf(MSG_DEBUG, "FILS: No FILS Nonce field"); goto fail; } os_memcpy(sm->fils_anonce, elems.fils_nonce, FILS_NONCE_LEN); wpa_hexdump(MSG_DEBUG, "FILS: ANonce", sm->fils_anonce, FILS_NONCE_LEN); #ifdef CONFIG_IEEE80211R if (wpa_key_mgmt_ft(sm->key_mgmt)) { if (!elems.mdie || !elems.ftie) { wpa_printf(MSG_DEBUG, "FILS+FT: No MDE or FTE"); goto fail; } if (wpa_ft_parse_ies(pos, end - pos, &parse, sm->key_mgmt, false) < 0) { wpa_printf(MSG_DEBUG, "FILS+FT: Failed to parse IEs"); goto fail; } if (!parse.r0kh_id) { wpa_printf(MSG_DEBUG, "FILS+FT: No R0KH-ID subelem in FTE"); goto fail; } os_memcpy(sm->r0kh_id, parse.r0kh_id, parse.r0kh_id_len); sm->r0kh_id_len = parse.r0kh_id_len; wpa_hexdump_ascii(MSG_DEBUG, "FILS+FT: R0KH-ID", sm->r0kh_id, sm->r0kh_id_len); if (!parse.r1kh_id) { wpa_printf(MSG_DEBUG, "FILS+FT: No R1KH-ID subelem in FTE"); goto fail; } os_memcpy(sm->r1kh_id, parse.r1kh_id, FT_R1KH_ID_LEN); wpa_hexdump(MSG_DEBUG, "FILS+FT: R1KH-ID", sm->r1kh_id, FT_R1KH_ID_LEN); /* TODO: Check MDE and FTE payload */ wpabuf_free(sm->fils_ft_ies); sm->fils_ft_ies = wpabuf_alloc(2 + elems.mdie_len + 2 + elems.ftie_len); if (!sm->fils_ft_ies) goto fail; wpabuf_put_data(sm->fils_ft_ies, elems.mdie - 2, 2 + elems.mdie_len); wpabuf_put_data(sm->fils_ft_ies, elems.ftie - 2, 2 + elems.ftie_len); } else { wpabuf_free(sm->fils_ft_ies); sm->fils_ft_ies = NULL; } #endif /* CONFIG_IEEE80211R */ /* PMKID List */ if (rsn.pmkid && rsn.num_pmkid > 0) { wpa_hexdump(MSG_DEBUG, "FILS: PMKID List", rsn.pmkid, rsn.num_pmkid * PMKID_LEN); if (rsn.num_pmkid != 1) { wpa_printf(MSG_DEBUG, "FILS: Invalid PMKID selection"); goto fail; } wpa_hexdump(MSG_DEBUG, "FILS: PMKID", rsn.pmkid, PMKID_LEN); if (os_memcmp(sm->cur_pmksa->pmkid, rsn.pmkid, PMKID_LEN) != 0) { wpa_printf(MSG_DEBUG, "FILS: PMKID mismatch"); wpa_hexdump(MSG_DEBUG, "FILS: Expected PMKID", sm->cur_pmksa->pmkid, PMKID_LEN); goto fail; } wpa_printf(MSG_DEBUG, "FILS: Matching PMKID - continue using PMKSA caching"); pmkid_match = 1; } if (!pmkid_match && sm->cur_pmksa) { wpa_printf(MSG_DEBUG, "FILS: No PMKID match - cannot use cached PMKSA entry"); sm->cur_pmksa = NULL; } /* FILS Session */ if (!elems.fils_session) { wpa_printf(MSG_DEBUG, "FILS: No FILS Session element"); goto fail; } wpa_hexdump(MSG_DEBUG, "FILS: FILS Session", elems.fils_session, FILS_SESSION_LEN); if (os_memcmp(sm->fils_session, elems.fils_session, FILS_SESSION_LEN) != 0) { wpa_printf(MSG_DEBUG, "FILS: Session mismatch"); wpa_hexdump(MSG_DEBUG, "FILS: Expected FILS Session", sm->fils_session, FILS_SESSION_LEN); goto fail; } /* Wrapped Data */ if (!sm->cur_pmksa && elems.wrapped_data) { u8 rmsk[ERP_MAX_KEY_LEN]; size_t rmsk_len; wpa_hexdump(MSG_DEBUG, "FILS: Wrapped Data", elems.wrapped_data, elems.wrapped_data_len); eapol_sm_process_erp_finish(sm->eapol, elems.wrapped_data, elems.wrapped_data_len); if (eapol_sm_failed(sm->eapol)) goto fail; rmsk_len = ERP_MAX_KEY_LEN; res = eapol_sm_get_key(sm->eapol, rmsk, rmsk_len); if (res == PMK_LEN) { rmsk_len = PMK_LEN; res = eapol_sm_get_key(sm->eapol, rmsk, rmsk_len); } if (res) goto fail; res = fils_rmsk_to_pmk(sm->key_mgmt, rmsk, rmsk_len, sm->fils_nonce, sm->fils_anonce, dh_ss ? wpabuf_head(dh_ss) : NULL, dh_ss ? wpabuf_len(dh_ss) : 0, sm->pmk, &sm->pmk_len); forced_memzero(rmsk, sizeof(rmsk)); /* Don't use DHss in PTK derivation if PMKSA caching is not * used. */ wpabuf_clear_free(dh_ss); dh_ss = NULL; if (res) goto fail; if (!sm->fils_erp_pmkid_set) { wpa_printf(MSG_DEBUG, "FILS: PMKID not available"); goto fail; } wpa_hexdump(MSG_DEBUG, "FILS: PMKID", sm->fils_erp_pmkid, PMKID_LEN); wpa_printf(MSG_DEBUG, "FILS: ERP processing succeeded - add PMKSA cache entry for the result"); sm->cur_pmksa = pmksa_cache_add(sm->pmksa, sm->pmk, sm->pmk_len, sm->fils_erp_pmkid, NULL, 0, sm->bssid, sm->own_addr, sm->network_ctx, sm->key_mgmt, NULL); } if (!sm->cur_pmksa) { wpa_printf(MSG_DEBUG, "FILS: No remaining options to continue FILS authentication"); goto fail; } if (sm->force_kdk_derivation || (sm->secure_ltf && ieee802_11_rsnx_capab(sm->ap_rsnxe, WLAN_RSNX_CAPAB_SECURE_LTF))) kdk_len = WPA_KDK_MAX_LEN; else kdk_len = 0; if (fils_pmk_to_ptk(sm->pmk, sm->pmk_len, sm->own_addr, wpa_sm_get_auth_addr(sm), sm->fils_nonce, sm->fils_anonce, dh_ss ? wpabuf_head(dh_ss) : NULL, dh_ss ? wpabuf_len(dh_ss) : 0, &sm->ptk, ick, &ick_len, sm->key_mgmt, sm->pairwise_cipher, sm->fils_ft, &sm->fils_ft_len, kdk_len) < 0) { wpa_printf(MSG_DEBUG, "FILS: Failed to derive PTK"); goto fail; } #ifdef CONFIG_PASN if (sm->secure_ltf && ieee802_11_rsnx_capab(sm->ap_rsnxe, WLAN_RSNX_CAPAB_SECURE_LTF) && wpa_ltf_keyseed(&sm->ptk, sm->key_mgmt, sm->pairwise_cipher)) { wpa_printf(MSG_DEBUG, "FILS: Failed to derive LTF keyseed"); goto fail; } #endif /* CONFIG_PASN */ wpabuf_clear_free(dh_ss); dh_ss = NULL; sm->ptk_set = 1; sm->tptk_set = 0; os_memset(&sm->tptk, 0, sizeof(sm->tptk)); #ifdef CONFIG_FILS_SK_PFS if (sm->fils_dh_group) { if (!sm->fils_ecdh) { wpa_printf(MSG_INFO, "FILS: ECDH not initialized"); goto fail; } pub = crypto_ecdh_get_pubkey(sm->fils_ecdh, 1); if (!pub) goto fail; wpa_hexdump_buf(MSG_DEBUG, "FILS: gSTA", pub); g_sta = wpabuf_head(pub); g_sta_len = wpabuf_len(pub); if (!g_ap) { wpa_printf(MSG_INFO, "FILS: gAP not available"); goto fail; } wpa_hexdump(MSG_DEBUG, "FILS: gAP", g_ap, g_ap_len); } #endif /* CONFIG_FILS_SK_PFS */ res = fils_key_auth_sk(ick, ick_len, sm->fils_nonce, sm->fils_anonce, sm->own_addr, sm->bssid, g_sta, g_sta_len, g_ap, g_ap_len, sm->key_mgmt, sm->fils_key_auth_sta, sm->fils_key_auth_ap, &sm->fils_key_auth_len); wpabuf_free(pub); forced_memzero(ick, sizeof(ick)); #ifdef CONFIG_IEEE80211R wpa_ft_parse_ies_free(&parse); #endif /* CONFIG_IEEE80211R */ return res; fail: wpabuf_free(pub); wpabuf_clear_free(dh_ss); #ifdef CONFIG_IEEE80211R wpa_ft_parse_ies_free(&parse); #endif /* CONFIG_IEEE80211R */ return -1; } #ifdef CONFIG_IEEE80211R static int fils_ft_build_assoc_req_rsne(struct wpa_sm *sm, struct wpabuf *buf) { struct rsn_ie_hdr *rsnie; u16 capab; u8 *pos; int use_sha384 = wpa_key_mgmt_sha384(sm->key_mgmt); /* RSNIE[PMKR0Name/PMKR1Name] */ rsnie = wpabuf_put(buf, sizeof(*rsnie)); rsnie->elem_id = WLAN_EID_RSN; WPA_PUT_LE16(rsnie->version, RSN_VERSION); /* Group Suite Selector */ if (!wpa_cipher_valid_group(sm->group_cipher)) { wpa_printf(MSG_WARNING, "FT: Invalid group cipher (%d)", sm->group_cipher); return -1; } pos = wpabuf_put(buf, RSN_SELECTOR_LEN); RSN_SELECTOR_PUT(pos, wpa_cipher_to_suite(WPA_PROTO_RSN, sm->group_cipher)); /* Pairwise Suite Count */ wpabuf_put_le16(buf, 1); /* Pairwise Suite List */ if (!wpa_cipher_valid_pairwise(sm->pairwise_cipher)) { wpa_printf(MSG_WARNING, "FT: Invalid pairwise cipher (%d)", sm->pairwise_cipher); return -1; } pos = wpabuf_put(buf, RSN_SELECTOR_LEN); RSN_SELECTOR_PUT(pos, wpa_cipher_to_suite(WPA_PROTO_RSN, sm->pairwise_cipher)); /* Authenticated Key Management Suite Count */ wpabuf_put_le16(buf, 1); /* Authenticated Key Management Suite List */ pos = wpabuf_put(buf, RSN_SELECTOR_LEN); if (sm->key_mgmt == WPA_KEY_MGMT_FT_FILS_SHA256) RSN_SELECTOR_PUT(pos, RSN_AUTH_KEY_MGMT_FT_FILS_SHA256); else if (sm->key_mgmt == WPA_KEY_MGMT_FT_FILS_SHA384) RSN_SELECTOR_PUT(pos, RSN_AUTH_KEY_MGMT_FT_FILS_SHA384); else { wpa_printf(MSG_WARNING, "FILS+FT: Invalid key management type (%d)", sm->key_mgmt); return -1; } /* RSN Capabilities */ capab = 0; if (sm->mfp) capab |= WPA_CAPABILITY_MFPC; if (sm->mfp == 2) capab |= WPA_CAPABILITY_MFPR; if (sm->ocv) capab |= WPA_CAPABILITY_OCVC; if (sm->ext_key_id) capab |= WPA_CAPABILITY_EXT_KEY_ID_FOR_UNICAST; wpabuf_put_le16(buf, capab); /* PMKID Count */ wpabuf_put_le16(buf, 1); /* PMKID List [PMKR1Name] */ wpa_hexdump_key(MSG_DEBUG, "FILS+FT: XXKey (FILS-FT)", sm->fils_ft, sm->fils_ft_len); wpa_hexdump_ascii(MSG_DEBUG, "FILS+FT: SSID", sm->ssid, sm->ssid_len); wpa_hexdump(MSG_DEBUG, "FILS+FT: MDID", sm->mobility_domain, MOBILITY_DOMAIN_ID_LEN); wpa_hexdump_ascii(MSG_DEBUG, "FILS+FT: R0KH-ID", sm->r0kh_id, sm->r0kh_id_len); if (wpa_derive_pmk_r0(sm->fils_ft, sm->fils_ft_len, sm->ssid, sm->ssid_len, sm->mobility_domain, sm->r0kh_id, sm->r0kh_id_len, sm->own_addr, sm->pmk_r0, sm->pmk_r0_name, sm->key_mgmt) < 0) { wpa_printf(MSG_WARNING, "FILS+FT: Could not derive PMK-R0"); return -1; } if (wpa_key_mgmt_sae_ext_key(sm->key_mgmt)) sm->pmk_r0_len = sm->fils_ft_len; else sm->pmk_r0_len = use_sha384 ? SHA384_MAC_LEN : PMK_LEN; wpa_printf(MSG_DEBUG, "FILS+FT: R1KH-ID: " MACSTR, MAC2STR(sm->r1kh_id)); pos = wpabuf_put(buf, WPA_PMK_NAME_LEN); if (wpa_derive_pmk_r1_name(sm->pmk_r0_name, sm->r1kh_id, sm->own_addr, sm->pmk_r1_name, sm->fils_ft_len) < 0) { wpa_printf(MSG_WARNING, "FILS+FT: Could not derive PMKR1Name"); return -1; } os_memcpy(pos, sm->pmk_r1_name, WPA_PMK_NAME_LEN); os_memcpy(sm->key_mobility_domain, sm->mobility_domain, MOBILITY_DOMAIN_ID_LEN); if (sm->mgmt_group_cipher == WPA_CIPHER_AES_128_CMAC) { /* Management Group Cipher Suite */ pos = wpabuf_put(buf, RSN_SELECTOR_LEN); RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_AES_128_CMAC); } rsnie->len = ((u8 *) wpabuf_put(buf, 0) - (u8 *) rsnie) - 2; return 0; } #endif /* CONFIG_IEEE80211R */ struct wpabuf * fils_build_assoc_req(struct wpa_sm *sm, const u8 **kek, size_t *kek_len, const u8 **snonce, const u8 **anonce, const struct wpabuf **hlp, unsigned int num_hlp) { struct wpabuf *buf; size_t len; unsigned int i; len = 1000; #ifdef CONFIG_IEEE80211R if (sm->fils_ft_ies) len += wpabuf_len(sm->fils_ft_ies); if (wpa_key_mgmt_ft(sm->key_mgmt)) len += 256; #endif /* CONFIG_IEEE80211R */ for (i = 0; hlp && i < num_hlp; i++) len += 10 + wpabuf_len(hlp[i]); buf = wpabuf_alloc(len); if (!buf) return NULL; #ifdef CONFIG_IEEE80211R if (wpa_key_mgmt_ft(sm->key_mgmt) && sm->fils_ft_ies) { /* MDE and FTE when using FILS+FT */ wpabuf_put_buf(buf, sm->fils_ft_ies); /* RSNE with PMKR1Name in PMKID field */ if (fils_ft_build_assoc_req_rsne(sm, buf) < 0) { wpabuf_free(buf); return NULL; } } #endif /* CONFIG_IEEE80211R */ /* FILS Session */ wpabuf_put_u8(buf, WLAN_EID_EXTENSION); /* Element ID */ wpabuf_put_u8(buf, 1 + FILS_SESSION_LEN); /* Length */ /* Element ID Extension */ wpabuf_put_u8(buf, WLAN_EID_EXT_FILS_SESSION); wpabuf_put_data(buf, sm->fils_session, FILS_SESSION_LEN); /* Everything after FILS Session element gets encrypted in the driver * with KEK. The buffer returned from here is the plaintext version. */ /* TODO: FILS Public Key */ /* FILS Key Confirm */ wpabuf_put_u8(buf, WLAN_EID_EXTENSION); /* Element ID */ wpabuf_put_u8(buf, 1 + sm->fils_key_auth_len); /* Length */ /* Element ID Extension */ wpabuf_put_u8(buf, WLAN_EID_EXT_FILS_KEY_CONFIRM); wpabuf_put_data(buf, sm->fils_key_auth_sta, sm->fils_key_auth_len); /* FILS HLP Container */ for (i = 0; hlp && i < num_hlp; i++) { const u8 *pos = wpabuf_head(hlp[i]); size_t left = wpabuf_len(hlp[i]); wpabuf_put_u8(buf, WLAN_EID_EXTENSION); /* Element ID */ if (left <= 254) len = 1 + left; else len = 255; wpabuf_put_u8(buf, len); /* Length */ /* Element ID Extension */ wpabuf_put_u8(buf, WLAN_EID_EXT_FILS_HLP_CONTAINER); /* Destination MAC Address, Source MAC Address, HLP Packet. * HLP Packet is in MSDU format (i.e., included the LLC/SNAP * header when LPD is used). */ wpabuf_put_data(buf, pos, len - 1); pos += len - 1; left -= len - 1; while (left) { wpabuf_put_u8(buf, WLAN_EID_FRAGMENT); len = left > 255 ? 255 : left; wpabuf_put_u8(buf, len); wpabuf_put_data(buf, pos, len); pos += len; left -= len; } } /* TODO: FILS IP Address Assignment */ #ifdef CONFIG_OCV if (wpa_sm_ocv_enabled(sm)) { struct wpa_channel_info ci; u8 *pos; if (wpa_sm_channel_info(sm, &ci) != 0) { wpa_printf(MSG_WARNING, "FILS: Failed to get channel info for OCI element"); wpabuf_free(buf); return NULL; } #ifdef CONFIG_TESTING_OPTIONS if (sm->oci_freq_override_fils_assoc) { wpa_printf(MSG_INFO, "TEST: Override OCI KDE frequency %d -> %d MHz", ci.frequency, sm->oci_freq_override_fils_assoc); ci.frequency = sm->oci_freq_override_fils_assoc; } #endif /* CONFIG_TESTING_OPTIONS */ pos = wpabuf_put(buf, OCV_OCI_EXTENDED_LEN); if (ocv_insert_extended_oci(&ci, pos) < 0) { wpabuf_free(buf); return NULL; } } #endif /* CONFIG_OCV */ wpa_hexdump_buf(MSG_DEBUG, "FILS: Association Request plaintext", buf); *kek = sm->ptk.kek; *kek_len = sm->ptk.kek_len; wpa_hexdump_key(MSG_DEBUG, "FILS: KEK for AEAD", *kek, *kek_len); *snonce = sm->fils_nonce; wpa_hexdump(MSG_DEBUG, "FILS: SNonce for AEAD AAD", *snonce, FILS_NONCE_LEN); *anonce = sm->fils_anonce; wpa_hexdump(MSG_DEBUG, "FILS: ANonce for AEAD AAD", *anonce, FILS_NONCE_LEN); return buf; } static void fils_process_hlp_resp(struct wpa_sm *sm, const u8 *resp, size_t len) { const u8 *pos, *end; wpa_hexdump(MSG_MSGDUMP, "FILS: HLP response", resp, len); if (len < 2 * ETH_ALEN) return; pos = resp + 2 * ETH_ALEN; end = resp + len; if (end - pos >= 6 && os_memcmp(pos, "\xaa\xaa\x03\x00\x00\x00", 6) == 0) pos += 6; /* Remove SNAP/LLC header */ wpa_sm_fils_hlp_rx(sm, resp, resp + ETH_ALEN, pos, end - pos); } static void fils_process_hlp_container(struct wpa_sm *sm, const u8 *pos, size_t len) { const u8 *end = pos + len; u8 *tmp, *tmp_pos; /* Check if there are any FILS HLP Container elements */ while (end - pos >= 2) { if (2 + pos[1] > end - pos) return; if (pos[0] == WLAN_EID_EXTENSION && pos[1] >= 1 + 2 * ETH_ALEN && pos[2] == WLAN_EID_EXT_FILS_HLP_CONTAINER) break; pos += 2 + pos[1]; } if (end - pos < 2) return; /* No FILS HLP Container elements */ tmp = os_malloc(end - pos); if (!tmp) return; while (end - pos >= 2) { if (2 + pos[1] > end - pos || pos[0] != WLAN_EID_EXTENSION || pos[1] < 1 + 2 * ETH_ALEN || pos[2] != WLAN_EID_EXT_FILS_HLP_CONTAINER) break; tmp_pos = tmp; os_memcpy(tmp_pos, pos + 3, pos[1] - 1); tmp_pos += pos[1] - 1; pos += 2 + pos[1]; /* Add possible fragments */ while (end - pos >= 2 && pos[0] == WLAN_EID_FRAGMENT && 2 + pos[1] <= end - pos) { os_memcpy(tmp_pos, pos + 2, pos[1]); tmp_pos += pos[1]; pos += 2 + pos[1]; } fils_process_hlp_resp(sm, tmp, tmp_pos - tmp); } os_free(tmp); } int fils_process_assoc_resp(struct wpa_sm *sm, const u8 *resp, size_t len) { const struct ieee80211_mgmt *mgmt; const u8 *end, *ie_start; struct ieee802_11_elems elems; int keylen, rsclen; enum wpa_alg alg; struct wpa_gtk_data gd; int maxkeylen; struct wpa_eapol_ie_parse kde; if (!sm || !sm->ptk_set) { wpa_printf(MSG_DEBUG, "FILS: No KEK available"); return -1; } if (!wpa_key_mgmt_fils(sm->key_mgmt)) { wpa_printf(MSG_DEBUG, "FILS: Not a FILS AKM"); return -1; } if (sm->fils_completed) { wpa_printf(MSG_DEBUG, "FILS: Association has already been completed for this FILS authentication - ignore unexpected retransmission"); return -1; } wpa_hexdump(MSG_DEBUG, "FILS: (Re)Association Response frame", resp, len); mgmt = (const struct ieee80211_mgmt *) resp; if (len < IEEE80211_HDRLEN + sizeof(mgmt->u.assoc_resp)) return -1; end = resp + len; /* Same offset for Association Response and Reassociation Response */ ie_start = mgmt->u.assoc_resp.variable; if (ieee802_11_parse_elems(ie_start, end - ie_start, &elems, 1) == ParseFailed) { wpa_printf(MSG_DEBUG, "FILS: Failed to parse decrypted elements"); goto fail; } if (!elems.fils_session) { wpa_printf(MSG_DEBUG, "FILS: No FILS Session element"); return -1; } if (os_memcmp(elems.fils_session, sm->fils_session, FILS_SESSION_LEN) != 0) { wpa_printf(MSG_DEBUG, "FILS: FILS Session mismatch"); wpa_hexdump(MSG_DEBUG, "FILS: Received FILS Session", elems.fils_session, FILS_SESSION_LEN); wpa_hexdump(MSG_DEBUG, "FILS: Expected FILS Session", sm->fils_session, FILS_SESSION_LEN); } if (!elems.rsn_ie) { wpa_printf(MSG_DEBUG, "FILS: No RSNE in (Re)Association Response"); /* As an interop workaround, allow this for now since IEEE Std * 802.11ai-2016 did not include all the needed changes to make * a FILS AP include RSNE in the frame. This workaround might * eventually be removed and replaced with rejection (goto fail) * to follow a strict interpretation of the standard. */ } else if (wpa_compare_rsn_ie(wpa_key_mgmt_ft(sm->key_mgmt), sm->ap_rsn_ie, sm->ap_rsn_ie_len, elems.rsn_ie - 2, elems.rsn_ie_len + 2)) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "FILS: RSNE mismatch between Beacon/Probe Response and (Re)Association Response"); wpa_hexdump(MSG_DEBUG, "FILS: RSNE in Beacon/Probe Response", sm->ap_rsn_ie, sm->ap_rsn_ie_len); wpa_hexdump(MSG_DEBUG, "FILS: RSNE in (Re)Association Response", elems.rsn_ie, elems.rsn_ie_len); goto fail; } /* TODO: FILS Public Key */ if (!elems.fils_key_confirm) { wpa_printf(MSG_DEBUG, "FILS: No FILS Key Confirm element"); goto fail; } if (elems.fils_key_confirm_len != sm->fils_key_auth_len) { wpa_printf(MSG_DEBUG, "FILS: Unexpected Key-Auth length %d (expected %d)", elems.fils_key_confirm_len, (int) sm->fils_key_auth_len); goto fail; } if (os_memcmp(elems.fils_key_confirm, sm->fils_key_auth_ap, sm->fils_key_auth_len) != 0) { wpa_printf(MSG_DEBUG, "FILS: Key-Auth mismatch"); wpa_hexdump(MSG_DEBUG, "FILS: Received Key-Auth", elems.fils_key_confirm, elems.fils_key_confirm_len); wpa_hexdump(MSG_DEBUG, "FILS: Expected Key-Auth", sm->fils_key_auth_ap, sm->fils_key_auth_len); goto fail; } #ifdef CONFIG_OCV if (wpa_sm_ocv_enabled(sm)) { struct wpa_channel_info ci; if (wpa_sm_channel_info(sm, &ci) != 0) { wpa_printf(MSG_WARNING, "Failed to get channel info to validate received OCI in FILS (Re)Association Response frame"); goto fail; } if (ocv_verify_tx_params(elems.oci, elems.oci_len, &ci, channel_width_to_int(ci.chanwidth), ci.seg1_idx) != OCI_SUCCESS) { wpa_msg(sm->ctx->msg_ctx, MSG_INFO, OCV_FAILURE "addr=" MACSTR " frame=fils-assoc error=%s", MAC2STR(sm->bssid), ocv_errorstr); goto fail; } } #endif /* CONFIG_OCV */ #ifdef CONFIG_IEEE80211R if (wpa_key_mgmt_ft(sm->key_mgmt) && sm->fils_ft_ies) { struct wpa_ie_data rsn; /* Check that PMKR1Name derived by the AP matches */ if (!elems.rsn_ie || wpa_parse_wpa_ie_rsn(elems.rsn_ie - 2, elems.rsn_ie_len + 2, &rsn) < 0 || !rsn.pmkid || rsn.num_pmkid != 1 || os_memcmp(rsn.pmkid, sm->pmk_r1_name, WPA_PMK_NAME_LEN) != 0) { wpa_printf(MSG_DEBUG, "FILS+FT: No RSNE[PMKR1Name] match in AssocResp"); goto fail; } } #endif /* CONFIG_IEEE80211R */ /* Key Delivery */ if (!elems.key_delivery) { wpa_printf(MSG_DEBUG, "FILS: No Key Delivery element"); goto fail; } /* Parse GTK and set the key to the driver */ os_memset(&gd, 0, sizeof(gd)); if (wpa_supplicant_parse_ies(elems.key_delivery + WPA_KEY_RSC_LEN, elems.key_delivery_len - WPA_KEY_RSC_LEN, &kde) < 0) { wpa_printf(MSG_DEBUG, "FILS: Failed to parse KDEs"); goto fail; } if (!kde.gtk) { wpa_printf(MSG_DEBUG, "FILS: No GTK KDE"); goto fail; } maxkeylen = gd.gtk_len = kde.gtk_len - 2; if (wpa_supplicant_check_group_cipher(sm, sm->group_cipher, gd.gtk_len, maxkeylen, &gd.key_rsc_len, &gd.alg)) goto fail; wpa_hexdump_key(MSG_DEBUG, "FILS: Received GTK", kde.gtk, kde.gtk_len); gd.keyidx = kde.gtk[0] & 0x3; gd.tx = wpa_supplicant_gtk_tx_bit_workaround(sm, !!(kde.gtk[0] & BIT(2))); if (kde.gtk_len - 2 > sizeof(gd.gtk)) { wpa_printf(MSG_DEBUG, "FILS: Too long GTK in GTK KDE (len=%lu)", (unsigned long) kde.gtk_len - 2); goto fail; } os_memcpy(gd.gtk, kde.gtk + 2, kde.gtk_len - 2); wpa_printf(MSG_DEBUG, "FILS: Set GTK to driver"); if (wpa_supplicant_install_gtk(sm, &gd, elems.key_delivery, 0) < 0) { wpa_printf(MSG_DEBUG, "FILS: Failed to set GTK"); goto fail; } if (ieee80211w_set_keys(sm, &kde) < 0) { wpa_printf(MSG_DEBUG, "FILS: Failed to set IGTK"); goto fail; } alg = wpa_cipher_to_alg(sm->pairwise_cipher); keylen = wpa_cipher_key_len(sm->pairwise_cipher); if (keylen <= 0 || (unsigned int) keylen != sm->ptk.tk_len) { wpa_printf(MSG_DEBUG, "FILS: TK length mismatch: %u != %lu", keylen, (long unsigned int) sm->ptk.tk_len); goto fail; } rsclen = wpa_cipher_rsc_len(sm->pairwise_cipher); wpa_hexdump_key(MSG_DEBUG, "FILS: Set TK to driver", sm->ptk.tk, keylen); if (wpa_sm_set_key(sm, -1, alg, wpa_sm_get_auth_addr(sm), 0, 1, null_rsc, rsclen, sm->ptk.tk, keylen, KEY_FLAG_PAIRWISE_RX_TX) < 0) { wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "FILS: Failed to set PTK to the driver (alg=%d keylen=%d auth_addr=" MACSTR ")", alg, keylen, MAC2STR(wpa_sm_get_auth_addr(sm))); goto fail; } wpa_sm_store_ptk(sm, sm->bssid, sm->pairwise_cipher, sm->dot11RSNAConfigPMKLifetime, &sm->ptk); /* TODO: TK could be cleared after auth frame exchange now that driver * takes care of association frame encryption/decryption. */ /* TK is not needed anymore in supplicant */ os_memset(sm->ptk.tk, 0, WPA_TK_MAX_LEN); sm->ptk.tk_len = 0; sm->ptk.installed = 1; sm->tk_set = true; /* FILS HLP Container */ fils_process_hlp_container(sm, ie_start, end - ie_start); /* TODO: FILS IP Address Assignment */ wpa_printf(MSG_DEBUG, "FILS: Auth+Assoc completed successfully"); sm->fils_completed = 1; forced_memzero(&gd, sizeof(gd)); if (kde.transition_disable) wpa_sm_transition_disable(sm, kde.transition_disable[0]); return 0; fail: forced_memzero(&gd, sizeof(gd)); return -1; } void wpa_sm_set_reset_fils_completed(struct wpa_sm *sm, int set) { if (sm) sm->fils_completed = !!set; } #endif /* CONFIG_FILS */ int wpa_fils_is_completed(struct wpa_sm *sm) { #ifdef CONFIG_FILS return sm && sm->fils_completed; #else /* CONFIG_FILS */ return 0; #endif /* CONFIG_FILS */ } #ifdef CONFIG_OWE struct wpabuf * owe_build_assoc_req(struct wpa_sm *sm, u16 group) { struct wpabuf *ie = NULL, *pub = NULL; size_t prime_len; if (group == 19) prime_len = 32; else if (group == 20) prime_len = 48; else if (group == 21) prime_len = 66; else return NULL; crypto_ecdh_deinit(sm->owe_ecdh); sm->owe_ecdh = crypto_ecdh_init(group); if (!sm->owe_ecdh) goto fail; sm->owe_group = group; pub = crypto_ecdh_get_pubkey(sm->owe_ecdh, 0); pub = wpabuf_zeropad(pub, prime_len); if (!pub) goto fail; ie = wpabuf_alloc(5 + wpabuf_len(pub)); if (!ie) goto fail; wpabuf_put_u8(ie, WLAN_EID_EXTENSION); wpabuf_put_u8(ie, 1 + 2 + wpabuf_len(pub)); wpabuf_put_u8(ie, WLAN_EID_EXT_OWE_DH_PARAM); wpabuf_put_le16(ie, group); wpabuf_put_buf(ie, pub); wpabuf_free(pub); wpa_hexdump_buf(MSG_DEBUG, "OWE: Diffie-Hellman Parameter element", ie); return ie; fail: wpabuf_free(pub); crypto_ecdh_deinit(sm->owe_ecdh); sm->owe_ecdh = NULL; return NULL; } int owe_process_assoc_resp(struct wpa_sm *sm, const u8 *bssid, const u8 *resp_ies, size_t resp_ies_len) { struct ieee802_11_elems elems; u16 group; struct wpabuf *secret, *pub, *hkey; int res; u8 prk[SHA512_MAC_LEN], pmkid[SHA512_MAC_LEN]; const char *info = "OWE Key Generation"; const u8 *addr[2]; size_t len[2]; size_t hash_len, prime_len; struct wpa_ie_data data; if (!resp_ies || ieee802_11_parse_elems(resp_ies, resp_ies_len, &elems, 1) == ParseFailed) { wpa_printf(MSG_INFO, "OWE: Could not parse Association Response frame elements"); return -1; } if (sm->cur_pmksa && elems.rsn_ie && wpa_parse_wpa_ie_rsn(elems.rsn_ie - 2, 2 + elems.rsn_ie_len, &data) == 0 && data.num_pmkid == 1 && data.pmkid && os_memcmp(sm->cur_pmksa->pmkid, data.pmkid, PMKID_LEN) == 0) { wpa_printf(MSG_DEBUG, "OWE: Use PMKSA caching"); wpa_sm_set_pmk_from_pmksa(sm); return 0; } if (!elems.owe_dh) { wpa_printf(MSG_INFO, "OWE: No Diffie-Hellman Parameter element found in Association Response frame"); return -1; } group = WPA_GET_LE16(elems.owe_dh); if (group != sm->owe_group) { wpa_printf(MSG_INFO, "OWE: Unexpected Diffie-Hellman group in response: %u", group); return -1; } if (!sm->owe_ecdh) { wpa_printf(MSG_INFO, "OWE: No ECDH state available"); return -1; } if (group == 19) prime_len = 32; else if (group == 20) prime_len = 48; else if (group == 21) prime_len = 66; else return -1; secret = crypto_ecdh_set_peerkey(sm->owe_ecdh, 0, elems.owe_dh + 2, elems.owe_dh_len - 2); secret = wpabuf_zeropad(secret, prime_len); if (!secret) { wpa_printf(MSG_DEBUG, "OWE: Invalid peer DH public key"); return -1; } wpa_hexdump_buf_key(MSG_DEBUG, "OWE: DH shared secret", secret); /* prk = HKDF-extract(C | A | group, z) */ pub = crypto_ecdh_get_pubkey(sm->owe_ecdh, 0); if (!pub) { wpabuf_clear_free(secret); return -1; } /* PMKID = Truncate-128(Hash(C | A)) */ addr[0] = wpabuf_head(pub); len[0] = wpabuf_len(pub); addr[1] = elems.owe_dh + 2; len[1] = elems.owe_dh_len - 2; if (group == 19) { res = sha256_vector(2, addr, len, pmkid); hash_len = SHA256_MAC_LEN; } else if (group == 20) { res = sha384_vector(2, addr, len, pmkid); hash_len = SHA384_MAC_LEN; } else if (group == 21) { res = sha512_vector(2, addr, len, pmkid); hash_len = SHA512_MAC_LEN; } else { res = -1; hash_len = 0; } pub = wpabuf_zeropad(pub, prime_len); if (res < 0 || !pub) { wpabuf_free(pub); wpabuf_clear_free(secret); return -1; } hkey = wpabuf_alloc(wpabuf_len(pub) + elems.owe_dh_len - 2 + 2); if (!hkey) { wpabuf_free(pub); wpabuf_clear_free(secret); return -1; } wpabuf_put_buf(hkey, pub); /* C */ wpabuf_free(pub); wpabuf_put_data(hkey, elems.owe_dh + 2, elems.owe_dh_len - 2); /* A */ wpabuf_put_le16(hkey, sm->owe_group); /* group */ if (group == 19) res = hmac_sha256(wpabuf_head(hkey), wpabuf_len(hkey), wpabuf_head(secret), wpabuf_len(secret), prk); else if (group == 20) res = hmac_sha384(wpabuf_head(hkey), wpabuf_len(hkey), wpabuf_head(secret), wpabuf_len(secret), prk); else if (group == 21) res = hmac_sha512(wpabuf_head(hkey), wpabuf_len(hkey), wpabuf_head(secret), wpabuf_len(secret), prk); wpabuf_clear_free(hkey); wpabuf_clear_free(secret); if (res < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "OWE: prk", prk, hash_len); /* PMK = HKDF-expand(prk, "OWE Key Generation", n) */ if (group == 19) res = hmac_sha256_kdf(prk, hash_len, NULL, (const u8 *) info, os_strlen(info), sm->pmk, hash_len); else if (group == 20) res = hmac_sha384_kdf(prk, hash_len, NULL, (const u8 *) info, os_strlen(info), sm->pmk, hash_len); else if (group == 21) res = hmac_sha512_kdf(prk, hash_len, NULL, (const u8 *) info, os_strlen(info), sm->pmk, hash_len); forced_memzero(prk, SHA512_MAC_LEN); if (res < 0) { sm->pmk_len = 0; return -1; } sm->pmk_len = hash_len; wpa_hexdump_key(MSG_DEBUG, "OWE: PMK", sm->pmk, sm->pmk_len); wpa_hexdump(MSG_DEBUG, "OWE: PMKID", pmkid, PMKID_LEN); pmksa_cache_add(sm->pmksa, sm->pmk, sm->pmk_len, pmkid, NULL, 0, bssid, sm->own_addr, sm->network_ctx, sm->key_mgmt, NULL); return 0; } #endif /* CONFIG_OWE */ void wpa_sm_set_fils_cache_id(struct wpa_sm *sm, const u8 *fils_cache_id) { #ifdef CONFIG_FILS if (sm && fils_cache_id) { sm->fils_cache_id_set = 1; os_memcpy(sm->fils_cache_id, fils_cache_id, FILS_CACHE_ID_LEN); } #endif /* CONFIG_FILS */ } #ifdef CONFIG_DPP2 void wpa_sm_set_dpp_z(struct wpa_sm *sm, const struct wpabuf *z) { if (sm) { wpabuf_clear_free(sm->dpp_z); sm->dpp_z = z ? wpabuf_dup(z) : NULL; } } #endif /* CONFIG_DPP2 */ #ifdef CONFIG_PASN void wpa_pasn_sm_set_caps(struct wpa_sm *sm, unsigned int flags2) { if (flags2 & WPA_DRIVER_FLAGS2_SEC_LTF_STA) sm->secure_ltf = 1; if (flags2 & WPA_DRIVER_FLAGS2_SEC_RTT_STA) sm->secure_rtt = 1; if (flags2 & WPA_DRIVER_FLAGS2_PROT_RANGE_NEG_STA) sm->prot_range_neg = 1; } #endif /* CONFIG_PASN */ void wpa_sm_pmksa_cache_reconfig(struct wpa_sm *sm) { if (sm) pmksa_cache_reconfig(sm->pmksa); } struct rsn_pmksa_cache * wpa_sm_get_pmksa_cache(struct wpa_sm *sm) { return sm ? sm->pmksa : NULL; } void wpa_sm_set_cur_pmksa(struct wpa_sm *sm, struct rsn_pmksa_cache_entry *entry) { if (sm) sm->cur_pmksa = entry; }