/* Definitions for GCC. Part of the machine description for CRIS.
Copyright (C) 1998-2022 Free Software Foundation, Inc.
Contributed by Axis Communications. Written by Hans-Peter Nilsson.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#define IN_TARGET_CODE 1
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "stringpool.h"
#include "attribs.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cgraph.h"
#include "diagnostic-core.h"
#include "conditions.h"
#include "insn-attr.h"
#include "alias.h"
#include "varasm.h"
#include "stor-layout.h"
#include "calls.h"
#include "explow.h"
#include "expr.h"
#include "reload.h"
#include "output.h"
#include "tm-constrs.h"
#include "builtins.h"
#include "cfgrtl.h"
#include "tree-pass.h"
/* This file should be included last. */
#include "target-def.h"
/* Usable when we have an amount to add or subtract, and want the
optimal size of the insn. */
#define ADDITIVE_SIZE_MODIFIER(size) \
((size) <= 63 ? "q" : (size) <= 255 ? "u.b" : (size) <= 65535 ? "u.w" : ".d")
#define LOSE_AND_RETURN(msgid, x) \
do \
{ \
cris_operand_lossage (msgid, x); \
return; \
} while (0)
enum cris_retinsn_type
{ CRIS_RETINSN_UNKNOWN = 0, CRIS_RETINSN_RET, CRIS_RETINSN_JUMP };
/* Per-function machine data. */
struct GTY(()) machine_function
{
int needs_return_address_on_stack;
/* This is the number of registers we save in the prologue due to
stdarg. */
int stdarg_regs;
enum cris_retinsn_type return_type;
};
/* This little fix suppresses the 'u' or 's' when '%e' in assembly
pattern. */
static char cris_output_insn_is_bound = 0;
/* In code for output macros, this is how we know whether e.g. constant
goes in code or in a static initializer. */
static int in_code = 0;
static machine_mode cris_promote_function_mode (const_tree, machine_mode,
int *, const_tree, int);
static unsigned int cris_atomic_align_for_mode (machine_mode);
static void cris_print_base (rtx, FILE *);
static void cris_print_index (rtx, FILE *);
static void cris_output_addr_const (FILE *, rtx);
static struct machine_function * cris_init_machine_status (void);
static rtx cris_struct_value_rtx (tree, int);
static void cris_setup_incoming_varargs (cumulative_args_t,
const function_arg_info &,
int *, int);
static int cris_initial_frame_pointer_offset (void);
static void cris_operand_lossage (const char *, rtx);
static int cris_reg_saved_in_regsave_area (unsigned int);
static void cris_print_operand (FILE *, rtx, int);
static void cris_print_operand_address (FILE *, machine_mode, rtx);
static bool cris_print_operand_punct_valid_p (unsigned char code);
static void cris_conditional_register_usage (void);
static void cris_asm_output_mi_thunk
(FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree);
static void cris_file_start (void);
static void cris_init_libfuncs (void);
static unsigned int cris_postdbr_cmpelim (void);
static reg_class_t cris_preferred_reload_class (rtx, reg_class_t);
static int cris_register_move_cost (machine_mode, reg_class_t, reg_class_t);
static int cris_memory_move_cost (machine_mode, reg_class_t, bool);
static machine_mode cris_cc_modes_compatible (machine_mode, machine_mode);
static bool cris_rtx_costs (rtx, machine_mode, int, int, int *, bool);
static int cris_address_cost (rtx, machine_mode, addr_space_t, bool);
static bool cris_pass_by_reference (cumulative_args_t,
const function_arg_info &);
static int cris_arg_partial_bytes (cumulative_args_t,
const function_arg_info &);
static rtx cris_function_arg (cumulative_args_t, const function_arg_info &);
static rtx cris_function_incoming_arg (cumulative_args_t,
const function_arg_info &);
static void cris_function_arg_advance (cumulative_args_t,
const function_arg_info &);
static rtx_insn *cris_md_asm_adjust (vec &, vec &,
vec &, vec &,
vec &, HARD_REG_SET &, location_t);
static void cris_option_override (void);
static bool cris_frame_pointer_required (void);
static void cris_asm_trampoline_template (FILE *);
static void cris_trampoline_init (rtx, tree, rtx);
static rtx cris_function_value(const_tree, const_tree, bool);
static rtx cris_libcall_value (machine_mode, const_rtx);
static bool cris_function_value_regno_p (const unsigned int);
static unsigned int cris_hard_regno_nregs (unsigned int, machine_mode);
static bool cris_hard_regno_mode_ok (unsigned int, machine_mode);
static HOST_WIDE_INT cris_static_rtx_alignment (machine_mode);
static HOST_WIDE_INT cris_constant_alignment (const_tree, HOST_WIDE_INT);
/* This is the parsed result of the "-max-stack-stackframe=" option. If
it (still) is zero, then there was no such option given. */
int cris_max_stackframe = 0;
/* This is the parsed result of the "-march=" option, if given. */
int cris_cpu_version = CRIS_DEFAULT_CPU_VERSION;
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.dword\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
/* We need to define these, since the 2byte, 4byte, 8byte op:s are only
available in ELF. These "normal" pseudos do not have any alignment
constraints or side-effects. */
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND cris_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS cris_print_operand_address
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P cris_print_operand_punct_valid_p
#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE cris_conditional_register_usage
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK cris_asm_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START cris_file_start
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS cris_init_libfuncs
#undef TARGET_LRA_P
#define TARGET_LRA_P hook_bool_void_false
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P cris_legitimate_address_p
#undef TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS cris_preferred_reload_class
/* We don't define TARGET_FIXED_CONDITION_CODE_REGS, as at the time of
this writing, it has an effect only on pre-reload CSE and when
scheduling (and for "macro fusion" at that). Neither applies for
CRIS so don't waste compilation cycles on enabling a pass that does
nothing. Beware of changes to its usage; it may make sense to enable
"later". */
#undef TARGET_CC_MODES_COMPATIBLE
#define TARGET_CC_MODES_COMPATIBLE cris_cc_modes_compatible
#undef TARGET_FLAGS_REGNUM
#define TARGET_FLAGS_REGNUM CRIS_CC0_REGNUM
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST cris_register_move_cost
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST cris_memory_move_cost
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS cris_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST cris_address_cost
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE cris_promote_function_mode
#undef TARGET_ATOMIC_ALIGN_FOR_MODE
#define TARGET_ATOMIC_ALIGN_FOR_MODE cris_atomic_align_for_mode
#undef TARGET_HAVE_SPECULATION_SAFE_VALUE
#define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX cris_struct_value_rtx
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS cris_setup_incoming_varargs
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE cris_pass_by_reference
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES cris_arg_partial_bytes
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG cris_function_arg
#undef TARGET_FUNCTION_INCOMING_ARG
#define TARGET_FUNCTION_INCOMING_ARG cris_function_incoming_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE cris_function_arg_advance
#undef TARGET_MD_ASM_ADJUST
#define TARGET_MD_ASM_ADJUST cris_md_asm_adjust
#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED cris_frame_pointer_required
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE cris_option_override
#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE cris_asm_trampoline_template
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT cris_trampoline_init
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE cris_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE cris_libcall_value
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P cris_function_value_regno_p
#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS cris_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK cris_hard_regno_mode_ok
#undef TARGET_STATIC_RTX_ALIGNMENT
#define TARGET_STATIC_RTX_ALIGNMENT cris_static_rtx_alignment
#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT cris_constant_alignment
struct gcc_target targetm = TARGET_INITIALIZER;
namespace {
const pass_data pass_data_cris_postdbr_cmpelim =
{
RTL_PASS, /* type */
"mach2", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_MACH_DEP, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_cris_postdbr_cmpelim : public rtl_opt_pass
{
public:
pass_cris_postdbr_cmpelim (gcc::context *ctxt)
: rtl_opt_pass (pass_data_cris_postdbr_cmpelim, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *)
{
return cris_postdbr_cmpelim ();
}
/* No use running this if reorg and cmpelim aren't both run. */
virtual bool gate (function *)
{
return
optimize > 0
&& flag_delayed_branch
&& flag_compare_elim_after_reload;
}
};
} // anon namespace
rtl_opt_pass *
make_pass_cris_postdbr_cmpelim (gcc::context *ctxt)
{
return new pass_cris_postdbr_cmpelim (ctxt);
}
/* "Cheap version" of cmpelim, making use of the opportunities opened up
by reorg.
Go through the insns of a function and look at each actual compare
insn; considering only those that compare a register to 0. If the
previous CC-affecting insn sets the compared register or if a move
reads from it, try to change that into a CC-setting move and try to
have it recognized. Bail at labels or non-matching insns that
clobber the compared register. If successful, delete the compare.
Also, reorg isn't up to date regarding data-flow handling, so we
can't go beyond classic RTL scanning. */
static unsigned int
cris_postdbr_cmpelim ()
{
rtx_insn *insn;
rtx_insn *next;
rtx_insn *prev_cc_setter = 0;
rtx_insn *prev_cc_outer = 0;
rtx dccr = gen_rtx_REG (CCmode, CRIS_CC0_REGNUM);
/* Now look for compares in the insn stream. */
for (insn = get_insns (); insn; insn = next)
{
rtx_insn *outer_insn = insn;
rtx pat = PATTERN (insn);
next = NEXT_INSN (outer_insn);
/* Forget previous state when we see a label; we can't track or
merge its state. */
if (LABEL_P (insn))
{
prev_cc_setter = 0;
continue;
}
if (!NONDEBUG_INSN_P (insn))
continue;
/* Consider filled delay slots; there might be a comparison there.
It's only the second insn in a sequence that is interesting. */
if (GET_CODE (pat) == SEQUENCE)
insn = as_a (XVECEXP (pat, 0, 1));
/* The "else" eliminates temptations to consider an insn in a
delay slot for elimination; it can only be a prev_cc_setter. */
else if (prev_cc_setter != 0 && GET_CODE (pat) == SET)
{
rtx dest = SET_DEST (pat);
rtx src = SET_SRC (pat);
rtx prev_set;
if (REG_P (dest)
&& REGNO (dest) == CRIS_CC0_REGNUM
&& GET_CODE (src) == COMPARE
&& REG_P (XEXP (src, 0))
&& XEXP (src, 1) == const0_rtx
&& (prev_set = single_set (prev_cc_setter)) != 0)
{
/* We have a candidate, and a prev_cc_setter to inspect. */
rtx reg = XEXP (src, 0);
rtx prev_dest = SET_DEST (prev_set);
rtx prev_src = SET_SRC (prev_set);
bool src_same = rtx_equal_p (prev_src, reg);
/* If the prev_cc_setter isn't a simple SET, or if the
compared register is modified in prev_cc_setter without
being the destination, or if it's modified between
prev_cc_setter (equal to or contained in prev_cc_outer)
and this insn, then we can't use the flags result. And
of course, the SET_DEST of prev_cc_setter (the main
interest, not dccr) has to be the same register and
mode we're interested in - or the SET_SRC. We've
already checked that the compared register isn't
changed in-between. */
if (REG_P (prev_dest)
&& ! reg_set_p (reg, prev_src)
&& ! reg_set_between_p (reg, prev_cc_outer, outer_insn)
&& (src_same || rtx_equal_p (prev_dest, reg)))
{
machine_mode ccmode = GET_MODE (src);
rtx modeadjusted_dccr
= (ccmode == CCmode ? dccr
: gen_rtx_REG (CCmode, CRIS_CC0_REGNUM));
rtx compare
/* We don't need to copy_rtx pat: we're going to
delete that insn. */
= (src_same ? pat
: gen_rtx_SET (modeadjusted_dccr,
gen_rtx_COMPARE (ccmode,
copy_rtx (prev_src),
const0_rtx)));
/* Replace tentatively, the prev_set combo that is
((set d s) (clobber dccr)) with
((cmp s 0) (set d s)) where (cmp s 0) is the
compare we're looking at, and validate it or fail
the whole thing. First replace the ((set d s) ...)
with ((cmp s 0) ...)). */
validate_change (prev_cc_setter,
&XVECEXP (PATTERN (prev_cc_setter),
0, 0), compare, true);
/* Then the clobber with the (set d s). */
validate_change (prev_cc_setter,
&XVECEXP (PATTERN (prev_cc_setter),
0, 1), prev_set, true);
if (apply_change_group ())
{
delete_insn (insn);
/* We eliminated the compare. Then we must go to
the next insn: we can't consider the eliminated
insn for the next prev_cc_setter.
FIXME: if later insns still match, we could do
the delete_insn part only, for them. But, it
seems rare that reorg would manage to move a
second CC-clobber to another delay-slot,
leaving two identical compares (and presumably
users). */
prev_cc_setter = 0;
continue;
}
}
}
}
if (reg_set_p (dccr, insn))
{
rtx pat = PATTERN (insn);
prev_cc_setter = 0;
/* Make sure we can use it later on, otherwise forget it.
Don't look too close, we're going to pass a lot of these.
Just make sure the structure is that we can work with. */
if (GET_CODE (pat) == PARALLEL
&& XVECLEN (pat, 0) == 2
&& GET_CODE (XVECEXP (pat, 0, 1)) == CLOBBER)
{
prev_cc_setter = insn;
prev_cc_outer = outer_insn;
}
}
}
return 0;
}
/* Helper for cris_load_multiple_op and cris_ret_movem_op. */
bool
cris_movem_load_rest_p (rtx op)
{
unsigned int reg_count = XVECLEN (op, 0);
rtx src_addr;
int i;
rtx elt;
int setno;
int regno_dir = 1;
unsigned int regno = 0;
/* Perform a quick check so we don't blow up below. FIXME: Adjust for
other than (MEM reg). */
if (reg_count <= 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| !REG_P (SET_DEST (XVECEXP (op, 0, 0)))
|| !MEM_P (SET_SRC (XVECEXP (op, 0, 0))))
return false;
/* Check a possible post-inc indicator. */
if (GET_CODE (XVECEXP (op, 0, 1)) == SET
&& GET_CODE (SET_SRC (XVECEXP (op, 0, 1))) == PLUS)
{
rtx reg = XEXP (SET_SRC (XVECEXP (op, 0, 1)), 0);
rtx inc = XEXP (SET_SRC (XVECEXP (op, 0, 1)), 1);
reg_count--;
if (reg_count == 1
|| !REG_P (reg)
|| !REG_P (SET_DEST (XVECEXP (op, 0, 1)))
|| REGNO (reg) != REGNO (SET_DEST (XVECEXP (op, 0, 1)))
|| !CONST_INT_P (inc)
|| INTVAL (inc) != (HOST_WIDE_INT) reg_count * 4)
return false;
i = 2;
}
else
i = 1;
regno_dir = -1;
regno = reg_count - 1;
elt = XVECEXP (op, 0, 0);
src_addr = XEXP (SET_SRC (elt), 0);
if (GET_CODE (elt) != SET
|| !REG_P (SET_DEST (elt))
|| GET_MODE (SET_DEST (elt)) != SImode
|| REGNO (SET_DEST (elt)) != regno
|| !MEM_P (SET_SRC (elt))
|| GET_MODE (SET_SRC (elt)) != SImode
|| !memory_address_p (SImode, src_addr))
return false;
for (setno = 1; i < XVECLEN (op, 0); setno++, i++)
{
rtx elt = XVECEXP (op, 0, i);
regno += regno_dir;
if (GET_CODE (elt) != SET
|| !REG_P (SET_DEST (elt))
|| GET_MODE (SET_DEST (elt)) != SImode
|| REGNO (SET_DEST (elt)) != regno
|| !MEM_P (SET_SRC (elt))
|| GET_MODE (SET_SRC (elt)) != SImode
|| GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
|| ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
|| !CONST_INT_P (XEXP (XEXP (SET_SRC (elt), 0), 1))
|| INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != setno * 4)
return false;
}
return true;
}
/* Worker function for predicate for the parallel contents in a movem
to-memory. */
bool
cris_store_multiple_op_p (rtx op)
{
int reg_count = XVECLEN (op, 0);
rtx dest;
rtx dest_addr;
rtx dest_base;
int i;
rtx elt;
int setno;
int regno_dir = 1;
int regno = 0;
int offset = 0;
/* Perform a quick check so we don't blow up below. FIXME: Adjust for
other than (MEM reg) and (MEM (PLUS reg const)). */
if (reg_count <= 1)
return false;
elt = XVECEXP (op, 0, 0);
if (GET_CODE (elt) != SET)
return false;
dest = SET_DEST (elt);
if (!REG_P (SET_SRC (elt)) || !MEM_P (dest))
return false;
dest_addr = XEXP (dest, 0);
/* Check a possible post-inc indicator. */
if (GET_CODE (XVECEXP (op, 0, 1)) == SET
&& GET_CODE (SET_SRC (XVECEXP (op, 0, 1))) == PLUS)
{
rtx reg = XEXP (SET_SRC (XVECEXP (op, 0, 1)), 0);
rtx inc = XEXP (SET_SRC (XVECEXP (op, 0, 1)), 1);
reg_count--;
if (!REG_P (reg)
|| !REG_P (SET_DEST (XVECEXP (op, 0, 1)))
|| REGNO (reg) != REGNO (SET_DEST (XVECEXP (op, 0, 1)))
|| !CONST_INT_P (inc)
/* Support increment by number of registers, and by the offset
of the destination, if it has the form (MEM (PLUS reg
offset)). */
|| !((REG_P (dest_addr)
&& REGNO (dest_addr) == REGNO (reg)
&& INTVAL (inc) == (HOST_WIDE_INT) reg_count * 4)
|| (GET_CODE (dest_addr) == PLUS
&& REG_P (XEXP (dest_addr, 0))
&& REGNO (XEXP (dest_addr, 0)) == REGNO (reg)
&& CONST_INT_P (XEXP (dest_addr, 1))
&& INTVAL (XEXP (dest_addr, 1)) == INTVAL (inc))))
return false;
i = 2;
}
else
i = 1;
regno_dir = -1;
regno = reg_count - 1;
if (GET_CODE (elt) != SET
|| !REG_P (SET_SRC (elt))
|| GET_MODE (SET_SRC (elt)) != SImode
|| REGNO (SET_SRC (elt)) != (unsigned int) regno
|| !MEM_P (SET_DEST (elt))
|| GET_MODE (SET_DEST (elt)) != SImode)
return false;
if (REG_P (dest_addr))
{
dest_base = dest_addr;
offset = 0;
}
else if (GET_CODE (dest_addr) == PLUS
&& REG_P (XEXP (dest_addr, 0))
&& CONST_INT_P (XEXP (dest_addr, 1)))
{
dest_base = XEXP (dest_addr, 0);
offset = INTVAL (XEXP (dest_addr, 1));
}
else
return false;
for (setno = 1; i < XVECLEN (op, 0); setno++, i++)
{
rtx elt = XVECEXP (op, 0, i);
regno += regno_dir;
if (GET_CODE (elt) != SET
|| !REG_P (SET_SRC (elt))
|| GET_MODE (SET_SRC (elt)) != SImode
|| REGNO (SET_SRC (elt)) != (unsigned int) regno
|| !MEM_P (SET_DEST (elt))
|| GET_MODE (SET_DEST (elt)) != SImode
|| GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
|| ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_base)
|| !CONST_INT_P (XEXP (XEXP (SET_DEST (elt), 0), 1))
|| INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != setno * 4 + offset)
return false;
}
return true;
}
/* The TARGET_CONDITIONAL_REGISTER_USAGE worker. */
static void
cris_conditional_register_usage (void)
{
if (TARGET_HAS_MUL_INSNS)
fixed_regs[CRIS_MOF_REGNUM] = 0;
/* On early versions, we must use the 16-bit condition-code register,
which has another name. */
if (cris_cpu_version < 8)
reg_names[CRIS_CC0_REGNUM] = "ccr";
}
/* Given an rtx, return the text string corresponding to the CODE of X.
Intended for use in the assembly language output section of a
define_insn. */
const char *
cris_op_str (rtx x)
{
cris_output_insn_is_bound = 0;
switch (GET_CODE (x))
{
case PLUS:
return "add";
case MINUS:
return "sub";
case MULT:
/* This function is for retrieving a part of an instruction name for
an operator, for immediate output. If that ever happens for
MULT, we need to apply TARGET_MUL_BUG in the caller. Make sure
we notice. */
internal_error ("MULT case in %");
break;
case DIV:
return "div";
case AND:
return "and";
case IOR:
return "or";
case XOR:
return "xor";
case NOT:
return "not";
case ASHIFT:
return "lsl";
case LSHIFTRT:
return "lsr";
case ASHIFTRT:
return "asr";
case UMIN:
/* Used to control the sign/zero-extend character for the 'E' modifier.
BOUND has none. */
cris_output_insn_is_bound = 1;
return "bound";
default:
return "Unknown operator";
}
}
/* Emit an error message when we're in an asm, and a fatal error for
"normal" insns. Formatted output isn't easily implemented, since we
use output_operand_lossage to output the actual message and handle the
categorization of the error. */
static void
cris_operand_lossage (const char *msgid, rtx op)
{
debug_rtx (op);
output_operand_lossage ("%s", msgid);
}
/* Print an index part of an address to file. */
static void
cris_print_index (rtx index, FILE *file)
{
/* Make the index "additive" unless we'll output a negative number, in
which case the sign character is free (as in free beer). */
if (!CONST_INT_P (index) || INTVAL (index) >= 0)
putc ('+', file);
if (REG_P (index))
fprintf (file, "$%s.b", reg_names[REGNO (index)]);
else if (CONSTANT_P (index))
cris_output_addr_const (file, index);
else if (GET_CODE (index) == MULT)
{
fprintf (file, "$%s.",
reg_names[REGNO (XEXP (index, 0))]);
putc (INTVAL (XEXP (index, 1)) == 2 ? 'w' : 'd', file);
}
else if (GET_CODE (index) == SIGN_EXTEND && MEM_P (XEXP (index, 0)))
{
rtx inner = XEXP (index, 0);
rtx inner_inner = XEXP (inner, 0);
if (GET_CODE (inner_inner) == POST_INC)
{
fprintf (file, "[$%s+].",
reg_names[REGNO (XEXP (inner_inner, 0))]);
putc (GET_MODE (inner) == HImode ? 'w' : 'b', file);
}
else
{
fprintf (file, "[$%s].", reg_names[REGNO (inner_inner)]);
putc (GET_MODE (inner) == HImode ? 'w' : 'b', file);
}
}
else if (MEM_P (index))
{
rtx inner = XEXP (index, 0);
if (GET_CODE (inner) == POST_INC)
fprintf (file, "[$%s+].d", reg_names[REGNO (XEXP (inner, 0))]);
else
fprintf (file, "[$%s].d", reg_names[REGNO (inner)]);
}
else
cris_operand_lossage ("unexpected index-type in cris_print_index",
index);
}
/* Print a base rtx of an address to file. */
static void
cris_print_base (rtx base, FILE *file)
{
if (REG_P (base))
fprintf (file, "$%s", reg_names[REGNO (base)]);
else if (GET_CODE (base) == POST_INC)
fprintf (file, "$%s+", reg_names[REGNO (XEXP (base, 0))]);
else
cris_operand_lossage ("unexpected base-type in cris_print_base",
base);
}
/* Usable as a guard in expressions. */
int
cris_fatal (char *arg)
{
internal_error (arg);
/* We'll never get here; this is just to appease compilers. */
return 0;
}
/* Return nonzero if REGNO is an ordinary register that *needs* to be
saved together with other registers, possibly by a MOVEM instruction,
or is saved for target-independent reasons. There may be
target-dependent reasons to save the register anyway; this is just a
wrapper for a complicated conditional. */
static int
cris_reg_saved_in_regsave_area (unsigned int regno)
{
return
(((df_regs_ever_live_p (regno)
&& !call_used_or_fixed_reg_p (regno)))
&& (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed)
&& regno != CRIS_SRP_REGNUM)
|| (crtl->calls_eh_return
&& (regno == EH_RETURN_DATA_REGNO (0)
|| regno == EH_RETURN_DATA_REGNO (1)
|| regno == EH_RETURN_DATA_REGNO (2)
|| regno == EH_RETURN_DATA_REGNO (3)));
}
/* The PRINT_OPERAND worker. */
static void
cris_print_operand (FILE *file, rtx x, int code)
{
rtx operand = x;
/* New code entries should just be added to the switch below. If
handling is finished, just return. If handling was just a
modification of the operand, the modified operand should be put in
"operand", and then do a break to let default handling
(zero-modifier) output the operand. */
switch (code)
{
case 'b':
/* Print the unsigned supplied integer as if it were signed
and < 0, i.e print 255 or 65535 as -1, 254, 65534 as -2, etc. */
if (!satisfies_constraint_O (x))
LOSE_AND_RETURN ("invalid operand for 'b' modifier", x);
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
INTVAL (x)| (INTVAL (x) <= 255 ? ~255 : ~65535));
return;
case 'x':
/* Print assembler code for operator. */
fprintf (file, "%s", cris_op_str (operand));
return;
case 'o':
{
/* A movem modifier working on a parallel; output the register
name. */
int regno;
if (GET_CODE (x) != PARALLEL)
LOSE_AND_RETURN ("invalid operand for 'o' modifier", x);
/* The second item can be (set reg (plus reg const)) to denote a
postincrement. */
regno
= (GET_CODE (SET_SRC (XVECEXP (x, 0, 1))) == PLUS
? XVECLEN (x, 0) - 2
: XVECLEN (x, 0) - 1);
fprintf (file, "$%s", reg_names [regno]);
}
return;
case 'O':
{
/* A similar movem modifier; output the memory operand. */
rtx addr;
if (GET_CODE (x) != PARALLEL)
LOSE_AND_RETURN ("invalid operand for 'O' modifier", x);
/* The lowest mem operand is in the first item, but perhaps it
needs to be output as postincremented. */
addr = MEM_P (SET_SRC (XVECEXP (x, 0, 0)))
? XEXP (SET_SRC (XVECEXP (x, 0, 0)), 0)
: XEXP (SET_DEST (XVECEXP (x, 0, 0)), 0);
/* The second item can be a (set reg (plus reg const)) to denote
a modification. */
if (GET_CODE (SET_SRC (XVECEXP (x, 0, 1))) == PLUS)
{
/* It's a post-increment, if the address is a naked (reg). */
if (REG_P (addr))
addr = gen_rtx_POST_INC (SImode, addr);
else
{
/* Otherwise, it's a side-effect; RN=RN+M. */
fprintf (file, "[$%s=$%s%s%d]",
reg_names [REGNO (SET_DEST (XVECEXP (x, 0, 1)))],
reg_names [REGNO (XEXP (addr, 0))],
INTVAL (XEXP (addr, 1)) < 0 ? "" : "+",
(int) INTVAL (XEXP (addr, 1)));
return;
}
}
output_address (VOIDmode, addr);
}
return;
case 'p':
/* Adjust a power of two to its log2. */
if (!CONST_INT_P (x) || exact_log2 (INTVAL (x)) < 0 )
LOSE_AND_RETURN ("invalid operand for 'p' modifier", x);
fprintf (file, "%d", exact_log2 (INTVAL (x)));
return;
case 's':
/* For an integer, print 'b' or 'w' if <= 255 or <= 65535
respectively. This modifier also terminates the inhibiting
effects of the 'x' modifier. */
cris_output_insn_is_bound = 0;
if (GET_MODE (x) == VOIDmode && CONST_INT_P (x))
{
if (INTVAL (x) >= 0)
{
if (INTVAL (x) <= 255)
putc ('b', file);
else if (INTVAL (x) <= 65535)
putc ('w', file);
else
putc ('d', file);
}
else
putc ('d', file);
return;
}
/* For a non-integer, print the size of the operand. */
putc ((GET_MODE (x) == SImode || GET_MODE (x) == SFmode)
? 'd' : GET_MODE (x) == HImode ? 'w'
: GET_MODE (x) == QImode ? 'b'
/* If none of the above, emit an erroneous size letter. */
: 'X',
file);
return;
case 'z':
/* Const_int: print b for -127 <= x <= 255,
w for -32768 <= x <= 65535, else die. */
if (!CONST_INT_P (x)
|| INTVAL (x) < -32768 || INTVAL (x) > 65535)
LOSE_AND_RETURN ("invalid operand for 'z' modifier", x);
putc (INTVAL (x) >= -128 && INTVAL (x) <= 255 ? 'b' : 'w', file);
return;
case '#':
/* Output a 'nop' if there's nothing for the delay slot.
This method stolen from the sparc files. */
if (dbr_sequence_length () == 0)
fputs ("\n\tnop", file);
return;
case '!':
/* Output directive for alignment padded with "nop" insns.
Optimizing for size, it's plain 4-byte alignment, otherwise we
align the section to a cache-line (32 bytes) and skip at max 2
bytes, i.e. we skip if it's the last insn on a cache-line. The
latter is faster by a small amount (for two test-programs 99.6%
and 99.9%) and larger by a small amount (ditto 100.1% and
100.2%). This is supposed to be the simplest yet performance-
wise least intrusive way to make sure the immediately following
(supposed) muls/mulu insn isn't located at the end of a
cache-line. */
if (TARGET_MUL_BUG)
fputs (optimize_size
? ".p2alignw 2,0x050f\n\t"
: ".p2alignw 5,0x050f,2\n\t", file);
return;
case 'H':
/* Print high (most significant) part of something. */
switch (GET_CODE (operand))
{
case CONST_INT:
/* If we're having 64-bit HOST_WIDE_INTs, the whole (DImode)
value is kept here, and so may be other than 0 or -1. */
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
INTVAL (operand_subword (operand, 1, 0, DImode)));
return;
case CONST_DOUBLE:
/* High part of a long long constant. */
if (GET_MODE (operand) == VOIDmode)
{
fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_HIGH (x));
return;
}
else
LOSE_AND_RETURN ("invalid operand for 'H' modifier", x);
case REG:
/* Print reg + 1. Check that there's not an attempt to print
high-parts of registers like stack-pointer or higher, except
for SRP (where the "high part" is MOF). */
if (REGNO (operand) > STACK_POINTER_REGNUM - 2
&& (REGNO (operand) != CRIS_SRP_REGNUM
|| CRIS_SRP_REGNUM + 1 != CRIS_MOF_REGNUM
|| fixed_regs[CRIS_MOF_REGNUM] != 0))
LOSE_AND_RETURN ("bad register", operand);
fprintf (file, "$%s", reg_names[REGNO (operand) + 1]);
return;
case MEM:
/* Adjust memory address to high part. */
{
rtx adj_mem = operand;
int size
= GET_MODE_BITSIZE (GET_MODE (operand)) / BITS_PER_UNIT;
/* Adjust so we can use two SImode in DImode.
Calling adj_offsettable_operand will make sure it is an
offsettable address. Don't do this for a postincrement
though; it should remain as it was. */
if (GET_CODE (XEXP (adj_mem, 0)) != POST_INC)
adj_mem
= adjust_address (adj_mem, GET_MODE (adj_mem), size / 2);
output_address (VOIDmode, XEXP (adj_mem, 0));
return;
}
default:
LOSE_AND_RETURN ("invalid operand for 'H' modifier", x);
}
case 'L':
/* Strip the MEM expression. */
operand = XEXP (operand, 0);
break;
case 'e':
/* Like 'E', but ignore state set by 'x'. FIXME: Use code
iterators and attributes in cris.md to avoid the need for %x
and %E (and %e) and state passed between those modifiers. */
cris_output_insn_is_bound = 0;
/* FALL THROUGH. */
case 'E':
/* Print 's' if operand is SIGN_EXTEND or 'u' if ZERO_EXTEND unless
cris_output_insn_is_bound is nonzero. */
if (GET_CODE (operand) != SIGN_EXTEND
&& GET_CODE (operand) != ZERO_EXTEND
&& !CONST_INT_P (operand))
LOSE_AND_RETURN ("invalid operand for 'e' modifier", x);
if (cris_output_insn_is_bound)
{
cris_output_insn_is_bound = 0;
return;
}
putc (GET_CODE (operand) == SIGN_EXTEND
|| (CONST_INT_P (operand) && INTVAL (operand) < 0)
? 's' : 'u', file);
return;
case 'm':
/* Print the size letter of the inner element. We can do it by
calling ourselves with the 's' modifier. */
if (GET_CODE (operand) != SIGN_EXTEND && GET_CODE (operand) != ZERO_EXTEND)
LOSE_AND_RETURN ("invalid operand for 'm' modifier", x);
cris_print_operand (file, XEXP (operand, 0), 's');
return;
case 'M':
/* Print the least significant part of operand. */
if (GET_CODE (operand) == CONST_DOUBLE)
{
fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
return;
}
else if (HOST_BITS_PER_WIDE_INT > 32 && CONST_INT_P (operand))
{
fprintf (file, HOST_WIDE_INT_PRINT_HEX,
INTVAL (x) & ((unsigned int) 0x7fffffff * 2 + 1));
return;
}
/* Otherwise the least significant part equals the normal part,
so handle it normally. */
break;
case 'A':
/* When emitting an add for the high part of a DImode constant, we
want to use addq for 0 and adds.w for -1. */
if (!CONST_INT_P (operand))
LOSE_AND_RETURN ("invalid operand for 'A' modifier", x);
fprintf (file, INTVAL (operand) < 0 ? "adds.w" : "addq");
return;
case 'P':
/* For const_int operands, print the additive mnemonic and the
modified operand (byte-sized operands don't save anything):
N=MIN_INT..-65536: add.d N
-65535..-64: subu.w -N
-63..-1: subq -N
0..63: addq N
64..65535: addu.w N
65536..MAX_INT: add.d N.
(Emitted mnemonics are capitalized to simplify testing.)
For anything else (N.B: only register is valid), print "add.d". */
if (REG_P (operand))
{
fprintf (file, "Add.d ");
/* Deal with printing the operand by dropping through to the
normal path. */
break;
}
else
{
int val;
gcc_assert (CONST_INT_P (operand));
val = INTVAL (operand);
if (!IN_RANGE (val, -65535, 65535))
fprintf (file, "Add.d %d", val);
else if (val <= -64)
fprintf (file, "Subu.w %d", -val);
else if (val <= -1)
fprintf (file, "Subq %d", -val);
else if (val <= 63)
fprintf (file, "Addq %d", val);
else if (val <= 65535)
fprintf (file, "Addu.w %d", val);
return;
}
break;
case 'q':
/* If the operand is an integer -31..31, print "q" else ".d". */
if (CONST_INT_P (operand) && IN_RANGE (INTVAL (operand), -31, 31))
fprintf (file, "q");
else
fprintf (file, ".d");
return;
case 'D':
/* When emitting an sub for the high part of a DImode constant, we
want to use subq for 0 and subs.w for -1. */
if (!CONST_INT_P (operand))
LOSE_AND_RETURN ("invalid operand for 'D' modifier", x);
fprintf (file, INTVAL (operand) < 0 ? "subs.w" : "subq");
return;
case 'S':
/* Print the operand as the index-part of an address.
Easiest way out is to use cris_print_index. */
cris_print_index (operand, file);
return;
case 'T':
{
/* Print the size letter for an operand to a ASHIFT, which must be a
const_int with a suitable value. */
int shiftval;
if (!CONST_INT_P (operand))
LOSE_AND_RETURN ("invalid operand for 'T' modifier", x);
shiftval = INTVAL (operand);
if (!(shiftval == 1 || shiftval == 2))
LOSE_AND_RETURN ("invalid operand for 'T' modifier", x);
fprintf (file, "%s", shiftval == 1 ? ".w" : ".d");
}
return;
case 0:
/* No code, print as usual. */
break;
default:
LOSE_AND_RETURN ("invalid operand modifier letter", x);
}
/* Print an operand as without a modifier letter. */
switch (GET_CODE (operand))
{
case REG:
if (REGNO (operand) > 15
&& REGNO (operand) != CRIS_MOF_REGNUM
&& REGNO (operand) != CRIS_SRP_REGNUM
&& REGNO (operand) != CRIS_CC0_REGNUM)
internal_error ("internal error: bad register: %d", REGNO (operand));
fprintf (file, "$%s", reg_names[REGNO (operand)]);
return;
case MEM:
output_address (GET_MODE (operand), XEXP (operand, 0));
return;
case CONST_DOUBLE:
if (GET_MODE (operand) == VOIDmode)
/* A long long constant. */
output_addr_const (file, operand);
else
{
/* Only single precision is allowed as plain operands the
moment. */
long l;
/* FIXME: Perhaps check overflow of the "single". */
REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (operand), l);
fprintf (file, "0x%lx", l);
}
return;
case CONST:
cris_output_addr_const (file, operand);
return;
case MULT:
case ASHIFT:
{
/* For a (MULT (reg X) const_int) we output "rX.S". */
int i = CONST_INT_P (XEXP (operand, 1))
? INTVAL (XEXP (operand, 1)) : INTVAL (XEXP (operand, 0));
rtx reg = CONST_INT_P (XEXP (operand, 1))
? XEXP (operand, 0) : XEXP (operand, 1);
if (!REG_P (reg)
|| (!CONST_INT_P (XEXP (operand, 0))
&& !CONST_INT_P (XEXP (operand, 1))))
LOSE_AND_RETURN ("unexpected multiplicative operand", x);
cris_print_base (reg, file);
fprintf (file, ".%c",
i == 0 || (i == 1 && GET_CODE (operand) == MULT) ? 'b'
: i == 4 ? 'd'
: (i == 2 && GET_CODE (operand) == MULT) || i == 1 ? 'w'
: 'd');
return;
}
default:
/* No need to handle all strange variants, let output_addr_const
do it for us. */
if (CONSTANT_P (operand))
{
cris_output_addr_const (file, operand);
return;
}
LOSE_AND_RETURN ("unexpected operand", x);
}
}
static bool
cris_print_operand_punct_valid_p (unsigned char code)
{
return (code == '#' || code == '!');
}
/* The PRINT_OPERAND_ADDRESS worker. */
static void
cris_print_operand_address (FILE *file, machine_mode /*mode*/, rtx x)
{
/* All these were inside MEM:s so output indirection characters. */
putc ('[', file);
if (CONSTANT_ADDRESS_P (x))
cris_output_addr_const (file, x);
else if (cris_base_or_autoincr_p (x, true))
cris_print_base (x, file);
else if (GET_CODE (x) == PLUS)
{
rtx x1, x2;
x1 = XEXP (x, 0);
x2 = XEXP (x, 1);
if (cris_base_p (x1, true))
{
cris_print_base (x1, file);
cris_print_index (x2, file);
}
else if (cris_base_p (x2, true))
{
cris_print_base (x2, file);
cris_print_index (x1, file);
}
else
LOSE_AND_RETURN ("unrecognized address", x);
}
else if (MEM_P (x))
{
/* A DIP. Output more indirection characters. */
putc ('[', file);
cris_print_base (XEXP (x, 0), file);
putc (']', file);
}
else
LOSE_AND_RETURN ("unrecognized address", x);
putc (']', file);
}
/* The RETURN_ADDR_RTX worker.
We mark that the return address is used, either by EH or
__builtin_return_address, for use by the function prologue and
epilogue. FIXME: This isn't optimal; we just use the mark in the
prologue and epilogue to say that the return address is to be stored
in the stack frame. We could return SRP for leaf-functions and use the
initial-value machinery. */
rtx
cris_return_addr_rtx (int count, rtx frameaddr ATTRIBUTE_UNUSED)
{
cfun->machine->needs_return_address_on_stack = 1;
/* The return-address is stored just above the saved frame-pointer (if
present). Apparently we can't eliminate from the frame-pointer in
that direction, so use the incoming args (maybe pretended) pointer. */
return count == 0
? gen_rtx_MEM (Pmode, plus_constant (Pmode, virtual_incoming_args_rtx, -4))
: NULL_RTX;
}
/* Accessor used in cris.md:return because cfun->machine isn't available
there. */
bool
cris_return_address_on_stack (void)
{
return df_regs_ever_live_p (CRIS_SRP_REGNUM)
|| cfun->machine->needs_return_address_on_stack;
}
/* Accessor used in cris.md:return because cfun->machine isn't available
there. */
bool
cris_return_address_on_stack_for_return (void)
{
return cfun->machine->return_type == CRIS_RETINSN_RET ? false
: cris_return_address_on_stack ();
}
/* This handles FP -> SP elimination offset. */
static int
cris_initial_frame_pointer_offset (void)
{
int regno;
/* Initial offset is 0 if we don't have a frame pointer. */
int offs = 0;
/* And 4 for each register pushed. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (cris_reg_saved_in_regsave_area (regno))
offs += 4;
/* And then, last, we add the locals allocated. */
offs += get_frame_size ();
/* And more; the accumulated args size. */
offs += crtl->outgoing_args_size;
/* Then round it off, in case we use aligned stack. */
if (TARGET_STACK_ALIGN)
offs = TARGET_ALIGN_BY_32 ? (offs + 3) & ~3 : (offs + 1) & ~1;
return offs;
}
/* The INITIAL_ELIMINATION_OFFSET worker.
Calculate the difference between imaginary registers such as frame
pointer and the stack pointer. Used to eliminate the frame pointer
and imaginary arg pointer. */
int
cris_initial_elimination_offset (int fromreg, int toreg)
{
int fp_sp_offset
= cris_initial_frame_pointer_offset ();
/* We should be able to use regs_ever_live and related prologue
information here, or alpha should not as well. */
bool return_address_on_stack = cris_return_address_on_stack ();
/* Here we act as if the frame-pointer were needed. */
int ap_fp_offset = 4 + (return_address_on_stack ? 4 : 0);
if (fromreg == ARG_POINTER_REGNUM
&& toreg == HARD_FRAME_POINTER_REGNUM)
return ap_fp_offset;
/* Between the frame pointer and the stack are only "normal" stack
variables and saved registers. */
if (fromreg == FRAME_POINTER_REGNUM
&& toreg == STACK_POINTER_REGNUM)
return fp_sp_offset;
/* We need to balance out the frame pointer here. */
if (fromreg == ARG_POINTER_REGNUM
&& toreg == STACK_POINTER_REGNUM)
return ap_fp_offset + fp_sp_offset - 4;
if (fromreg == FRAME_POINTER_REGNUM
&& toreg == HARD_FRAME_POINTER_REGNUM)
return 0;
gcc_unreachable ();
}
/* Nonzero if X is a hard reg that can be used as an index. */
static inline bool
reg_ok_for_base_p (const_rtx x, bool strict)
{
return ((! strict && ! HARD_REGISTER_P (x))
|| REGNO_OK_FOR_BASE_P (REGNO (x)));
}
/* Nonzero if X is a hard reg that can be used as an index. */
static inline bool
reg_ok_for_index_p (const_rtx x, bool strict)
{
return reg_ok_for_base_p (x, strict);
}
/* True if X is a valid base register. */
bool
cris_base_p (const_rtx x, bool strict)
{
return (REG_P (x) && reg_ok_for_base_p (x, strict));
}
/* True if X is a valid index register. */
static inline bool
cris_index_p (const_rtx x, bool strict)
{
return (REG_P (x) && reg_ok_for_index_p (x, strict));
}
/* True if X is a valid base register with or without autoincrement. */
bool
cris_base_or_autoincr_p (const_rtx x, bool strict)
{
return (cris_base_p (x, strict)
|| (GET_CODE (x) == POST_INC
&& cris_base_p (XEXP (x, 0), strict)));
}
/* True if X is a valid (register) index for BDAP, i.e. [Rs].S or [Rs+].S. */
bool
cris_bdap_index_p (const_rtx x, bool strict)
{
return ((MEM_P (x)
&& GET_MODE (x) == SImode
&& cris_base_or_autoincr_p (XEXP (x, 0), strict))
|| (GET_CODE (x) == SIGN_EXTEND
&& MEM_P (XEXP (x, 0))
&& (GET_MODE (XEXP (x, 0)) == HImode
|| GET_MODE (XEXP (x, 0)) == QImode)
&& cris_base_or_autoincr_p (XEXP (XEXP (x, 0), 0), strict)));
}
/* True if X is a valid (register) index for BIAP, i.e. Rd.m. */
bool
cris_biap_index_p (const_rtx x, bool strict)
{
return (cris_index_p (x, strict)
|| (GET_CODE (x) == MULT
&& cris_index_p (XEXP (x, 0), strict)
&& cris_scale_int_operand (XEXP (x, 1), VOIDmode)));
}
/* Worker function for TARGET_LEGITIMATE_ADDRESS_P. */
bool
cris_legitimate_address_p (machine_mode mode, rtx x, bool strict)
{
const_rtx x1, x2;
if (cris_base_or_autoincr_p (x, strict))
return true;
else if (CONSTANT_P (x))
return true;
/* Indexed? */
else if (GET_CODE (x) == PLUS)
{
x1 = XEXP (x, 0);
x2 = XEXP (x, 1);
/* BDAP o, Rd. */
if ((cris_base_p (x1, strict) && CONSTANT_P (x2))
|| (cris_base_p (x2, strict) && CONSTANT_P (x1))
/* BDAP Rs[+], Rd. */
|| (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
&& ((cris_base_p (x1, strict)
&& cris_bdap_index_p (x2, strict))
|| (cris_base_p (x2, strict)
&& cris_bdap_index_p (x1, strict))
/* BIAP.m Rs, Rd */
|| (cris_base_p (x1, strict)
&& cris_biap_index_p (x2, strict))
|| (cris_base_p (x2, strict)
&& cris_biap_index_p (x1, strict)))))
return true;
}
else if (MEM_P (x))
{
/* DIP (Rs). Reject [[reg+]] and [[reg]] for DImode (long long). */
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
&& cris_base_or_autoincr_p (XEXP (x, 0), strict))
return true;
}
return false;
}
/* Worker function for LEGITIMIZE_RELOAD_ADDRESS. */
bool
cris_reload_address_legitimized (rtx x,
machine_mode mode ATTRIBUTE_UNUSED,
int opnum ATTRIBUTE_UNUSED,
int itype,
int ind_levels ATTRIBUTE_UNUSED)
{
enum reload_type type = (enum reload_type) itype;
rtx op0, op1;
rtx *op1p;
if (GET_CODE (x) != PLUS)
return false;
op0 = XEXP (x, 0);
op1 = XEXP (x, 1);
op1p = &XEXP (x, 1);
if (!REG_P (op1))
return false;
if (GET_CODE (op0) == SIGN_EXTEND && MEM_P (XEXP (op0, 0)))
{
rtx op00 = XEXP (op0, 0);
rtx op000 = XEXP (op00, 0);
rtx *op000p = &XEXP (op00, 0);
if ((GET_MODE (op00) == HImode || GET_MODE (op00) == QImode)
&& (REG_P (op000)
|| (GET_CODE (op000) == POST_INC && REG_P (XEXP (op000, 0)))))
{
bool something_reloaded = false;
if (GET_CODE (op000) == POST_INC
&& REG_P (XEXP (op000, 0))
&& REGNO (XEXP (op000, 0)) > CRIS_LAST_GENERAL_REGISTER)
/* No, this gets too complicated and is too rare to care
about trying to improve on the general code Here.
As the return-value is an all-or-nothing indicator, we
punt on the other register too. */
return false;
if ((REG_P (op000)
&& REGNO (op000) > CRIS_LAST_GENERAL_REGISTER))
{
/* The address of the inner mem is a pseudo or wrong
reg: reload that. */
push_reload (op000, NULL_RTX, op000p, NULL, GENERAL_REGS,
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
something_reloaded = true;
}
if (REGNO (op1) > CRIS_LAST_GENERAL_REGISTER)
{
/* Base register is a pseudo or wrong reg: reload it. */
push_reload (op1, NULL_RTX, op1p, NULL, GENERAL_REGS,
GET_MODE (x), VOIDmode, 0, 0,
opnum, type);
something_reloaded = true;
}
gcc_assert (something_reloaded);
return true;
}
}
return false;
}
/* Worker function for TARGET_PREFERRED_RELOAD_CLASS.
It seems like gcc (2.7.2 and 2.9x of 2000-03-22) may send "NO_REGS" as
the class for a constant (testcase: __Mul in arit.c). To avoid forcing
out a constant into the constant pool, we will trap this case and
return something a bit more sane. FIXME: Check if this is a bug.
Beware that we must not "override" classes that can be specified as
constraint letters, or else asm operands using them will fail when
they need to be reloaded. FIXME: Investigate whether that constitutes
a bug. */
static reg_class_t
cris_preferred_reload_class (rtx x, reg_class_t rclass)
{
if (rclass != MOF_REGS
&& rclass != MOF_SRP_REGS
&& rclass != SRP_REGS
&& rclass != CC0_REGS
&& rclass != SPECIAL_REGS)
return GENERAL_REGS;
/* We can't make use of something that's not a general register when
reloading an "eliminated" register (i.e. something that has turned into
e.g. sp + const_int). */
if (GET_CODE (x) == PLUS && !reg_class_subset_p (rclass, GENERAL_REGS))
return NO_REGS;
/* Avoid putting constants into a special register, where the instruction is
shorter if loaded into a general register. */
if (satisfies_constraint_P (x) && !reg_class_subset_p (rclass, GENERAL_REGS))
return NO_REGS;
return rclass;
}
/* Worker function for TARGET_REGISTER_MOVE_COST. */
static int
cris_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t from, reg_class_t to)
{
/* Can't move to and from a SPECIAL_REGS register, so we have to say
their move cost within that class is higher. How about 7? That's 3
for a move to a GENERAL_REGS register, 3 for the move from the
GENERAL_REGS register, and 1 for the increased register pressure.
Also, it's higher than the memory move cost, as it should be. */
if (reg_classes_intersect_p (from, SPECIAL_REGS)
&& reg_classes_intersect_p (to, SPECIAL_REGS))
return 7;
/* Make moves to/from SPECIAL_REGS slightly more expensive, as we
generally prefer GENERAL_REGS. */
if (reg_classes_intersect_p (from, SPECIAL_REGS)
|| reg_classes_intersect_p (to, SPECIAL_REGS))
return 3;
return 2;
}
/* Worker function for TARGET_MEMORY_MOVE_COST.
This isn't strictly correct for v0..3 in buswidth-8bit mode, but should
suffice. */
static int
cris_memory_move_cost (machine_mode mode,
reg_class_t rclass ATTRIBUTE_UNUSED,
bool in ATTRIBUTE_UNUSED)
{
if (mode == QImode
|| mode == HImode)
return 4;
else
return 6;
}
/* Worker function for SELECT_CC_MODE. */
machine_mode
cris_select_cc_mode (enum rtx_code op, rtx x, rtx y)
{
/* We have different sets of patterns before and after
reload_completed, and everything before reload_completed is CCmode.
At the time of this writing, this function isn't called before that
time, so let's just gcc_assert on that assumption rather than doing
"if (!reload_completed) return CCmode;". */
gcc_assert (reload_completed);
/* For float mode or comparisons with something other than 0, we
always go with CCmode. */
if (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT || y != const0_rtx)
return CCmode;
/* If we have a comparison that doesn't have to look at V or C, return
CC_NZmode. */
if (op == EQ || op == NE || op == GTU || op == LEU
|| op == LT || op == GE)
return CC_NZmode;
/* We should only get here for comparison operators. */
gcc_assert (op == GEU || op == LTU || op == GT || op == LE);
return CC_NZVCmode;
}
/* Worker function for TARGET_CC_MODES_COMPATIBLE.
We start with CCmode for most comparisons, which merges and yields to
CC_NZmode or CC_NZVCmode. The exceptions have CC_NZVCmode and can't do with
another mode. */
static machine_mode
cris_cc_modes_compatible (machine_mode m1, machine_mode m2)
{
if (m1 == CC_NZVCmode)
{
if (m2 == CC_NZVCmode || m2 == CCmode)
return CC_NZVCmode;
return VOIDmode;
}
if (m2 == CC_NZVCmode)
{
if (m1 == CC_NZVCmode || m1 == CCmode)
return CC_NZVCmode;
return VOIDmode;
}
if (m1 != m2)
return CC_NZmode;
return m1;
}
/* Return != 0 if the return sequence for the current function is short,
like "ret" or "jump [sp+]". Prior to reloading, we can't tell if
registers must be saved, so return 0 then. */
bool
cris_simple_epilogue (void)
{
unsigned int regno;
unsigned int reglimit = STACK_POINTER_REGNUM;
if (! reload_completed
|| frame_pointer_needed
|| get_frame_size () != 0
|| crtl->args.pretend_args_size
|| crtl->args.size
|| crtl->outgoing_args_size
|| crtl->calls_eh_return
/* If we're not supposed to emit prologue and epilogue, we must
not emit return-type instructions. */
|| !TARGET_PROLOGUE_EPILOGUE)
return false;
/* No simple epilogue if there are saved registers. */
for (regno = 0; regno < reglimit; regno++)
if (cris_reg_saved_in_regsave_area (regno))
return false;
return true;
}
/* Emit checking that MEM is aligned for an access in MODE, failing
that, executing a "break 8" (or call to abort, if "break 8" is
disabled). */
void
cris_emit_trap_for_misalignment (rtx mem)
{
rtx addr, reg, ok_label, andop;
rtx_insn *jmp;
int natural_alignment;
gcc_assert (MEM_P (mem));
natural_alignment = GET_MODE_SIZE (GET_MODE (mem));
addr = XEXP (mem, 0);
reg = force_reg (Pmode, addr);
ok_label = gen_label_rtx ();
/* This will yield a btstq without a separate register used, usually -
with the exception for PRE hoisting the "and" but not the branch
around the trap: see testsuite/gcc.target/cris/sync-3s.c. */
andop = gen_rtx_AND (Pmode, reg, GEN_INT (natural_alignment - 1));
emit_cmp_and_jump_insns (force_reg (SImode, andop), const0_rtx, EQ,
NULL_RTX, Pmode, 1, ok_label);
jmp = get_last_insn ();
gcc_assert (JUMP_P (jmp));
predict_insn_def (jmp, PRED_NORETURN, TAKEN);
expand_builtin_trap ();
emit_label (ok_label);
}
/* Expand a return insn (just one insn) marked as using SRP or stack
slot depending on parameter ON_STACK. */
void
cris_expand_return (bool on_stack)
{
/* FIXME: emit a parallel with a USE for SRP or the stack-slot, to
tell "ret" from "jump [sp+]". Some, but not all, other parts of
GCC expect just (return) to do the right thing when optimizing, so
we do that until they're fixed. Currently, all return insns in a
function must be the same (not really a limiting factor) so we need
to check that it doesn't change half-way through. */
emit_jump_insn (ret_rtx);
CRIS_ASSERT (cfun->machine->return_type != CRIS_RETINSN_RET || !on_stack);
CRIS_ASSERT (cfun->machine->return_type != CRIS_RETINSN_JUMP || on_stack);
cfun->machine->return_type
= on_stack ? CRIS_RETINSN_JUMP : CRIS_RETINSN_RET;
}
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. */
static bool
cris_rtx_costs (rtx x, machine_mode mode, int outer_code, int opno,
int *total, bool speed)
{
int code = GET_CODE (x);
switch (code)
{
case CONST_INT:
{
HOST_WIDE_INT val = INTVAL (x);
if (val == 0)
*total = 0;
else if (val < 32 && val >= -32)
*total = 1;
/* Eight or 16 bits are a word and cycle more expensive. */
else if (val <= 32767 && val >= -32768)
*total = 2;
/* A 32-bit constant (or very seldom, unsigned 16 bits) costs
another word. FIXME: This isn't linear to 16 bits. */
else
*total = 4;
return true;
}
case LABEL_REF:
*total = 6;
return true;
case CONST:
case SYMBOL_REF:
*total = 6;
return true;
case CONST_DOUBLE:
if (x != CONST0_RTX (mode == VOIDmode ? DImode : mode))
*total = 12;
else
/* Make 0.0 cheap, else test-insns will not be used. */
*total = 0;
return true;
case MULT:
/* If we have one arm of an ADDI, make sure it gets the cost of
one insn, i.e. zero cost for this operand, and just the cost
of the PLUS, as the insn is created by combine from a PLUS
and an ASHIFT, and the MULT cost below would make the
combined value be larger than the separate insns. The insn
validity is checked elsewhere by combine.
FIXME: this case is a stop-gap for 4.3 and 4.4, this whole
function should be rewritten. */
if (outer_code == PLUS && cris_biap_index_p (x, false))
{
*total = 0;
return true;
}
/* Identify values that are no powers of two. Powers of 2 are
taken care of already and those values should not be changed. */
if (!CONST_INT_P (XEXP (x, 1))
|| exact_log2 (INTVAL (XEXP (x, 1)) < 0))
{
/* If we have a multiply insn, then the cost is between
1 and 2 "fast" instructions. */
if (TARGET_HAS_MUL_INSNS)
{
*total = COSTS_N_INSNS (1) + COSTS_N_INSNS (1) / 2;
return true;
}
/* Estimate as 4 + 4 * #ofbits. */
*total = COSTS_N_INSNS (132);
return true;
}
return false;
case UDIV:
case MOD:
case UMOD:
case DIV:
if (!CONST_INT_P (XEXP (x, 1))
|| exact_log2 (INTVAL (XEXP (x, 1)) < 0))
{
/* Estimate this as 4 + 8 * #of bits. */
*total = COSTS_N_INSNS (260);
return true;
}
return false;
case AND:
if (CONST_INT_P (XEXP (x, 1))
/* Two constants may actually happen before optimization. */
&& !CONST_INT_P (XEXP (x, 0))
&& !satisfies_constraint_I (XEXP (x, 1)))
{
*total
= (rtx_cost (XEXP (x, 0), mode, (enum rtx_code) outer_code,
opno, speed) + 2
+ 2 * GET_MODE_NUNITS (mode));
return true;
}
return false;
case ZERO_EXTRACT:
/* Conditionals are split after reload, giving a different look. */
if (reload_completed)
{
if (outer_code != COMPARE)
return false;
}
else
switch (outer_code)
{
case EQ:
case NE:
case LT:
case LTU:
case LE:
case LEU:
case GT:
case GTU:
case GE:
case GEU:
break;
default:
return false;
}
/* fall through */
case ZERO_EXTEND: case SIGN_EXTEND:
*total = rtx_cost (XEXP (x, 0), VOIDmode, (enum rtx_code) outer_code,
opno, speed);
return true;
default:
return false;
}
}
/* The ADDRESS_COST worker. */
static int
cris_address_cost (rtx x, machine_mode mode ATTRIBUTE_UNUSED,
addr_space_t as ATTRIBUTE_UNUSED,
bool speed ATTRIBUTE_UNUSED)
{
/* The metric to use for the cost-macros is unclear.
The metric used here is (the number of cycles needed) / 2,
where we consider equal a cycle for a word of code and a cycle to
read memory. FIXME: Adding "+ 1" to all values would avoid
returning 0, as tree-ssa-loop-ivopts.cc as of r128272 "normalizes"
0 to 1, thereby giving equal costs to [rN + rM] and [rN].
Unfortunately(?) such a hack would expose other pessimizations,
at least with g++.dg/tree-ssa/ivopts-1.C, adding insns to the
loop there, without apparent reason. */
/* The cheapest addressing modes get 0, since nothing extra is needed. */
if (cris_base_or_autoincr_p (x, false))
return 0;
/* An indirect mem must be a DIP. This means two bytes extra for code,
and 4 bytes extra for memory read, i.e. (2 + 4) / 2. */
if (MEM_P (x))
return (2 + 4) / 2;
/* Assume (2 + 4) / 2 for a single constant; a dword, since it needs
an extra DIP prefix and 4 bytes of constant in most cases. */
if (CONSTANT_P (x))
return (2 + 4) / 2;
/* Handle BIAP and BDAP prefixes. */
if (GET_CODE (x) == PLUS)
{
rtx tem1 = XEXP (x, 0);
rtx tem2 = XEXP (x, 1);
/* Local extended canonicalization rule: the first operand must
be REG, unless it's an operation (MULT). */
if (!REG_P (tem1) && GET_CODE (tem1) != MULT)
tem1 = tem2, tem2 = XEXP (x, 0);
/* We'll "assume" we have canonical RTX now. */
gcc_assert (REG_P (tem1) || GET_CODE (tem1) == MULT);
/* A BIAP is 2 extra bytes for the prefix insn, nothing more. We
recognize the typical MULT which is always in tem1 because of
insn canonicalization. */
if ((GET_CODE (tem1) == MULT && cris_biap_index_p (tem1, false))
|| REG_P (tem2))
return 2 / 2;
/* A BDAP (quick) is 2 extra bytes. Any constant operand to the
PLUS is always found in tem2. */
if (CONST_INT_P (tem2) && INTVAL (tem2) < 128 && INTVAL (tem2) >= -128)
return 2 / 2;
/* A BDAP -32768 .. 32767 is like BDAP quick, but with 2 extra
bytes. */
if (satisfies_constraint_L (tem2))
return (2 + 2) / 2;
/* A BDAP with some other constant is 2 bytes extra. */
if (CONSTANT_P (tem2))
return (2 + 2 + 2) / 2;
/* BDAP with something indirect should have a higher cost than
BIAP with register. FIXME: Should it cost like a MEM or more? */
return (2 + 2 + 2) / 2;
}
/* What else? Return a high cost. It matters only for valid
addressing modes. */
return 10;
}
/* Check various objections to the side-effect. Used in the test-part
of an anonymous insn describing an insn with a possible side-effect.
Returns nonzero if the implied side-effect is ok.
code : PLUS or MULT
ops : An array of rtx:es. lreg, rreg, rval,
The variables multop and other_op are indexes into this,
or -1 if they are not applicable.
lreg : The register that gets assigned in the side-effect.
rreg : One register in the side-effect expression
rval : The other register, or an int.
multop : An integer to multiply rval with.
other_op : One of the entities of the main effect,
whose mode we must consider. */
int
cris_side_effect_mode_ok (enum rtx_code code, rtx *ops,
int lreg, int rreg, int rval,
int multop, int other_op)
{
/* Find what value to multiply with, for rx =ry + rz * n. */
int mult = multop < 0 ? 1 : INTVAL (ops[multop]);
rtx reg_rtx = ops[rreg];
rtx val_rtx = ops[rval];
/* The operands may be swapped. Canonicalize them in reg_rtx and
val_rtx, where reg_rtx always is a reg (for this constraint to
match). */
if (! cris_base_p (reg_rtx, reload_in_progress || reload_completed))
reg_rtx = val_rtx, val_rtx = ops[rreg];
/* Don't forget to check that reg_rtx really is a reg. If it isn't,
we have no business. */
if (! cris_base_p (reg_rtx, reload_in_progress || reload_completed))
return 0;
/* Don't do this when -mno-split. */
if (!TARGET_SIDE_EFFECT_PREFIXES)
return 0;
/* The mult expression may be hidden in lreg. FIXME: Add more
commentary about that. */
if (GET_CODE (val_rtx) == MULT)
{
mult = INTVAL (XEXP (val_rtx, 1));
val_rtx = XEXP (val_rtx, 0);
code = MULT;
}
/* First check the "other operand". */
if (other_op >= 0)
{
if (GET_MODE_SIZE (GET_MODE (ops[other_op])) > UNITS_PER_WORD)
return 0;
/* Check if the lvalue register is the same as the "other
operand". If so, the result is undefined and we shouldn't do
this. FIXME: Check again. */
if ((cris_base_p (ops[lreg], reload_in_progress || reload_completed)
&& cris_base_p (ops[other_op],
reload_in_progress || reload_completed)
&& REGNO (ops[lreg]) == REGNO (ops[other_op]))
|| rtx_equal_p (ops[other_op], ops[lreg]))
return 0;
}
/* Do not accept frame_pointer_rtx as any operand. */
if (ops[lreg] == frame_pointer_rtx || ops[rreg] == frame_pointer_rtx
|| ops[rval] == frame_pointer_rtx
|| (other_op >= 0 && ops[other_op] == frame_pointer_rtx))
return 0;
if (code == PLUS
&& ! cris_base_p (val_rtx, reload_in_progress || reload_completed))
{
/* Do not allow rx = rx + n if a normal add or sub with same size
would do. */
if (rtx_equal_p (ops[lreg], reg_rtx)
&& CONST_INT_P (val_rtx)
&& (INTVAL (val_rtx) <= 63 && INTVAL (val_rtx) >= -63))
return 0;
/* Check allowed cases, like [r(+)?].[bwd] and const. */
if (CONSTANT_P (val_rtx))
return 1;
if (MEM_P (val_rtx)
&& cris_base_or_autoincr_p (XEXP (val_rtx, 0),
reload_in_progress || reload_completed))
return 1;
if (GET_CODE (val_rtx) == SIGN_EXTEND
&& MEM_P (XEXP (val_rtx, 0))
&& cris_base_or_autoincr_p (XEXP (XEXP (val_rtx, 0), 0),
reload_in_progress || reload_completed))
return 1;
/* If we got here, it's not a valid addressing mode. */
return 0;
}
else if (code == MULT
|| (code == PLUS
&& cris_base_p (val_rtx,
reload_in_progress || reload_completed)))
{
/* Do not allow rx = rx + ry.S, since it doesn't give better code. */
if (rtx_equal_p (ops[lreg], reg_rtx)
|| (mult == 1 && rtx_equal_p (ops[lreg], val_rtx)))
return 0;
/* Do not allow bad multiply-values. */
if (mult != 1 && mult != 2 && mult != 4)
return 0;
/* Only allow r + ... */
if (! cris_base_p (reg_rtx, reload_in_progress || reload_completed))
return 0;
/* If we got here, all seems ok.
(All checks need to be done above). */
return 1;
}
/* If we get here, the caller got its initial tests wrong. */
internal_error ("internal error: % with bad operands");
}
/* Queue an .ident string in the queue of top-level asm statements.
If the front-end is done, we must be being called from toplev.cc.
In that case, do nothing. */
void
cris_asm_output_ident (const char *string)
{
if (symtab->state != PARSING)
return;
default_asm_output_ident_directive (string);
}
/* The ASM_OUTPUT_CASE_END worker. */
void
cris_asm_output_case_end (FILE *stream, int num, rtx_insn *table)
{
/* Step back, over the label for the table, to the actual casejump and
assert that we find only what's expected. */
rtx_insn *whole_jump_insn = prev_nonnote_nondebug_insn (table);
gcc_assert (whole_jump_insn != NULL_RTX && LABEL_P (whole_jump_insn));
whole_jump_insn = prev_nonnote_nondebug_insn (whole_jump_insn);
gcc_assert (whole_jump_insn != NULL_RTX && JUMP_P (whole_jump_insn));
/* Get the pattern of the casejump, so we can extract the default label. */
rtx whole_jump_pat = PATTERN (whole_jump_insn);
asm_fprintf (stream,
"\t.word %LL%d-%LL%d%s\n",
CODE_LABEL_NUMBER (XEXP
(XEXP
(XEXP (XVECEXP (whole_jump_pat, 0, 0), 1),
2), 0)),
num,
(TARGET_PDEBUG ? "; default" : ""));
}
/* The TARGET_OPTION_OVERRIDE worker.
As is the norm, this also parses -mfoo=bar type parameters. */
static void
cris_option_override (void)
{
if (cris_max_stackframe_str)
{
cris_max_stackframe = atoi (cris_max_stackframe_str);
/* Do some sanity checking. */
if (cris_max_stackframe < 0 || cris_max_stackframe > 0x20000000)
internal_error ("%<-max-stackframe=%d%> is not usable, "
"not between 0 and %d",
cris_max_stackframe, 0x20000000);
}
/* Let "-metrax4" and "-metrax100" change the cpu version. */
if (TARGET_SVINTO && cris_cpu_version < CRIS_CPU_SVINTO)
cris_cpu_version = CRIS_CPU_SVINTO;
else if (TARGET_ETRAX4_ADD && cris_cpu_version < CRIS_CPU_ETRAX4)
cris_cpu_version = CRIS_CPU_ETRAX4;
/* Parse -march=... and its synonym, the deprecated -mcpu=... */
if (cris_cpu_str)
{
cris_cpu_version
= (*cris_cpu_str == 'v' ? atoi (cris_cpu_str + 1) : -1);
if (strcmp ("etrax4", cris_cpu_str) == 0)
cris_cpu_version = 3;
if (strcmp ("svinto", cris_cpu_str) == 0
|| strcmp ("etrax100", cris_cpu_str) == 0)
cris_cpu_version = 8;
if (strcmp ("ng", cris_cpu_str) == 0
|| strcmp ("etrax100lx", cris_cpu_str) == 0)
cris_cpu_version = 10;
if (cris_cpu_version < 0 || cris_cpu_version > 10)
error ("unknown CRIS version specification in %<-march=%> or "
"%<-mcpu=%>: %s", cris_cpu_str);
/* Set the target flags. */
if (cris_cpu_version >= CRIS_CPU_ETRAX4)
target_flags |= MASK_ETRAX4_ADD;
/* If this is Svinto or higher, align for 32 bit accesses. */
if (cris_cpu_version >= CRIS_CPU_SVINTO)
target_flags
|= (MASK_SVINTO | MASK_ALIGN_BY_32
| MASK_STACK_ALIGN | MASK_CONST_ALIGN
| MASK_DATA_ALIGN);
/* Note that we do not add new flags when it can be completely
described with a macro that uses -mcpu=X. So
TARGET_HAS_MUL_INSNS is (cris_cpu_version >= CRIS_CPU_NG). */
}
if (cris_tune_str)
{
int cris_tune
= (*cris_tune_str == 'v' ? atoi (cris_tune_str + 1) : -1);
if (strcmp ("etrax4", cris_tune_str) == 0)
cris_tune = 3;
if (strcmp ("svinto", cris_tune_str) == 0
|| strcmp ("etrax100", cris_tune_str) == 0)
cris_tune = 8;
if (strcmp ("ng", cris_tune_str) == 0
|| strcmp ("etrax100lx", cris_tune_str) == 0)
cris_tune = 10;
if (cris_tune < 0 || cris_tune > 32)
error ("unknown CRIS cpu version specification in %<-mtune=%>: %s",
cris_tune_str);
if (cris_tune >= CRIS_CPU_SVINTO)
/* We have currently nothing more to tune than alignment for
memory accesses. */
target_flags
|= (MASK_STACK_ALIGN | MASK_CONST_ALIGN
| MASK_DATA_ALIGN | MASK_ALIGN_BY_32);
}
if (flag_pic)
{
/* Use error rather than warning, so invalid use is easily
detectable. Still change to the values we expect, to avoid
further errors. */
error ("%<-fPIC%> and %<-fpic%> are not supported on this target");
flag_pic = 0;
}
/* Set the per-function-data initializer. */
init_machine_status = cris_init_machine_status;
}
/* The TARGET_ASM_OUTPUT_MI_THUNK worker. */
static void
cris_asm_output_mi_thunk (FILE *stream,
tree thunkdecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
tree funcdecl)
{
const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunkdecl));
assemble_start_function (thunkdecl, fnname);
/* Make sure unwind info is emitted for the thunk if needed. */
final_start_function (emit_barrier (), stream, 1);
if (delta > 0)
fprintf (stream, "\tadd%s " HOST_WIDE_INT_PRINT_DEC ",$%s\n",
ADDITIVE_SIZE_MODIFIER (delta), delta,
reg_names[CRIS_FIRST_ARG_REG]);
else if (delta < 0)
fprintf (stream, "\tsub%s " HOST_WIDE_INT_PRINT_DEC ",$%s\n",
ADDITIVE_SIZE_MODIFIER (-delta), -delta,
reg_names[CRIS_FIRST_ARG_REG]);
fprintf (stream, "\tjump ");
assemble_name (stream, XSTR (XEXP (DECL_RTL (funcdecl), 0), 0));
fprintf (stream, "\n");
final_end_function ();
assemble_end_function (thunkdecl, fnname);
}
/* Boilerplate emitted at start of file.
NO_APP *only at file start* means faster assembly. It also means
comments are not allowed. In some cases comments will be output
for debugging purposes. Make sure they are allowed then. */
static void
cris_file_start (void)
{
/* These expressions can vary at run time, so we cannot put
them into TARGET_INITIALIZER. */
targetm.asm_file_start_app_off = !(TARGET_PDEBUG || flag_print_asm_name);
default_file_start ();
}
/* Rename the function calls for integer multiply and divide. */
static void
cris_init_libfuncs (void)
{
set_optab_libfunc (smul_optab, SImode, "__Mul");
set_optab_libfunc (sdiv_optab, SImode, "__Div");
set_optab_libfunc (udiv_optab, SImode, "__Udiv");
set_optab_libfunc (smod_optab, SImode, "__Mod");
set_optab_libfunc (umod_optab, SImode, "__Umod");
/* Atomic data being unaligned is unfortunately a reality.
Deal with it. */
if (TARGET_ATOMICS_MAY_CALL_LIBFUNCS)
{
set_optab_libfunc (sync_compare_and_swap_optab, SImode,
"__cris_atcmpxchgr32");
set_optab_libfunc (sync_compare_and_swap_optab, HImode,
"__cris_atcmpxchgr16");
}
}
/* The INIT_EXPANDERS worker sets the per-function-data initializer and
mark functions. */
void
cris_init_expanders (void)
{
/* Nothing here at the moment. */
}
/* Zero initialization is OK for all current fields. */
static struct machine_function *
cris_init_machine_status (void)
{
return ggc_cleared_alloc ();
}
/* Split a 2 word move (DI or presumably DF) into component parts.
Originally a copy of gen_split_move_double in m32r.cc. */
rtx
cris_split_movdx (rtx *operands)
{
machine_mode mode = GET_MODE (operands[0]);
rtx dest = operands[0];
rtx src = operands[1];
rtx val;
/* We used to have to handle (SUBREG (MEM)) here, but that should no
longer happen; after reload there are no SUBREGs any more, and we're
only called after reload. */
CRIS_ASSERT (GET_CODE (dest) != SUBREG && GET_CODE (src) != SUBREG);
start_sequence ();
if (REG_P (dest))
{
int dregno = REGNO (dest);
/* Reg-to-reg copy. */
if (REG_P (src))
{
int sregno = REGNO (src);
int reverse = (dregno == sregno + 1);
/* We normally copy the low-numbered register first. However, if
the first register operand 0 is the same as the second register of
operand 1, we must copy in the opposite order. */
emit_move_insn (operand_subword (dest, reverse, TRUE, mode),
operand_subword (src, reverse, TRUE, mode));
emit_move_insn (operand_subword (dest, !reverse, TRUE, mode),
operand_subword (src, !reverse, TRUE, mode));
}
/* Constant-to-reg copy. */
else if (CONST_INT_P (src) || GET_CODE (src) == CONST_DOUBLE)
{
rtx words[2];
split_double (src, &words[0], &words[1]);
emit_move_insn (operand_subword (dest, 0, TRUE, mode), words[0]);
emit_move_insn (operand_subword (dest, 1, TRUE, mode), words[1]);
}
/* Mem-to-reg copy. */
else if (MEM_P (src))
{
/* If the high-address word is used in the address, we must load it
last. Otherwise, load it first. */
rtx addr = XEXP (src, 0);
int reverse = (refers_to_regno_p (dregno, addr) != 0);
/* The original code implies that we can't do
move.x [rN+],rM move.x [rN],rM+1
when rN is dead, because of REG_NOTES damage. That is
consistent with what I've seen, so don't try it.
We have two different cases here; if the addr is POST_INC,
just pass it through, otherwise add constants. */
if (GET_CODE (addr) == POST_INC)
{
rtx mem;
rtx insn;
/* Whenever we emit insns with post-incremented
addresses ourselves, we must add a post-inc note
manually. */
mem = change_address (src, SImode, addr);
insn = emit_move_insn (operand_subword (dest, 0, TRUE, mode),
mem);
if (GET_CODE (XEXP (mem, 0)) == POST_INC)
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, XEXP (XEXP (mem, 0), 0),
REG_NOTES (insn));
mem = copy_rtx (mem);
insn = emit_move_insn (operand_subword (dest, 1, TRUE, mode), mem);
if (GET_CODE (XEXP (mem, 0)) == POST_INC)
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, XEXP (XEXP (mem, 0), 0),
REG_NOTES (insn));
}
else
{
/* Make sure we don't get any other addresses with
embedded postincrements. They should be stopped in
GO_IF_LEGITIMATE_ADDRESS, but we're here for your
safety. */
if (side_effects_p (addr))
fatal_insn ("unexpected side-effects in address", addr);
emit_move_insn (operand_subword (dest, reverse, TRUE, mode),
change_address
(src, SImode,
plus_constant (Pmode, addr,
reverse * UNITS_PER_WORD)));
emit_move_insn (operand_subword (dest, ! reverse, TRUE, mode),
change_address
(src, SImode,
plus_constant (Pmode, addr,
(! reverse) *
UNITS_PER_WORD)));
}
}
else
internal_error ("unknown src");
}
/* Reg-to-mem copy or clear mem. */
else if (MEM_P (dest)
&& (REG_P (src)
|| src == const0_rtx
|| src == CONST0_RTX (DFmode)))
{
rtx addr = XEXP (dest, 0);
if (GET_CODE (addr) == POST_INC)
{
rtx mem;
rtx insn;
/* Whenever we emit insns with post-incremented addresses
ourselves, we must add a post-inc note manually. */
mem = change_address (dest, SImode, addr);
insn = emit_move_insn (mem, operand_subword (src, 0, TRUE, mode));
if (GET_CODE (XEXP (mem, 0)) == POST_INC)
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, XEXP (XEXP (mem, 0), 0),
REG_NOTES (insn));
mem = copy_rtx (mem);
insn = emit_move_insn (mem, operand_subword (src, 1, TRUE, mode));
if (GET_CODE (XEXP (mem, 0)) == POST_INC)
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, XEXP (XEXP (mem, 0), 0),
REG_NOTES (insn));
}
else
{
/* Make sure we don't get any other addresses with embedded
postincrements. They should be stopped in
GO_IF_LEGITIMATE_ADDRESS, but we're here for your safety. */
if (side_effects_p (addr))
fatal_insn ("unexpected side-effects in address", addr);
emit_move_insn (change_address (dest, SImode, addr),
operand_subword (src, 0, TRUE, mode));
emit_move_insn (change_address (dest, SImode,
plus_constant (Pmode, addr,
UNITS_PER_WORD)),
operand_subword (src, 1, TRUE, mode));
}
}
else
internal_error ("unknown dest");
val = get_insns ();
end_sequence ();
return val;
}
/* Try to change a comparison against a constant to be against zero, and
an unsigned compare against zero to be an equality test. Beware:
only valid for compares of integer-type operands. Also, note that we
don't use operand 0 at the moment. */
void
cris_reduce_compare (rtx *relp, rtx *, rtx *op1p)
{
rtx op1 = *op1p;
rtx_code code = GET_CODE (*relp);
/* Code lifted mostly from emit_store_flag_1. */
switch (code)
{
case LT:
if (op1 == const1_rtx)
code = LE;
break;
case LE:
if (op1 == constm1_rtx)
code = LT;
break;
case GE:
if (op1 == const1_rtx)
code = GT;
break;
case GT:
if (op1 == constm1_rtx)
code = GE;
break;
case GEU:
if (op1 == const1_rtx)
code = NE;
break;
case LTU:
if (op1 == const1_rtx)
code = EQ;
break;
case GTU:
if (op1 == const0_rtx)
code = NE;
break;
case LEU:
if (op1 == const0_rtx)
code = EQ;
break;
default:
break;
}
if (code != GET_CODE (*relp))
{
*op1p = const0_rtx;
PUT_CODE (*relp, code);
}
}
/* The expander for the prologue pattern name. */
void
cris_expand_prologue (void)
{
int regno;
int size = get_frame_size ();
/* Shorten the used name for readability. */
int cfoa_size = crtl->outgoing_args_size;
int last_movem_reg = -1;
int framesize = 0;
rtx mem, insn;
int return_address_on_stack = cris_return_address_on_stack ();
int n_movem_regs = 0;
int pretend = crtl->args.pretend_args_size;
/* Don't do anything if no prologues or epilogues are wanted. */
if (!TARGET_PROLOGUE_EPILOGUE)
return;
CRIS_ASSERT (size >= 0);
/* Align the size to what's best for the CPU model. */
if (TARGET_STACK_ALIGN)
size = TARGET_ALIGN_BY_32 ? (size + 3) & ~3 : (size + 1) & ~1;
if (pretend)
{
/* See also cris_setup_incoming_varargs where
cfun->machine->stdarg_regs is set. There are other setters of
crtl->args.pretend_args_size than stdarg handling, like
for an argument passed with parts in R13 and stack. We must
not store R13 into the pretend-area for that case, as GCC does
that itself. "Our" store would be marked as redundant and GCC
will attempt to remove it, which will then be flagged as an
internal error; trying to remove a frame-related insn. */
int stdarg_regs = cfun->machine->stdarg_regs;
framesize += pretend;
for (regno = CRIS_FIRST_ARG_REG + CRIS_MAX_ARGS_IN_REGS - 1;
stdarg_regs > 0;
regno--, pretend -= 4, stdarg_regs--)
{
insn = emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (-4)));
/* FIXME: When dwarf2 frame output and unless asynchronous
exceptions, make dwarf2 bundle together all stack
adjustments like it does for registers between stack
adjustments. */
RTX_FRAME_RELATED_P (insn) = 1;
mem = gen_rtx_MEM (SImode, stack_pointer_rtx);
set_mem_alias_set (mem, get_varargs_alias_set ());
insn = emit_move_insn (mem, gen_raw_REG (SImode, regno));
/* Note the absence of RTX_FRAME_RELATED_P on the above insn:
the value isn't restored, so we don't want to tell dwarf2
that it's been stored to stack, else EH handling info would
get confused. */
}
/* For other setters of crtl->args.pretend_args_size, we
just adjust the stack by leaving the remaining size in
"pretend", handled below. */
}
/* Save SRP if not a leaf function. */
if (return_address_on_stack)
{
insn = emit_insn (gen_add2_insn (stack_pointer_rtx,
GEN_INT (-4 - pretend)));
pretend = 0;
RTX_FRAME_RELATED_P (insn) = 1;
mem = gen_rtx_MEM (SImode, stack_pointer_rtx);
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (mem, gen_raw_REG (SImode, CRIS_SRP_REGNUM));
RTX_FRAME_RELATED_P (insn) = 1;
framesize += 4;
}
/* Set up the frame pointer, if needed. */
if (frame_pointer_needed)
{
insn = emit_insn (gen_add2_insn (stack_pointer_rtx,
GEN_INT (-4 - pretend)));
pretend = 0;
RTX_FRAME_RELATED_P (insn) = 1;
mem = gen_rtx_MEM (SImode, stack_pointer_rtx);
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (mem, hard_frame_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
framesize += 4;
}
/* Between frame-pointer and saved registers lie the area for local
variables. If we get here with "pretended" size remaining, count
it into the general stack size. */
size += pretend;
/* Get a contiguous sequence of registers, starting with R0, that need
to be saved. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if (cris_reg_saved_in_regsave_area (regno))
{
n_movem_regs++;
/* Check if movem may be used for registers so far. */
if (regno == last_movem_reg + 1)
/* Yes, update next expected register. */
last_movem_reg = regno;
else
{
/* We cannot use movem for all registers. We have to flush
any movem:ed registers we got so far. */
if (last_movem_reg != -1)
{
int n_saved
= (n_movem_regs == 1) ? 1 : last_movem_reg + 1;
/* It is a win to use a side-effect assignment for
64 <= size <= 128. But side-effect on movem was
not usable for CRIS v0..3. Also only do it if
side-effects insns are allowed. */
if ((last_movem_reg + 1) * 4 + size >= 64
&& (last_movem_reg + 1) * 4 + size <= 128
&& cris_cpu_version >= CRIS_CPU_SVINTO
/* Don't use side-effect assignment for a single
move. */
&& n_saved > 1
&& TARGET_SIDE_EFFECT_PREFIXES)
{
mem
= gen_rtx_MEM (SImode,
plus_constant (Pmode, stack_pointer_rtx,
-(n_saved * 4 + size)));
set_mem_alias_set (mem, get_frame_alias_set ());
insn
= cris_emit_movem_store (mem, GEN_INT (n_saved),
-(n_saved * 4 + size),
true);
}
else
{
insn
= emit_insn (gen_add2_insn (stack_pointer_rtx,
GEN_INT (-(n_saved * 4
+ size))));
RTX_FRAME_RELATED_P (insn) = 1;
mem = gen_rtx_MEM (SImode, stack_pointer_rtx);
set_mem_alias_set (mem, get_frame_alias_set ());
insn = cris_emit_movem_store (mem, GEN_INT (n_saved),
0, true);
}
framesize += n_saved * 4 + size;
last_movem_reg = -1;
size = 0;
}
insn = emit_insn (gen_add2_insn (stack_pointer_rtx,
GEN_INT (-4 - size)));
RTX_FRAME_RELATED_P (insn) = 1;
mem = gen_rtx_MEM (SImode, stack_pointer_rtx);
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (mem, gen_raw_REG (SImode, regno));
RTX_FRAME_RELATED_P (insn) = 1;
framesize += 4 + size;
size = 0;
}
}
}
/* Check after, if we could movem all registers. This is the normal case. */
if (last_movem_reg != -1)
{
int n_saved
= (n_movem_regs == 1) ? 1 : last_movem_reg + 1;
/* Side-effect on movem was not usable for CRIS v0..3. Also only
do it if side-effects insns are allowed. */
if ((last_movem_reg + 1) * 4 + size >= 64
&& (last_movem_reg + 1) * 4 + size <= 128
&& cris_cpu_version >= CRIS_CPU_SVINTO
/* Don't use side-effect assignment for a single move. */
&& n_saved > 1
&& TARGET_SIDE_EFFECT_PREFIXES)
{
mem
= gen_rtx_MEM (SImode,
plus_constant (Pmode, stack_pointer_rtx,
-(n_saved * 4 + size)));
set_mem_alias_set (mem, get_frame_alias_set ());
insn = cris_emit_movem_store (mem, GEN_INT (n_saved),
-(n_saved * 4 + size), true);
}
else
{
insn = emit_insn (gen_add2_insn (stack_pointer_rtx,
GEN_INT (-(n_saved * 4 + size))));
RTX_FRAME_RELATED_P (insn) = 1;
mem = gen_rtx_MEM (SImode, stack_pointer_rtx);
set_mem_alias_set (mem, get_frame_alias_set ());
insn = cris_emit_movem_store (mem, GEN_INT (n_saved), 0, true);
}
framesize += n_saved * 4 + size;
/* We have to put outgoing argument space after regs. */
if (cfoa_size)
{
insn = emit_insn (gen_add2_insn (stack_pointer_rtx,
GEN_INT (-cfoa_size)));
RTX_FRAME_RELATED_P (insn) = 1;
framesize += cfoa_size;
}
}
else if ((size + cfoa_size) > 0)
{
insn = emit_insn (gen_add2_insn (stack_pointer_rtx,
GEN_INT (-(cfoa_size + size))));
RTX_FRAME_RELATED_P (insn) = 1;
framesize += size + cfoa_size;
}
/* FIXME: -mmax-stackframe=SIZE is obsoleted; use -Wstack-usage=SIZE
instead. Make it an alias? */
if (cris_max_stackframe && framesize > cris_max_stackframe)
warning (0, "stackframe too big: %d bytes", framesize);
if (flag_stack_usage_info)
current_function_static_stack_size = framesize;
}
/* The expander for the epilogue pattern. */
void
cris_expand_epilogue (void)
{
int regno;
int size = get_frame_size ();
int last_movem_reg = -1;
int argspace_offset = crtl->outgoing_args_size;
int pretend = crtl->args.pretend_args_size;
rtx mem;
bool return_address_on_stack = cris_return_address_on_stack ();
/* A reference may have been optimized out
(like the abort () in fde_split in unwind-dw2-fde.c, at least 3.2.1)
so check that it's still used. */
int n_movem_regs = 0;
if (!TARGET_PROLOGUE_EPILOGUE)
return;
/* Align byte count of stack frame. */
if (TARGET_STACK_ALIGN)
size = TARGET_ALIGN_BY_32 ? (size + 3) & ~3 : (size + 1) & ~1;
/* Check how many saved regs we can movem. They start at r0 and must
be contiguous. */
for (regno = 0;
regno < FIRST_PSEUDO_REGISTER;
regno++)
if (cris_reg_saved_in_regsave_area (regno))
{
n_movem_regs++;
if (regno == last_movem_reg + 1)
last_movem_reg = regno;
else
break;
}
/* If there was only one register that really needed to be saved
through movem, don't use movem. */
if (n_movem_regs == 1)
last_movem_reg = -1;
/* Now emit "normal" move insns for all regs higher than the movem
regs. */
for (regno = FIRST_PSEUDO_REGISTER - 1;
regno > last_movem_reg;
regno--)
if (cris_reg_saved_in_regsave_area (regno))
{
rtx insn;
if (argspace_offset)
{
/* There is an area for outgoing parameters located before
the saved registers. We have to adjust for that. */
emit_insn (gen_add2_insn (stack_pointer_rtx,
GEN_INT (argspace_offset)));
/* Make sure we only do this once. */
argspace_offset = 0;
}
mem = gen_rtx_MEM (SImode, gen_rtx_POST_INC (SImode,
stack_pointer_rtx));
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (gen_raw_REG (SImode, regno), mem);
/* Whenever we emit insns with post-incremented addresses
ourselves, we must add a post-inc note manually. */
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn));
}
/* If we have any movem-restore, do it now. */
if (last_movem_reg != -1)
{
rtx insn;
if (argspace_offset)
{
emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (argspace_offset)));
argspace_offset = 0;
}
mem = gen_rtx_MEM (SImode,
gen_rtx_POST_INC (SImode, stack_pointer_rtx));
set_mem_alias_set (mem, get_frame_alias_set ());
insn
= emit_insn (cris_gen_movem_load (mem, GEN_INT (last_movem_reg + 1)));
/* Whenever we emit insns with post-incremented addresses
ourselves, we must add a post-inc note manually. */
if (side_effects_p (PATTERN (insn)))
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn));
}
/* If we don't clobber all of the allocated stack area (we've already
deallocated saved registers), GCC might want to schedule loads from
the stack to *after* the stack-pointer restore, which introduces an
interrupt race condition. This happened for the initial-value
SRP-restore for g++.dg/eh/registers1.C (noticed by inspection of
other failure for that test). It also happened for the stack slot
for the return value in (one version of)
linux/fs/dcache.c:__d_lookup, at least with "-O2
-fno-omit-frame-pointer". */
/* Restore frame pointer if necessary. */
if (frame_pointer_needed)
{
rtx insn;
emit_insn (gen_cris_frame_deallocated_barrier ());
emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
mem = gen_rtx_MEM (SImode, gen_rtx_POST_INC (SImode,
stack_pointer_rtx));
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (hard_frame_pointer_rtx, mem);
/* Whenever we emit insns with post-incremented addresses
ourselves, we must add a post-inc note manually. */
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn));
}
else if ((size + argspace_offset) != 0)
{
emit_insn (gen_cris_frame_deallocated_barrier ());
/* If there was no frame-pointer to restore sp from, we must
explicitly deallocate local variables. */
/* Handle space for outgoing parameters that hasn't been handled
yet. */
size += argspace_offset;
emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (size)));
}
/* If this function has no pushed register parameters
(stdargs/varargs), and if it is not a leaf function, then we have
the return address on the stack. */
if (return_address_on_stack && pretend == 0)
{
if (crtl->calls_eh_return)
{
rtx mem;
rtx insn;
rtx srpreg = gen_raw_REG (SImode, CRIS_SRP_REGNUM);
mem = gen_rtx_MEM (SImode,
gen_rtx_POST_INC (SImode,
stack_pointer_rtx));
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (srpreg, mem);
/* Whenever we emit insns with post-incremented addresses
ourselves, we must add a post-inc note manually. */
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn));
if (crtl->calls_eh_return)
emit_insn (gen_add2_insn (stack_pointer_rtx,
gen_raw_REG (SImode, CRIS_STACKADJ_REG)));
cris_expand_return (false);
}
else
cris_expand_return (true);
return;
}
/* If we pushed some register parameters, then adjust the stack for
them. */
if (pretend != 0)
{
/* If SRP is stored on the way, we need to restore it first. */
if (return_address_on_stack)
{
rtx mem;
rtx srpreg = gen_raw_REG (SImode, CRIS_SRP_REGNUM);
rtx insn;
mem = gen_rtx_MEM (SImode,
gen_rtx_POST_INC (SImode,
stack_pointer_rtx));
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (srpreg, mem);
/* Whenever we emit insns with post-incremented addresses
ourselves, we must add a post-inc note manually. */
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn));
}
emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (pretend)));
}
/* Perform the "physical" unwinding that the EH machinery calculated. */
if (crtl->calls_eh_return)
emit_insn (gen_add2_insn (stack_pointer_rtx,
gen_raw_REG (SImode, CRIS_STACKADJ_REG)));
cris_expand_return (false);
}
/* Worker function for generating movem from mem for load_multiple. */
rtx
cris_gen_movem_load (rtx src, rtx nregs_rtx)
{
int nregs = INTVAL (nregs_rtx);
rtvec vec;
int eltno = 1;
int i;
rtx srcreg = XEXP (src, 0);
unsigned int regno = nregs - 1;
int regno_inc = -1;
if (GET_CODE (srcreg) == POST_INC)
srcreg = XEXP (srcreg, 0);
CRIS_ASSERT (REG_P (srcreg));
/* Don't use movem for just one insn. The insns are equivalent. */
if (nregs == 1)
return gen_movsi (gen_rtx_REG (SImode, 0), src);
vec = rtvec_alloc (nregs + (GET_CODE (XEXP (src, 0)) == POST_INC));
if (GET_CODE (XEXP (src, 0)) == POST_INC)
{
RTVEC_ELT (vec, 1)
= gen_rtx_SET (srcreg, plus_constant (Pmode, srcreg, nregs * 4));
eltno++;
}
src = replace_equiv_address (src, srcreg);
RTVEC_ELT (vec, 0)
= gen_rtx_SET (gen_rtx_REG (SImode, regno), src);
regno += regno_inc;
for (i = 1; i < nregs; i++, eltno++)
{
RTVEC_ELT (vec, eltno)
= gen_rtx_SET (gen_rtx_REG (SImode, regno),
adjust_address_nv (src, SImode, i * 4));
regno += regno_inc;
}
return gen_rtx_PARALLEL (VOIDmode, vec);
}
/* Convenience function for CRIS-local use of emit_insn, wrapping the
argument in a parallel with a clobber of CRIS_CC0_REGNUM before
passing on to emit_insn. */
rtx_insn *
cris_emit_insn (rtx x)
{
rtvec vec = rtvec_alloc (2);
RTVEC_ELT (vec, 0) = x;
RTVEC_ELT (vec, 1)
= gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CRIS_CC0_REGNUM));
return emit_insn (gen_rtx_PARALLEL (VOIDmode, vec));
}
/* Worker function for generating movem to mem. If FRAME_RELATED, notes
are added that the dwarf2 machinery understands. */
rtx
cris_emit_movem_store (rtx dest, rtx nregs_rtx, int increment,
bool frame_related)
{
int nregs = INTVAL (nregs_rtx);
rtvec vec;
int eltno = 1;
int i;
rtx insn;
rtx destreg = XEXP (dest, 0);
unsigned int regno = nregs - 1;
int regno_inc = -1;
if (GET_CODE (destreg) == POST_INC)
increment += nregs * 4;
if (GET_CODE (destreg) == POST_INC || GET_CODE (destreg) == PLUS)
destreg = XEXP (destreg, 0);
CRIS_ASSERT (REG_P (destreg));
/* Don't use movem for just one insn. The insns are equivalent. */
if (nregs == 1)
{
if (increment == 0)
{
insn = emit_move_insn (dest, gen_rtx_REG (SImode, 0));
if (frame_related)
RTX_FRAME_RELATED_P (insn) = 1;
return insn;
}
/* If there was a request for a side-effect, create the ordinary
parallel. */
vec = rtvec_alloc (3);
rtx mov = gen_rtx_SET (dest, gen_rtx_REG (SImode, 0));
RTVEC_ELT (vec, 0) = mov;
RTVEC_ELT (vec, 1) = gen_rtx_SET (destreg, plus_constant (Pmode, destreg,
increment));
RTVEC_ELT (vec, 2)
= gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CRIS_CC0_REGNUM));
if (frame_related)
{
RTX_FRAME_RELATED_P (mov) = 1;
RTX_FRAME_RELATED_P (RTVEC_ELT (vec, 1)) = 1;
}
}
else
{
vec = rtvec_alloc (nregs + (increment != 0 ? 1 : 0));
RTVEC_ELT (vec, 0)
= gen_rtx_SET (replace_equiv_address (dest,
plus_constant (Pmode, destreg,
increment)),
gen_rtx_REG (SImode, regno));
regno += regno_inc;
/* The dwarf2 info wants this mark on each component in a parallel
that's part of the prologue (though it's optional on the first
component). */
if (frame_related)
RTX_FRAME_RELATED_P (RTVEC_ELT (vec, 0)) = 1;
if (increment != 0)
{
RTVEC_ELT (vec, 1)
= gen_rtx_SET (destreg, plus_constant (Pmode, destreg,
increment != 0
? increment : nregs * 4));
eltno++;
if (frame_related)
RTX_FRAME_RELATED_P (RTVEC_ELT (vec, 1)) = 1;
/* Don't call adjust_address_nv on a post-incremented address if
we can help it. */
if (GET_CODE (XEXP (dest, 0)) == POST_INC)
dest = replace_equiv_address (dest, destreg);
}
for (i = 1; i < nregs; i++, eltno++)
{
RTVEC_ELT (vec, eltno)
= gen_rtx_SET (adjust_address_nv (dest, SImode, i * 4),
gen_rtx_REG (SImode, regno));
if (frame_related)
RTX_FRAME_RELATED_P (RTVEC_ELT (vec, eltno)) = 1;
regno += regno_inc;
}
}
insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, vec));
/* Because dwarf2out.cc handles the insns in a parallel as a sequence,
we need to keep the stack adjustment separate, after the
MEM-setters. Else the stack-adjustment in the second component of
the parallel would be mishandled; the offsets for the SETs that
follow it would be wrong. We prepare for this by adding a
REG_FRAME_RELATED_EXPR with the MEM-setting parts in a SEQUENCE
followed by the increment. Note that we have FRAME_RELATED_P on
all the SETs, including the original stack adjustment SET in the
parallel. */
if (frame_related)
{
if (increment != 0)
{
rtx seq = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nregs + 1));
XVECEXP (seq, 0, 0) = copy_rtx (XVECEXP (PATTERN (insn), 0, 0));
for (i = 1; i < nregs; i++)
XVECEXP (seq, 0, i)
= copy_rtx (XVECEXP (PATTERN (insn), 0, i + 1));
XVECEXP (seq, 0, nregs) = copy_rtx (XVECEXP (PATTERN (insn), 0, 1));
add_reg_note (insn, REG_FRAME_RELATED_EXPR, seq);
}
RTX_FRAME_RELATED_P (insn) = 1;
}
return insn;
}
/* Make sure operands are in the right order for an addsi3 insn as
generated by a define_split. Nothing but REG_P as the first
operand is recognized by addsi3 after reload. OPERANDS contains
the operands, with the first at OPERANDS[N] and the second at
OPERANDS[N+1]. */
void
cris_order_for_addsi3 (rtx *operands, int n)
{
if (!REG_P (operands[n]))
{
rtx tem = operands[n];
operands[n] = operands[n + 1];
operands[n + 1] = tem;
}
}
/* Use from within code, from e.g. PRINT_OPERAND and
PRINT_OPERAND_ADDRESS. Macros used in output_addr_const need to emit
different things depending on whether code operand or constant is
emitted. */
static void
cris_output_addr_const (FILE *file, rtx x)
{
in_code++;
output_addr_const (file, x);
in_code--;
}
/* Worker function for ASM_OUTPUT_SYMBOL_REF. */
void
cris_asm_output_symbol_ref (FILE *file, rtx x)
{
gcc_assert (GET_CODE (x) == SYMBOL_REF);
assemble_name (file, XSTR (x, 0));
}
/* Worker function for ASM_OUTPUT_LABEL_REF. */
void
cris_asm_output_label_ref (FILE *file, char *buf)
{
assemble_name (file, buf);
}
/* Worker function for TARGET_STRUCT_VALUE_RTX. */
static rtx
cris_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (Pmode, CRIS_STRUCT_VALUE_REGNUM);
}
/* Worker function for TARGET_SETUP_INCOMING_VARARGS. */
static void
cris_setup_incoming_varargs (cumulative_args_t ca_v,
const function_arg_info &,
int *pretend_arg_size,
int second_time)
{
CUMULATIVE_ARGS *ca = get_cumulative_args (ca_v);
if (ca->regs < CRIS_MAX_ARGS_IN_REGS)
{
int stdarg_regs = CRIS_MAX_ARGS_IN_REGS - ca->regs;
cfun->machine->stdarg_regs = stdarg_regs;
*pretend_arg_size = stdarg_regs * 4;
}
if (TARGET_PDEBUG)
fprintf (asm_out_file,
"\n; VA:: ANSI: %d args before, anon @ #%d, %dtime\n",
ca->regs, *pretend_arg_size, second_time);
}
/* Return true if ARG must be passed by invisible reference.
For cris, we pass <= 8 bytes by value, others by reference. */
static bool
cris_pass_by_reference (cumulative_args_t, const function_arg_info &arg)
{
return (targetm.calls.must_pass_in_stack (arg)
|| CRIS_FUNCTION_ARG_SIZE (arg.mode, arg.type) > 8);
}
/* A combination of defining TARGET_PROMOTE_FUNCTION_MODE, promoting arguments
and *not* defining TARGET_PROMOTE_PROTOTYPES or PROMOTE_MODE gives the
best code size and speed for gcc, ipps and products in gcc-2.7.2. */
machine_mode
cris_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
machine_mode mode,
int *punsignedp ATTRIBUTE_UNUSED,
const_tree fntype ATTRIBUTE_UNUSED,
int for_return)
{
/* Defining PROMOTE_FUNCTION_RETURN in gcc-2.7.2 uncovered bug 981110 (even
when modifying TARGET_FUNCTION_VALUE to return the promoted mode).
Maybe pointless as of now, but let's keep the old behavior. */
if (for_return == 1)
return mode;
return CRIS_PROMOTED_MODE (mode, *punsignedp, type);
}
/* Atomic types require alignment to be at least their "natural" size. */
static unsigned int
cris_atomic_align_for_mode (machine_mode mode)
{
return GET_MODE_BITSIZE (mode);
}
/* Let's assume all functions return in r[CRIS_FIRST_ARG_REG] for the
time being. */
static rtx
cris_function_value(const_tree type,
const_tree func ATTRIBUTE_UNUSED,
bool outgoing ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (TYPE_MODE (type), CRIS_FIRST_ARG_REG);
}
/* Let's assume all functions return in r[CRIS_FIRST_ARG_REG] for the
time being. */
static rtx
cris_libcall_value (machine_mode mode,
const_rtx fun ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (mode, CRIS_FIRST_ARG_REG);
}
/* Let's assume all functions return in r[CRIS_FIRST_ARG_REG] for the
time being. */
static bool
cris_function_value_regno_p (const unsigned int regno)
{
return (regno == CRIS_FIRST_ARG_REG);
}
static int
cris_arg_partial_bytes (cumulative_args_t ca, const function_arg_info &arg)
{
if (get_cumulative_args (ca)->regs == CRIS_MAX_ARGS_IN_REGS - 1
&& !targetm.calls.must_pass_in_stack (arg)
&& CRIS_FUNCTION_ARG_SIZE (arg.mode, arg.type) > 4
&& CRIS_FUNCTION_ARG_SIZE (arg.mode, arg.type) <= 8)
return UNITS_PER_WORD;
else
return 0;
}
static rtx
cris_function_arg_1 (cumulative_args_t ca_v, const function_arg_info &arg,
bool incoming)
{
const CUMULATIVE_ARGS *ca = get_cumulative_args (ca_v);
if ((!incoming || arg.named) && ca->regs < CRIS_MAX_ARGS_IN_REGS)
return gen_rtx_REG (arg.mode, CRIS_FIRST_ARG_REG + ca->regs);
else
return NULL_RTX;
}
/* Worker function for TARGET_FUNCTION_ARG.
The void_type_node is sent as a "closing" call. */
static rtx
cris_function_arg (cumulative_args_t ca, const function_arg_info &arg)
{
return cris_function_arg_1 (ca, arg, false);
}
/* Worker function for TARGET_FUNCTION_INCOMING_ARG.
The differences between this and the previous, is that this one checks
that an argument is named, since incoming stdarg/varargs arguments are
pushed onto the stack, and we don't have to check against the "closing"
function_arg_info::end_marker parameter. */
static rtx
cris_function_incoming_arg (cumulative_args_t ca, const function_arg_info &arg)
{
return cris_function_arg_1 (ca, arg, true);
}
/* Worker function for TARGET_FUNCTION_ARG_ADVANCE. */
static void
cris_function_arg_advance (cumulative_args_t ca_v,
const function_arg_info &arg)
{
CUMULATIVE_ARGS *ca = get_cumulative_args (ca_v);
ca->regs += (3 + CRIS_FUNCTION_ARG_SIZE (arg.mode, arg.type)) / 4;
}
/* Worker function for TARGET_MD_ASM_ADJUST. */
static rtx_insn *
cris_md_asm_adjust (vec &outputs, vec &inputs,
vec & /*input_modes*/,
vec &constraints, vec &clobbers,
HARD_REG_SET &clobbered_regs, location_t /*loc*/)
{
/* For the time being, all asms clobber condition codes.
Revisit when there's a reasonable use for inputs/outputs
that mention condition codes. */
clobbers.safe_push (gen_rtx_REG (CCmode, CRIS_CC0_REGNUM));
SET_HARD_REG_BIT (clobbered_regs, CRIS_CC0_REGNUM);
/* Determine if the source using MOF. If it is, automatically
clobbering MOF would cause it to have impossible constraints. */
/* Look for a use of the MOF constraint letter: h. */
for (unsigned i = 0, n = constraints.length(); i < n; ++i)
if (strchr (constraints[i], 'h') != NULL)
return NULL;
/* Look for an output or an input that touches MOF. */
rtx mof_reg = gen_rtx_REG (SImode, CRIS_MOF_REGNUM);
for (unsigned i = 0, n = outputs.length(); i < n; ++i)
if (reg_overlap_mentioned_p (mof_reg, outputs[i]))
return NULL;
for (unsigned i = 0, n = inputs.length(); i < n; ++i)
if (reg_overlap_mentioned_p (mof_reg, inputs[i]))
return NULL;
/* No direct reference to MOF or its constraint.
Clobber it for backward compatibility. */
clobbers.safe_push (mof_reg);
SET_HARD_REG_BIT (clobbered_regs, CRIS_MOF_REGNUM);
return NULL;
}
/* Implement TARGET_FRAME_POINTER_REQUIRED.
Really only needed if the stack frame has variable length (alloca
or variable sized local arguments (GNU C extension). See PR39499 and
PR38609 for the reason this isn't just 0. */
bool
cris_frame_pointer_required (void)
{
return !crtl->sp_is_unchanging;
}
/* Implement TARGET_ASM_TRAMPOLINE_TEMPLATE.
This looks too complicated, and it is. I assigned r7 to be the
static chain register, but it is call-saved, so we have to save it,
and come back to restore it after the call, so we have to save srp...
Anyway, trampolines are rare enough that we can cope with this
somewhat lack of elegance.
(Do not be tempted to "straighten up" whitespace in the asms; the
assembler #NO_APP state mandates strict spacing). */
/* ??? See the i386 regparm=3 implementation that pushes the static
chain value to the stack in the trampoline, and uses a call-saved
register when called directly. */
static void
cris_asm_trampoline_template (FILE *f)
{
fprintf (f, "\tmove.d $%s,[$pc+20]\n", reg_names[STATIC_CHAIN_REGNUM]);
fprintf (f, "\tmove $srp,[$pc+22]\n");
fprintf (f, "\tmove.d 0,$%s\n", reg_names[STATIC_CHAIN_REGNUM]);
fprintf (f, "\tjsr 0\n");
fprintf (f, "\tmove.d 0,$%s\n", reg_names[STATIC_CHAIN_REGNUM]);
fprintf (f, "\tjump 0\n");
}
/* Implement TARGET_TRAMPOLINE_INIT. */
static void
cris_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
rtx mem;
emit_block_move (m_tramp, assemble_trampoline_template (),
GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
mem = adjust_address (m_tramp, SImode, 10);
emit_move_insn (mem, chain_value);
mem = adjust_address (m_tramp, SImode, 16);
emit_move_insn (mem, fnaddr);
/* Note that there is no need to do anything with the cache for
sake of a trampoline. */
}
/* Implement TARGET_HARD_REGNO_NREGS.
The VOIDmode test is so we can omit mode on anonymous insns. FIXME:
Still needed in 2.9x, at least for Axis-20000319. */
static unsigned int
cris_hard_regno_nregs (unsigned int, machine_mode mode)
{
if (mode == VOIDmode)
return 1;
return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
}
/* Implement TARGET_HARD_REGNO_MODE_OK.
CRIS permits all registers to hold all modes. Well, except for the
condition-code register. And we can't hold larger-than-register size
modes in the last special register that can hold a full 32 bits. */
static bool
cris_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
return ((mode == CCmode || regno != CRIS_CC0_REGNUM)
&& (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
|| regno != CRIS_MOF_REGNUM));
}
/* Return the preferred minimum alignment for a static object. */
static HOST_WIDE_INT
cris_preferred_minimum_alignment (void)
{
if (!TARGET_CONST_ALIGN)
return 8;
if (TARGET_ALIGN_BY_32)
return 32;
return 16;
}
/* Implement TARGET_STATIC_RTX_ALIGNMENT. */
static HOST_WIDE_INT
cris_static_rtx_alignment (machine_mode mode)
{
return MAX (cris_preferred_minimum_alignment (), GET_MODE_ALIGNMENT (mode));
}
/* Implement TARGET_CONSTANT_ALIGNMENT. Note that this hook has the
effect of making gcc believe that ALL references to constant stuff
(in code segment, like strings) have this alignment. That is a rather
rushed assumption. Luckily we do not care about the "alignment"
operand to builtin memcpy (only place where it counts), so it doesn't
affect any bad spots. */
static HOST_WIDE_INT
cris_constant_alignment (const_tree, HOST_WIDE_INT basic_align)
{
return MAX (cris_preferred_minimum_alignment (), basic_align);
}
#if 0
/* Various small functions to replace macros. Only called from a
debugger. They might collide with gcc functions or system functions,
so only emit them when '#if 1' above. */
enum rtx_code Get_code (rtx);
enum rtx_code
Get_code (rtx x)
{
return GET_CODE (x);
}
const char *Get_mode (rtx);
const char *
Get_mode (rtx x)
{
return GET_MODE_NAME (GET_MODE (x));
}
rtx Xexp (rtx, int);
rtx
Xexp (rtx x, int n)
{
return XEXP (x, n);
}
rtx Xvecexp (rtx, int, int);
rtx
Xvecexp (rtx x, int n, int m)
{
return XVECEXP (x, n, m);
}
int Get_rtx_len (rtx);
int
Get_rtx_len (rtx x)
{
return GET_RTX_LENGTH (GET_CODE (x));
}
/* Use upper-case to distinguish from local variables that are sometimes
called next_insn and prev_insn. */
rtx Next_insn (rtx);
rtx
Next_insn (rtx insn)
{
return NEXT_INSN (insn);
}
rtx Prev_insn (rtx);
rtx
Prev_insn (rtx insn)
{
return PREV_INSN (insn);
}
#endif
#include "gt-cris.h"
/*
* Local variables:
* eval: (c-set-style "gnu")
* indent-tabs-mode: t
* End:
*/