menuconfig MTD tristate "Memory Technology Device (MTD) support" imply NVMEM help Memory Technology Devices are flash, RAM and similar chips, often used for solid state file systems on embedded devices. This option will provide the generic support for MTD drivers to register themselves with the kernel and for potential users of MTD devices to enumerate the devices which are present and obtain a handle on them. It will also allow you to select individual drivers for particular hardware and users of MTD devices. If unsure, say N. if MTD menu "OpenWrt specific MTD options" config MTD_ROOTFS_ROOT_DEV bool "Automatically set 'rootfs' partition to be root filesystem" default y config MTD_SPLIT_FIRMWARE bool "Automatically split firmware partition for kernel+rootfs" default y config MTD_SPLIT_FIRMWARE_NAME string "Firmware partition name" depends on MTD_SPLIT_FIRMWARE default "firmware" source "drivers/mtd/mtdsplit/Kconfig" endmenu config MTD_TESTS tristate "MTD tests support (DANGEROUS)" depends on m help This option includes various MTD tests into compilation. The tests should normally be compiled as kernel modules. The modules perform various checks and verifications when loaded. WARNING: some of the tests will ERASE entire MTD device which they test. Do not use these tests unless you really know what you do. menu "Partition parsers" source "drivers/mtd/parsers/Kconfig" endmenu comment "User Modules And Translation Layers" # # MTD block device support is select'ed if needed # config MTD_BLKDEVS tristate config MTD_BLOCK tristate "Caching block device access to MTD devices" depends on BLOCK select MTD_BLKDEVS help Although most flash chips have an erase size too large to be useful as block devices, it is possible to use MTD devices which are based on RAM chips in this manner. This block device is a user of MTD devices performing that function. Note that mounting a JFFS2 filesystem doesn't require using mtdblock. It's possible to mount a rootfs using the MTD device on the "root=" bootargs as "root=mtd2" or "root=mtd:name_of_device". Later, it may be extended to perform read/erase/modify/write cycles on flash chips to emulate a smaller block size. Needless to say, this is very unsafe, but could be useful for file systems which are almost never written to. You do not need this option for use with the DiskOnChip devices. For those, enable NFTL support (CONFIG_NFTL) instead. config MTD_BLOCK_RO tristate "Readonly block device access to MTD devices" depends on MTD_BLOCK!=y && BLOCK select MTD_BLKDEVS help This allows you to mount read-only file systems (such as cramfs) from an MTD device, without the overhead (and danger) of the caching driver. You do not need this option for use with the DiskOnChip devices. For those, enable NFTL support (CONFIG_NFTL) instead. comment "Note that in some cases UBI block is preferred. See MTD_UBI_BLOCK." depends on MTD_BLOCK || MTD_BLOCK_RO config FTL tristate "FTL (Flash Translation Layer) support" depends on BLOCK select MTD_BLKDEVS help This provides support for the original Flash Translation Layer which is part of the PCMCIA specification. It uses a kind of pseudo- file system on a flash device to emulate a block device with 512-byte sectors, on top of which you put a 'normal' file system. You may find that the algorithms used in this code are patented unless you live in the Free World where software patents aren't legal - in the USA you are only permitted to use this on PCMCIA hardware, although under the terms of the GPL you're obviously permitted to copy, modify and distribute the code as you wish. Just not use it. config NFTL tristate "NFTL (NAND Flash Translation Layer) support" depends on BLOCK select MTD_BLKDEVS help This provides support for the NAND Flash Translation Layer which is used on M-Systems' DiskOnChip devices. It uses a kind of pseudo- file system on a flash device to emulate a block device with 512-byte sectors, on top of which you put a 'normal' file system. You may find that the algorithms used in this code are patented unless you live in the Free World where software patents aren't legal - in the USA you are only permitted to use this on DiskOnChip hardware, although under the terms of the GPL you're obviously permitted to copy, modify and distribute the code as you wish. Just not use it. config NFTL_RW bool "Write support for NFTL" depends on NFTL help Support for writing to the NAND Flash Translation Layer, as used on the DiskOnChip. config INFTL tristate "INFTL (Inverse NAND Flash Translation Layer) support" depends on BLOCK select MTD_BLKDEVS help This provides support for the Inverse NAND Flash Translation Layer which is used on M-Systems' newer DiskOnChip devices. It uses a kind of pseudo-file system on a flash device to emulate a block device with 512-byte sectors, on top of which you put a 'normal' file system. You may find that the algorithms used in this code are patented unless you live in the Free World where software patents aren't legal - in the USA you are only permitted to use this on DiskOnChip hardware, although under the terms of the GPL you're obviously permitted to copy, modify and distribute the code as you wish. Just not use it. config RFD_FTL tristate "Resident Flash Disk (Flash Translation Layer) support" depends on BLOCK select MTD_BLKDEVS help This provides support for the flash translation layer known as the Resident Flash Disk (RFD), as used by the Embedded BIOS of General Software. There is a blurb at: http://www.gensw.com/pages/prod/bios/rfd.htm config SSFDC tristate "NAND SSFDC (SmartMedia) read only translation layer" depends on BLOCK select MTD_BLKDEVS help This enables read only access to SmartMedia formatted NAND flash. You can mount it with FAT file system. config SM_FTL tristate "SmartMedia/xD new translation layer" depends on BLOCK select MTD_BLKDEVS select MTD_NAND_CORE select MTD_NAND_ECC_SW_HAMMING help This enables EXPERIMENTAL R/W support for SmartMedia/xD FTL (Flash translation layer). Write support is only lightly tested, therefore this driver isn't recommended to use with valuable data (anyway if you have valuable data, do backups regardless of software/hardware you use, because you never know what will eat your data...) If you only need R/O access, you can use older R/O driver (CONFIG_SSFDC) config MTD_OOPS tristate "Log panic/oops to an MTD buffer" help This enables panic and oops messages to be logged to a circular buffer in a flash partition where it can be read back at some later point. config MTD_PSTORE tristate "Log panic/oops to an MTD buffer based on pstore" depends on PSTORE_BLK help This enables panic and oops messages to be logged to a circular buffer in a flash partition where it can be read back as files after mounting pstore filesystem. If unsure, say N. config MTD_SWAP tristate "Swap on MTD device support" depends on MTD && SWAP select MTD_BLKDEVS help Provides volatile block device driver on top of mtd partition suitable for swapping. The mapping of written blocks is not saved. The driver provides wear leveling by storing erase counter into the OOB. config MTD_PARTITIONED_MASTER bool "Retain master device when partitioned" default n depends on MTD help For historical reasons, by default, either a master is present or several partitions are present, but not both. The concern was that data listed in multiple partitions was dangerous; however, SCSI does this and it is frequently useful for applications. This config option leaves the master in even if the device is partitioned. It also makes the parent of the partition device be the master device, rather than what lies behind the master. source "drivers/mtd/chips/Kconfig" source "drivers/mtd/maps/Kconfig" source "drivers/mtd/devices/Kconfig" source "drivers/mtd/nand/Kconfig" source "drivers/mtd/lpddr/Kconfig" source "drivers/mtd/spi-nor/Kconfig" source "drivers/mtd/ubi/Kconfig" source "drivers/mtd/hyperbus/Kconfig" source "drivers/mtd/composite/Kconfig" endif # MTD