// SPDX-License-Identifier: GPL-2.0-only /* * Integrity Measurement Architecture * * Copyright (C) 2005,2006,2007,2008 IBM Corporation * * Authors: * Reiner Sailer * Serge Hallyn * Kylene Hall * Mimi Zohar * * File: ima_main.c * implements the IMA hooks: ima_bprm_check, ima_file_mmap, * and ima_file_check. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "ima.h" #ifdef CONFIG_IMA_APPRAISE int ima_appraise = IMA_APPRAISE_ENFORCE; #else int ima_appraise; #endif int __ro_after_init ima_hash_algo = HASH_ALGO_SHA1; static int hash_setup_done; static struct notifier_block ima_lsm_policy_notifier = { .notifier_call = ima_lsm_policy_change, }; static int __init hash_setup(char *str) { struct ima_template_desc *template_desc = ima_template_desc_current(); int i; if (hash_setup_done) return 1; if (strcmp(template_desc->name, IMA_TEMPLATE_IMA_NAME) == 0) { if (strncmp(str, "sha1", 4) == 0) { ima_hash_algo = HASH_ALGO_SHA1; } else if (strncmp(str, "md5", 3) == 0) { ima_hash_algo = HASH_ALGO_MD5; } else { pr_err("invalid hash algorithm \"%s\" for template \"%s\"", str, IMA_TEMPLATE_IMA_NAME); return 1; } goto out; } i = match_string(hash_algo_name, HASH_ALGO__LAST, str); if (i < 0) { pr_err("invalid hash algorithm \"%s\"", str); return 1; } ima_hash_algo = i; out: hash_setup_done = 1; return 1; } __setup("ima_hash=", hash_setup); enum hash_algo ima_get_current_hash_algo(void) { return ima_hash_algo; } /* Prevent mmap'ing a file execute that is already mmap'ed write */ static int mmap_violation_check(enum ima_hooks func, struct file *file, char **pathbuf, const char **pathname, char *filename) { struct inode *inode; int rc = 0; if ((func == MMAP_CHECK) && mapping_writably_mapped(file->f_mapping)) { rc = -ETXTBSY; inode = file_inode(file); if (!*pathbuf) /* ima_rdwr_violation possibly pre-fetched */ *pathname = ima_d_path(&file->f_path, pathbuf, filename); integrity_audit_msg(AUDIT_INTEGRITY_DATA, inode, *pathname, "mmap_file", "mmapped_writers", rc, 0); } return rc; } /* * ima_rdwr_violation_check * * Only invalidate the PCR for measured files: * - Opening a file for write when already open for read, * results in a time of measure, time of use (ToMToU) error. * - Opening a file for read when already open for write, * could result in a file measurement error. * */ static void ima_rdwr_violation_check(struct file *file, struct integrity_iint_cache *iint, int must_measure, char **pathbuf, const char **pathname, char *filename) { struct inode *inode = file_inode(file); fmode_t mode = file->f_mode; bool send_tomtou = false, send_writers = false; if (mode & FMODE_WRITE) { if (atomic_read(&inode->i_readcount) && IS_IMA(inode)) { if (!iint) iint = integrity_iint_find(inode); /* IMA_MEASURE is set from reader side */ if (iint && test_bit(IMA_MUST_MEASURE, &iint->atomic_flags)) send_tomtou = true; } } else { if (must_measure) set_bit(IMA_MUST_MEASURE, &iint->atomic_flags); if (inode_is_open_for_write(inode) && must_measure) send_writers = true; } if (!send_tomtou && !send_writers) return; *pathname = ima_d_path(&file->f_path, pathbuf, filename); if (send_tomtou) ima_add_violation(file, *pathname, iint, "invalid_pcr", "ToMToU"); if (send_writers) ima_add_violation(file, *pathname, iint, "invalid_pcr", "open_writers"); } static void ima_check_last_writer(struct integrity_iint_cache *iint, struct inode *inode, struct file *file) { fmode_t mode = file->f_mode; bool update; if (!(mode & FMODE_WRITE)) return; mutex_lock(&iint->mutex); if (atomic_read(&inode->i_writecount) == 1) { update = test_and_clear_bit(IMA_UPDATE_XATTR, &iint->atomic_flags); if (!IS_I_VERSION(inode) || !inode_eq_iversion(inode, iint->version) || (iint->flags & IMA_NEW_FILE)) { iint->flags &= ~(IMA_DONE_MASK | IMA_NEW_FILE); iint->measured_pcrs = 0; if (update) ima_update_xattr(iint, file); } } mutex_unlock(&iint->mutex); } /** * ima_file_free - called on __fput() * @file: pointer to file structure being freed * * Flag files that changed, based on i_version */ void ima_file_free(struct file *file) { struct inode *inode = file_inode(file); struct integrity_iint_cache *iint; if (!ima_policy_flag || !S_ISREG(inode->i_mode)) return; iint = integrity_iint_find(inode); if (!iint) return; ima_check_last_writer(iint, inode, file); } static int process_measurement(struct file *file, const struct cred *cred, u32 secid, char *buf, loff_t size, int mask, enum ima_hooks func) { struct inode *backing_inode, *inode = file_inode(file); struct integrity_iint_cache *iint = NULL; struct ima_template_desc *template_desc = NULL; char *pathbuf = NULL; char filename[NAME_MAX]; const char *pathname = NULL; int rc = 0, action, must_appraise = 0; int pcr = CONFIG_IMA_MEASURE_PCR_IDX; struct evm_ima_xattr_data *xattr_value = NULL; struct modsig *modsig = NULL; int xattr_len = 0; bool violation_check; enum hash_algo hash_algo; unsigned int allowed_algos = 0; if (!ima_policy_flag || !S_ISREG(inode->i_mode)) return 0; /* Return an IMA_MEASURE, IMA_APPRAISE, IMA_AUDIT action * bitmask based on the appraise/audit/measurement policy. * Included is the appraise submask. */ action = ima_get_action(file_mnt_user_ns(file), inode, cred, secid, mask, func, &pcr, &template_desc, NULL, &allowed_algos); violation_check = ((func == FILE_CHECK || func == MMAP_CHECK) && (ima_policy_flag & IMA_MEASURE)); if (!action && !violation_check) return 0; must_appraise = action & IMA_APPRAISE; /* Is the appraise rule hook specific? */ if (action & IMA_FILE_APPRAISE) func = FILE_CHECK; inode_lock(inode); if (action) { iint = integrity_inode_get(inode); if (!iint) rc = -ENOMEM; } if (!rc && violation_check) ima_rdwr_violation_check(file, iint, action & IMA_MEASURE, &pathbuf, &pathname, filename); inode_unlock(inode); if (rc) goto out; if (!action) goto out; mutex_lock(&iint->mutex); if (test_and_clear_bit(IMA_CHANGE_ATTR, &iint->atomic_flags)) /* reset appraisal flags if ima_inode_post_setattr was called */ iint->flags &= ~(IMA_APPRAISE | IMA_APPRAISED | IMA_APPRAISE_SUBMASK | IMA_APPRAISED_SUBMASK | IMA_ACTION_FLAGS); /* * Re-evaulate the file if either the xattr has changed or the * kernel has no way of detecting file change on the filesystem. * (Limited to privileged mounted filesystems.) */ if (test_and_clear_bit(IMA_CHANGE_XATTR, &iint->atomic_flags) || ((inode->i_sb->s_iflags & SB_I_IMA_UNVERIFIABLE_SIGNATURE) && !(inode->i_sb->s_iflags & SB_I_UNTRUSTED_MOUNTER) && !(action & IMA_FAIL_UNVERIFIABLE_SIGS))) { iint->flags &= ~IMA_DONE_MASK; iint->measured_pcrs = 0; } /* Detect and re-evaluate changes made to the backing file. */ backing_inode = d_real_inode(file_dentry(file)); if (backing_inode != inode && (action & IMA_DO_MASK) && (iint->flags & IMA_DONE_MASK)) { if (!IS_I_VERSION(backing_inode) || backing_inode->i_sb->s_dev != iint->real_dev || backing_inode->i_ino != iint->real_ino || !inode_eq_iversion(backing_inode, iint->version)) { iint->flags &= ~IMA_DONE_MASK; iint->measured_pcrs = 0; } } /* Determine if already appraised/measured based on bitmask * (IMA_MEASURE, IMA_MEASURED, IMA_XXXX_APPRAISE, IMA_XXXX_APPRAISED, * IMA_AUDIT, IMA_AUDITED) */ iint->flags |= action; action &= IMA_DO_MASK; action &= ~((iint->flags & (IMA_DONE_MASK ^ IMA_MEASURED)) >> 1); /* If target pcr is already measured, unset IMA_MEASURE action */ if ((action & IMA_MEASURE) && (iint->measured_pcrs & (0x1 << pcr))) action ^= IMA_MEASURE; /* HASH sets the digital signature and update flags, nothing else */ if ((action & IMA_HASH) && !(test_bit(IMA_DIGSIG, &iint->atomic_flags))) { xattr_len = ima_read_xattr(file_dentry(file), &xattr_value); if ((xattr_value && xattr_len > 2) && (xattr_value->type == EVM_IMA_XATTR_DIGSIG)) set_bit(IMA_DIGSIG, &iint->atomic_flags); iint->flags |= IMA_HASHED; action ^= IMA_HASH; set_bit(IMA_UPDATE_XATTR, &iint->atomic_flags); } /* Nothing to do, just return existing appraised status */ if (!action) { if (must_appraise) { rc = mmap_violation_check(func, file, &pathbuf, &pathname, filename); if (!rc) rc = ima_get_cache_status(iint, func); } goto out_locked; } if ((action & IMA_APPRAISE_SUBMASK) || strcmp(template_desc->name, IMA_TEMPLATE_IMA_NAME) != 0) { /* read 'security.ima' */ xattr_len = ima_read_xattr(file_dentry(file), &xattr_value); /* * Read the appended modsig if allowed by the policy, and allow * an additional measurement list entry, if needed, based on the * template format and whether the file was already measured. */ if (iint->flags & IMA_MODSIG_ALLOWED) { rc = ima_read_modsig(func, buf, size, &modsig); if (!rc && ima_template_has_modsig(template_desc) && iint->flags & IMA_MEASURED) action |= IMA_MEASURE; } } hash_algo = ima_get_hash_algo(xattr_value, xattr_len); rc = ima_collect_measurement(iint, file, buf, size, hash_algo, modsig); if (rc != 0 && rc != -EBADF && rc != -EINVAL) goto out_locked; if (!pathbuf) /* ima_rdwr_violation possibly pre-fetched */ pathname = ima_d_path(&file->f_path, &pathbuf, filename); if (action & IMA_MEASURE) ima_store_measurement(iint, file, pathname, xattr_value, xattr_len, modsig, pcr, template_desc); if (rc == 0 && (action & IMA_APPRAISE_SUBMASK)) { rc = ima_check_blacklist(iint, modsig, pcr); if (rc != -EPERM) { inode_lock(inode); rc = ima_appraise_measurement(func, iint, file, pathname, xattr_value, xattr_len, modsig); inode_unlock(inode); } if (!rc) rc = mmap_violation_check(func, file, &pathbuf, &pathname, filename); } if (action & IMA_AUDIT) ima_audit_measurement(iint, pathname); if ((file->f_flags & O_DIRECT) && (iint->flags & IMA_PERMIT_DIRECTIO)) rc = 0; /* Ensure the digest was generated using an allowed algorithm */ if (rc == 0 && must_appraise && allowed_algos != 0 && (allowed_algos & (1U << hash_algo)) == 0) { rc = -EACCES; integrity_audit_msg(AUDIT_INTEGRITY_DATA, file_inode(file), pathname, "collect_data", "denied-hash-algorithm", rc, 0); } out_locked: if ((mask & MAY_WRITE) && test_bit(IMA_DIGSIG, &iint->atomic_flags) && !(iint->flags & IMA_NEW_FILE)) rc = -EACCES; mutex_unlock(&iint->mutex); kfree(xattr_value); ima_free_modsig(modsig); out: if (pathbuf) __putname(pathbuf); if (must_appraise) { if (rc && (ima_appraise & IMA_APPRAISE_ENFORCE)) return -EACCES; if (file->f_mode & FMODE_WRITE) set_bit(IMA_UPDATE_XATTR, &iint->atomic_flags); } return 0; } /** * ima_file_mmap - based on policy, collect/store measurement. * @file: pointer to the file to be measured (May be NULL) * @reqprot: protection requested by the application * @prot: protection that will be applied by the kernel * @flags: operational flags * * Measure files being mmapped executable based on the ima_must_measure() * policy decision. * * On success return 0. On integrity appraisal error, assuming the file * is in policy and IMA-appraisal is in enforcing mode, return -EACCES. */ int ima_file_mmap(struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags) { u32 secid; if (file && (prot & PROT_EXEC)) { security_task_getsecid_subj(current, &secid); return process_measurement(file, current_cred(), secid, NULL, 0, MAY_EXEC, MMAP_CHECK); } return 0; } /** * ima_file_mprotect - based on policy, limit mprotect change * @prot: contains the protection that will be applied by the kernel. * * Files can be mmap'ed read/write and later changed to execute to circumvent * IMA's mmap appraisal policy rules. Due to locking issues (mmap semaphore * would be taken before i_mutex), files can not be measured or appraised at * this point. Eliminate this integrity gap by denying the mprotect * PROT_EXECUTE change, if an mmap appraise policy rule exists. * * On mprotect change success, return 0. On failure, return -EACESS. */ int ima_file_mprotect(struct vm_area_struct *vma, unsigned long prot) { struct ima_template_desc *template = NULL; struct file *file = vma->vm_file; char filename[NAME_MAX]; char *pathbuf = NULL; const char *pathname = NULL; struct inode *inode; int result = 0; int action; u32 secid; int pcr; /* Is mprotect making an mmap'ed file executable? */ if (!(ima_policy_flag & IMA_APPRAISE) || !vma->vm_file || !(prot & PROT_EXEC) || (vma->vm_flags & VM_EXEC)) return 0; security_task_getsecid_subj(current, &secid); inode = file_inode(vma->vm_file); action = ima_get_action(file_mnt_user_ns(vma->vm_file), inode, current_cred(), secid, MAY_EXEC, MMAP_CHECK, &pcr, &template, NULL, NULL); /* Is the mmap'ed file in policy? */ if (!(action & (IMA_MEASURE | IMA_APPRAISE_SUBMASK))) return 0; if (action & IMA_APPRAISE_SUBMASK) result = -EPERM; file = vma->vm_file; pathname = ima_d_path(&file->f_path, &pathbuf, filename); integrity_audit_msg(AUDIT_INTEGRITY_DATA, inode, pathname, "collect_data", "failed-mprotect", result, 0); if (pathbuf) __putname(pathbuf); return result; } /** * ima_bprm_check - based on policy, collect/store measurement. * @bprm: contains the linux_binprm structure * * The OS protects against an executable file, already open for write, * from being executed in deny_write_access() and an executable file, * already open for execute, from being modified in get_write_access(). * So we can be certain that what we verify and measure here is actually * what is being executed. * * On success return 0. On integrity appraisal error, assuming the file * is in policy and IMA-appraisal is in enforcing mode, return -EACCES. */ int ima_bprm_check(struct linux_binprm *bprm) { int ret; u32 secid; security_task_getsecid_subj(current, &secid); ret = process_measurement(bprm->file, current_cred(), secid, NULL, 0, MAY_EXEC, BPRM_CHECK); if (ret) return ret; security_cred_getsecid(bprm->cred, &secid); return process_measurement(bprm->file, bprm->cred, secid, NULL, 0, MAY_EXEC, CREDS_CHECK); } /** * ima_file_check - based on policy, collect/store measurement. * @file: pointer to the file to be measured * @mask: contains MAY_READ, MAY_WRITE, MAY_EXEC or MAY_APPEND * * Measure files based on the ima_must_measure() policy decision. * * On success return 0. On integrity appraisal error, assuming the file * is in policy and IMA-appraisal is in enforcing mode, return -EACCES. */ int ima_file_check(struct file *file, int mask) { u32 secid; security_task_getsecid_subj(current, &secid); return process_measurement(file, current_cred(), secid, NULL, 0, mask & (MAY_READ | MAY_WRITE | MAY_EXEC | MAY_APPEND), FILE_CHECK); } EXPORT_SYMBOL_GPL(ima_file_check); static int __ima_inode_hash(struct inode *inode, char *buf, size_t buf_size) { struct integrity_iint_cache *iint; int hash_algo; if (!ima_policy_flag) return -EOPNOTSUPP; iint = integrity_iint_find(inode); if (!iint) return -EOPNOTSUPP; mutex_lock(&iint->mutex); /* * ima_file_hash can be called when ima_collect_measurement has still * not been called, we might not always have a hash. */ if (!iint->ima_hash) { mutex_unlock(&iint->mutex); return -EOPNOTSUPP; } if (buf) { size_t copied_size; copied_size = min_t(size_t, iint->ima_hash->length, buf_size); memcpy(buf, iint->ima_hash->digest, copied_size); } hash_algo = iint->ima_hash->algo; mutex_unlock(&iint->mutex); return hash_algo; } /** * ima_file_hash - return the stored measurement if a file has been hashed and * is in the iint cache. * @file: pointer to the file * @buf: buffer in which to store the hash * @buf_size: length of the buffer * * On success, return the hash algorithm (as defined in the enum hash_algo). * If buf is not NULL, this function also outputs the hash into buf. * If the hash is larger than buf_size, then only buf_size bytes will be copied. * It generally just makes sense to pass a buffer capable of holding the largest * possible hash: IMA_MAX_DIGEST_SIZE. * The file hash returned is based on the entire file, including the appended * signature. * * If IMA is disabled or if no measurement is available, return -EOPNOTSUPP. * If the parameters are incorrect, return -EINVAL. */ int ima_file_hash(struct file *file, char *buf, size_t buf_size) { if (!file) return -EINVAL; return __ima_inode_hash(file_inode(file), buf, buf_size); } EXPORT_SYMBOL_GPL(ima_file_hash); /** * ima_inode_hash - return the stored measurement if the inode has been hashed * and is in the iint cache. * @inode: pointer to the inode * @buf: buffer in which to store the hash * @buf_size: length of the buffer * * On success, return the hash algorithm (as defined in the enum hash_algo). * If buf is not NULL, this function also outputs the hash into buf. * If the hash is larger than buf_size, then only buf_size bytes will be copied. * It generally just makes sense to pass a buffer capable of holding the largest * possible hash: IMA_MAX_DIGEST_SIZE. * The hash returned is based on the entire contents, including the appended * signature. * * If IMA is disabled or if no measurement is available, return -EOPNOTSUPP. * If the parameters are incorrect, return -EINVAL. */ int ima_inode_hash(struct inode *inode, char *buf, size_t buf_size) { if (!inode) return -EINVAL; return __ima_inode_hash(inode, buf, buf_size); } EXPORT_SYMBOL_GPL(ima_inode_hash); /** * ima_post_create_tmpfile - mark newly created tmpfile as new * @mnt_userns: user namespace of the mount the inode was found from * @file : newly created tmpfile * * No measuring, appraising or auditing of newly created tmpfiles is needed. * Skip calling process_measurement(), but indicate which newly, created * tmpfiles are in policy. */ void ima_post_create_tmpfile(struct user_namespace *mnt_userns, struct inode *inode) { struct integrity_iint_cache *iint; int must_appraise; if (!ima_policy_flag || !S_ISREG(inode->i_mode)) return; must_appraise = ima_must_appraise(mnt_userns, inode, MAY_ACCESS, FILE_CHECK); if (!must_appraise) return; /* Nothing to do if we can't allocate memory */ iint = integrity_inode_get(inode); if (!iint) return; /* needed for writing the security xattrs */ set_bit(IMA_UPDATE_XATTR, &iint->atomic_flags); iint->ima_file_status = INTEGRITY_PASS; } /** * ima_post_path_mknod - mark as a new inode * @mnt_userns: user namespace of the mount the inode was found from * @dentry: newly created dentry * * Mark files created via the mknodat syscall as new, so that the * file data can be written later. */ void ima_post_path_mknod(struct user_namespace *mnt_userns, struct dentry *dentry) { struct integrity_iint_cache *iint; struct inode *inode = dentry->d_inode; int must_appraise; if (!ima_policy_flag || !S_ISREG(inode->i_mode)) return; must_appraise = ima_must_appraise(mnt_userns, inode, MAY_ACCESS, FILE_CHECK); if (!must_appraise) return; /* Nothing to do if we can't allocate memory */ iint = integrity_inode_get(inode); if (!iint) return; /* needed for re-opening empty files */ iint->flags |= IMA_NEW_FILE; } /** * ima_read_file - pre-measure/appraise hook decision based on policy * @file: pointer to the file to be measured/appraised/audit * @read_id: caller identifier * @contents: whether a subsequent call will be made to ima_post_read_file() * * Permit reading a file based on policy. The policy rules are written * in terms of the policy identifier. Appraising the integrity of * a file requires a file descriptor. * * For permission return 0, otherwise return -EACCES. */ int ima_read_file(struct file *file, enum kernel_read_file_id read_id, bool contents) { enum ima_hooks func; u32 secid; /* * Do devices using pre-allocated memory run the risk of the * firmware being accessible to the device prior to the completion * of IMA's signature verification any more than when using two * buffers? It may be desirable to include the buffer address * in this API and walk all the dma_map_single() mappings to check. */ /* * There will be a call made to ima_post_read_file() with * a filled buffer, so we don't need to perform an extra * read early here. */ if (contents) return 0; /* Read entire file for all partial reads. */ func = read_idmap[read_id] ?: FILE_CHECK; security_task_getsecid_subj(current, &secid); return process_measurement(file, current_cred(), secid, NULL, 0, MAY_READ, func); } const int read_idmap[READING_MAX_ID] = { [READING_FIRMWARE] = FIRMWARE_CHECK, [READING_MODULE] = MODULE_CHECK, [READING_KEXEC_IMAGE] = KEXEC_KERNEL_CHECK, [READING_KEXEC_INITRAMFS] = KEXEC_INITRAMFS_CHECK, [READING_POLICY] = POLICY_CHECK }; /** * ima_post_read_file - in memory collect/appraise/audit measurement * @file: pointer to the file to be measured/appraised/audit * @buf: pointer to in memory file contents * @size: size of in memory file contents * @read_id: caller identifier * * Measure/appraise/audit in memory file based on policy. Policy rules * are written in terms of a policy identifier. * * On success return 0. On integrity appraisal error, assuming the file * is in policy and IMA-appraisal is in enforcing mode, return -EACCES. */ int ima_post_read_file(struct file *file, void *buf, loff_t size, enum kernel_read_file_id read_id) { enum ima_hooks func; u32 secid; /* permit signed certs */ if (!file && read_id == READING_X509_CERTIFICATE) return 0; if (!file || !buf || size == 0) { /* should never happen */ if (ima_appraise & IMA_APPRAISE_ENFORCE) return -EACCES; return 0; } func = read_idmap[read_id] ?: FILE_CHECK; security_task_getsecid_subj(current, &secid); return process_measurement(file, current_cred(), secid, buf, size, MAY_READ, func); } /** * ima_load_data - appraise decision based on policy * @id: kernel load data caller identifier * @contents: whether the full contents will be available in a later * call to ima_post_load_data(). * * Callers of this LSM hook can not measure, appraise, or audit the * data provided by userspace. Enforce policy rules requring a file * signature (eg. kexec'ed kernel image). * * For permission return 0, otherwise return -EACCES. */ int ima_load_data(enum kernel_load_data_id id, bool contents) { bool ima_enforce, sig_enforce; ima_enforce = (ima_appraise & IMA_APPRAISE_ENFORCE) == IMA_APPRAISE_ENFORCE; switch (id) { case LOADING_KEXEC_IMAGE: if (IS_ENABLED(CONFIG_KEXEC_SIG) && arch_ima_get_secureboot()) { pr_err("impossible to appraise a kernel image without a file descriptor; try using kexec_file_load syscall.\n"); return -EACCES; } if (ima_enforce && (ima_appraise & IMA_APPRAISE_KEXEC)) { pr_err("impossible to appraise a kernel image without a file descriptor; try using kexec_file_load syscall.\n"); return -EACCES; /* INTEGRITY_UNKNOWN */ } break; case LOADING_FIRMWARE: if (ima_enforce && (ima_appraise & IMA_APPRAISE_FIRMWARE) && !contents) { pr_err("Prevent firmware sysfs fallback loading.\n"); return -EACCES; /* INTEGRITY_UNKNOWN */ } break; case LOADING_MODULE: sig_enforce = is_module_sig_enforced(); if (ima_enforce && (!sig_enforce && (ima_appraise & IMA_APPRAISE_MODULES))) { pr_err("impossible to appraise a module without a file descriptor. sig_enforce kernel parameter might help\n"); return -EACCES; /* INTEGRITY_UNKNOWN */ } break; default: break; } return 0; } /** * ima_post_load_data - appraise decision based on policy * @buf: pointer to in memory file contents * @size: size of in memory file contents * @id: kernel load data caller identifier * @description: @id-specific description of contents * * Measure/appraise/audit in memory buffer based on policy. Policy rules * are written in terms of a policy identifier. * * On success return 0. On integrity appraisal error, assuming the file * is in policy and IMA-appraisal is in enforcing mode, return -EACCES. */ int ima_post_load_data(char *buf, loff_t size, enum kernel_load_data_id load_id, char *description) { if (load_id == LOADING_FIRMWARE) { if ((ima_appraise & IMA_APPRAISE_FIRMWARE) && (ima_appraise & IMA_APPRAISE_ENFORCE)) { pr_err("Prevent firmware loading_store.\n"); return -EACCES; /* INTEGRITY_UNKNOWN */ } return 0; } return 0; } /** * process_buffer_measurement - Measure the buffer or the buffer data hash * @mnt_userns: user namespace of the mount the inode was found from * @inode: inode associated with the object being measured (NULL for KEY_CHECK) * @buf: pointer to the buffer that needs to be added to the log. * @size: size of buffer(in bytes). * @eventname: event name to be used for the buffer entry. * @func: IMA hook * @pcr: pcr to extend the measurement * @func_data: func specific data, may be NULL * @buf_hash: measure buffer data hash * @digest: buffer digest will be written to * @digest_len: buffer length * * Based on policy, either the buffer data or buffer data hash is measured * * Return: 0 if the buffer has been successfully measured, 1 if the digest * has been written to the passed location but not added to a measurement entry, * a negative value otherwise. */ int process_buffer_measurement(struct user_namespace *mnt_userns, struct inode *inode, const void *buf, int size, const char *eventname, enum ima_hooks func, int pcr, const char *func_data, bool buf_hash, u8 *digest, size_t digest_len) { int ret = 0; const char *audit_cause = "ENOMEM"; struct ima_template_entry *entry = NULL; struct integrity_iint_cache iint = {}; struct ima_event_data event_data = {.iint = &iint, .filename = eventname, .buf = buf, .buf_len = size}; struct ima_template_desc *template; struct { struct ima_digest_data hdr; char digest[IMA_MAX_DIGEST_SIZE]; } hash = {}; char digest_hash[IMA_MAX_DIGEST_SIZE]; int digest_hash_len = hash_digest_size[ima_hash_algo]; int violation = 0; int action = 0; u32 secid; if (digest && digest_len < digest_hash_len) return -EINVAL; if (!ima_policy_flag && !digest) return -ENOENT; template = ima_template_desc_buf(); if (!template) { ret = -EINVAL; audit_cause = "ima_template_desc_buf"; goto out; } /* * Both LSM hooks and auxilary based buffer measurements are * based on policy. To avoid code duplication, differentiate * between the LSM hooks and auxilary buffer measurements, * retrieving the policy rule information only for the LSM hook * buffer measurements. */ if (func) { security_task_getsecid_subj(current, &secid); action = ima_get_action(mnt_userns, inode, current_cred(), secid, 0, func, &pcr, &template, func_data, NULL); if (!(action & IMA_MEASURE) && !digest) return -ENOENT; } if (!pcr) pcr = CONFIG_IMA_MEASURE_PCR_IDX; iint.ima_hash = &hash.hdr; iint.ima_hash->algo = ima_hash_algo; iint.ima_hash->length = hash_digest_size[ima_hash_algo]; ret = ima_calc_buffer_hash(buf, size, iint.ima_hash); if (ret < 0) { audit_cause = "hashing_error"; goto out; } if (buf_hash) { memcpy(digest_hash, hash.hdr.digest, digest_hash_len); ret = ima_calc_buffer_hash(digest_hash, digest_hash_len, iint.ima_hash); if (ret < 0) { audit_cause = "hashing_error"; goto out; } event_data.buf = digest_hash; event_data.buf_len = digest_hash_len; } if (digest) memcpy(digest, iint.ima_hash->digest, digest_hash_len); if (!ima_policy_flag || (func && !(action & IMA_MEASURE))) return 1; ret = ima_alloc_init_template(&event_data, &entry, template); if (ret < 0) { audit_cause = "alloc_entry"; goto out; } ret = ima_store_template(entry, violation, NULL, event_data.buf, pcr); if (ret < 0) { audit_cause = "store_entry"; ima_free_template_entry(entry); } out: if (ret < 0) integrity_audit_message(AUDIT_INTEGRITY_PCR, NULL, eventname, func_measure_str(func), audit_cause, ret, 0, ret); return ret; } /** * ima_kexec_cmdline - measure kexec cmdline boot args * @kernel_fd: file descriptor of the kexec kernel being loaded * @buf: pointer to buffer * @size: size of buffer * * Buffers can only be measured, not appraised. */ void ima_kexec_cmdline(int kernel_fd, const void *buf, int size) { struct fd f; if (!buf || !size) return; f = fdget(kernel_fd); if (!f.file) return; process_buffer_measurement(file_mnt_user_ns(f.file), file_inode(f.file), buf, size, "kexec-cmdline", KEXEC_CMDLINE, 0, NULL, false, NULL, 0); fdput(f); } /** * ima_measure_critical_data - measure kernel integrity critical data * @event_label: unique event label for grouping and limiting critical data * @event_name: event name for the record in the IMA measurement list * @buf: pointer to buffer data * @buf_len: length of buffer data (in bytes) * @hash: measure buffer data hash * @digest: buffer digest will be written to * @digest_len: buffer length * * Measure data critical to the integrity of the kernel into the IMA log * and extend the pcr. Examples of critical data could be various data * structures, policies, and states stored in kernel memory that can * impact the integrity of the system. * * Return: 0 if the buffer has been successfully measured, 1 if the digest * has been written to the passed location but not added to a measurement entry, * a negative value otherwise. */ int ima_measure_critical_data(const char *event_label, const char *event_name, const void *buf, size_t buf_len, bool hash, u8 *digest, size_t digest_len) { if (!event_name || !event_label || !buf || !buf_len) return -ENOPARAM; return process_buffer_measurement(&init_user_ns, NULL, buf, buf_len, event_name, CRITICAL_DATA, 0, event_label, hash, digest, digest_len); } EXPORT_SYMBOL_GPL(ima_measure_critical_data); static int __init init_ima(void) { int error; ima_appraise_parse_cmdline(); ima_init_template_list(); hash_setup(CONFIG_IMA_DEFAULT_HASH); error = ima_init(); if (error && strcmp(hash_algo_name[ima_hash_algo], CONFIG_IMA_DEFAULT_HASH) != 0) { pr_info("Allocating %s failed, going to use default hash algorithm %s\n", hash_algo_name[ima_hash_algo], CONFIG_IMA_DEFAULT_HASH); hash_setup_done = 0; hash_setup(CONFIG_IMA_DEFAULT_HASH); error = ima_init(); } if (error) return error; error = register_blocking_lsm_notifier(&ima_lsm_policy_notifier); if (error) pr_warn("Couldn't register LSM notifier, error %d\n", error); if (!error) ima_update_policy_flags(); return error; } late_initcall(init_ima); /* Start IMA after the TPM is available */