// SPDX-License-Identifier: GPL-2.0-only /* * Driver for the Yamaha YAS magnetic sensors, often used in Samsung * mobile phones. While all are not yet handled because of lacking * hardware, expand this driver to handle the different variants: * * YAS530 MS-3E (2011 Samsung Galaxy S Advance) * YAS532 MS-3R (2011 Samsung Galaxy S4) * YAS533 MS-3F (Vivo 1633, 1707, V3, Y21L) * (YAS534 is a magnetic switch, not handled) * YAS535 MS-6C * YAS536 MS-3W * YAS537 MS-3T (2015 Samsung Galaxy S6, Note 5, Xiaomi) * YAS539 MS-3S (2018 Samsung Galaxy A7 SM-A750FN) * * Code functions found in the MPU3050 YAS530 and YAS532 drivers * named "inv_compass" in the Tegra Android kernel tree. * Copyright (C) 2012 InvenSense Corporation * * Author: Linus Walleij */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* This register map covers YAS530 and YAS532 but differs in YAS 537 and YAS539 */ #define YAS5XX_DEVICE_ID 0x80 #define YAS5XX_ACTUATE_INIT_COIL 0x81 #define YAS5XX_MEASURE 0x82 #define YAS5XX_CONFIG 0x83 #define YAS5XX_MEASURE_INTERVAL 0x84 #define YAS5XX_OFFSET_X 0x85 /* [-31 .. 31] */ #define YAS5XX_OFFSET_Y1 0x86 /* [-31 .. 31] */ #define YAS5XX_OFFSET_Y2 0x87 /* [-31 .. 31] */ #define YAS5XX_TEST1 0x88 #define YAS5XX_TEST2 0x89 #define YAS5XX_CAL 0x90 #define YAS5XX_MEASURE_DATA 0xB0 /* Bits in the YAS5xx config register */ #define YAS5XX_CONFIG_INTON BIT(0) /* Interrupt on? */ #define YAS5XX_CONFIG_INTHACT BIT(1) /* Interrupt active high? */ #define YAS5XX_CONFIG_CCK_MASK GENMASK(4, 2) #define YAS5XX_CONFIG_CCK_SHIFT 2 /* Bits in the measure command register */ #define YAS5XX_MEASURE_START BIT(0) #define YAS5XX_MEASURE_LDTC BIT(1) #define YAS5XX_MEASURE_FORS BIT(2) #define YAS5XX_MEASURE_DLYMES BIT(4) /* Bits in the measure data register */ #define YAS5XX_MEASURE_DATA_BUSY BIT(7) #define YAS530_DEVICE_ID 0x01 /* YAS530 (MS-3E) */ #define YAS530_VERSION_A 0 /* YAS530 (MS-3E A) */ #define YAS530_VERSION_B 1 /* YAS530B (MS-3E B) */ #define YAS530_VERSION_A_COEF 380 #define YAS530_VERSION_B_COEF 550 #define YAS530_DATA_BITS 12 #define YAS530_DATA_CENTER BIT(YAS530_DATA_BITS - 1) #define YAS530_DATA_OVERFLOW (BIT(YAS530_DATA_BITS) - 1) #define YAS532_DEVICE_ID 0x02 /* YAS532/YAS533 (MS-3R/F) */ #define YAS532_VERSION_AB 0 /* YAS532/533 AB (MS-3R/F AB) */ #define YAS532_VERSION_AC 1 /* YAS532/533 AC (MS-3R/F AC) */ #define YAS532_VERSION_AB_COEF 1800 #define YAS532_VERSION_AC_COEF_X 850 #define YAS532_VERSION_AC_COEF_Y1 750 #define YAS532_VERSION_AC_COEF_Y2 750 #define YAS532_DATA_BITS 13 #define YAS532_DATA_CENTER BIT(YAS532_DATA_BITS - 1) #define YAS532_DATA_OVERFLOW (BIT(YAS532_DATA_BITS) - 1) #define YAS532_20DEGREES 390 /* Looks like Kelvin */ /* These variant IDs are known from code dumps */ #define YAS537_DEVICE_ID 0x07 /* YAS537 (MS-3T) */ #define YAS539_DEVICE_ID 0x08 /* YAS539 (MS-3S) */ /* Turn off device regulators etc after 5 seconds of inactivity */ #define YAS5XX_AUTOSUSPEND_DELAY_MS 5000 struct yas5xx_calibration { /* Linearization calibration x, y1, y2 */ s32 r[3]; u32 f[3]; /* Temperature compensation calibration */ s32 Cx, Cy1, Cy2; /* Misc calibration coefficients */ s32 a2, a3, a4, a5, a6, a7, a8, a9, k; /* clock divider */ u8 dck; }; /** * struct yas5xx - state container for the YAS5xx driver * @dev: parent device pointer * @devid: device ID number * @version: device version * @name: device name * @calibration: calibration settings from the OTP storage * @hard_offsets: offsets for each axis measured with initcoil actuated * @orientation: mounting matrix, flipped axis etc * @map: regmap to access the YAX5xx registers over I2C * @regs: the vdd and vddio power regulators * @reset: optional GPIO line used for handling RESET * @lock: locks the magnetometer for exclusive use during a measurement (which * involves several register transactions so the regmap lock is not enough) * so that measurements get serialized in a first-come-first serve manner * @scan: naturally aligned measurements */ struct yas5xx { struct device *dev; unsigned int devid; unsigned int version; char name[16]; struct yas5xx_calibration calibration; s8 hard_offsets[3]; struct iio_mount_matrix orientation; struct regmap *map; struct regulator_bulk_data regs[2]; struct gpio_desc *reset; struct mutex lock; /* * The scanout is 4 x 32 bits in CPU endianness. * Ensure timestamp is naturally aligned */ struct { s32 channels[4]; s64 ts __aligned(8); } scan; }; /* On YAS530 the x, y1 and y2 values are 12 bits */ static u16 yas530_extract_axis(u8 *data) { u16 val; /* * These are the bits used in a 16bit word: * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 * x x x x x x x x x x x x */ val = get_unaligned_be16(&data[0]); val = FIELD_GET(GENMASK(14, 3), val); return val; } /* On YAS532 the x, y1 and y2 values are 13 bits */ static u16 yas532_extract_axis(u8 *data) { u16 val; /* * These are the bits used in a 16bit word: * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 * x x x x x x x x x x x x x */ val = get_unaligned_be16(&data[0]); val = FIELD_GET(GENMASK(14, 2), val); return val; } /** * yas5xx_measure() - Make a measure from the hardware * @yas5xx: The device state * @t: the raw temperature measurement * @x: the raw x axis measurement * @y1: the y1 axis measurement * @y2: the y2 axis measurement * @return: 0 on success or error code */ static int yas5xx_measure(struct yas5xx *yas5xx, u16 *t, u16 *x, u16 *y1, u16 *y2) { unsigned int busy; u8 data[8]; int ret; u16 val; mutex_lock(&yas5xx->lock); ret = regmap_write(yas5xx->map, YAS5XX_MEASURE, YAS5XX_MEASURE_START); if (ret < 0) goto out_unlock; /* * Typical time to measure 1500 us, max 2000 us so wait min 500 us * and at most 20000 us (one magnitude more than the datsheet max) * before timeout. */ ret = regmap_read_poll_timeout(yas5xx->map, YAS5XX_MEASURE_DATA, busy, !(busy & YAS5XX_MEASURE_DATA_BUSY), 500, 20000); if (ret) { dev_err(yas5xx->dev, "timeout waiting for measurement\n"); goto out_unlock; } ret = regmap_bulk_read(yas5xx->map, YAS5XX_MEASURE_DATA, data, sizeof(data)); if (ret) goto out_unlock; mutex_unlock(&yas5xx->lock); switch (yas5xx->devid) { case YAS530_DEVICE_ID: /* * The t value is 9 bits in big endian format * These are the bits used in a 16bit word: * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 * x x x x x x x x x */ val = get_unaligned_be16(&data[0]); val = FIELD_GET(GENMASK(14, 6), val); *t = val; *x = yas530_extract_axis(&data[2]); *y1 = yas530_extract_axis(&data[4]); *y2 = yas530_extract_axis(&data[6]); break; case YAS532_DEVICE_ID: /* * The t value is 10 bits in big endian format * These are the bits used in a 16bit word: * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 * x x x x x x x x x x */ val = get_unaligned_be16(&data[0]); val = FIELD_GET(GENMASK(14, 5), val); *t = val; *x = yas532_extract_axis(&data[2]); *y1 = yas532_extract_axis(&data[4]); *y2 = yas532_extract_axis(&data[6]); break; default: dev_err(yas5xx->dev, "unknown data format\n"); ret = -EINVAL; break; } return ret; out_unlock: mutex_unlock(&yas5xx->lock); return ret; } static s32 yas5xx_linearize(struct yas5xx *yas5xx, u16 val, int axis) { struct yas5xx_calibration *c = &yas5xx->calibration; static const s32 yas532ac_coef[] = { YAS532_VERSION_AC_COEF_X, YAS532_VERSION_AC_COEF_Y1, YAS532_VERSION_AC_COEF_Y2, }; s32 coef; /* Select coefficients */ switch (yas5xx->devid) { case YAS530_DEVICE_ID: if (yas5xx->version == YAS530_VERSION_A) coef = YAS530_VERSION_A_COEF; else coef = YAS530_VERSION_B_COEF; break; case YAS532_DEVICE_ID: if (yas5xx->version == YAS532_VERSION_AB) coef = YAS532_VERSION_AB_COEF; else /* Elaborate coefficients */ coef = yas532ac_coef[axis]; break; default: dev_err(yas5xx->dev, "unknown device type\n"); return val; } /* * Linearization formula: * * x' = x - (3721 + 50 * f) + (xoffset - r) * c * * Where f and r are calibration values, c is a per-device * and sometimes per-axis coefficient. */ return val - (3721 + 50 * c->f[axis]) + (yas5xx->hard_offsets[axis] - c->r[axis]) * coef; } /** * yas5xx_get_measure() - Measure a sample of all axis and process * @yas5xx: The device state * @to: Temperature out * @xo: X axis out * @yo: Y axis out * @zo: Z axis out * @return: 0 on success or error code * * Returned values are in nanotesla according to some code. */ static int yas5xx_get_measure(struct yas5xx *yas5xx, s32 *to, s32 *xo, s32 *yo, s32 *zo) { struct yas5xx_calibration *c = &yas5xx->calibration; u16 t, x, y1, y2; /* These are "signed x, signed y1 etc */ s32 sx, sy1, sy2, sy, sz; int ret; /* We first get raw data that needs to be translated to [x,y,z] */ ret = yas5xx_measure(yas5xx, &t, &x, &y1, &y2); if (ret) return ret; /* Do some linearization if available */ sx = yas5xx_linearize(yas5xx, x, 0); sy1 = yas5xx_linearize(yas5xx, y1, 1); sy2 = yas5xx_linearize(yas5xx, y2, 2); /* * Temperature compensation for x, y1, y2 respectively: * * Cx * t * x' = x - ------ * 100 */ sx = sx - (c->Cx * t) / 100; sy1 = sy1 - (c->Cy1 * t) / 100; sy2 = sy2 - (c->Cy2 * t) / 100; /* * Break y1 and y2 into y and z, y1 and y2 are apparently encoding * y and z. */ sy = sy1 - sy2; sz = -sy1 - sy2; /* * FIXME: convert to Celsius? Just guessing this is given * as 1/10:s of degrees so multiply by 100 to get millicentigrades. */ *to = t * 100; /* * Calibrate [x,y,z] with some formulas like this: * * 100 * x + a_2 * y + a_3 * z * x' = k * --------------------------- * 10 * * a_4 * x + a_5 * y + a_6 * z * y' = k * --------------------------- * 10 * * a_7 * x + a_8 * y + a_9 * z * z' = k * --------------------------- * 10 */ *xo = c->k * ((100 * sx + c->a2 * sy + c->a3 * sz) / 10); *yo = c->k * ((c->a4 * sx + c->a5 * sy + c->a6 * sz) / 10); *zo = c->k * ((c->a7 * sx + c->a8 * sy + c->a9 * sz) / 10); return 0; } static int yas5xx_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct yas5xx *yas5xx = iio_priv(indio_dev); s32 t, x, y, z; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: pm_runtime_get_sync(yas5xx->dev); ret = yas5xx_get_measure(yas5xx, &t, &x, &y, &z); pm_runtime_mark_last_busy(yas5xx->dev); pm_runtime_put_autosuspend(yas5xx->dev); if (ret) return ret; switch (chan->address) { case 0: *val = t; break; case 1: *val = x; break; case 2: *val = y; break; case 3: *val = z; break; default: dev_err(yas5xx->dev, "unknown channel\n"); return -EINVAL; } return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: if (chan->address == 0) { /* Temperature is unscaled */ *val = 1; return IIO_VAL_INT; } /* * The axis values are in nanotesla according to the vendor * drivers, but is clearly in microtesla according to * experiments. Since 1 uT = 0.01 Gauss, we need to divide * by 100000000 (10^8) to get to Gauss from the raw value. */ *val = 1; *val2 = 100000000; return IIO_VAL_FRACTIONAL; default: /* Unknown request */ return -EINVAL; } } static void yas5xx_fill_buffer(struct iio_dev *indio_dev) { struct yas5xx *yas5xx = iio_priv(indio_dev); s32 t, x, y, z; int ret; pm_runtime_get_sync(yas5xx->dev); ret = yas5xx_get_measure(yas5xx, &t, &x, &y, &z); pm_runtime_mark_last_busy(yas5xx->dev); pm_runtime_put_autosuspend(yas5xx->dev); if (ret) { dev_err(yas5xx->dev, "error refilling buffer\n"); return; } yas5xx->scan.channels[0] = t; yas5xx->scan.channels[1] = x; yas5xx->scan.channels[2] = y; yas5xx->scan.channels[3] = z; iio_push_to_buffers_with_timestamp(indio_dev, &yas5xx->scan, iio_get_time_ns(indio_dev)); } static irqreturn_t yas5xx_handle_trigger(int irq, void *p) { const struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; yas5xx_fill_buffer(indio_dev); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const struct iio_mount_matrix * yas5xx_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct yas5xx *yas5xx = iio_priv(indio_dev); return &yas5xx->orientation; } static const struct iio_chan_spec_ext_info yas5xx_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, yas5xx_get_mount_matrix), { } }; #define YAS5XX_AXIS_CHANNEL(axis, index) \ { \ .type = IIO_MAGN, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ .ext_info = yas5xx_ext_info, \ .address = index, \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 32, \ .storagebits = 32, \ .endianness = IIO_CPU, \ }, \ } static const struct iio_chan_spec yas5xx_channels[] = { { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), .address = 0, .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 32, .storagebits = 32, .endianness = IIO_CPU, }, }, YAS5XX_AXIS_CHANNEL(X, 1), YAS5XX_AXIS_CHANNEL(Y, 2), YAS5XX_AXIS_CHANNEL(Z, 3), IIO_CHAN_SOFT_TIMESTAMP(4), }; static const unsigned long yas5xx_scan_masks[] = { GENMASK(3, 0), 0 }; static const struct iio_info yas5xx_info = { .read_raw = &yas5xx_read_raw, }; static bool yas5xx_volatile_reg(struct device *dev, unsigned int reg) { return reg == YAS5XX_ACTUATE_INIT_COIL || reg == YAS5XX_MEASURE || (reg >= YAS5XX_MEASURE_DATA && reg <= YAS5XX_MEASURE_DATA + 8); } /* TODO: enable regmap cache, using mark dirty and sync at runtime resume */ static const struct regmap_config yas5xx_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .volatile_reg = yas5xx_volatile_reg, }; /** * yas53x_extract_calibration() - extracts the a2-a9 and k calibration * @data: the bitfield to use * @c: the calibration to populate */ static void yas53x_extract_calibration(u8 *data, struct yas5xx_calibration *c) { u64 val = get_unaligned_be64(data); /* * Bitfield layout for the axis calibration data, for factor * a2 = 2 etc, k = k, c = clock divider * * n 7 6 5 4 3 2 1 0 * 0 [ 2 2 2 2 2 2 3 3 ] bits 63 .. 56 * 1 [ 3 3 4 4 4 4 4 4 ] bits 55 .. 48 * 2 [ 5 5 5 5 5 5 6 6 ] bits 47 .. 40 * 3 [ 6 6 6 6 7 7 7 7 ] bits 39 .. 32 * 4 [ 7 7 7 8 8 8 8 8 ] bits 31 .. 24 * 5 [ 8 9 9 9 9 9 9 9 ] bits 23 .. 16 * 6 [ 9 k k k k k c c ] bits 15 .. 8 * 7 [ c x x x x x x x ] bits 7 .. 0 */ c->a2 = FIELD_GET(GENMASK_ULL(63, 58), val) - 32; c->a3 = FIELD_GET(GENMASK_ULL(57, 54), val) - 8; c->a4 = FIELD_GET(GENMASK_ULL(53, 48), val) - 32; c->a5 = FIELD_GET(GENMASK_ULL(47, 42), val) + 38; c->a6 = FIELD_GET(GENMASK_ULL(41, 36), val) - 32; c->a7 = FIELD_GET(GENMASK_ULL(35, 29), val) - 64; c->a8 = FIELD_GET(GENMASK_ULL(28, 23), val) - 32; c->a9 = FIELD_GET(GENMASK_ULL(22, 15), val); c->k = FIELD_GET(GENMASK_ULL(14, 10), val) + 10; c->dck = FIELD_GET(GENMASK_ULL(9, 7), val); } static int yas530_get_calibration_data(struct yas5xx *yas5xx) { struct yas5xx_calibration *c = &yas5xx->calibration; u8 data[16]; u32 val; int ret; /* Dummy read, first read is ALWAYS wrong */ ret = regmap_bulk_read(yas5xx->map, YAS5XX_CAL, data, sizeof(data)); if (ret) return ret; /* Actual calibration readout */ ret = regmap_bulk_read(yas5xx->map, YAS5XX_CAL, data, sizeof(data)); if (ret) return ret; dev_dbg(yas5xx->dev, "calibration data: %*ph\n", 14, data); add_device_randomness(data, sizeof(data)); yas5xx->version = data[15] & GENMASK(1, 0); /* Extract the calibration from the bitfield */ c->Cx = data[0] * 6 - 768; c->Cy1 = data[1] * 6 - 768; c->Cy2 = data[2] * 6 - 768; yas53x_extract_calibration(&data[3], c); /* * Extract linearization: * Linearization layout in the 32 bits at byte 11: * The r factors are 6 bit values where bit 5 is the sign * * n 7 6 5 4 3 2 1 0 * 0 [ xx xx xx r0 r0 r0 r0 r0 ] bits 31 .. 24 * 1 [ r0 f0 f0 r1 r1 r1 r1 r1 ] bits 23 .. 16 * 2 [ r1 f1 f1 r2 r2 r2 r2 r2 ] bits 15 .. 8 * 3 [ r2 f2 f2 xx xx xx xx xx ] bits 7 .. 0 */ val = get_unaligned_be32(&data[11]); c->f[0] = FIELD_GET(GENMASK(22, 21), val); c->f[1] = FIELD_GET(GENMASK(14, 13), val); c->f[2] = FIELD_GET(GENMASK(6, 5), val); c->r[0] = sign_extend32(FIELD_GET(GENMASK(28, 23), val), 5); c->r[1] = sign_extend32(FIELD_GET(GENMASK(20, 15), val), 5); c->r[2] = sign_extend32(FIELD_GET(GENMASK(12, 7), val), 5); return 0; } static int yas532_get_calibration_data(struct yas5xx *yas5xx) { struct yas5xx_calibration *c = &yas5xx->calibration; u8 data[14]; u32 val; int ret; /* Dummy read, first read is ALWAYS wrong */ ret = regmap_bulk_read(yas5xx->map, YAS5XX_CAL, data, sizeof(data)); if (ret) return ret; /* Actual calibration readout */ ret = regmap_bulk_read(yas5xx->map, YAS5XX_CAL, data, sizeof(data)); if (ret) return ret; dev_dbg(yas5xx->dev, "calibration data: %*ph\n", 14, data); /* Sanity check, is this all zeroes? */ if (memchr_inv(data, 0x00, 13) == NULL) { if (!(data[13] & BIT(7))) dev_warn(yas5xx->dev, "calibration is blank!\n"); } add_device_randomness(data, sizeof(data)); /* Only one bit of version info reserved here as far as we know */ yas5xx->version = data[13] & BIT(0); /* Extract calibration from the bitfield */ c->Cx = data[0] * 10 - 1280; c->Cy1 = data[1] * 10 - 1280; c->Cy2 = data[2] * 10 - 1280; yas53x_extract_calibration(&data[3], c); /* * Extract linearization: * Linearization layout in the 32 bits at byte 10: * The r factors are 6 bit values where bit 5 is the sign * * n 7 6 5 4 3 2 1 0 * 0 [ xx r0 r0 r0 r0 r0 r0 f0 ] bits 31 .. 24 * 1 [ f0 r1 r1 r1 r1 r1 r1 f1 ] bits 23 .. 16 * 2 [ f1 r2 r2 r2 r2 r2 r2 f2 ] bits 15 .. 8 * 3 [ f2 xx xx xx xx xx xx xx ] bits 7 .. 0 */ val = get_unaligned_be32(&data[10]); c->f[0] = FIELD_GET(GENMASK(24, 23), val); c->f[1] = FIELD_GET(GENMASK(16, 15), val); c->f[2] = FIELD_GET(GENMASK(8, 7), val); c->r[0] = sign_extend32(FIELD_GET(GENMASK(30, 25), val), 5); c->r[1] = sign_extend32(FIELD_GET(GENMASK(22, 17), val), 5); c->r[2] = sign_extend32(FIELD_GET(GENMASK(14, 7), val), 5); return 0; } static void yas5xx_dump_calibration(struct yas5xx *yas5xx) { struct yas5xx_calibration *c = &yas5xx->calibration; dev_dbg(yas5xx->dev, "f[] = [%d, %d, %d]\n", c->f[0], c->f[1], c->f[2]); dev_dbg(yas5xx->dev, "r[] = [%d, %d, %d]\n", c->r[0], c->r[1], c->r[2]); dev_dbg(yas5xx->dev, "Cx = %d\n", c->Cx); dev_dbg(yas5xx->dev, "Cy1 = %d\n", c->Cy1); dev_dbg(yas5xx->dev, "Cy2 = %d\n", c->Cy2); dev_dbg(yas5xx->dev, "a2 = %d\n", c->a2); dev_dbg(yas5xx->dev, "a3 = %d\n", c->a3); dev_dbg(yas5xx->dev, "a4 = %d\n", c->a4); dev_dbg(yas5xx->dev, "a5 = %d\n", c->a5); dev_dbg(yas5xx->dev, "a6 = %d\n", c->a6); dev_dbg(yas5xx->dev, "a7 = %d\n", c->a7); dev_dbg(yas5xx->dev, "a8 = %d\n", c->a8); dev_dbg(yas5xx->dev, "a9 = %d\n", c->a9); dev_dbg(yas5xx->dev, "k = %d\n", c->k); dev_dbg(yas5xx->dev, "dck = %d\n", c->dck); } static int yas5xx_set_offsets(struct yas5xx *yas5xx, s8 ox, s8 oy1, s8 oy2) { int ret; ret = regmap_write(yas5xx->map, YAS5XX_OFFSET_X, ox); if (ret) return ret; ret = regmap_write(yas5xx->map, YAS5XX_OFFSET_Y1, oy1); if (ret) return ret; return regmap_write(yas5xx->map, YAS5XX_OFFSET_Y2, oy2); } static s8 yas5xx_adjust_offset(s8 old, int bit, u16 center, u16 measure) { if (measure > center) return old + BIT(bit); if (measure < center) return old - BIT(bit); return old; } static int yas5xx_meaure_offsets(struct yas5xx *yas5xx) { int ret; u16 center; u16 t, x, y1, y2; s8 ox, oy1, oy2; int i; /* Actuate the init coil and measure offsets */ ret = regmap_write(yas5xx->map, YAS5XX_ACTUATE_INIT_COIL, 0); if (ret) return ret; /* When the initcoil is active this should be around the center */ switch (yas5xx->devid) { case YAS530_DEVICE_ID: center = YAS530_DATA_CENTER; break; case YAS532_DEVICE_ID: center = YAS532_DATA_CENTER; break; default: dev_err(yas5xx->dev, "unknown device type\n"); return -EINVAL; } /* * We set offsets in the interval +-31 by iterating * +-16, +-8, +-4, +-2, +-1 adjusting the offsets each * time, then writing the final offsets into the * registers. * * NOTE: these offsets are NOT in the same unit or magnitude * as the values for [x, y1, y2]. The value is +/-31 * but the effect on the raw values is much larger. * The effect of the offset is to bring the measure * rougly to the center. */ ox = 0; oy1 = 0; oy2 = 0; for (i = 4; i >= 0; i--) { ret = yas5xx_set_offsets(yas5xx, ox, oy1, oy2); if (ret) return ret; ret = yas5xx_measure(yas5xx, &t, &x, &y1, &y2); if (ret) return ret; dev_dbg(yas5xx->dev, "measurement %d: x=%d, y1=%d, y2=%d\n", 5-i, x, y1, y2); ox = yas5xx_adjust_offset(ox, i, center, x); oy1 = yas5xx_adjust_offset(oy1, i, center, y1); oy2 = yas5xx_adjust_offset(oy2, i, center, y2); } /* Needed for calibration algorithm */ yas5xx->hard_offsets[0] = ox; yas5xx->hard_offsets[1] = oy1; yas5xx->hard_offsets[2] = oy2; ret = yas5xx_set_offsets(yas5xx, ox, oy1, oy2); if (ret) return ret; dev_info(yas5xx->dev, "discovered hard offsets: x=%d, y1=%d, y2=%d\n", ox, oy1, oy2); return 0; } static int yas5xx_power_on(struct yas5xx *yas5xx) { unsigned int val; int ret; /* Zero the test registers */ ret = regmap_write(yas5xx->map, YAS5XX_TEST1, 0); if (ret) return ret; ret = regmap_write(yas5xx->map, YAS5XX_TEST2, 0); if (ret) return ret; /* Set up for no interrupts, calibrated clock divider */ val = FIELD_PREP(YAS5XX_CONFIG_CCK_MASK, yas5xx->calibration.dck); ret = regmap_write(yas5xx->map, YAS5XX_CONFIG, val); if (ret) return ret; /* Measure interval 0 (back-to-back?) */ return regmap_write(yas5xx->map, YAS5XX_MEASURE_INTERVAL, 0); } static int yas5xx_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct iio_dev *indio_dev; struct device *dev = &i2c->dev; struct yas5xx *yas5xx; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*yas5xx)); if (!indio_dev) return -ENOMEM; yas5xx = iio_priv(indio_dev); i2c_set_clientdata(i2c, indio_dev); yas5xx->dev = dev; mutex_init(&yas5xx->lock); ret = iio_read_mount_matrix(dev, &yas5xx->orientation); if (ret) return ret; yas5xx->regs[0].supply = "vdd"; yas5xx->regs[1].supply = "iovdd"; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(yas5xx->regs), yas5xx->regs); if (ret) return dev_err_probe(dev, ret, "cannot get regulators\n"); ret = regulator_bulk_enable(ARRAY_SIZE(yas5xx->regs), yas5xx->regs); if (ret) { dev_err(dev, "cannot enable regulators\n"); return ret; } /* See comment in runtime resume callback */ usleep_range(31000, 40000); /* This will take the device out of reset if need be */ yas5xx->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(yas5xx->reset)) { ret = dev_err_probe(dev, PTR_ERR(yas5xx->reset), "failed to get reset line\n"); goto reg_off; } yas5xx->map = devm_regmap_init_i2c(i2c, &yas5xx_regmap_config); if (IS_ERR(yas5xx->map)) { dev_err(dev, "failed to allocate register map\n"); ret = PTR_ERR(yas5xx->map); goto assert_reset; } ret = regmap_read(yas5xx->map, YAS5XX_DEVICE_ID, &yas5xx->devid); if (ret) goto assert_reset; switch (yas5xx->devid) { case YAS530_DEVICE_ID: ret = yas530_get_calibration_data(yas5xx); if (ret) goto assert_reset; dev_info(dev, "detected YAS530 MS-3E %s", yas5xx->version ? "B" : "A"); strncpy(yas5xx->name, "yas530", sizeof(yas5xx->name)); break; case YAS532_DEVICE_ID: ret = yas532_get_calibration_data(yas5xx); if (ret) goto assert_reset; dev_info(dev, "detected YAS532/YAS533 MS-3R/F %s", yas5xx->version ? "AC" : "AB"); strncpy(yas5xx->name, "yas532", sizeof(yas5xx->name)); break; default: ret = -ENODEV; dev_err(dev, "unhandled device ID %02x\n", yas5xx->devid); goto assert_reset; } yas5xx_dump_calibration(yas5xx); ret = yas5xx_power_on(yas5xx); if (ret) goto assert_reset; ret = yas5xx_meaure_offsets(yas5xx); if (ret) goto assert_reset; indio_dev->info = &yas5xx_info; indio_dev->available_scan_masks = yas5xx_scan_masks; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->name = yas5xx->name; indio_dev->channels = yas5xx_channels; indio_dev->num_channels = ARRAY_SIZE(yas5xx_channels); ret = iio_triggered_buffer_setup(indio_dev, NULL, yas5xx_handle_trigger, NULL); if (ret) { dev_err(dev, "triggered buffer setup failed\n"); goto assert_reset; } ret = iio_device_register(indio_dev); if (ret) { dev_err(dev, "device register failed\n"); goto cleanup_buffer; } /* Take runtime PM online */ pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); pm_runtime_set_autosuspend_delay(dev, YAS5XX_AUTOSUSPEND_DELAY_MS); pm_runtime_use_autosuspend(dev); pm_runtime_put(dev); return 0; cleanup_buffer: iio_triggered_buffer_cleanup(indio_dev); assert_reset: gpiod_set_value_cansleep(yas5xx->reset, 1); reg_off: regulator_bulk_disable(ARRAY_SIZE(yas5xx->regs), yas5xx->regs); return ret; } static int yas5xx_remove(struct i2c_client *i2c) { struct iio_dev *indio_dev = i2c_get_clientdata(i2c); struct yas5xx *yas5xx = iio_priv(indio_dev); struct device *dev = &i2c->dev; iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); /* * Now we can't get any more reads from the device, which would * also call pm_runtime* functions and race with our disable * code. Disable PM runtime in orderly fashion and power down. */ pm_runtime_get_sync(dev); pm_runtime_put_noidle(dev); pm_runtime_disable(dev); gpiod_set_value_cansleep(yas5xx->reset, 1); regulator_bulk_disable(ARRAY_SIZE(yas5xx->regs), yas5xx->regs); return 0; } static int __maybe_unused yas5xx_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct yas5xx *yas5xx = iio_priv(indio_dev); gpiod_set_value_cansleep(yas5xx->reset, 1); regulator_bulk_disable(ARRAY_SIZE(yas5xx->regs), yas5xx->regs); return 0; } static int __maybe_unused yas5xx_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct yas5xx *yas5xx = iio_priv(indio_dev); int ret; ret = regulator_bulk_enable(ARRAY_SIZE(yas5xx->regs), yas5xx->regs); if (ret) { dev_err(dev, "cannot enable regulators\n"); return ret; } /* * The YAS530 datasheet says TVSKW is up to 30 ms, after that 1 ms * for all voltages to settle. The YAS532 is 10ms then 4ms for the * I2C to come online. Let's keep it safe and put this at 31ms. */ usleep_range(31000, 40000); gpiod_set_value_cansleep(yas5xx->reset, 0); ret = yas5xx_power_on(yas5xx); if (ret) { dev_err(dev, "cannot power on\n"); goto out_reset; } return 0; out_reset: gpiod_set_value_cansleep(yas5xx->reset, 1); regulator_bulk_disable(ARRAY_SIZE(yas5xx->regs), yas5xx->regs); return ret; } static const struct dev_pm_ops yas5xx_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(yas5xx_runtime_suspend, yas5xx_runtime_resume, NULL) }; static const struct i2c_device_id yas5xx_id[] = { {"yas530", }, {"yas532", }, {"yas533", }, {} }; MODULE_DEVICE_TABLE(i2c, yas5xx_id); static const struct of_device_id yas5xx_of_match[] = { { .compatible = "yamaha,yas530", }, { .compatible = "yamaha,yas532", }, { .compatible = "yamaha,yas533", }, {} }; MODULE_DEVICE_TABLE(of, yas5xx_of_match); static struct i2c_driver yas5xx_driver = { .driver = { .name = "yas5xx", .of_match_table = yas5xx_of_match, .pm = &yas5xx_dev_pm_ops, }, .probe = yas5xx_probe, .remove = yas5xx_remove, .id_table = yas5xx_id, }; module_i2c_driver(yas5xx_driver); MODULE_DESCRIPTION("Yamaha YAS53x 3-axis magnetometer driver"); MODULE_AUTHOR("Linus Walleij"); MODULE_LICENSE("GPL v2");