/* Subroutines used for MIPS code generation. Copyright (C) 1989-2022 Free Software Foundation, Inc. Contributed by A. Lichnewsky, lich@inria.inria.fr. Changes by Michael Meissner, meissner@osf.org. 64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and Brendan Eich, brendan@microunity.com. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #define IN_TARGET_CODE 1 #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "memmodel.h" #include "gimple.h" #include "cfghooks.h" #include "df.h" #include "tm_p.h" #include "stringpool.h" #include "attribs.h" #include "optabs.h" #include "regs.h" #include "emit-rtl.h" #include "recog.h" #include "cgraph.h" #include "diagnostic.h" #include "insn-attr.h" #include "output.h" #include "alias.h" #include "fold-const.h" #include "varasm.h" #include "stor-layout.h" #include "calls.h" #include "explow.h" #include "expr.h" #include "libfuncs.h" #include "reload.h" #include "common/common-target.h" #include "langhooks.h" #include "cfgrtl.h" #include "cfganal.h" #include "sched-int.h" #include "gimplify.h" #include "target-globals.h" #include "tree-pass.h" #include "context.h" #include "builtins.h" #include "rtl-iter.h" #include "flags.h" #include "opts.h" /* This file should be included last. */ #include "target-def.h" /* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */ #define UNSPEC_ADDRESS_P(X) \ (GET_CODE (X) == UNSPEC \ && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \ && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES) /* Extract the symbol or label from UNSPEC wrapper X. */ #define UNSPEC_ADDRESS(X) \ XVECEXP (X, 0, 0) /* Extract the symbol type from UNSPEC wrapper X. */ #define UNSPEC_ADDRESS_TYPE(X) \ ((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST)) /* The maximum distance between the top of the stack frame and the value $sp has when we save and restore registers. The value for normal-mode code must be a SMALL_OPERAND and must preserve the maximum stack alignment. We therefore use a value of 0x7ff0 in this case. microMIPS LWM and SWM support 12-bit offsets (from -0x800 to 0x7ff), so we use a maximum of 0x7f0 for TARGET_MICROMIPS. MIPS16e SAVE and RESTORE instructions can adjust the stack pointer by up to 0x7f8 bytes and can usually save or restore all the registers that we need to save or restore. (Note that we can only use these instructions for o32, for which the stack alignment is 8 bytes.) We use a maximum gap of 0x100 or 0x400 for MIPS16 code when SAVE and RESTORE are not available. We can then use unextended instructions to save and restore registers, and to allocate and deallocate the top part of the frame. */ #define MIPS_MAX_FIRST_STACK_STEP \ (!TARGET_COMPRESSION ? 0x7ff0 \ : TARGET_MICROMIPS || GENERATE_MIPS16E_SAVE_RESTORE ? 0x7f8 \ : TARGET_64BIT ? 0x100 : 0x400) /* True if INSN is a mips.md pattern or asm statement. */ /* ??? This test exists through the compiler, perhaps it should be moved to rtl.h. */ #define USEFUL_INSN_P(INSN) \ (NONDEBUG_INSN_P (INSN) \ && GET_CODE (PATTERN (INSN)) != USE \ && GET_CODE (PATTERN (INSN)) != CLOBBER) /* If INSN is a delayed branch sequence, return the first instruction in the sequence, otherwise return INSN itself. */ #define SEQ_BEGIN(INSN) \ (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \ ? as_a (XVECEXP (PATTERN (INSN), 0, 0)) \ : (INSN)) /* Likewise for the last instruction in a delayed branch sequence. */ #define SEQ_END(INSN) \ (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \ ? as_a (XVECEXP (PATTERN (INSN), \ 0, \ XVECLEN (PATTERN (INSN), 0) - 1)) \ : (INSN)) /* Execute the following loop body with SUBINSN set to each instruction between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive. */ #define FOR_EACH_SUBINSN(SUBINSN, INSN) \ for ((SUBINSN) = SEQ_BEGIN (INSN); \ (SUBINSN) != NEXT_INSN (SEQ_END (INSN)); \ (SUBINSN) = NEXT_INSN (SUBINSN)) /* True if bit BIT is set in VALUE. */ #define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0) /* Return the opcode for a ptr_mode load of the form: l[wd] DEST, OFFSET(BASE). */ #define MIPS_LOAD_PTR(DEST, OFFSET, BASE) \ (((ptr_mode == DImode ? 0x37 : 0x23) << 26) \ | ((BASE) << 21) \ | ((DEST) << 16) \ | (OFFSET)) /* Return the opcode to move register SRC into register DEST. */ #define MIPS_MOVE(DEST, SRC) \ ((TARGET_64BIT ? 0x2d : 0x21) \ | ((DEST) << 11) \ | ((SRC) << 21)) /* Return the opcode for: lui DEST, VALUE. */ #define MIPS_LUI(DEST, VALUE) \ ((0xf << 26) | ((DEST) << 16) | (VALUE)) /* Return the opcode to jump to register DEST. When the JR opcode is not available use JALR $0, DEST. */ #define MIPS_JR(DEST) \ (TARGET_CB_ALWAYS ? ((0x1b << 27) | ((DEST) << 16)) \ : (((DEST) << 21) | (ISA_HAS_JR ? 0x8 : 0x9))) /* Return the opcode for: bal . + (1 + OFFSET) * 4. */ #define MIPS_BAL(OFFSET) \ ((0x1 << 26) | (0x11 << 16) | (OFFSET)) /* Return the usual opcode for a nop. */ #define MIPS_NOP 0 /* Classifies an address. ADDRESS_REG A natural register + offset address. The register satisfies mips_valid_base_register_p and the offset is a const_arith_operand. ADDRESS_LO_SUM A LO_SUM rtx. The first operand is a valid base register and the second operand is a symbolic address. ADDRESS_CONST_INT A signed 16-bit constant address. ADDRESS_SYMBOLIC: A constant symbolic address. */ enum mips_address_type { ADDRESS_REG, ADDRESS_LO_SUM, ADDRESS_CONST_INT, ADDRESS_SYMBOLIC }; /* Classifies an unconditional branch of interest for the P6600. */ enum mips_ucbranch_type { /* May not even be a branch. */ UC_UNDEFINED, UC_BALC, UC_OTHER }; /* Macros to create an enumeration identifier for a function prototype. */ #define MIPS_FTYPE_NAME1(A, B) MIPS_##A##_FTYPE_##B #define MIPS_FTYPE_NAME2(A, B, C) MIPS_##A##_FTYPE_##B##_##C #define MIPS_FTYPE_NAME3(A, B, C, D) MIPS_##A##_FTYPE_##B##_##C##_##D #define MIPS_FTYPE_NAME4(A, B, C, D, E) MIPS_##A##_FTYPE_##B##_##C##_##D##_##E /* Classifies the prototype of a built-in function. */ enum mips_function_type { #define DEF_MIPS_FTYPE(NARGS, LIST) MIPS_FTYPE_NAME##NARGS LIST, #include "config/mips/mips-ftypes.def" #undef DEF_MIPS_FTYPE MIPS_MAX_FTYPE_MAX }; /* Specifies how a built-in function should be converted into rtl. */ enum mips_builtin_type { /* The function corresponds directly to an .md pattern. The return value is mapped to operand 0 and the arguments are mapped to operands 1 and above. */ MIPS_BUILTIN_DIRECT, /* The function corresponds directly to an .md pattern. There is no return value and the arguments are mapped to operands 0 and above. */ MIPS_BUILTIN_DIRECT_NO_TARGET, /* The function corresponds to a comparison instruction followed by a mips_cond_move_tf_ps pattern. The first two arguments are the values to compare and the second two arguments are the vector operands for the movt.ps or movf.ps instruction (in assembly order). */ MIPS_BUILTIN_MOVF, MIPS_BUILTIN_MOVT, /* The function corresponds to a V2SF comparison instruction. Operand 0 of this instruction is the result of the comparison, which has mode CCV2 or CCV4. The function arguments are mapped to operands 1 and above. The function's return value is an SImode boolean that is true under the following conditions: MIPS_BUILTIN_CMP_ANY: one of the registers is true MIPS_BUILTIN_CMP_ALL: all of the registers are true MIPS_BUILTIN_CMP_LOWER: the first register is true MIPS_BUILTIN_CMP_UPPER: the second register is true. */ MIPS_BUILTIN_CMP_ANY, MIPS_BUILTIN_CMP_ALL, MIPS_BUILTIN_CMP_UPPER, MIPS_BUILTIN_CMP_LOWER, /* As above, but the instruction only sets a single $fcc register. */ MIPS_BUILTIN_CMP_SINGLE, /* The function corresponds to an MSA conditional branch instruction combined with a compare instruction. */ MIPS_BUILTIN_MSA_TEST_BRANCH, /* For generating bposge32 branch instructions in MIPS32 DSP ASE. */ MIPS_BUILTIN_BPOSGE32 }; /* Invoke MACRO (COND) for each C.cond.fmt condition. */ #define MIPS_FP_CONDITIONS(MACRO) \ MACRO (f), \ MACRO (un), \ MACRO (eq), \ MACRO (ueq), \ MACRO (olt), \ MACRO (ult), \ MACRO (ole), \ MACRO (ule), \ MACRO (sf), \ MACRO (ngle), \ MACRO (seq), \ MACRO (ngl), \ MACRO (lt), \ MACRO (nge), \ MACRO (le), \ MACRO (ngt) /* Enumerates the codes above as MIPS_FP_COND_. */ #define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X enum mips_fp_condition { MIPS_FP_CONDITIONS (DECLARE_MIPS_COND) }; #undef DECLARE_MIPS_COND /* Index X provides the string representation of MIPS_FP_COND_. */ #define STRINGIFY(X) #X static const char *const mips_fp_conditions[] = { MIPS_FP_CONDITIONS (STRINGIFY) }; #undef STRINGIFY /* A class used to control a comdat-style stub that we output in each translation unit that needs it. */ class mips_one_only_stub { public: virtual ~mips_one_only_stub () {} /* Return the name of the stub. */ virtual const char *get_name () = 0; /* Output the body of the function to asm_out_file. */ virtual void output_body () = 0; }; /* Tuning information that is automatically derived from other sources (such as the scheduler). */ static struct { /* The architecture and tuning settings that this structure describes. */ enum processor arch; enum processor tune; /* True if this structure describes MIPS16 settings. */ bool mips16_p; /* True if the structure has been initialized. */ bool initialized_p; /* True if "MULT $0, $0" is preferable to "MTLO $0; MTHI $0" when optimizing for speed. */ bool fast_mult_zero_zero_p; } mips_tuning_info; /* Information about a single argument. */ struct mips_arg_info { /* True if the argument is passed in a floating-point register, or would have been if we hadn't run out of registers. */ bool fpr_p; /* The number of words passed in registers, rounded up. */ unsigned int reg_words; /* For EABI, the offset of the first register from GP_ARG_FIRST or FP_ARG_FIRST. For other ABIs, the offset of the first register from the start of the ABI's argument structure (see the CUMULATIVE_ARGS comment for details). The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely on the stack. */ unsigned int reg_offset; /* The number of words that must be passed on the stack, rounded up. */ unsigned int stack_words; /* The offset from the start of the stack overflow area of the argument's first stack word. Only meaningful when STACK_WORDS is nonzero. */ unsigned int stack_offset; }; /* Information about an address described by mips_address_type. ADDRESS_CONST_INT No fields are used. ADDRESS_REG REG is the base register and OFFSET is the constant offset. ADDRESS_LO_SUM REG and OFFSET are the operands to the LO_SUM and SYMBOL_TYPE is the type of symbol it references. ADDRESS_SYMBOLIC SYMBOL_TYPE is the type of symbol that the address references. */ struct mips_address_info { enum mips_address_type type; rtx reg; rtx offset; enum mips_symbol_type symbol_type; }; /* One stage in a constant building sequence. These sequences have the form: A = VALUE[0] A = A CODE[1] VALUE[1] A = A CODE[2] VALUE[2] ... where A is an accumulator, each CODE[i] is a binary rtl operation and each VALUE[i] is a constant integer. CODE[0] is undefined. */ struct mips_integer_op { enum rtx_code code; unsigned HOST_WIDE_INT value; }; /* The largest number of operations needed to load an integer constant. The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI. When the lowest bit is clear, we can try, but reject a sequence with an extra SLL at the end. */ #define MIPS_MAX_INTEGER_OPS 7 /* Information about a MIPS16e SAVE or RESTORE instruction. */ struct mips16e_save_restore_info { /* The number of argument registers saved by a SAVE instruction. 0 for RESTORE instructions. */ unsigned int nargs; /* Bit X is set if the instruction saves or restores GPR X. */ unsigned int mask; /* The total number of bytes to allocate. */ HOST_WIDE_INT size; }; /* Costs of various operations on the different architectures. */ struct mips_rtx_cost_data { unsigned short fp_add; unsigned short fp_mult_sf; unsigned short fp_mult_df; unsigned short fp_div_sf; unsigned short fp_div_df; unsigned short int_mult_si; unsigned short int_mult_di; unsigned short int_div_si; unsigned short int_div_di; unsigned short branch_cost; unsigned short memory_latency; }; /* Global variables for machine-dependent things. */ /* The -G setting, or the configuration's default small-data limit if no -G option is given. */ static unsigned int mips_small_data_threshold; /* The number of file directives written by mips_output_filename. */ int num_source_filenames; /* The name that appeared in the last .file directive written by mips_output_filename, or "" if mips_output_filename hasn't written anything yet. */ const char *current_function_file = ""; /* Arrays that map GCC register numbers to debugger register numbers. */ int mips_dbx_regno[FIRST_PSEUDO_REGISTER]; int mips_dwarf_regno[FIRST_PSEUDO_REGISTER]; /* Information about the current function's epilogue, used only while expanding it. */ static struct { /* A list of queued REG_CFA_RESTORE notes. */ rtx cfa_restores; /* The CFA is currently defined as CFA_REG + CFA_OFFSET. */ rtx cfa_reg; HOST_WIDE_INT cfa_offset; /* The offset of the CFA from the stack pointer while restoring registers. */ HOST_WIDE_INT cfa_restore_sp_offset; } mips_epilogue; /* The nesting depth of the PRINT_OPERAND '%(', '%<' and '%[' constructs. */ struct mips_asm_switch mips_noreorder = { "reorder", 0 }; struct mips_asm_switch mips_nomacro = { "macro", 0 }; struct mips_asm_switch mips_noat = { "at", 0 }; /* True if we're writing out a branch-likely instruction rather than a normal branch. */ static bool mips_branch_likely; /* The current instruction-set architecture. */ enum processor mips_arch; const struct mips_cpu_info *mips_arch_info; /* The processor that we should tune the code for. */ enum processor mips_tune; const struct mips_cpu_info *mips_tune_info; /* The ISA level associated with mips_arch. */ int mips_isa; /* The ISA revision level. This is 0 for MIPS I to V and N for MIPS{32,64}rN. */ int mips_isa_rev; /* The architecture selected by -mipsN, or null if -mipsN wasn't used. */ static const struct mips_cpu_info *mips_isa_option_info; /* Which cost information to use. */ static const struct mips_rtx_cost_data *mips_cost; /* The ambient target flags, excluding MASK_MIPS16. */ static int mips_base_target_flags; /* The default compression mode. */ unsigned int mips_base_compression_flags; /* The ambient values of other global variables. */ static int mips_base_schedule_insns; /* flag_schedule_insns */ static int mips_base_reorder_blocks_and_partition; /* flag_reorder... */ static int mips_base_move_loop_invariants; /* flag_move_loop_invariants */ static const char *mips_base_align_loops; /* align_loops */ static const char *mips_base_align_jumps; /* align_jumps */ static const char *mips_base_align_functions; /* align_functions */ /* Index [M][R] is true if register R is allowed to hold a value of mode M. */ static bool mips_hard_regno_mode_ok_p[MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER]; /* Index C is true if character C is a valid PRINT_OPERAND punctation character. */ static bool mips_print_operand_punct[256]; static GTY (()) int mips_output_filename_first_time = 1; /* mips_split_p[X] is true if symbols of type X can be split by mips_split_symbol. */ bool mips_split_p[NUM_SYMBOL_TYPES]; /* mips_split_hi_p[X] is true if the high parts of symbols of type X can be split by mips_split_symbol. */ bool mips_split_hi_p[NUM_SYMBOL_TYPES]; /* mips_use_pcrel_pool_p[X] is true if symbols of type X should be forced into a PC-relative constant pool. */ bool mips_use_pcrel_pool_p[NUM_SYMBOL_TYPES]; /* mips_lo_relocs[X] is the relocation to use when a symbol of type X appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or if they are matched by a special .md file pattern. */ const char *mips_lo_relocs[NUM_SYMBOL_TYPES]; /* Likewise for HIGHs. */ const char *mips_hi_relocs[NUM_SYMBOL_TYPES]; /* Target state for MIPS16. */ struct target_globals *mips16_globals; /* Target state for MICROMIPS. */ struct target_globals *micromips_globals; /* Cached value of can_issue_more. This is cached in mips_variable_issue hook and returned from mips_sched_reorder2. */ static int cached_can_issue_more; /* The stubs for various MIPS16 support functions, if used. */ static mips_one_only_stub *mips16_rdhwr_stub; static mips_one_only_stub *mips16_get_fcsr_stub; static mips_one_only_stub *mips16_set_fcsr_stub; /* Index R is the smallest register class that contains register R. */ const enum reg_class mips_regno_to_class[FIRST_PSEUDO_REGISTER] = { LEA_REGS, LEA_REGS, M16_STORE_REGS, V1_REG, M16_STORE_REGS, M16_STORE_REGS, M16_STORE_REGS, M16_STORE_REGS, LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS, M16_REGS, M16_STORE_REGS, LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS, T_REG, PIC_FN_ADDR_REG, LEA_REGS, LEA_REGS, LEA_REGS, M16_SP_REGS, LEA_REGS, LEA_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, MD0_REG, MD1_REG, NO_REGS, ST_REGS, ST_REGS, ST_REGS, ST_REGS, ST_REGS, ST_REGS, ST_REGS, ST_REGS, NO_REGS, NO_REGS, FRAME_REGS, FRAME_REGS, NO_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS, DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS, ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS }; static tree mips_handle_interrupt_attr (tree *, tree, tree, int, bool *); static tree mips_handle_use_shadow_register_set_attr (tree *, tree, tree, int, bool *); /* The value of TARGET_ATTRIBUTE_TABLE. */ static const struct attribute_spec mips_attribute_table[] = { /* { name, min_len, max_len, decl_req, type_req, fn_type_req, affects_type_identity, handler, exclude } */ { "long_call", 0, 0, false, true, true, false, NULL, NULL }, { "short_call", 0, 0, false, true, true, false, NULL, NULL }, { "far", 0, 0, false, true, true, false, NULL, NULL }, { "near", 0, 0, false, true, true, false, NULL, NULL }, /* We would really like to treat "mips16" and "nomips16" as type attributes, but GCC doesn't provide the hooks we need to support the right conversion rules. As declaration attributes, they affect code generation but don't carry other semantics. */ { "mips16", 0, 0, true, false, false, false, NULL, NULL }, { "nomips16", 0, 0, true, false, false, false, NULL, NULL }, { "micromips", 0, 0, true, false, false, false, NULL, NULL }, { "nomicromips", 0, 0, true, false, false, false, NULL, NULL }, { "nocompression", 0, 0, true, false, false, false, NULL, NULL }, /* Allow functions to be specified as interrupt handlers */ { "interrupt", 0, 1, false, true, true, false, mips_handle_interrupt_attr, NULL }, { "use_shadow_register_set", 0, 1, false, true, true, false, mips_handle_use_shadow_register_set_attr, NULL }, { "keep_interrupts_masked", 0, 0, false, true, true, false, NULL, NULL }, { "use_debug_exception_return", 0, 0, false, true, true, false, NULL, NULL }, { NULL, 0, 0, false, false, false, false, NULL, NULL } }; /* A table describing all the processors GCC knows about; see mips-cpus.def for details. */ static const struct mips_cpu_info mips_cpu_info_table[] = { #define MIPS_CPU(NAME, CPU, ISA, FLAGS) \ { NAME, CPU, ISA, FLAGS }, #include "mips-cpus.def" #undef MIPS_CPU }; /* Default costs. If these are used for a processor we should look up the actual costs. */ #define DEFAULT_COSTS COSTS_N_INSNS (6), /* fp_add */ \ COSTS_N_INSNS (7), /* fp_mult_sf */ \ COSTS_N_INSNS (8), /* fp_mult_df */ \ COSTS_N_INSNS (23), /* fp_div_sf */ \ COSTS_N_INSNS (36), /* fp_div_df */ \ COSTS_N_INSNS (10), /* int_mult_si */ \ COSTS_N_INSNS (10), /* int_mult_di */ \ COSTS_N_INSNS (69), /* int_div_si */ \ COSTS_N_INSNS (69), /* int_div_di */ \ 2, /* branch_cost */ \ 4 /* memory_latency */ /* Floating-point costs for processors without an FPU. Just assume that all floating-point libcalls are very expensive. */ #define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */ \ COSTS_N_INSNS (256), /* fp_mult_sf */ \ COSTS_N_INSNS (256), /* fp_mult_df */ \ COSTS_N_INSNS (256), /* fp_div_sf */ \ COSTS_N_INSNS (256) /* fp_div_df */ /* Costs to use when optimizing for size. */ static const struct mips_rtx_cost_data mips_rtx_cost_optimize_size = { COSTS_N_INSNS (1), /* fp_add */ COSTS_N_INSNS (1), /* fp_mult_sf */ COSTS_N_INSNS (1), /* fp_mult_df */ COSTS_N_INSNS (1), /* fp_div_sf */ COSTS_N_INSNS (1), /* fp_div_df */ COSTS_N_INSNS (1), /* int_mult_si */ COSTS_N_INSNS (1), /* int_mult_di */ COSTS_N_INSNS (1), /* int_div_si */ COSTS_N_INSNS (1), /* int_div_di */ 2, /* branch_cost */ 4 /* memory_latency */ }; /* Costs to use when optimizing for speed, indexed by processor. */ static const struct mips_rtx_cost_data mips_rtx_cost_data[NUM_PROCESSOR_VALUES] = { { /* R3000 */ COSTS_N_INSNS (2), /* fp_add */ COSTS_N_INSNS (4), /* fp_mult_sf */ COSTS_N_INSNS (5), /* fp_mult_df */ COSTS_N_INSNS (12), /* fp_div_sf */ COSTS_N_INSNS (19), /* fp_div_df */ COSTS_N_INSNS (12), /* int_mult_si */ COSTS_N_INSNS (12), /* int_mult_di */ COSTS_N_INSNS (35), /* int_div_si */ COSTS_N_INSNS (35), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* 4KC */ SOFT_FP_COSTS, COSTS_N_INSNS (6), /* int_mult_si */ COSTS_N_INSNS (6), /* int_mult_di */ COSTS_N_INSNS (36), /* int_div_si */ COSTS_N_INSNS (36), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* 4KP */ SOFT_FP_COSTS, COSTS_N_INSNS (36), /* int_mult_si */ COSTS_N_INSNS (36), /* int_mult_di */ COSTS_N_INSNS (37), /* int_div_si */ COSTS_N_INSNS (37), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* 5KC */ SOFT_FP_COSTS, COSTS_N_INSNS (4), /* int_mult_si */ COSTS_N_INSNS (11), /* int_mult_di */ COSTS_N_INSNS (36), /* int_div_si */ COSTS_N_INSNS (68), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* 5KF */ COSTS_N_INSNS (4), /* fp_add */ COSTS_N_INSNS (4), /* fp_mult_sf */ COSTS_N_INSNS (5), /* fp_mult_df */ COSTS_N_INSNS (17), /* fp_div_sf */ COSTS_N_INSNS (32), /* fp_div_df */ COSTS_N_INSNS (4), /* int_mult_si */ COSTS_N_INSNS (11), /* int_mult_di */ COSTS_N_INSNS (36), /* int_div_si */ COSTS_N_INSNS (68), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* 20KC */ COSTS_N_INSNS (4), /* fp_add */ COSTS_N_INSNS (4), /* fp_mult_sf */ COSTS_N_INSNS (5), /* fp_mult_df */ COSTS_N_INSNS (17), /* fp_div_sf */ COSTS_N_INSNS (32), /* fp_div_df */ COSTS_N_INSNS (4), /* int_mult_si */ COSTS_N_INSNS (7), /* int_mult_di */ COSTS_N_INSNS (42), /* int_div_si */ COSTS_N_INSNS (72), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* 24KC */ SOFT_FP_COSTS, COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (41), /* int_div_si */ COSTS_N_INSNS (41), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* 24KF2_1 */ COSTS_N_INSNS (8), /* fp_add */ COSTS_N_INSNS (8), /* fp_mult_sf */ COSTS_N_INSNS (10), /* fp_mult_df */ COSTS_N_INSNS (34), /* fp_div_sf */ COSTS_N_INSNS (64), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (41), /* int_div_si */ COSTS_N_INSNS (41), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* 24KF1_1 */ COSTS_N_INSNS (4), /* fp_add */ COSTS_N_INSNS (4), /* fp_mult_sf */ COSTS_N_INSNS (5), /* fp_mult_df */ COSTS_N_INSNS (17), /* fp_div_sf */ COSTS_N_INSNS (32), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (41), /* int_div_si */ COSTS_N_INSNS (41), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* 74KC */ SOFT_FP_COSTS, COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (41), /* int_div_si */ COSTS_N_INSNS (41), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* 74KF2_1 */ COSTS_N_INSNS (8), /* fp_add */ COSTS_N_INSNS (8), /* fp_mult_sf */ COSTS_N_INSNS (10), /* fp_mult_df */ COSTS_N_INSNS (34), /* fp_div_sf */ COSTS_N_INSNS (64), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (41), /* int_div_si */ COSTS_N_INSNS (41), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* 74KF1_1 */ COSTS_N_INSNS (4), /* fp_add */ COSTS_N_INSNS (4), /* fp_mult_sf */ COSTS_N_INSNS (5), /* fp_mult_df */ COSTS_N_INSNS (17), /* fp_div_sf */ COSTS_N_INSNS (32), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (41), /* int_div_si */ COSTS_N_INSNS (41), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* 74KF3_2 */ COSTS_N_INSNS (6), /* fp_add */ COSTS_N_INSNS (6), /* fp_mult_sf */ COSTS_N_INSNS (7), /* fp_mult_df */ COSTS_N_INSNS (25), /* fp_div_sf */ COSTS_N_INSNS (48), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (41), /* int_div_si */ COSTS_N_INSNS (41), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* Loongson-2E */ DEFAULT_COSTS }, { /* Loongson-2F */ DEFAULT_COSTS }, { /* Loongson gs464. */ DEFAULT_COSTS }, { /* Loongson gs464e. */ DEFAULT_COSTS }, { /* Loongson gs264e. */ DEFAULT_COSTS }, { /* M4k */ DEFAULT_COSTS }, /* Octeon */ { SOFT_FP_COSTS, COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (72), /* int_div_si */ COSTS_N_INSNS (72), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, /* Octeon II */ { SOFT_FP_COSTS, COSTS_N_INSNS (6), /* int_mult_si */ COSTS_N_INSNS (6), /* int_mult_di */ COSTS_N_INSNS (18), /* int_div_si */ COSTS_N_INSNS (35), /* int_div_di */ 4, /* branch_cost */ 4 /* memory_latency */ }, /* Octeon III */ { COSTS_N_INSNS (6), /* fp_add */ COSTS_N_INSNS (6), /* fp_mult_sf */ COSTS_N_INSNS (7), /* fp_mult_df */ COSTS_N_INSNS (25), /* fp_div_sf */ COSTS_N_INSNS (48), /* fp_div_df */ COSTS_N_INSNS (6), /* int_mult_si */ COSTS_N_INSNS (6), /* int_mult_di */ COSTS_N_INSNS (18), /* int_div_si */ COSTS_N_INSNS (35), /* int_div_di */ 4, /* branch_cost */ 4 /* memory_latency */ }, { /* R3900 */ COSTS_N_INSNS (2), /* fp_add */ COSTS_N_INSNS (4), /* fp_mult_sf */ COSTS_N_INSNS (5), /* fp_mult_df */ COSTS_N_INSNS (12), /* fp_div_sf */ COSTS_N_INSNS (19), /* fp_div_df */ COSTS_N_INSNS (2), /* int_mult_si */ COSTS_N_INSNS (2), /* int_mult_di */ COSTS_N_INSNS (35), /* int_div_si */ COSTS_N_INSNS (35), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* R6000 */ COSTS_N_INSNS (3), /* fp_add */ COSTS_N_INSNS (5), /* fp_mult_sf */ COSTS_N_INSNS (6), /* fp_mult_df */ COSTS_N_INSNS (15), /* fp_div_sf */ COSTS_N_INSNS (16), /* fp_div_df */ COSTS_N_INSNS (17), /* int_mult_si */ COSTS_N_INSNS (17), /* int_mult_di */ COSTS_N_INSNS (38), /* int_div_si */ COSTS_N_INSNS (38), /* int_div_di */ 2, /* branch_cost */ 6 /* memory_latency */ }, { /* R4000 */ COSTS_N_INSNS (6), /* fp_add */ COSTS_N_INSNS (7), /* fp_mult_sf */ COSTS_N_INSNS (8), /* fp_mult_df */ COSTS_N_INSNS (23), /* fp_div_sf */ COSTS_N_INSNS (36), /* fp_div_df */ COSTS_N_INSNS (10), /* int_mult_si */ COSTS_N_INSNS (10), /* int_mult_di */ COSTS_N_INSNS (69), /* int_div_si */ COSTS_N_INSNS (69), /* int_div_di */ 2, /* branch_cost */ 6 /* memory_latency */ }, { /* R4100 */ DEFAULT_COSTS }, { /* R4111 */ DEFAULT_COSTS }, { /* R4120 */ DEFAULT_COSTS }, { /* R4130 */ /* The only costs that appear to be updated here are integer multiplication. */ SOFT_FP_COSTS, COSTS_N_INSNS (4), /* int_mult_si */ COSTS_N_INSNS (6), /* int_mult_di */ COSTS_N_INSNS (69), /* int_div_si */ COSTS_N_INSNS (69), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* R4300 */ DEFAULT_COSTS }, { /* R4600 */ DEFAULT_COSTS }, { /* R4650 */ DEFAULT_COSTS }, { /* R4700 */ DEFAULT_COSTS }, { /* R5000 */ COSTS_N_INSNS (6), /* fp_add */ COSTS_N_INSNS (4), /* fp_mult_sf */ COSTS_N_INSNS (5), /* fp_mult_df */ COSTS_N_INSNS (23), /* fp_div_sf */ COSTS_N_INSNS (36), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (36), /* int_div_si */ COSTS_N_INSNS (36), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* R5400 */ COSTS_N_INSNS (6), /* fp_add */ COSTS_N_INSNS (5), /* fp_mult_sf */ COSTS_N_INSNS (6), /* fp_mult_df */ COSTS_N_INSNS (30), /* fp_div_sf */ COSTS_N_INSNS (59), /* fp_div_df */ COSTS_N_INSNS (3), /* int_mult_si */ COSTS_N_INSNS (4), /* int_mult_di */ COSTS_N_INSNS (42), /* int_div_si */ COSTS_N_INSNS (74), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* R5500 */ COSTS_N_INSNS (6), /* fp_add */ COSTS_N_INSNS (5), /* fp_mult_sf */ COSTS_N_INSNS (6), /* fp_mult_df */ COSTS_N_INSNS (30), /* fp_div_sf */ COSTS_N_INSNS (59), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (9), /* int_mult_di */ COSTS_N_INSNS (42), /* int_div_si */ COSTS_N_INSNS (74), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* R5900 */ COSTS_N_INSNS (4), /* fp_add */ COSTS_N_INSNS (4), /* fp_mult_sf */ COSTS_N_INSNS (256), /* fp_mult_df */ COSTS_N_INSNS (8), /* fp_div_sf */ COSTS_N_INSNS (256), /* fp_div_df */ COSTS_N_INSNS (4), /* int_mult_si */ COSTS_N_INSNS (256), /* int_mult_di */ COSTS_N_INSNS (37), /* int_div_si */ COSTS_N_INSNS (256), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* R7000 */ /* The only costs that are changed here are integer multiplication. */ COSTS_N_INSNS (6), /* fp_add */ COSTS_N_INSNS (7), /* fp_mult_sf */ COSTS_N_INSNS (8), /* fp_mult_df */ COSTS_N_INSNS (23), /* fp_div_sf */ COSTS_N_INSNS (36), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (9), /* int_mult_di */ COSTS_N_INSNS (69), /* int_div_si */ COSTS_N_INSNS (69), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* R8000 */ DEFAULT_COSTS }, { /* R9000 */ /* The only costs that are changed here are integer multiplication. */ COSTS_N_INSNS (6), /* fp_add */ COSTS_N_INSNS (7), /* fp_mult_sf */ COSTS_N_INSNS (8), /* fp_mult_df */ COSTS_N_INSNS (23), /* fp_div_sf */ COSTS_N_INSNS (36), /* fp_div_df */ COSTS_N_INSNS (3), /* int_mult_si */ COSTS_N_INSNS (8), /* int_mult_di */ COSTS_N_INSNS (69), /* int_div_si */ COSTS_N_INSNS (69), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* R1x000 */ COSTS_N_INSNS (2), /* fp_add */ COSTS_N_INSNS (2), /* fp_mult_sf */ COSTS_N_INSNS (2), /* fp_mult_df */ COSTS_N_INSNS (12), /* fp_div_sf */ COSTS_N_INSNS (19), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (9), /* int_mult_di */ COSTS_N_INSNS (34), /* int_div_si */ COSTS_N_INSNS (66), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* SB1 */ /* These costs are the same as the SB-1A below. */ COSTS_N_INSNS (4), /* fp_add */ COSTS_N_INSNS (4), /* fp_mult_sf */ COSTS_N_INSNS (4), /* fp_mult_df */ COSTS_N_INSNS (24), /* fp_div_sf */ COSTS_N_INSNS (32), /* fp_div_df */ COSTS_N_INSNS (3), /* int_mult_si */ COSTS_N_INSNS (4), /* int_mult_di */ COSTS_N_INSNS (36), /* int_div_si */ COSTS_N_INSNS (68), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* SB1-A */ /* These costs are the same as the SB-1 above. */ COSTS_N_INSNS (4), /* fp_add */ COSTS_N_INSNS (4), /* fp_mult_sf */ COSTS_N_INSNS (4), /* fp_mult_df */ COSTS_N_INSNS (24), /* fp_div_sf */ COSTS_N_INSNS (32), /* fp_div_df */ COSTS_N_INSNS (3), /* int_mult_si */ COSTS_N_INSNS (4), /* int_mult_di */ COSTS_N_INSNS (36), /* int_div_si */ COSTS_N_INSNS (68), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* SR71000 */ DEFAULT_COSTS }, { /* XLR */ SOFT_FP_COSTS, COSTS_N_INSNS (8), /* int_mult_si */ COSTS_N_INSNS (8), /* int_mult_di */ COSTS_N_INSNS (72), /* int_div_si */ COSTS_N_INSNS (72), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* XLP */ /* These costs are the same as 5KF above. */ COSTS_N_INSNS (4), /* fp_add */ COSTS_N_INSNS (4), /* fp_mult_sf */ COSTS_N_INSNS (5), /* fp_mult_df */ COSTS_N_INSNS (17), /* fp_div_sf */ COSTS_N_INSNS (32), /* fp_div_df */ COSTS_N_INSNS (4), /* int_mult_si */ COSTS_N_INSNS (11), /* int_mult_di */ COSTS_N_INSNS (36), /* int_div_si */ COSTS_N_INSNS (68), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* P5600 */ COSTS_N_INSNS (4), /* fp_add */ COSTS_N_INSNS (5), /* fp_mult_sf */ COSTS_N_INSNS (5), /* fp_mult_df */ COSTS_N_INSNS (17), /* fp_div_sf */ COSTS_N_INSNS (17), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (8), /* int_div_si */ COSTS_N_INSNS (8), /* int_div_di */ 2, /* branch_cost */ 4 /* memory_latency */ }, { /* M5100 */ COSTS_N_INSNS (4), /* fp_add */ COSTS_N_INSNS (4), /* fp_mult_sf */ COSTS_N_INSNS (5), /* fp_mult_df */ COSTS_N_INSNS (17), /* fp_div_sf */ COSTS_N_INSNS (32), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (34), /* int_div_si */ COSTS_N_INSNS (68), /* int_div_di */ 1, /* branch_cost */ 4 /* memory_latency */ }, { /* I6400 */ COSTS_N_INSNS (4), /* fp_add */ COSTS_N_INSNS (5), /* fp_mult_sf */ COSTS_N_INSNS (5), /* fp_mult_df */ COSTS_N_INSNS (32), /* fp_div_sf */ COSTS_N_INSNS (32), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (36), /* int_div_si */ COSTS_N_INSNS (36), /* int_div_di */ 2, /* branch_cost */ 4 /* memory_latency */ }, { /* P6600 */ COSTS_N_INSNS (4), /* fp_add */ COSTS_N_INSNS (5), /* fp_mult_sf */ COSTS_N_INSNS (5), /* fp_mult_df */ COSTS_N_INSNS (17), /* fp_div_sf */ COSTS_N_INSNS (17), /* fp_div_df */ COSTS_N_INSNS (5), /* int_mult_si */ COSTS_N_INSNS (5), /* int_mult_di */ COSTS_N_INSNS (8), /* int_div_si */ COSTS_N_INSNS (8), /* int_div_di */ 2, /* branch_cost */ 4 /* memory_latency */ } }; static rtx mips_find_pic_call_symbol (rtx_insn *, rtx, bool); static int mips_register_move_cost (machine_mode, reg_class_t, reg_class_t); static unsigned int mips_function_arg_boundary (machine_mode, const_tree); static rtx mips_gen_const_int_vector_shuffle (machine_mode, int); /* This hash table keeps track of implicit "mips16" and "nomips16" attributes for -mflip_mips16. It maps decl names onto a boolean mode setting. */ static GTY (()) hash_map *mflip_mips16_htab; /* True if -mflip-mips16 should next add an attribute for the default MIPS16 mode, false if it should next add an attribute for the opposite mode. */ static GTY(()) bool mips16_flipper; /* DECL is a function that needs a default "mips16" or "nomips16" attribute for -mflip-mips16. Return true if it should use "mips16" and false if it should use "nomips16". */ static bool mflip_mips16_use_mips16_p (tree decl) { const char *name; bool base_is_mips16 = (mips_base_compression_flags & MASK_MIPS16) != 0; /* Use the opposite of the command-line setting for anonymous decls. */ if (!DECL_NAME (decl)) return !base_is_mips16; if (!mflip_mips16_htab) mflip_mips16_htab = hash_map::create_ggc (37); name = IDENTIFIER_POINTER (DECL_NAME (decl)); bool existed; bool *slot = &mflip_mips16_htab->get_or_insert (name, &existed); if (!existed) { mips16_flipper = !mips16_flipper; *slot = mips16_flipper ? !base_is_mips16 : base_is_mips16; } return *slot; } /* Predicates to test for presence of "near"/"short_call" and "far"/"long_call" attributes on the given TYPE. */ static bool mips_near_type_p (const_tree type) { return (lookup_attribute ("short_call", TYPE_ATTRIBUTES (type)) != NULL || lookup_attribute ("near", TYPE_ATTRIBUTES (type)) != NULL); } static bool mips_far_type_p (const_tree type) { return (lookup_attribute ("long_call", TYPE_ATTRIBUTES (type)) != NULL || lookup_attribute ("far", TYPE_ATTRIBUTES (type)) != NULL); } /* Check if the interrupt attribute is set for a function. */ static bool mips_interrupt_type_p (tree type) { return lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type)) != NULL; } /* Return the mask for the "interrupt" attribute. */ static enum mips_int_mask mips_interrupt_mask (tree type) { tree attr = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type)); tree args, cst; const char *str; /* For missing attributes or no arguments then return 'eic' as a safe fallback. */ if (attr == NULL) return INT_MASK_EIC; args = TREE_VALUE (attr); if (args == NULL) return INT_MASK_EIC; cst = TREE_VALUE (args); if (strcmp (TREE_STRING_POINTER (cst), "eic") == 0) return INT_MASK_EIC; /* The validation code in mips_handle_interrupt_attr guarantees that the argument is now in the form: vector=(sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5). */ str = TREE_STRING_POINTER (cst); gcc_assert (strlen (str) == strlen ("vector=sw0")); if (str[7] == 's') return (enum mips_int_mask) (INT_MASK_SW0 + (str[9] - '0')); return (enum mips_int_mask) (INT_MASK_HW0 + (str[9] - '0')); } /* Return the mips_shadow_set if the "use_shadow_register_set" attribute is set for a function. */ static enum mips_shadow_set mips_use_shadow_register_set (tree type) { tree attr = lookup_attribute ("use_shadow_register_set", TYPE_ATTRIBUTES (type)); tree args; /* The validation code in mips_handle_use_shadow_register_set_attr guarantees that if an argument is present then it means: Assume the shadow register set has a valid stack pointer in it. */ if (attr == NULL) return SHADOW_SET_NO; args = TREE_VALUE (attr); if (args == NULL) return SHADOW_SET_YES; return SHADOW_SET_INTSTACK; } /* Check if the attribute to keep interrupts masked is set for a function. */ static bool mips_keep_interrupts_masked_p (tree type) { return lookup_attribute ("keep_interrupts_masked", TYPE_ATTRIBUTES (type)) != NULL; } /* Check if the attribute to use debug exception return is set for a function. */ static bool mips_use_debug_exception_return_p (tree type) { return lookup_attribute ("use_debug_exception_return", TYPE_ATTRIBUTES (type)) != NULL; } /* Return the set of compression modes that are explicitly required by the attributes in ATTRIBUTES. */ static unsigned int mips_get_compress_on_flags (tree attributes) { unsigned int flags = 0; if (lookup_attribute ("mips16", attributes) != NULL) flags |= MASK_MIPS16; if (lookup_attribute ("micromips", attributes) != NULL) flags |= MASK_MICROMIPS; return flags; } /* Return the set of compression modes that are explicitly forbidden by the attributes in ATTRIBUTES. */ static unsigned int mips_get_compress_off_flags (tree attributes) { unsigned int flags = 0; if (lookup_attribute ("nocompression", attributes) != NULL) flags |= MASK_MIPS16 | MASK_MICROMIPS; if (lookup_attribute ("nomips16", attributes) != NULL) flags |= MASK_MIPS16; if (lookup_attribute ("nomicromips", attributes) != NULL) flags |= MASK_MICROMIPS; return flags; } /* Return the compression mode that should be used for function DECL. Return the ambient setting if DECL is null. */ static unsigned int mips_get_compress_mode (tree decl) { unsigned int flags, force_on; flags = mips_base_compression_flags; if (decl) { /* Nested functions must use the same frame pointer as their parent and must therefore use the same ISA mode. */ tree parent = decl_function_context (decl); if (parent) decl = parent; force_on = mips_get_compress_on_flags (DECL_ATTRIBUTES (decl)); if (force_on) return force_on; flags &= ~mips_get_compress_off_flags (DECL_ATTRIBUTES (decl)); } return flags; } /* Return the attribute name associated with MASK_MIPS16 and MASK_MICROMIPS flags FLAGS. */ static const char * mips_get_compress_on_name (unsigned int flags) { if (flags == MASK_MIPS16) return "mips16"; return "micromips"; } /* Return the attribute name that forbids MASK_MIPS16 and MASK_MICROMIPS flags FLAGS. */ static const char * mips_get_compress_off_name (unsigned int flags) { if (flags == MASK_MIPS16) return "nomips16"; if (flags == MASK_MICROMIPS) return "nomicromips"; return "nocompression"; } /* Implement TARGET_COMP_TYPE_ATTRIBUTES. */ static int mips_comp_type_attributes (const_tree type1, const_tree type2) { /* Disallow mixed near/far attributes. */ if (mips_far_type_p (type1) && mips_near_type_p (type2)) return 0; if (mips_near_type_p (type1) && mips_far_type_p (type2)) return 0; return 1; } /* Implement TARGET_INSERT_ATTRIBUTES. */ static void mips_insert_attributes (tree decl, tree *attributes) { const char *name; unsigned int compression_flags, nocompression_flags; /* Check for "mips16" and "nomips16" attributes. */ compression_flags = mips_get_compress_on_flags (*attributes); nocompression_flags = mips_get_compress_off_flags (*attributes); if (TREE_CODE (decl) != FUNCTION_DECL) { if (nocompression_flags) error ("%qs attribute only applies to functions", mips_get_compress_off_name (nocompression_flags)); if (compression_flags) error ("%qs attribute only applies to functions", mips_get_compress_on_name (nocompression_flags)); } else { compression_flags |= mips_get_compress_on_flags (DECL_ATTRIBUTES (decl)); nocompression_flags |= mips_get_compress_off_flags (DECL_ATTRIBUTES (decl)); if (compression_flags && nocompression_flags) error ("%qE cannot have both %qs and %qs attributes", DECL_NAME (decl), mips_get_compress_on_name (compression_flags), mips_get_compress_off_name (nocompression_flags)); if (compression_flags & MASK_MIPS16 && compression_flags & MASK_MICROMIPS) error ("%qE cannot have both %qs and %qs attributes", DECL_NAME (decl), "mips16", "micromips"); if (TARGET_FLIP_MIPS16 && !DECL_ARTIFICIAL (decl) && compression_flags == 0 && nocompression_flags == 0) { /* Implement -mflip-mips16. If DECL has neither a "nomips16" nor a "mips16" attribute, arbitrarily pick one. We must pick the same setting for duplicate declarations of a function. */ name = mflip_mips16_use_mips16_p (decl) ? "mips16" : "nomips16"; *attributes = tree_cons (get_identifier (name), NULL, *attributes); name = "nomicromips"; *attributes = tree_cons (get_identifier (name), NULL, *attributes); } } } /* Implement TARGET_MERGE_DECL_ATTRIBUTES. */ static tree mips_merge_decl_attributes (tree olddecl, tree newdecl) { unsigned int diff; diff = (mips_get_compress_on_flags (DECL_ATTRIBUTES (olddecl)) ^ mips_get_compress_on_flags (DECL_ATTRIBUTES (newdecl))); if (diff) error ("%qE redeclared with conflicting %qs attributes", DECL_NAME (newdecl), mips_get_compress_on_name (diff)); diff = (mips_get_compress_off_flags (DECL_ATTRIBUTES (olddecl)) ^ mips_get_compress_off_flags (DECL_ATTRIBUTES (newdecl))); if (diff) error ("%qE redeclared with conflicting %qs attributes", DECL_NAME (newdecl), mips_get_compress_off_name (diff)); return merge_attributes (DECL_ATTRIBUTES (olddecl), DECL_ATTRIBUTES (newdecl)); } /* Implement TARGET_CAN_INLINE_P. */ static bool mips_can_inline_p (tree caller, tree callee) { if (mips_get_compress_mode (callee) != mips_get_compress_mode (caller)) return false; return default_target_can_inline_p (caller, callee); } /* Handle an "interrupt" attribute with an optional argument. */ static tree mips_handle_interrupt_attr (tree *node ATTRIBUTE_UNUSED, tree name, tree args, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { /* Check for an argument. */ if (is_attribute_p ("interrupt", name) && args != NULL) { tree cst; cst = TREE_VALUE (args); if (TREE_CODE (cst) != STRING_CST) { warning (OPT_Wattributes, "%qE attribute requires a string argument", name); *no_add_attrs = true; } else if (strcmp (TREE_STRING_POINTER (cst), "eic") != 0 && !startswith (TREE_STRING_POINTER (cst), "vector=")) { warning (OPT_Wattributes, "argument to %qE attribute is neither eic, nor " "%%>", name); *no_add_attrs = true; } else if (startswith (TREE_STRING_POINTER (cst), "vector=")) { const char *arg = TREE_STRING_POINTER (cst) + 7; /* Acceptable names are: sw0,sw1,hw0,hw1,hw2,hw3,hw4,hw5. */ if (strlen (arg) != 3 || (arg[0] != 's' && arg[0] != 'h') || arg[1] != 'w' || (arg[0] == 's' && arg[2] != '0' && arg[2] != '1') || (arg[0] == 'h' && (arg[2] < '0' || arg[2] > '5'))) { warning (OPT_Wattributes, "interrupt vector to %qE attribute is not " "%", name); *no_add_attrs = true; } } return NULL_TREE; } return NULL_TREE; } /* Handle a "use_shadow_register_set" attribute with an optional argument. */ static tree mips_handle_use_shadow_register_set_attr (tree *node ATTRIBUTE_UNUSED, tree name, tree args, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { /* Check for an argument. */ if (is_attribute_p ("use_shadow_register_set", name) && args != NULL) { tree cst; cst = TREE_VALUE (args); if (TREE_CODE (cst) != STRING_CST) { warning (OPT_Wattributes, "%qE attribute requires a string argument", name); *no_add_attrs = true; } else if (strcmp (TREE_STRING_POINTER (cst), "intstack") != 0) { warning (OPT_Wattributes, "argument to %qE attribute is not intstack", name); *no_add_attrs = true; } return NULL_TREE; } return NULL_TREE; } /* If X is a PLUS of a CONST_INT, return the two terms in *BASE_PTR and *OFFSET_PTR. Return X in *BASE_PTR and 0 in *OFFSET_PTR otherwise. */ static void mips_split_plus (rtx x, rtx *base_ptr, HOST_WIDE_INT *offset_ptr) { if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))) { *base_ptr = XEXP (x, 0); *offset_ptr = INTVAL (XEXP (x, 1)); } else { *base_ptr = x; *offset_ptr = 0; } } static unsigned int mips_build_integer (struct mips_integer_op *, unsigned HOST_WIDE_INT); /* A subroutine of mips_build_integer, with the same interface. Assume that the final action in the sequence should be a left shift. */ static unsigned int mips_build_shift (struct mips_integer_op *codes, HOST_WIDE_INT value) { unsigned int i, shift; /* Shift VALUE right until its lowest bit is set. Shift arithmetically since signed numbers are easier to load than unsigned ones. */ shift = 0; while ((value & 1) == 0) value /= 2, shift++; i = mips_build_integer (codes, value); codes[i].code = ASHIFT; codes[i].value = shift; return i + 1; } /* As for mips_build_shift, but assume that the final action will be an IOR or PLUS operation. */ static unsigned int mips_build_lower (struct mips_integer_op *codes, unsigned HOST_WIDE_INT value) { unsigned HOST_WIDE_INT high; unsigned int i; high = value & ~(unsigned HOST_WIDE_INT) 0xffff; if (!LUI_OPERAND (high) && (value & 0x18000) == 0x18000) { /* The constant is too complex to load with a simple LUI/ORI pair, so we want to give the recursive call as many trailing zeros as possible. In this case, we know bit 16 is set and that the low 16 bits form a negative number. If we subtract that number from VALUE, we will clear at least the lowest 17 bits, maybe more. */ i = mips_build_integer (codes, CONST_HIGH_PART (value)); codes[i].code = PLUS; codes[i].value = CONST_LOW_PART (value); } else { /* Either this is a simple LUI/ORI pair, or clearing the lowest 16 bits gives a value with at least 17 trailing zeros. */ i = mips_build_integer (codes, high); codes[i].code = IOR; codes[i].value = value & 0xffff; } return i + 1; } /* Fill CODES with a sequence of rtl operations to load VALUE. Return the number of operations needed. */ static unsigned int mips_build_integer (struct mips_integer_op *codes, unsigned HOST_WIDE_INT value) { if (SMALL_OPERAND (value) || SMALL_OPERAND_UNSIGNED (value) || LUI_OPERAND (value)) { /* The value can be loaded with a single instruction. */ codes[0].code = UNKNOWN; codes[0].value = value; return 1; } else if ((value & 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value))) { /* Either the constant is a simple LUI/ORI combination or its lowest bit is set. We don't want to shift in this case. */ return mips_build_lower (codes, value); } else if ((value & 0xffff) == 0) { /* The constant will need at least three actions. The lowest 16 bits are clear, so the final action will be a shift. */ return mips_build_shift (codes, value); } else { /* The final action could be a shift, add or inclusive OR. Rather than use a complex condition to select the best approach, try both mips_build_shift and mips_build_lower and pick the one that gives the shortest sequence. Note that this case is only used once per constant. */ struct mips_integer_op alt_codes[MIPS_MAX_INTEGER_OPS]; unsigned int cost, alt_cost; cost = mips_build_shift (codes, value); alt_cost = mips_build_lower (alt_codes, value); if (alt_cost < cost) { memcpy (codes, alt_codes, alt_cost * sizeof (codes[0])); cost = alt_cost; } return cost; } } /* Implement TARGET_LEGITIMATE_CONSTANT_P. */ static bool mips_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x) { return mips_const_insns (x) > 0; } /* Return a SYMBOL_REF for a MIPS16 function called NAME. */ static rtx mips16_stub_function (const char *name) { rtx x; x = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); SYMBOL_REF_FLAGS (x) |= (SYMBOL_FLAG_EXTERNAL | SYMBOL_FLAG_FUNCTION); return x; } /* Return a legitimate call address for STUB, given that STUB is a MIPS16 support function. */ static rtx mips16_stub_call_address (mips_one_only_stub *stub) { rtx fn = mips16_stub_function (stub->get_name ()); SYMBOL_REF_FLAGS (fn) |= SYMBOL_FLAG_LOCAL; if (!call_insn_operand (fn, VOIDmode)) fn = force_reg (Pmode, fn); return fn; } /* A stub for moving the thread pointer into TLS_GET_TP_REGNUM. */ class mips16_rdhwr_one_only_stub : public mips_one_only_stub { virtual const char *get_name (); virtual void output_body (); }; const char * mips16_rdhwr_one_only_stub::get_name () { return "__mips16_rdhwr"; } void mips16_rdhwr_one_only_stub::output_body () { fprintf (asm_out_file, "\t.set\tpush\n" "\t.set\tmips32r2\n" "\t.set\tnoreorder\n" "\trdhwr\t$3,$29\n" "\t.set\tpop\n" "\tj\t$31\n"); } /* A stub for moving the FCSR into GET_FCSR_REGNUM. */ class mips16_get_fcsr_one_only_stub : public mips_one_only_stub { virtual const char *get_name (); virtual void output_body (); }; const char * mips16_get_fcsr_one_only_stub::get_name () { return "__mips16_get_fcsr"; } void mips16_get_fcsr_one_only_stub::output_body () { fprintf (asm_out_file, "\tcfc1\t%s,$31\n" "\tj\t$31\n", reg_names[GET_FCSR_REGNUM]); } /* A stub for moving SET_FCSR_REGNUM into the FCSR. */ class mips16_set_fcsr_one_only_stub : public mips_one_only_stub { virtual const char *get_name (); virtual void output_body (); }; const char * mips16_set_fcsr_one_only_stub::get_name () { return "__mips16_set_fcsr"; } void mips16_set_fcsr_one_only_stub::output_body () { fprintf (asm_out_file, "\tctc1\t%s,$31\n" "\tj\t$31\n", reg_names[SET_FCSR_REGNUM]); } /* Return true if symbols of type TYPE require a GOT access. */ static bool mips_got_symbol_type_p (enum mips_symbol_type type) { switch (type) { case SYMBOL_GOT_PAGE_OFST: case SYMBOL_GOT_DISP: return true; default: return false; } } /* Return true if X is a thread-local symbol. */ static bool mips_tls_symbol_p (rtx x) { return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0; } /* Return true if SYMBOL_REF X is associated with a global symbol (in the STB_GLOBAL sense). */ static bool mips_global_symbol_p (const_rtx x) { const_tree decl = SYMBOL_REF_DECL (x); if (!decl) return !SYMBOL_REF_LOCAL_P (x) || SYMBOL_REF_EXTERNAL_P (x); /* Weakref symbols are not TREE_PUBLIC, but their targets are global or weak symbols. Relocations in the object file will be against the target symbol, so it's that symbol's binding that matters here. */ return DECL_P (decl) && (TREE_PUBLIC (decl) || DECL_WEAK (decl)); } /* Return true if function X is a libgcc MIPS16 stub function. */ static bool mips16_stub_function_p (const_rtx x) { return (GET_CODE (x) == SYMBOL_REF && startswith (XSTR (x, 0), "__mips16_")); } /* Return true if function X is a locally-defined and locally-binding MIPS16 function. */ static bool mips16_local_function_p (const_rtx x) { return (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (x) && !SYMBOL_REF_EXTERNAL_P (x) && (mips_get_compress_mode (SYMBOL_REF_DECL (x)) & MASK_MIPS16)); } /* Return true if SYMBOL_REF X binds locally. */ static bool mips_symbol_binds_local_p (const_rtx x) { return (SYMBOL_REF_DECL (x) ? targetm.binds_local_p (SYMBOL_REF_DECL (x)) : SYMBOL_REF_LOCAL_P (x)); } /* Return true if OP is a constant vector with the number of units in MODE, and each unit has the same bit set. */ bool mips_const_vector_bitimm_set_p (rtx op, machine_mode mode) { if (GET_CODE (op) == CONST_VECTOR && op != CONST0_RTX (mode)) { unsigned HOST_WIDE_INT val = UINTVAL (CONST_VECTOR_ELT (op, 0)); int vlog2 = exact_log2 (val & GET_MODE_MASK (GET_MODE_INNER (mode))); if (vlog2 != -1) { gcc_assert (GET_MODE_CLASS (mode) == MODE_VECTOR_INT); gcc_assert (vlog2 >= 0 && vlog2 <= GET_MODE_UNIT_BITSIZE (mode) - 1); return mips_const_vector_same_val_p (op, mode); } } return false; } /* Return true if OP is a constant vector with the number of units in MODE, and each unit has the same bit clear. */ bool mips_const_vector_bitimm_clr_p (rtx op, machine_mode mode) { if (GET_CODE (op) == CONST_VECTOR && op != CONSTM1_RTX (mode)) { unsigned HOST_WIDE_INT val = ~UINTVAL (CONST_VECTOR_ELT (op, 0)); int vlog2 = exact_log2 (val & GET_MODE_MASK (GET_MODE_INNER (mode))); if (vlog2 != -1) { gcc_assert (GET_MODE_CLASS (mode) == MODE_VECTOR_INT); gcc_assert (vlog2 >= 0 && vlog2 <= GET_MODE_UNIT_BITSIZE (mode) - 1); return mips_const_vector_same_val_p (op, mode); } } return false; } /* Return true if OP is a constant vector with the number of units in MODE, and each unit has the same value. */ bool mips_const_vector_same_val_p (rtx op, machine_mode mode) { int i, nunits = GET_MODE_NUNITS (mode); rtx first; if (GET_CODE (op) != CONST_VECTOR || GET_MODE (op) != mode) return false; first = CONST_VECTOR_ELT (op, 0); for (i = 1; i < nunits; i++) if (!rtx_equal_p (first, CONST_VECTOR_ELT (op, i))) return false; return true; } /* Return true if OP is a constant vector with the number of units in MODE, and each unit has the same value as well as replicated bytes in the value. */ bool mips_const_vector_same_bytes_p (rtx op, machine_mode mode) { int i, bytes; HOST_WIDE_INT val, first_byte; rtx first; if (!mips_const_vector_same_val_p (op, mode)) return false; first = CONST_VECTOR_ELT (op, 0); bytes = GET_MODE_UNIT_SIZE (mode); val = INTVAL (first); first_byte = val & 0xff; for (i = 1; i < bytes; i++) { val >>= 8; if ((val & 0xff) != first_byte) return false; } return true; } /* Return true if OP is a constant vector with the number of units in MODE, and each unit has the same integer value in the range [LOW, HIGH]. */ bool mips_const_vector_same_int_p (rtx op, machine_mode mode, HOST_WIDE_INT low, HOST_WIDE_INT high) { HOST_WIDE_INT value; rtx elem0; if (!mips_const_vector_same_val_p (op, mode)) return false; elem0 = CONST_VECTOR_ELT (op, 0); if (!CONST_INT_P (elem0)) return false; value = INTVAL (elem0); return (value >= low && value <= high); } /* Return true if OP is a constant vector with repeated 4-element sets in mode MODE. */ bool mips_const_vector_shuffle_set_p (rtx op, machine_mode mode) { int nunits = GET_MODE_NUNITS (mode); int nsets = nunits / 4; int set = 0; int i, j; /* Check if we have the same 4-element sets. */ for (j = 0; j < nsets; j++, set = 4 * j) for (i = 0; i < 4; i++) if ((INTVAL (XVECEXP (op, 0, i)) != (INTVAL (XVECEXP (op, 0, set + i)) - set)) || !IN_RANGE (INTVAL (XVECEXP (op, 0, set + i)), 0, set + 3)) return false; return true; } /* Return true if rtx constants of mode MODE should be put into a small data section. */ static bool mips_rtx_constant_in_small_data_p (machine_mode mode) { return (!TARGET_EMBEDDED_DATA && TARGET_LOCAL_SDATA && GET_MODE_SIZE (mode) <= mips_small_data_threshold); } /* Return true if X should not be moved directly into register $25. We need this because many versions of GAS will treat "la $25,foo" as part of a call sequence and so allow a global "foo" to be lazily bound. */ bool mips_dangerous_for_la25_p (rtx x) { return (!TARGET_EXPLICIT_RELOCS && TARGET_USE_GOT && GET_CODE (x) == SYMBOL_REF && mips_global_symbol_p (x)); } /* Return true if calls to X might need $25 to be valid on entry. */ bool mips_use_pic_fn_addr_reg_p (const_rtx x) { if (!TARGET_USE_PIC_FN_ADDR_REG) return false; /* MIPS16 stub functions are guaranteed not to use $25. */ if (mips16_stub_function_p (x)) return false; if (GET_CODE (x) == SYMBOL_REF) { /* If PLTs and copy relocations are available, the static linker will make sure that $25 is valid on entry to the target function. */ if (TARGET_ABICALLS_PIC0) return false; /* Locally-defined functions use absolute accesses to set up the global pointer. */ if (TARGET_ABSOLUTE_ABICALLS && mips_symbol_binds_local_p (x) && !SYMBOL_REF_EXTERNAL_P (x)) return false; } return true; } /* Return the method that should be used to access SYMBOL_REF or LABEL_REF X in context CONTEXT. */ static enum mips_symbol_type mips_classify_symbol (const_rtx x, enum mips_symbol_context context) { if (TARGET_RTP_PIC) return SYMBOL_GOT_DISP; if (GET_CODE (x) == LABEL_REF) { /* Only return SYMBOL_PC_RELATIVE if we are generating MIPS16 code and if we know that the label is in the current function's text section. LABEL_REFs are used for jump tables as well as text labels, so we must check whether jump tables live in the text section. */ if (TARGET_MIPS16_SHORT_JUMP_TABLES && !LABEL_REF_NONLOCAL_P (x)) return SYMBOL_PC_RELATIVE; if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS) return SYMBOL_GOT_PAGE_OFST; return SYMBOL_ABSOLUTE; } gcc_assert (GET_CODE (x) == SYMBOL_REF); if (SYMBOL_REF_TLS_MODEL (x)) return SYMBOL_TLS; if (CONSTANT_POOL_ADDRESS_P (x)) { if (TARGET_MIPS16_TEXT_LOADS) return SYMBOL_PC_RELATIVE; if (TARGET_MIPS16_PCREL_LOADS && context == SYMBOL_CONTEXT_MEM) return SYMBOL_PC_RELATIVE; if (mips_rtx_constant_in_small_data_p (get_pool_mode (x))) return SYMBOL_GP_RELATIVE; } /* Do not use small-data accesses for weak symbols; they may end up being zero. */ if (TARGET_GPOPT && SYMBOL_REF_SMALL_P (x) && !SYMBOL_REF_WEAK (x)) return SYMBOL_GP_RELATIVE; /* Don't use GOT accesses for locally-binding symbols when -mno-shared is in effect. */ if (TARGET_ABICALLS_PIC2 && !(TARGET_ABSOLUTE_ABICALLS && mips_symbol_binds_local_p (x))) { /* There are three cases to consider: - o32 PIC (either with or without explicit relocs) - n32/n64 PIC without explicit relocs - n32/n64 PIC with explicit relocs In the first case, both local and global accesses will use an R_MIPS_GOT16 relocation. We must correctly predict which of the two semantics (local or global) the assembler and linker will apply. The choice depends on the symbol's binding rather than its visibility. In the second case, the assembler will not use R_MIPS_GOT16 relocations, but it chooses between local and global accesses in the same way as for o32 PIC. In the third case we have more freedom since both forms of access will work for any kind of symbol. However, there seems little point in doing things differently. */ if (mips_global_symbol_p (x)) return SYMBOL_GOT_DISP; return SYMBOL_GOT_PAGE_OFST; } return SYMBOL_ABSOLUTE; } /* Classify the base of symbolic expression X, given that X appears in context CONTEXT. */ static enum mips_symbol_type mips_classify_symbolic_expression (rtx x, enum mips_symbol_context context) { rtx offset; split_const (x, &x, &offset); if (UNSPEC_ADDRESS_P (x)) return UNSPEC_ADDRESS_TYPE (x); return mips_classify_symbol (x, context); } /* Return true if OFFSET is within the range [0, ALIGN), where ALIGN is the alignment in bytes of SYMBOL_REF X. */ static bool mips_offset_within_alignment_p (rtx x, HOST_WIDE_INT offset) { HOST_WIDE_INT align; align = SYMBOL_REF_DECL (x) ? DECL_ALIGN_UNIT (SYMBOL_REF_DECL (x)) : 1; return IN_RANGE (offset, 0, align - 1); } /* Return true if X is a symbolic constant that can be used in context CONTEXT. If it is, store the type of the symbol in *SYMBOL_TYPE. */ bool mips_symbolic_constant_p (rtx x, enum mips_symbol_context context, enum mips_symbol_type *symbol_type) { rtx offset; split_const (x, &x, &offset); if (UNSPEC_ADDRESS_P (x)) { *symbol_type = UNSPEC_ADDRESS_TYPE (x); x = UNSPEC_ADDRESS (x); } else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) { *symbol_type = mips_classify_symbol (x, context); if (*symbol_type == SYMBOL_TLS) return false; } else return false; if (offset == const0_rtx) return true; /* Check whether a nonzero offset is valid for the underlying relocations. */ switch (*symbol_type) { case SYMBOL_ABSOLUTE: case SYMBOL_64_HIGH: case SYMBOL_64_MID: case SYMBOL_64_LOW: /* If the target has 64-bit pointers and the object file only supports 32-bit symbols, the values of those symbols will be sign-extended. In this case we can't allow an arbitrary offset in case the 32-bit value X + OFFSET has a different sign from X. */ if (Pmode == DImode && !ABI_HAS_64BIT_SYMBOLS) return offset_within_block_p (x, INTVAL (offset)); /* In other cases the relocations can handle any offset. */ return true; case SYMBOL_PC_RELATIVE: /* Allow constant pool references to be converted to LABEL+CONSTANT. In this case, we no longer have access to the underlying constant, but the original symbol-based access was known to be valid. */ if (GET_CODE (x) == LABEL_REF) return true; /* Fall through. */ case SYMBOL_GP_RELATIVE: /* Make sure that the offset refers to something within the same object block. This should guarantee that the final PC- or GP-relative offset is within the 16-bit limit. */ return offset_within_block_p (x, INTVAL (offset)); case SYMBOL_GOT_PAGE_OFST: case SYMBOL_GOTOFF_PAGE: /* If the symbol is global, the GOT entry will contain the symbol's address, and we will apply a 16-bit offset after loading it. If the symbol is local, the linker should provide enough local GOT entries for a 16-bit offset, but larger offsets may lead to GOT overflow. */ return SMALL_INT (offset); case SYMBOL_TPREL: case SYMBOL_DTPREL: /* There is no carry between the HI and LO REL relocations, so the offset is only valid if we know it won't lead to such a carry. */ return mips_offset_within_alignment_p (x, INTVAL (offset)); case SYMBOL_GOT_DISP: case SYMBOL_GOTOFF_DISP: case SYMBOL_GOTOFF_CALL: case SYMBOL_GOTOFF_LOADGP: case SYMBOL_TLSGD: case SYMBOL_TLSLDM: case SYMBOL_GOTTPREL: case SYMBOL_TLS: case SYMBOL_HALF: return false; } gcc_unreachable (); } /* Like mips_symbol_insns, but treat extended MIPS16 instructions as a single instruction. We rely on the fact that, in the worst case, all instructions involved in a MIPS16 address calculation are usually extended ones. */ static int mips_symbol_insns_1 (enum mips_symbol_type type, machine_mode mode) { if (mips_use_pcrel_pool_p[(int) type]) { if (mode == MAX_MACHINE_MODE) /* LEAs will be converted into constant-pool references by mips_reorg. */ type = SYMBOL_PC_RELATIVE; else /* The constant must be loaded and then dereferenced. */ return 0; } switch (type) { case SYMBOL_ABSOLUTE: /* When using 64-bit symbols, we need 5 preparatory instructions, such as: lui $at,%highest(symbol) daddiu $at,$at,%higher(symbol) dsll $at,$at,16 daddiu $at,$at,%hi(symbol) dsll $at,$at,16 The final address is then $at + %lo(symbol). With 32-bit symbols we just need a preparatory LUI for normal mode and a preparatory LI and SLL for MIPS16. */ return ABI_HAS_64BIT_SYMBOLS ? 6 : TARGET_MIPS16 ? 3 : 2; case SYMBOL_GP_RELATIVE: /* Treat GP-relative accesses as taking a single instruction on MIPS16 too; the copy of $gp can often be shared. */ return 1; case SYMBOL_PC_RELATIVE: /* PC-relative constants can be only be used with ADDIUPC, DADDIUPC, LWPC and LDPC. */ if (mode == MAX_MACHINE_MODE || GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8) return 1; /* The constant must be loaded using ADDIUPC or DADDIUPC first. */ return 0; case SYMBOL_GOT_DISP: /* The constant will have to be loaded from the GOT before it is used in an address. */ if (mode != MAX_MACHINE_MODE) return 0; /* Fall through. */ case SYMBOL_GOT_PAGE_OFST: /* Unless -funit-at-a-time is in effect, we can't be sure whether the local/global classification is accurate. The worst cases are: (1) For local symbols when generating o32 or o64 code. The assembler will use: lw $at,%got(symbol) nop ...and the final address will be $at + %lo(symbol). (2) For global symbols when -mxgot. The assembler will use: lui $at,%got_hi(symbol) (d)addu $at,$at,$gp ...and the final address will be $at + %got_lo(symbol). */ return 3; case SYMBOL_GOTOFF_PAGE: case SYMBOL_GOTOFF_DISP: case SYMBOL_GOTOFF_CALL: case SYMBOL_GOTOFF_LOADGP: case SYMBOL_64_HIGH: case SYMBOL_64_MID: case SYMBOL_64_LOW: case SYMBOL_TLSGD: case SYMBOL_TLSLDM: case SYMBOL_DTPREL: case SYMBOL_GOTTPREL: case SYMBOL_TPREL: case SYMBOL_HALF: /* A 16-bit constant formed by a single relocation, or a 32-bit constant formed from a high 16-bit relocation and a low 16-bit relocation. Use mips_split_p to determine which. 32-bit constants need an "lui; addiu" sequence for normal mode and an "li; sll; addiu" sequence for MIPS16 mode. */ return !mips_split_p[type] ? 1 : TARGET_MIPS16 ? 3 : 2; case SYMBOL_TLS: /* We don't treat a bare TLS symbol as a constant. */ return 0; } gcc_unreachable (); } /* If MODE is MAX_MACHINE_MODE, return the number of instructions needed to load symbols of type TYPE into a register. Return 0 if the given type of symbol cannot be used as an immediate operand. Otherwise, return the number of instructions needed to load or store values of mode MODE to or from addresses of type TYPE. Return 0 if the given type of symbol is not valid in addresses. In both cases, instruction counts are based off BASE_INSN_LENGTH. */ static int mips_symbol_insns (enum mips_symbol_type type, machine_mode mode) { /* MSA LD.* and ST.* cannot support loading symbols via an immediate operand. */ if (mode != MAX_MACHINE_MODE && MSA_SUPPORTED_MODE_P (mode)) return 0; return mips_symbol_insns_1 (type, mode) * (TARGET_MIPS16 ? 2 : 1); } /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */ static bool mips_cannot_force_const_mem (machine_mode mode, rtx x) { enum mips_symbol_type type; rtx base, offset; /* There is no assembler syntax for expressing an address-sized high part. */ if (GET_CODE (x) == HIGH) return true; /* As an optimization, reject constants that mips_legitimize_move can expand inline. Suppose we have a multi-instruction sequence that loads constant C into register R. If R does not get allocated a hard register, and R is used in an operand that allows both registers and memory references, reload will consider forcing C into memory and using one of the instruction's memory alternatives. Returning false here will force it to use an input reload instead. */ if ((CONST_INT_P (x) || GET_CODE (x) == CONST_VECTOR) && mips_legitimate_constant_p (mode, x)) return true; split_const (x, &base, &offset); if (mips_symbolic_constant_p (base, SYMBOL_CONTEXT_LEA, &type)) { /* See whether we explicitly want these symbols in the pool. */ if (mips_use_pcrel_pool_p[(int) type]) return false; /* The same optimization as for CONST_INT. */ if (SMALL_INT (offset) && mips_symbol_insns (type, MAX_MACHINE_MODE) > 0) return true; /* If MIPS16 constant pools live in the text section, they should not refer to anything that might need run-time relocation. */ if (TARGET_MIPS16_PCREL_LOADS && mips_got_symbol_type_p (type)) return true; } /* TLS symbols must be computed by mips_legitimize_move. */ if (tls_referenced_p (x)) return true; return false; } /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. We can't use blocks for constants when we're using a per-function constant pool. */ static bool mips_use_blocks_for_constant_p (machine_mode mode ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED) { return !TARGET_MIPS16_PCREL_LOADS; } /* Return true if register REGNO is a valid base register for mode MODE. STRICT_P is true if REG_OK_STRICT is in effect. */ int mips_regno_mode_ok_for_base_p (int regno, machine_mode mode, bool strict_p) { if (!HARD_REGISTER_NUM_P (regno)) { if (!strict_p) return true; regno = reg_renumber[regno]; } /* These fake registers will be eliminated to either the stack or hard frame pointer, both of which are usually valid base registers. Reload deals with the cases where the eliminated form isn't valid. */ if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM) return true; /* In MIPS16 mode, the stack pointer can only address word and doubleword values, nothing smaller. */ if (TARGET_MIPS16 && regno == STACK_POINTER_REGNUM) return GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8; return TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno); } /* Return true if X is a valid base register for mode MODE. STRICT_P is true if REG_OK_STRICT is in effect. */ static bool mips_valid_base_register_p (rtx x, machine_mode mode, bool strict_p) { if (!strict_p && GET_CODE (x) == SUBREG) x = SUBREG_REG (x); return (REG_P (x) && mips_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p)); } /* Return true if, for every base register BASE_REG, (plus BASE_REG X) can address a value of mode MODE. */ static bool mips_valid_offset_p (rtx x, machine_mode mode) { /* Check that X is a signed 16-bit number. */ if (!const_arith_operand (x, Pmode)) return false; /* We may need to split multiword moves, so make sure that every word is accessible. */ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD && !SMALL_OPERAND (INTVAL (x) + GET_MODE_SIZE (mode) - UNITS_PER_WORD)) return false; /* MSA LD.* and ST.* supports 10-bit signed offsets. */ if (MSA_SUPPORTED_MODE_P (mode) && !mips_signed_immediate_p (INTVAL (x), 10, mips_ldst_scaled_shift (mode))) return false; return true; } /* Return true if a LO_SUM can address a value of mode MODE when the LO_SUM symbol has type SYMBOL_TYPE. */ static bool mips_valid_lo_sum_p (enum mips_symbol_type symbol_type, machine_mode mode) { /* Check that symbols of type SYMBOL_TYPE can be used to access values of mode MODE. */ if (mips_symbol_insns (symbol_type, mode) == 0) return false; /* Check that there is a known low-part relocation. */ if (mips_lo_relocs[symbol_type] == NULL) return false; /* We may need to split multiword moves, so make sure that each word can be accessed without inducing a carry. This is mainly needed for o64, which has historically only guaranteed 64-bit alignment for 128-bit types. */ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD && GET_MODE_BITSIZE (mode) > GET_MODE_ALIGNMENT (mode)) return false; /* MSA LD.* and ST.* cannot support loading symbols via %lo($base). */ if (MSA_SUPPORTED_MODE_P (mode)) return false; return true; } /* Return true if X is a valid address for machine mode MODE. If it is, fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in effect. */ static bool mips_classify_address (struct mips_address_info *info, rtx x, machine_mode mode, bool strict_p) { switch (GET_CODE (x)) { case REG: case SUBREG: info->type = ADDRESS_REG; info->reg = x; info->offset = const0_rtx; return mips_valid_base_register_p (info->reg, mode, strict_p); case PLUS: info->type = ADDRESS_REG; info->reg = XEXP (x, 0); info->offset = XEXP (x, 1); return (mips_valid_base_register_p (info->reg, mode, strict_p) && mips_valid_offset_p (info->offset, mode)); case LO_SUM: info->type = ADDRESS_LO_SUM; info->reg = XEXP (x, 0); info->offset = XEXP (x, 1); /* We have to trust the creator of the LO_SUM to do something vaguely sane. Target-independent code that creates a LO_SUM should also create and verify the matching HIGH. Target-independent code that adds an offset to a LO_SUM must prove that the offset will not induce a carry. Failure to do either of these things would be a bug, and we are not required to check for it here. The MIPS backend itself should only create LO_SUMs for valid symbolic constants, with the high part being either a HIGH or a copy of _gp. */ info->symbol_type = mips_classify_symbolic_expression (info->offset, SYMBOL_CONTEXT_MEM); return (mips_valid_base_register_p (info->reg, mode, strict_p) && mips_valid_lo_sum_p (info->symbol_type, mode)); case CONST_INT: /* Small-integer addresses don't occur very often, but they are legitimate if $0 is a valid base register. */ info->type = ADDRESS_CONST_INT; return !TARGET_MIPS16 && SMALL_INT (x); case CONST: case LABEL_REF: case SYMBOL_REF: info->type = ADDRESS_SYMBOLIC; return (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_MEM, &info->symbol_type) && mips_symbol_insns (info->symbol_type, mode) > 0 && !mips_split_p[info->symbol_type]); default: return false; } } /* Implement TARGET_LEGITIMATE_ADDRESS_P. */ static bool mips_legitimate_address_p (machine_mode mode, rtx x, bool strict_p) { struct mips_address_info addr; return mips_classify_address (&addr, x, mode, strict_p); } /* Return true if X is a legitimate $sp-based address for mode MODE. */ bool mips_stack_address_p (rtx x, machine_mode mode) { struct mips_address_info addr; return (mips_classify_address (&addr, x, mode, false) && addr.type == ADDRESS_REG && addr.reg == stack_pointer_rtx); } /* Return true if ADDR matches the pattern for the LWXS load scaled indexed address instruction. Note that such addresses are not considered legitimate in the TARGET_LEGITIMATE_ADDRESS_P sense, because their use is so restricted. */ static bool mips_lwxs_address_p (rtx addr) { if (ISA_HAS_LWXS && GET_CODE (addr) == PLUS && REG_P (XEXP (addr, 1))) { rtx offset = XEXP (addr, 0); if (GET_CODE (offset) == MULT && REG_P (XEXP (offset, 0)) && CONST_INT_P (XEXP (offset, 1)) && INTVAL (XEXP (offset, 1)) == 4) return true; } return false; } /* Return true if ADDR matches the pattern for the L{B,H,W,D}{,U}X load indexed address instruction. Note that such addresses are not considered legitimate in the TARGET_LEGITIMATE_ADDRESS_P sense, because their use is so restricted. */ static bool mips_lx_address_p (rtx addr, machine_mode mode) { if (GET_CODE (addr) != PLUS || !REG_P (XEXP (addr, 0)) || !REG_P (XEXP (addr, 1))) return false; if (ISA_HAS_LBX && mode == QImode) return true; if (ISA_HAS_LHX && mode == HImode) return true; if (ISA_HAS_LWX && mode == SImode) return true; if (ISA_HAS_LDX && mode == DImode) return true; if (MSA_SUPPORTED_MODE_P (mode)) return true; return false; } /* Return true if a value at OFFSET bytes from base register BASE can be accessed using an unextended MIPS16 instruction. MODE is the mode of the value. Usually the offset in an unextended instruction is a 5-bit field. The offset is unsigned and shifted left once for LH and SH, twice for LW and SW, and so on. An exception is LWSP and SWSP, which have an 8-bit immediate field that's shifted left twice. */ static bool mips16_unextended_reference_p (machine_mode mode, rtx base, unsigned HOST_WIDE_INT offset) { if (mode != BLKmode && offset % GET_MODE_SIZE (mode) == 0) { if (GET_MODE_SIZE (mode) == 4 && base == stack_pointer_rtx) return offset < 256U * GET_MODE_SIZE (mode); return offset < 32U * GET_MODE_SIZE (mode); } return false; } /* Return the number of instructions needed to load or store a value of mode MODE at address X, assuming that BASE_INSN_LENGTH is the length of one instruction. Return 0 if X isn't valid for MODE. Assume that multiword moves may need to be split into word moves if MIGHT_SPLIT_P, otherwise assume that a single load or store is enough. */ int mips_address_insns (rtx x, machine_mode mode, bool might_split_p) { struct mips_address_info addr; int factor; bool msa_p = (!might_split_p && MSA_SUPPORTED_MODE_P (mode)); /* BLKmode is used for single unaligned loads and stores and should not count as a multiword mode. (GET_MODE_SIZE (BLKmode) is pretty meaningless, so we have to single it out as a special case one way or the other.) */ if (mode != BLKmode && might_split_p) factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; else factor = 1; if (mips_classify_address (&addr, x, mode, false)) switch (addr.type) { case ADDRESS_REG: if (msa_p) { /* MSA LD.* and ST.* supports 10-bit signed offsets. */ if (mips_signed_immediate_p (INTVAL (addr.offset), 10, mips_ldst_scaled_shift (mode))) return 1; else return 0; } if (TARGET_MIPS16 && !mips16_unextended_reference_p (mode, addr.reg, UINTVAL (addr.offset))) return factor * 2; return factor; case ADDRESS_LO_SUM: return msa_p ? 0 : TARGET_MIPS16 ? factor * 2 : factor; case ADDRESS_CONST_INT: return msa_p ? 0 : factor; case ADDRESS_SYMBOLIC: return msa_p ? 0 : factor * mips_symbol_insns (addr.symbol_type, mode); } return 0; } /* Return true if X fits within an unsigned field of BITS bits that is shifted left SHIFT bits before being used. */ bool mips_unsigned_immediate_p (unsigned HOST_WIDE_INT x, int bits, int shift = 0) { return (x & ((1 << shift) - 1)) == 0 && x < ((unsigned) 1 << (shift + bits)); } /* Return true if X fits within a signed field of BITS bits that is shifted left SHIFT bits before being used. */ bool mips_signed_immediate_p (unsigned HOST_WIDE_INT x, int bits, int shift = 0) { x += 1 << (bits + shift - 1); return mips_unsigned_immediate_p (x, bits, shift); } /* Return the scale shift that applied to MSA LD/ST address offset. */ int mips_ldst_scaled_shift (machine_mode mode) { int shift = exact_log2 (GET_MODE_UNIT_SIZE (mode)); if (shift < 0 || shift > 8) gcc_unreachable (); return shift; } /* Return true if X is legitimate for accessing values of mode MODE, if it is based on a MIPS16 register, and if the offset satisfies OFFSET_PREDICATE. */ bool m16_based_address_p (rtx x, machine_mode mode, insn_operand_predicate_fn offset_predicate) { struct mips_address_info addr; return (mips_classify_address (&addr, x, mode, false) && addr.type == ADDRESS_REG && M16_REG_P (REGNO (addr.reg)) && offset_predicate (addr.offset, mode)); } /* Return true if X is a legitimate address that conforms to the requirements for a microMIPS LWSP or SWSP insn. */ bool lwsp_swsp_address_p (rtx x, machine_mode mode) { struct mips_address_info addr; return (mips_classify_address (&addr, x, mode, false) && addr.type == ADDRESS_REG && REGNO (addr.reg) == STACK_POINTER_REGNUM && uw5_operand (addr.offset, mode)); } /* Return true if X is a legitimate address with a 12-bit offset. MODE is the mode of the value being accessed. */ bool umips_12bit_offset_address_p (rtx x, machine_mode mode) { struct mips_address_info addr; return (mips_classify_address (&addr, x, mode, false) && addr.type == ADDRESS_REG && CONST_INT_P (addr.offset) && UMIPS_12BIT_OFFSET_P (INTVAL (addr.offset))); } /* Return true if X is a legitimate address with a 9-bit offset. MODE is the mode of the value being accessed. */ bool mips_9bit_offset_address_p (rtx x, machine_mode mode) { struct mips_address_info addr; return (mips_classify_address (&addr, x, mode, false) && addr.type == ADDRESS_REG && CONST_INT_P (addr.offset) && MIPS_9BIT_OFFSET_P (INTVAL (addr.offset))); } /* Return the number of instructions needed to load constant X, assuming that BASE_INSN_LENGTH is the length of one instruction. Return 0 if X isn't a valid constant. */ int mips_const_insns (rtx x) { struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS]; enum mips_symbol_type symbol_type; rtx offset; switch (GET_CODE (x)) { case HIGH: if (!mips_symbolic_constant_p (XEXP (x, 0), SYMBOL_CONTEXT_LEA, &symbol_type) || !mips_split_p[symbol_type]) return 0; /* This is simply an LUI for normal mode. It is an extended LI followed by an extended SLL for MIPS16. */ return TARGET_MIPS16 ? 4 : 1; case CONST_INT: if (TARGET_MIPS16) /* Unsigned 8-bit constants can be loaded using an unextended LI instruction. Unsigned 16-bit constants can be loaded using an extended LI. Negative constants must be loaded using LI and then negated. */ return (IN_RANGE (INTVAL (x), 0, 255) ? 1 : SMALL_OPERAND_UNSIGNED (INTVAL (x)) ? 2 : IN_RANGE (-INTVAL (x), 0, 255) ? 2 : SMALL_OPERAND_UNSIGNED (-INTVAL (x)) ? 3 : 0); return mips_build_integer (codes, INTVAL (x)); case CONST_VECTOR: if (MSA_SUPPORTED_MODE_P (GET_MODE (x)) && mips_const_vector_same_int_p (x, GET_MODE (x), -512, 511)) return 1; /* Fall through. */ case CONST_DOUBLE: /* Allow zeros for normal mode, where we can use $0. */ return !TARGET_MIPS16 && x == CONST0_RTX (GET_MODE (x)) ? 1 : 0; case CONST: if (CONST_GP_P (x)) return 1; /* See if we can refer to X directly. */ if (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_LEA, &symbol_type)) return mips_symbol_insns (symbol_type, MAX_MACHINE_MODE); /* Otherwise try splitting the constant into a base and offset. If the offset is a 16-bit value, we can load the base address into a register and then use (D)ADDIU to add in the offset. If the offset is larger, we can load the base and offset into separate registers and add them together with (D)ADDU. However, the latter is only possible before reload; during and after reload, we must have the option of forcing the constant into the pool instead. */ split_const (x, &x, &offset); if (offset != 0) { int n = mips_const_insns (x); if (n != 0) { if (SMALL_INT (offset)) return n + 1; else if (!targetm.cannot_force_const_mem (GET_MODE (x), x)) return n + 1 + mips_build_integer (codes, INTVAL (offset)); } } return 0; case SYMBOL_REF: case LABEL_REF: return mips_symbol_insns (mips_classify_symbol (x, SYMBOL_CONTEXT_LEA), MAX_MACHINE_MODE); default: return 0; } } /* X is a doubleword constant that can be handled by splitting it into two words and loading each word separately. Return the number of instructions required to do this, assuming that BASE_INSN_LENGTH is the length of one instruction. */ int mips_split_const_insns (rtx x) { unsigned int low, high; low = mips_const_insns (mips_subword (x, false)); high = mips_const_insns (mips_subword (x, true)); gcc_assert (low > 0 && high > 0); return low + high; } /* Return one word of 128-bit value OP, taking into account the fixed endianness of certain registers. BYTE selects from the byte address. */ rtx mips_subword_at_byte (rtx op, unsigned int byte) { machine_mode mode; mode = GET_MODE (op); if (mode == VOIDmode) mode = TImode; gcc_assert (!FP_REG_RTX_P (op)); if (MEM_P (op)) return mips_rewrite_small_data (adjust_address (op, word_mode, byte)); return simplify_gen_subreg (word_mode, op, mode, byte); } /* Return the number of instructions needed to implement INSN, given that it loads from or stores to MEM. Assume that BASE_INSN_LENGTH is the length of one instruction. */ int mips_load_store_insns (rtx mem, rtx_insn *insn) { machine_mode mode; bool might_split_p; rtx set; gcc_assert (MEM_P (mem)); mode = GET_MODE (mem); /* Try to prove that INSN does not need to be split. */ might_split_p = GET_MODE_SIZE (mode) > UNITS_PER_WORD; if (might_split_p) { set = single_set (insn); if (set && !mips_split_move_insn_p (SET_DEST (set), SET_SRC (set), insn)) might_split_p = false; } return mips_address_insns (XEXP (mem, 0), mode, might_split_p); } /* Return the number of instructions needed for an integer division, assuming that BASE_INSN_LENGTH is the length of one instruction. */ int mips_idiv_insns (machine_mode mode) { int count; count = 1; if (TARGET_CHECK_ZERO_DIV) { if (GENERATE_DIVIDE_TRAPS && !MSA_SUPPORTED_MODE_P (mode)) count++; else count += 2; } if (TARGET_FIX_R4000 || TARGET_FIX_R4400) count++; return count; } /* Emit a move from SRC to DEST. Assume that the move expanders can handle all moves if !can_create_pseudo_p (). The distinction is important because, unlike emit_move_insn, the move expanders know how to force Pmode objects into the constant pool even when the constant pool address is not itself legitimate. */ rtx_insn * mips_emit_move (rtx dest, rtx src) { return (can_create_pseudo_p () ? emit_move_insn (dest, src) : emit_move_insn_1 (dest, src)); } /* Emit a move from SRC to DEST, splitting compound moves into individual instructions. SPLIT_TYPE is the type of split to perform. */ static void mips_emit_move_or_split (rtx dest, rtx src, enum mips_split_type split_type) { if (mips_split_move_p (dest, src, split_type)) mips_split_move (dest, src, split_type, NULL); else mips_emit_move (dest, src); } /* Emit an instruction of the form (set TARGET (CODE OP0)). */ static void mips_emit_unary (enum rtx_code code, rtx target, rtx op0) { emit_insn (gen_rtx_SET (target, gen_rtx_fmt_e (code, GET_MODE (op0), op0))); } /* Compute (CODE OP0) and store the result in a new register of mode MODE. Return that new register. */ static rtx mips_force_unary (machine_mode mode, enum rtx_code code, rtx op0) { rtx reg; reg = gen_reg_rtx (mode); mips_emit_unary (code, reg, op0); return reg; } /* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */ void mips_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1) { emit_insn (gen_rtx_SET (target, gen_rtx_fmt_ee (code, GET_MODE (target), op0, op1))); } /* Compute (CODE OP0 OP1) and store the result in a new register of mode MODE. Return that new register. */ static rtx mips_force_binary (machine_mode mode, enum rtx_code code, rtx op0, rtx op1) { rtx reg; reg = gen_reg_rtx (mode); mips_emit_binary (code, reg, op0, op1); return reg; } /* Copy VALUE to a register and return that register. If new pseudos are allowed, copy it into a new register, otherwise use DEST. */ static rtx mips_force_temporary (rtx dest, rtx value) { if (can_create_pseudo_p ()) return force_reg (Pmode, value); else { mips_emit_move (dest, value); return dest; } } /* Emit a call sequence with call pattern PATTERN and return the call instruction itself (which is not necessarily the last instruction emitted). ORIG_ADDR is the original, unlegitimized address, ADDR is the legitimized form, and LAZY_P is true if the call address is lazily-bound. */ static rtx_insn * mips_emit_call_insn (rtx pattern, rtx orig_addr, rtx addr, bool lazy_p) { rtx_insn *insn; rtx reg; insn = emit_call_insn (pattern); if (TARGET_MIPS16 && mips_use_pic_fn_addr_reg_p (orig_addr)) { /* MIPS16 JALRs only take MIPS16 registers. If the target function requires $25 to be valid on entry, we must copy it there separately. The move instruction can be put in the call's delay slot. */ reg = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM); emit_insn_before (gen_move_insn (reg, addr), insn); use_reg (&CALL_INSN_FUNCTION_USAGE (insn), reg); } if (lazy_p) /* Lazy-binding stubs require $gp to be valid on entry. */ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx); if (TARGET_USE_GOT) { /* See the comment above load_call for details. */ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), gen_rtx_REG (Pmode, GOT_VERSION_REGNUM)); emit_insn (gen_update_got_version ()); } if (TARGET_MIPS16 && TARGET_USE_GOT) { clobber_reg (&CALL_INSN_FUNCTION_USAGE (insn), MIPS16_PIC_TEMP); clobber_reg (&CALL_INSN_FUNCTION_USAGE (insn), MIPS_PROLOGUE_TEMP (word_mode)); } if (TARGET_MIPS16 && TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP) { rtx post_call_tmp_reg = gen_rtx_REG (word_mode, POST_CALL_TMP_REG); clobber_reg (&CALL_INSN_FUNCTION_USAGE (insn), post_call_tmp_reg); } return insn; } /* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE, then add CONST_INT OFFSET to the result. */ static rtx mips_unspec_address_offset (rtx base, rtx offset, enum mips_symbol_type symbol_type) { base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base), UNSPEC_ADDRESS_FIRST + symbol_type); if (offset != const0_rtx) base = gen_rtx_PLUS (Pmode, base, offset); return gen_rtx_CONST (Pmode, base); } /* Return an UNSPEC address with underlying address ADDRESS and symbol type SYMBOL_TYPE. */ rtx mips_unspec_address (rtx address, enum mips_symbol_type symbol_type) { rtx base, offset; split_const (address, &base, &offset); return mips_unspec_address_offset (base, offset, symbol_type); } /* If OP is an UNSPEC address, return the address to which it refers, otherwise return OP itself. */ rtx mips_strip_unspec_address (rtx op) { rtx base, offset; split_const (op, &base, &offset); if (UNSPEC_ADDRESS_P (base)) op = plus_constant (Pmode, UNSPEC_ADDRESS (base), INTVAL (offset)); return op; } /* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the high part to BASE and return the result. Just return BASE otherwise. TEMP is as for mips_force_temporary. The returned expression can be used as the first operand to a LO_SUM. */ static rtx mips_unspec_offset_high (rtx temp, rtx base, rtx addr, enum mips_symbol_type symbol_type) { if (mips_split_p[symbol_type]) { addr = gen_rtx_HIGH (Pmode, mips_unspec_address (addr, symbol_type)); addr = mips_force_temporary (temp, addr); base = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, addr, base)); } return base; } /* Return an instruction that copies $gp into register REG. We want GCC to treat the register's value as constant, so that its value can be rematerialized on demand. */ static rtx gen_load_const_gp (rtx reg) { return PMODE_INSN (gen_load_const_gp, (reg)); } /* Return a pseudo register that contains the value of $gp throughout the current function. Such registers are needed by MIPS16 functions, for which $gp itself is not a valid base register or addition operand. */ static rtx mips16_gp_pseudo_reg (void) { if (cfun->machine->mips16_gp_pseudo_rtx == NULL_RTX) { rtx_insn *scan; cfun->machine->mips16_gp_pseudo_rtx = gen_reg_rtx (Pmode); push_topmost_sequence (); scan = get_insns (); while (NEXT_INSN (scan) && !INSN_P (NEXT_INSN (scan))) scan = NEXT_INSN (scan); rtx set = gen_load_const_gp (cfun->machine->mips16_gp_pseudo_rtx); rtx_insn *insn = emit_insn_after (set, scan); INSN_LOCATION (insn) = 0; pop_topmost_sequence (); } return cfun->machine->mips16_gp_pseudo_rtx; } /* Return a base register that holds pic_offset_table_rtx. TEMP, if nonnull, is a scratch Pmode base register. */ rtx mips_pic_base_register (rtx temp) { if (!TARGET_MIPS16) return pic_offset_table_rtx; if (currently_expanding_to_rtl) return mips16_gp_pseudo_reg (); if (can_create_pseudo_p ()) temp = gen_reg_rtx (Pmode); if (TARGET_USE_GOT) /* The first post-reload split exposes all references to $gp (both uses and definitions). All references must remain explicit after that point. It is safe to introduce uses of $gp at any time, so for simplicity, we do that before the split too. */ mips_emit_move (temp, pic_offset_table_rtx); else emit_insn (gen_load_const_gp (temp)); return temp; } /* Return the RHS of a load_call insn. */ static rtx mips_unspec_call (rtx reg, rtx symbol) { rtvec vec; vec = gen_rtvec (3, reg, symbol, gen_rtx_REG (SImode, GOT_VERSION_REGNUM)); return gen_rtx_UNSPEC (Pmode, vec, UNSPEC_LOAD_CALL); } /* If SRC is the RHS of a load_call insn, return the underlying symbol reference. Return NULL_RTX otherwise. */ static rtx mips_strip_unspec_call (rtx src) { if (GET_CODE (src) == UNSPEC && XINT (src, 1) == UNSPEC_LOAD_CALL) return mips_strip_unspec_address (XVECEXP (src, 0, 1)); return NULL_RTX; } /* Create and return a GOT reference of type TYPE for address ADDR. TEMP, if nonnull, is a scratch Pmode base register. */ rtx mips_got_load (rtx temp, rtx addr, enum mips_symbol_type type) { rtx base, high, lo_sum_symbol; base = mips_pic_base_register (temp); /* If we used the temporary register to load $gp, we can't use it for the high part as well. */ if (temp != NULL && reg_overlap_mentioned_p (base, temp)) temp = NULL; high = mips_unspec_offset_high (temp, base, addr, type); lo_sum_symbol = mips_unspec_address (addr, type); if (type == SYMBOL_GOTOFF_CALL) return mips_unspec_call (high, lo_sum_symbol); else return PMODE_INSN (gen_unspec_got, (high, lo_sum_symbol)); } /* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise it appears in a MEM of that mode. Return true if ADDR is a legitimate constant in that context and can be split into high and low parts. If so, and if LOW_OUT is nonnull, emit the high part and store the low part in *LOW_OUT. Leave *LOW_OUT unchanged otherwise. TEMP is as for mips_force_temporary and is used to load the high part into a register. When MODE is MAX_MACHINE_MODE, the low part is guaranteed to be a legitimize SET_SRC for an .md pattern, otherwise the low part is guaranteed to be a legitimate address for mode MODE. */ bool mips_split_symbol (rtx temp, rtx addr, machine_mode mode, rtx *low_out) { enum mips_symbol_context context; enum mips_symbol_type symbol_type; rtx high; context = (mode == MAX_MACHINE_MODE ? SYMBOL_CONTEXT_LEA : SYMBOL_CONTEXT_MEM); if (GET_CODE (addr) == HIGH && context == SYMBOL_CONTEXT_LEA) { addr = XEXP (addr, 0); if (mips_symbolic_constant_p (addr, context, &symbol_type) && mips_symbol_insns (symbol_type, mode) > 0 && mips_split_hi_p[symbol_type]) { if (low_out) switch (symbol_type) { case SYMBOL_GOT_PAGE_OFST: /* The high part of a page/ofst pair is loaded from the GOT. */ *low_out = mips_got_load (temp, addr, SYMBOL_GOTOFF_PAGE); break; default: gcc_unreachable (); } return true; } } else { if (mips_symbolic_constant_p (addr, context, &symbol_type) && mips_symbol_insns (symbol_type, mode) > 0 && mips_split_p[symbol_type]) { if (low_out) switch (symbol_type) { case SYMBOL_GOT_DISP: /* SYMBOL_GOT_DISP symbols are loaded from the GOT. */ *low_out = mips_got_load (temp, addr, SYMBOL_GOTOFF_DISP); break; case SYMBOL_GP_RELATIVE: high = mips_pic_base_register (temp); *low_out = gen_rtx_LO_SUM (Pmode, high, addr); break; default: high = gen_rtx_HIGH (Pmode, copy_rtx (addr)); high = mips_force_temporary (temp, high); *low_out = gen_rtx_LO_SUM (Pmode, high, addr); break; } return true; } } return false; } /* Return a legitimate address for REG + OFFSET. TEMP is as for mips_force_temporary; it is only needed when OFFSET is not a SMALL_OPERAND. */ static rtx mips_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset) { if (!SMALL_OPERAND (offset)) { rtx high; if (TARGET_MIPS16) { /* Load the full offset into a register so that we can use an unextended instruction for the address itself. */ high = GEN_INT (offset); offset = 0; } else { /* Leave OFFSET as a 16-bit offset and put the excess in HIGH. The addition inside the macro CONST_HIGH_PART may cause an overflow, so we need to force a sign-extension check. */ high = gen_int_mode (CONST_HIGH_PART (offset), Pmode); offset = CONST_LOW_PART (offset); } high = mips_force_temporary (temp, high); reg = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg)); } return plus_constant (Pmode, reg, offset); } /* The __tls_get_attr symbol. */ static GTY(()) rtx mips_tls_symbol; /* Return an instruction sequence that calls __tls_get_addr. SYM is the TLS symbol we are referencing and TYPE is the symbol type to use (either global dynamic or local dynamic). V0 is an RTX for the return value location. */ static rtx_insn * mips_call_tls_get_addr (rtx sym, enum mips_symbol_type type, rtx v0) { rtx loc, a0; rtx_insn *insn; a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST); if (!mips_tls_symbol) mips_tls_symbol = init_one_libfunc ("__tls_get_addr"); loc = mips_unspec_address (sym, type); start_sequence (); emit_insn (gen_rtx_SET (a0, gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, loc))); insn = mips_expand_call (MIPS_CALL_NORMAL, v0, mips_tls_symbol, const0_rtx, NULL_RTX, false); RTL_CONST_CALL_P (insn) = 1; use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0); insn = get_insns (); end_sequence (); return insn; } /* Return a pseudo register that contains the current thread pointer. */ rtx mips_expand_thread_pointer (rtx tp) { rtx fn; if (TARGET_MIPS16) { if (!mips16_rdhwr_stub) mips16_rdhwr_stub = new mips16_rdhwr_one_only_stub (); fn = mips16_stub_call_address (mips16_rdhwr_stub); emit_insn (PMODE_INSN (gen_tls_get_tp_mips16, (tp, fn))); } else emit_insn (PMODE_INSN (gen_tls_get_tp, (tp))); return tp; } static rtx mips_get_tp (void) { return mips_expand_thread_pointer (gen_reg_rtx (Pmode)); } /* Generate the code to access LOC, a thread-local SYMBOL_REF, and return its address. The return value will be both a valid address and a valid SET_SRC (either a REG or a LO_SUM). */ static rtx mips_legitimize_tls_address (rtx loc) { rtx dest, v0, tp, tmp1, tmp2, eqv, offset; enum tls_model model; model = SYMBOL_REF_TLS_MODEL (loc); /* Only TARGET_ABICALLS code can have more than one module; other code must be static and should not use a GOT. All TLS models reduce to local exec in this situation. */ if (!TARGET_ABICALLS) model = TLS_MODEL_LOCAL_EXEC; switch (model) { case TLS_MODEL_GLOBAL_DYNAMIC: { v0 = gen_rtx_REG (Pmode, GP_RETURN); rtx_insn *insn = mips_call_tls_get_addr (loc, SYMBOL_TLSGD, v0); dest = gen_reg_rtx (Pmode); emit_libcall_block (insn, dest, v0, loc); break; } case TLS_MODEL_LOCAL_DYNAMIC: { v0 = gen_rtx_REG (Pmode, GP_RETURN); rtx_insn *insn = mips_call_tls_get_addr (loc, SYMBOL_TLSLDM, v0); tmp1 = gen_reg_rtx (Pmode); /* Attach a unique REG_EQUIV, to allow the RTL optimizers to share the LDM result with other LD model accesses. */ eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLS_LDM); emit_libcall_block (insn, tmp1, v0, eqv); offset = mips_unspec_address (loc, SYMBOL_DTPREL); if (mips_split_p[SYMBOL_DTPREL]) { tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_DTPREL); dest = gen_rtx_LO_SUM (Pmode, tmp2, offset); } else dest = expand_binop (Pmode, add_optab, tmp1, offset, 0, 0, OPTAB_DIRECT); break; } case TLS_MODEL_INITIAL_EXEC: tp = mips_get_tp (); tmp1 = gen_reg_rtx (Pmode); tmp2 = mips_unspec_address (loc, SYMBOL_GOTTPREL); if (Pmode == DImode) emit_insn (gen_load_gotdi (tmp1, pic_offset_table_rtx, tmp2)); else emit_insn (gen_load_gotsi (tmp1, pic_offset_table_rtx, tmp2)); dest = gen_reg_rtx (Pmode); emit_insn (gen_add3_insn (dest, tmp1, tp)); break; case TLS_MODEL_LOCAL_EXEC: tmp1 = mips_get_tp (); offset = mips_unspec_address (loc, SYMBOL_TPREL); if (mips_split_p[SYMBOL_TPREL]) { tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_TPREL); dest = gen_rtx_LO_SUM (Pmode, tmp2, offset); } else dest = expand_binop (Pmode, add_optab, tmp1, offset, 0, 0, OPTAB_DIRECT); break; default: gcc_unreachable (); } return dest; } /* Implement "TARGET = __builtin_mips_get_fcsr ()" for MIPS16, using a stub. */ void mips16_expand_get_fcsr (rtx target) { if (!mips16_get_fcsr_stub) mips16_get_fcsr_stub = new mips16_get_fcsr_one_only_stub (); rtx fn = mips16_stub_call_address (mips16_get_fcsr_stub); emit_insn (PMODE_INSN (gen_mips_get_fcsr_mips16, (fn))); emit_move_insn (target, gen_rtx_REG (SImode, GET_FCSR_REGNUM)); } /* Implement __builtin_mips_set_fcsr (TARGET) for MIPS16, using a stub. */ void mips16_expand_set_fcsr (rtx newval) { if (!mips16_set_fcsr_stub) mips16_set_fcsr_stub = new mips16_set_fcsr_one_only_stub (); rtx fn = mips16_stub_call_address (mips16_set_fcsr_stub); emit_move_insn (gen_rtx_REG (SImode, SET_FCSR_REGNUM), newval); emit_insn (PMODE_INSN (gen_mips_set_fcsr_mips16, (fn))); } /* If X is not a valid address for mode MODE, force it into a register. */ static rtx mips_force_address (rtx x, machine_mode mode) { if (!mips_legitimate_address_p (mode, x, false)) x = force_reg (Pmode, x); return x; } /* This function is used to implement LEGITIMIZE_ADDRESS. If X can be legitimized in a way that the generic machinery might not expect, return a new address, otherwise return NULL. MODE is the mode of the memory being accessed. */ static rtx mips_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, machine_mode mode) { rtx base, addr; HOST_WIDE_INT offset; if (mips_tls_symbol_p (x)) return mips_legitimize_tls_address (x); /* See if the address can split into a high part and a LO_SUM. */ if (mips_split_symbol (NULL, x, mode, &addr)) return mips_force_address (addr, mode); /* Handle BASE + OFFSET using mips_add_offset. */ mips_split_plus (x, &base, &offset); if (offset != 0) { if (!mips_valid_base_register_p (base, mode, false)) base = copy_to_mode_reg (Pmode, base); addr = mips_add_offset (NULL, base, offset); return mips_force_address (addr, mode); } return x; } /* Load VALUE into DEST. TEMP is as for mips_force_temporary. */ void mips_move_integer (rtx temp, rtx dest, unsigned HOST_WIDE_INT value) { struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS]; machine_mode mode; unsigned int i, num_ops; rtx x; mode = GET_MODE (dest); num_ops = mips_build_integer (codes, value); /* Apply each binary operation to X. Invariant: X is a legitimate source operand for a SET pattern. */ x = GEN_INT (codes[0].value); for (i = 1; i < num_ops; i++) { if (!can_create_pseudo_p ()) { emit_insn (gen_rtx_SET (temp, x)); x = temp; } else x = force_reg (mode, x); x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value)); } emit_insn (gen_rtx_SET (dest, x)); } /* Subroutine of mips_legitimize_move. Move constant SRC into register DEST given that SRC satisfies immediate_operand but doesn't satisfy move_operand. */ static void mips_legitimize_const_move (machine_mode mode, rtx dest, rtx src) { rtx base, offset; /* Split moves of big integers into smaller pieces. */ if (splittable_const_int_operand (src, mode)) { mips_move_integer (dest, dest, INTVAL (src)); return; } /* Split moves of symbolic constants into high/low pairs. */ if (mips_split_symbol (dest, src, MAX_MACHINE_MODE, &src)) { emit_insn (gen_rtx_SET (dest, src)); return; } /* Generate the appropriate access sequences for TLS symbols. */ if (mips_tls_symbol_p (src)) { mips_emit_move (dest, mips_legitimize_tls_address (src)); return; } /* If we have (const (plus symbol offset)), and that expression cannot be forced into memory, load the symbol first and add in the offset. In non-MIPS16 mode, prefer to do this even if the constant _can_ be forced into memory, as it usually produces better code. */ split_const (src, &base, &offset); if (offset != const0_rtx && (targetm.cannot_force_const_mem (mode, src) || (!TARGET_MIPS16 && can_create_pseudo_p ()))) { base = mips_force_temporary (dest, base); mips_emit_move (dest, mips_add_offset (NULL, base, INTVAL (offset))); return; } src = force_const_mem (mode, src); /* When using explicit relocs, constant pool references are sometimes not legitimate addresses. */ mips_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0)); mips_emit_move (dest, src); } /* If (set DEST SRC) is not a valid move instruction, emit an equivalent sequence that is valid. */ bool mips_legitimize_move (machine_mode mode, rtx dest, rtx src) { /* Both src and dest are non-registers; one special case is supported where the source is (const_int 0) and the store can source the zero register. MIPS16 and MSA are never able to source the zero register directly in memory operations. */ if (!register_operand (dest, mode) && !register_operand (src, mode) && (TARGET_MIPS16 || !const_0_operand (src, mode) || MSA_SUPPORTED_MODE_P (mode))) { mips_emit_move (dest, force_reg (mode, src)); return true; } /* We need to deal with constants that would be legitimate immediate_operands but aren't legitimate move_operands. */ if (CONSTANT_P (src) && !move_operand (src, mode)) { mips_legitimize_const_move (mode, dest, src); set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src)); return true; } return false; } /* Return true if value X in context CONTEXT is a small-data address that can be rewritten as a LO_SUM. */ static bool mips_rewrite_small_data_p (rtx x, enum mips_symbol_context context) { enum mips_symbol_type symbol_type; return (mips_lo_relocs[SYMBOL_GP_RELATIVE] && !mips_split_p[SYMBOL_GP_RELATIVE] && mips_symbolic_constant_p (x, context, &symbol_type) && symbol_type == SYMBOL_GP_RELATIVE); } /* Return true if OP refers to small data symbols directly, not through a LO_SUM. CONTEXT is the context in which X appears. */ static int mips_small_data_pattern_1 (rtx x, enum mips_symbol_context context) { subrtx_var_iterator::array_type array; FOR_EACH_SUBRTX_VAR (iter, array, x, ALL) { rtx x = *iter; /* Ignore things like "g" constraints in asms. We make no particular guarantee about which symbolic constants are acceptable as asm operands versus which must be forced into a GPR. */ if (GET_CODE (x) == LO_SUM || GET_CODE (x) == ASM_OPERANDS) iter.skip_subrtxes (); else if (MEM_P (x)) { if (mips_small_data_pattern_1 (XEXP (x, 0), SYMBOL_CONTEXT_MEM)) return true; iter.skip_subrtxes (); } else if (mips_rewrite_small_data_p (x, context)) return true; } return false; } /* Return true if OP refers to small data symbols directly, not through a LO_SUM. */ bool mips_small_data_pattern_p (rtx op) { return mips_small_data_pattern_1 (op, SYMBOL_CONTEXT_LEA); } /* Rewrite *LOC so that it refers to small data using explicit relocations. CONTEXT is the context in which *LOC appears. */ static void mips_rewrite_small_data_1 (rtx *loc, enum mips_symbol_context context) { subrtx_ptr_iterator::array_type array; FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL) { rtx *loc = *iter; if (MEM_P (*loc)) { mips_rewrite_small_data_1 (&XEXP (*loc, 0), SYMBOL_CONTEXT_MEM); iter.skip_subrtxes (); } else if (mips_rewrite_small_data_p (*loc, context)) { *loc = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, *loc); iter.skip_subrtxes (); } else if (GET_CODE (*loc) == LO_SUM) iter.skip_subrtxes (); } } /* Rewrite instruction pattern PATTERN so that it refers to small data using explicit relocations. */ rtx mips_rewrite_small_data (rtx pattern) { pattern = copy_insn (pattern); mips_rewrite_small_data_1 (&pattern, SYMBOL_CONTEXT_LEA); return pattern; } /* The cost of loading values from the constant pool. It should be larger than the cost of any constant we want to synthesize inline. */ #define CONSTANT_POOL_COST COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 8) /* Return the cost of X when used as an operand to the MIPS16 instruction that implements CODE. Return -1 if there is no such instruction, or if X is not a valid immediate operand for it. */ static int mips16_constant_cost (int code, HOST_WIDE_INT x) { switch (code) { case ASHIFT: case ASHIFTRT: case LSHIFTRT: /* Shifts by between 1 and 8 bits (inclusive) are unextended, other shifts are extended. The shift patterns truncate the shift count to the right size, so there are no out-of-range values. */ if (IN_RANGE (x, 1, 8)) return 0; return COSTS_N_INSNS (1); case PLUS: if (IN_RANGE (x, -128, 127)) return 0; if (SMALL_OPERAND (x)) return COSTS_N_INSNS (1); return -1; case LEU: /* Like LE, but reject the always-true case. */ if (x == -1) return -1; /* FALLTHRU */ case LE: /* We add 1 to the immediate and use SLT. */ x += 1; /* FALLTHRU */ case XOR: /* We can use CMPI for an xor with an unsigned 16-bit X. */ case LT: case LTU: if (IN_RANGE (x, 0, 255)) return 0; if (SMALL_OPERAND_UNSIGNED (x)) return COSTS_N_INSNS (1); return -1; case EQ: case NE: /* Equality comparisons with 0 are cheap. */ if (x == 0) return 0; return -1; default: return -1; } } /* Return true if there is a non-MIPS16 instruction that implements CODE and if that instruction accepts X as an immediate operand. */ static int mips_immediate_operand_p (int code, HOST_WIDE_INT x) { switch (code) { case ASHIFT: case ASHIFTRT: case LSHIFTRT: /* All shift counts are truncated to a valid constant. */ return true; case ROTATE: case ROTATERT: /* Likewise rotates, if the target supports rotates at all. */ return ISA_HAS_ROR; case AND: case IOR: case XOR: /* These instructions take 16-bit unsigned immediates. */ return SMALL_OPERAND_UNSIGNED (x); case PLUS: case LT: case LTU: /* These instructions take 16-bit signed immediates. */ return SMALL_OPERAND (x); case EQ: case NE: case GT: case GTU: /* The "immediate" forms of these instructions are really implemented as comparisons with register 0. */ return x == 0; case GE: case GEU: /* Likewise, meaning that the only valid immediate operand is 1. */ return x == 1; case LE: /* We add 1 to the immediate and use SLT. */ return SMALL_OPERAND (x + 1); case LEU: /* Likewise SLTU, but reject the always-true case. */ return SMALL_OPERAND (x + 1) && x + 1 != 0; case SIGN_EXTRACT: case ZERO_EXTRACT: /* The bit position and size are immediate operands. */ return ISA_HAS_EXT_INS; default: /* By default assume that $0 can be used for 0. */ return x == 0; } } /* Return the cost of binary operation X, given that the instruction sequence for a word-sized or smaller operation has cost SINGLE_COST and that the sequence of a double-word operation has cost DOUBLE_COST. If SPEED is true, optimize for speed otherwise optimize for size. */ static int mips_binary_cost (rtx x, int single_cost, int double_cost, bool speed) { int cost; if (GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD * 2) cost = double_cost; else cost = single_cost; return (cost + set_src_cost (XEXP (x, 0), GET_MODE (x), speed) + rtx_cost (XEXP (x, 1), GET_MODE (x), GET_CODE (x), 1, speed)); } /* Return the cost of floating-point multiplications of mode MODE. */ static int mips_fp_mult_cost (machine_mode mode) { return mode == DFmode ? mips_cost->fp_mult_df : mips_cost->fp_mult_sf; } /* Return the cost of floating-point divisions of mode MODE. */ static int mips_fp_div_cost (machine_mode mode) { return mode == DFmode ? mips_cost->fp_div_df : mips_cost->fp_div_sf; } /* Return the cost of sign-extending OP to mode MODE, not including the cost of OP itself. */ static int mips_sign_extend_cost (machine_mode mode, rtx op) { if (MEM_P (op)) /* Extended loads are as cheap as unextended ones. */ return 0; if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode) /* A sign extension from SImode to DImode in 64-bit mode is free. */ return 0; if (ISA_HAS_SEB_SEH || GENERATE_MIPS16E) /* We can use SEB or SEH. */ return COSTS_N_INSNS (1); /* We need to use a shift left and a shift right. */ return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2); } /* Return the cost of zero-extending OP to mode MODE, not including the cost of OP itself. */ static int mips_zero_extend_cost (machine_mode mode, rtx op) { if (MEM_P (op)) /* Extended loads are as cheap as unextended ones. */ return 0; if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode) /* We need a shift left by 32 bits and a shift right by 32 bits. */ return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2); if (GENERATE_MIPS16E) /* We can use ZEB or ZEH. */ return COSTS_N_INSNS (1); if (TARGET_MIPS16) /* We need to load 0xff or 0xffff into a register and use AND. */ return COSTS_N_INSNS (GET_MODE (op) == QImode ? 2 : 3); /* We can use ANDI. */ return COSTS_N_INSNS (1); } /* Return the cost of moving between two registers of mode MODE, assuming that the move will be in pieces of at most UNITS bytes. */ static int mips_set_reg_reg_piece_cost (machine_mode mode, unsigned int units) { return COSTS_N_INSNS ((GET_MODE_SIZE (mode) + units - 1) / units); } /* Return the cost of moving between two registers of mode MODE. */ static int mips_set_reg_reg_cost (machine_mode mode) { switch (GET_MODE_CLASS (mode)) { case MODE_CC: return mips_set_reg_reg_piece_cost (mode, GET_MODE_SIZE (CCmode)); case MODE_FLOAT: case MODE_COMPLEX_FLOAT: case MODE_VECTOR_FLOAT: if (TARGET_HARD_FLOAT) return mips_set_reg_reg_piece_cost (mode, UNITS_PER_HWFPVALUE); /* Fall through */ default: return mips_set_reg_reg_piece_cost (mode, UNITS_PER_WORD); } } /* Implement TARGET_RTX_COSTS. */ static bool mips_rtx_costs (rtx x, machine_mode mode, int outer_code, int opno ATTRIBUTE_UNUSED, int *total, bool speed) { int code = GET_CODE (x); bool float_mode_p = FLOAT_MODE_P (mode); int cost; rtx addr; /* The cost of a COMPARE is hard to define for MIPS. COMPAREs don't appear in the instruction stream, and the cost of a comparison is really the cost of the branch or scc condition. At the time of writing, GCC only uses an explicit outer COMPARE code when optabs is testing whether a constant is expensive enough to force into a register. We want optabs to pass such constants through the MIPS expanders instead, so make all constants very cheap here. */ if (outer_code == COMPARE) { gcc_assert (CONSTANT_P (x)); *total = 0; return true; } switch (code) { case CONST_INT: /* Treat *clear_upper32-style ANDs as having zero cost in the second operand. The cost is entirely in the first operand. ??? This is needed because we would otherwise try to CSE the constant operand. Although that's the right thing for instructions that continue to be a register operation throughout compilation, it is disastrous for instructions that could later be converted into a memory operation. */ if (TARGET_64BIT && outer_code == AND && UINTVAL (x) == 0xffffffff) { *total = 0; return true; } if (TARGET_MIPS16) { cost = mips16_constant_cost (outer_code, INTVAL (x)); if (cost >= 0) { *total = cost; return true; } } else { /* When not optimizing for size, we care more about the cost of hot code, and hot code is often in a loop. If a constant operand needs to be forced into a register, we will often be able to hoist the constant load out of the loop, so the load should not contribute to the cost. */ if (speed || mips_immediate_operand_p (outer_code, INTVAL (x))) { *total = 0; return true; } } /* Fall through. */ case CONST: case SYMBOL_REF: case LABEL_REF: case CONST_DOUBLE: if (force_to_mem_operand (x, VOIDmode)) { *total = COSTS_N_INSNS (1); return true; } cost = mips_const_insns (x); if (cost > 0) { /* If the constant is likely to be stored in a GPR, SETs of single-insn constants are as cheap as register sets; we never want to CSE them. Don't reduce the cost of storing a floating-point zero in FPRs. If we have a zero in an FPR for other reasons, we can get better cfg-cleanup and delayed-branch results by using it consistently, rather than using $0 sometimes and an FPR at other times. Also, moves between floating-point registers are sometimes cheaper than (D)MTC1 $0. */ if (cost == 1 && outer_code == SET && !(float_mode_p && TARGET_HARD_FLOAT)) cost = 0; /* When non-MIPS16 code loads a constant N>1 times, we rarely want to CSE the constant itself. It is usually better to have N copies of the last operation in the sequence and one shared copy of the other operations. (Note that this is not true for MIPS16 code, where the final operation in the sequence is often an extended instruction.) Also, if we have a CONST_INT, we don't know whether it is for a word or doubleword operation, so we cannot rely on the result of mips_build_integer. */ else if (!TARGET_MIPS16 && (outer_code == SET || GET_MODE (x) == VOIDmode)) cost = 1; *total = COSTS_N_INSNS (cost); return true; } /* The value will need to be fetched from the constant pool. */ *total = CONSTANT_POOL_COST; return true; case MEM: /* If the address is legitimate, return the number of instructions it needs. */ addr = XEXP (x, 0); cost = mips_address_insns (addr, mode, true); if (cost > 0) { *total = COSTS_N_INSNS (cost + 1); return true; } /* Check for a scaled indexed address. */ if (mips_lwxs_address_p (addr) || mips_lx_address_p (addr, mode)) { *total = COSTS_N_INSNS (2); return true; } /* Otherwise use the default handling. */ return false; case FFS: *total = COSTS_N_INSNS (6); return false; case NOT: *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1); return false; case AND: /* Check for a *clear_upper32 pattern and treat it like a zero extension. See the pattern's comment for details. */ if (TARGET_64BIT && mode == DImode && CONST_INT_P (XEXP (x, 1)) && UINTVAL (XEXP (x, 1)) == 0xffffffff) { *total = (mips_zero_extend_cost (mode, XEXP (x, 0)) + set_src_cost (XEXP (x, 0), mode, speed)); return true; } if (ISA_HAS_CINS && CONST_INT_P (XEXP (x, 1))) { rtx op = XEXP (x, 0); if (GET_CODE (op) == ASHIFT && CONST_INT_P (XEXP (op, 1)) && mask_low_and_shift_p (mode, XEXP (x, 1), XEXP (op, 1), 32)) { *total = COSTS_N_INSNS (1); *total += set_src_cost (XEXP (op, 0), mode, speed); return true; } } /* (AND (NOT op0) (NOT op1) is a nor operation that can be done in a single instruction. */ if (!TARGET_MIPS16 && GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT) { cost = GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1; *total = (COSTS_N_INSNS (cost) + set_src_cost (XEXP (XEXP (x, 0), 0), mode, speed) + set_src_cost (XEXP (XEXP (x, 1), 0), mode, speed)); return true; } /* Fall through. */ case IOR: case XOR: /* Double-word operations use two single-word operations. */ *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (2), speed); return true; case ASHIFT: case ASHIFTRT: case LSHIFTRT: case ROTATE: case ROTATERT: if (CONSTANT_P (XEXP (x, 1))) *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4), speed); else *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (12), speed); return true; case ABS: if (float_mode_p) *total = mips_cost->fp_add; else *total = COSTS_N_INSNS (4); return false; case LO_SUM: /* Low-part immediates need an extended MIPS16 instruction. */ *total = (COSTS_N_INSNS (TARGET_MIPS16 ? 2 : 1) + set_src_cost (XEXP (x, 0), mode, speed)); return true; case LT: case LTU: case LE: case LEU: case GT: case GTU: case GE: case GEU: case EQ: case NE: case UNORDERED: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT: /* Branch comparisons have VOIDmode, so use the first operand's mode instead. */ mode = GET_MODE (XEXP (x, 0)); if (FLOAT_MODE_P (mode)) { *total = mips_cost->fp_add; return false; } *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4), speed); return true; case MINUS: if (float_mode_p && ISA_HAS_UNFUSED_MADD4 && !HONOR_SIGNED_ZEROS (mode)) { /* See if we can use NMADD or NMSUB via the *nmadd4_fastmath or *nmsub4_fastmath patterns. These patterns check for HONOR_SIGNED_ZEROS so we check here too. */ rtx op0 = XEXP (x, 0); rtx op1 = XEXP (x, 1); if (GET_CODE (op0) == MULT && GET_CODE (XEXP (op0, 0)) == NEG) { *total = (mips_fp_mult_cost (mode) + set_src_cost (XEXP (XEXP (op0, 0), 0), mode, speed) + set_src_cost (XEXP (op0, 1), mode, speed) + set_src_cost (op1, mode, speed)); return true; } if (GET_CODE (op1) == MULT) { *total = (mips_fp_mult_cost (mode) + set_src_cost (op0, mode, speed) + set_src_cost (XEXP (op1, 0), mode, speed) + set_src_cost (XEXP (op1, 1), mode, speed)); return true; } } /* Fall through. */ case PLUS: if (float_mode_p) { /* If this is part of a MADD or MSUB, treat the PLUS as being free. */ if (ISA_HAS_UNFUSED_MADD4 && GET_CODE (XEXP (x, 0)) == MULT) *total = 0; else *total = mips_cost->fp_add; return false; } /* If it's an add + mult (which is equivalent to shift left) and it's immediate operand satisfies const_immlsa_operand predicate. */ if (((ISA_HAS_LSA && mode == SImode) || (ISA_HAS_DLSA && mode == DImode)) && GET_CODE (XEXP (x, 0)) == MULT) { rtx op2 = XEXP (XEXP (x, 0), 1); if (const_immlsa_operand (op2, mode)) { *total = (COSTS_N_INSNS (1) + set_src_cost (XEXP (XEXP (x, 0), 0), mode, speed) + set_src_cost (XEXP (x, 1), mode, speed)); return true; } } /* Double-word operations require three single-word operations and an SLTU. The MIPS16 version then needs to move the result of the SLTU from $24 to a MIPS16 register. */ *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (TARGET_MIPS16 ? 5 : 4), speed); return true; case NEG: if (float_mode_p && ISA_HAS_UNFUSED_MADD4) { /* See if we can use NMADD or NMSUB via the *nmadd4 or *nmsub4 patterns. */ rtx op = XEXP (x, 0); if ((GET_CODE (op) == PLUS || GET_CODE (op) == MINUS) && GET_CODE (XEXP (op, 0)) == MULT) { *total = (mips_fp_mult_cost (mode) + set_src_cost (XEXP (XEXP (op, 0), 0), mode, speed) + set_src_cost (XEXP (XEXP (op, 0), 1), mode, speed) + set_src_cost (XEXP (op, 1), mode, speed)); return true; } } if (float_mode_p) *total = mips_cost->fp_add; else *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 4 : 1); return false; case FMA: *total = mips_fp_mult_cost (mode); return false; case MULT: if (float_mode_p) *total = mips_fp_mult_cost (mode); else if (mode == DImode && !TARGET_64BIT) /* Synthesized from 2 mulsi3s, 1 mulsidi3 and two additions, where the mulsidi3 always includes an MFHI and an MFLO. */ *total = (speed ? mips_cost->int_mult_si * 3 + 6 : COSTS_N_INSNS (ISA_HAS_MUL3 ? 7 : 9)); else if (!speed) *total = COSTS_N_INSNS ((ISA_HAS_MUL3 || ISA_HAS_R6MUL) ? 1 : 2) + 1; else if (mode == DImode) *total = mips_cost->int_mult_di; else *total = mips_cost->int_mult_si; return false; case DIV: /* Check for a reciprocal. */ if (float_mode_p && ISA_HAS_FP_RECIP_RSQRT (mode) && flag_unsafe_math_optimizations && XEXP (x, 0) == CONST1_RTX (mode)) { if (outer_code == SQRT || GET_CODE (XEXP (x, 1)) == SQRT) /* An rsqrta or rsqrtb pattern. Count the division as being free. */ *total = set_src_cost (XEXP (x, 1), mode, speed); else *total = (mips_fp_div_cost (mode) + set_src_cost (XEXP (x, 1), mode, speed)); return true; } /* Fall through. */ case SQRT: case MOD: if (float_mode_p) { *total = mips_fp_div_cost (mode); return false; } /* Fall through. */ case UDIV: case UMOD: if (!speed) { /* It is our responsibility to make division by a power of 2 as cheap as 2 register additions if we want the division expanders to be used for such operations; see the setting of sdiv_pow2_cheap in optabs.cc. Using (D)DIV for MIPS16 should always produce shorter code than using expand_sdiv2_pow2. */ if (TARGET_MIPS16 && CONST_INT_P (XEXP (x, 1)) && exact_log2 (INTVAL (XEXP (x, 1))) >= 0) { *total = COSTS_N_INSNS (2); *total += set_src_cost (XEXP (x, 0), mode, speed); return true; } *total = COSTS_N_INSNS (mips_idiv_insns (mode)); } else if (mode == DImode) *total = mips_cost->int_div_di; else *total = mips_cost->int_div_si; return false; case SIGN_EXTEND: *total = mips_sign_extend_cost (mode, XEXP (x, 0)); return false; case ZERO_EXTEND: if (outer_code == SET && ISA_HAS_BADDU && (GET_CODE (XEXP (x, 0)) == TRUNCATE || GET_CODE (XEXP (x, 0)) == SUBREG) && GET_MODE (XEXP (x, 0)) == QImode && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS) { *total = set_src_cost (XEXP (XEXP (x, 0), 0), VOIDmode, speed); return true; } *total = mips_zero_extend_cost (mode, XEXP (x, 0)); return false; case TRUNCATE: /* Costings for highpart multiplies. Matching patterns of the form: (lshiftrt:DI (mult:DI (sign_extend:DI (...) (sign_extend:DI (...)) (const_int 32) */ if (ISA_HAS_R6MUL && (GET_CODE (XEXP (x, 0)) == ASHIFTRT || GET_CODE (XEXP (x, 0)) == LSHIFTRT) && CONST_INT_P (XEXP (XEXP (x, 0), 1)) && ((INTVAL (XEXP (XEXP (x, 0), 1)) == 32 && GET_MODE (XEXP (x, 0)) == DImode) || (ISA_HAS_R6DMUL && INTVAL (XEXP (XEXP (x, 0), 1)) == 64 && GET_MODE (XEXP (x, 0)) == TImode)) && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT && ((GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SIGN_EXTEND) || (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == ZERO_EXTEND)))) { if (!speed) *total = COSTS_N_INSNS (1) + 1; else if (mode == DImode) *total = mips_cost->int_mult_di; else *total = mips_cost->int_mult_si; /* Sign extension is free, zero extension costs for DImode when on a 64bit core / when DMUL is present. */ for (int i = 0; i < 2; ++i) { rtx op = XEXP (XEXP (XEXP (x, 0), 0), i); if (ISA_HAS_R6DMUL && GET_CODE (op) == ZERO_EXTEND && GET_MODE (op) == DImode) *total += rtx_cost (op, DImode, MULT, i, speed); else *total += rtx_cost (XEXP (op, 0), VOIDmode, GET_CODE (op), 0, speed); } return true; } return false; case FLOAT: case UNSIGNED_FLOAT: case FIX: case FLOAT_EXTEND: case FLOAT_TRUNCATE: *total = mips_cost->fp_add; return false; case SET: if (register_operand (SET_DEST (x), VOIDmode) && reg_or_0_operand (SET_SRC (x), VOIDmode)) { *total = mips_set_reg_reg_cost (GET_MODE (SET_DEST (x))); return true; } return false; default: return false; } } /* Implement TARGET_ADDRESS_COST. */ static int mips_address_cost (rtx addr, machine_mode mode, addr_space_t as ATTRIBUTE_UNUSED, bool speed ATTRIBUTE_UNUSED) { return mips_address_insns (addr, mode, false); } /* Implement TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P. */ static bool mips_no_speculation_in_delay_slots_p () { return TARGET_CB_MAYBE; } /* Information about a single instruction in a multi-instruction asm sequence. */ struct mips_multi_member { /* True if this is a label, false if it is code. */ bool is_label_p; /* The output_asm_insn format of the instruction. */ const char *format; /* The operands to the instruction. */ rtx operands[MAX_RECOG_OPERANDS]; }; typedef struct mips_multi_member mips_multi_member; /* The instructions that make up the current multi-insn sequence. */ static vec mips_multi_members; /* How many instructions (as opposed to labels) are in the current multi-insn sequence. */ static unsigned int mips_multi_num_insns; /* Start a new multi-insn sequence. */ static void mips_multi_start (void) { mips_multi_members.truncate (0); mips_multi_num_insns = 0; } /* Add a new, zero initialized member to the current multi-insn sequence. */ static struct mips_multi_member * mips_multi_add (void) { mips_multi_member empty; memset (&empty, 0, sizeof (empty)); return mips_multi_members.safe_push (empty); } /* Add a normal insn with the given asm format to the current multi-insn sequence. The other arguments are a null-terminated list of operands. */ static void mips_multi_add_insn (const char *format, ...) { struct mips_multi_member *member; va_list ap; unsigned int i; rtx op; member = mips_multi_add (); member->is_label_p = false; member->format = format; va_start (ap, format); i = 0; while ((op = va_arg (ap, rtx))) member->operands[i++] = op; va_end (ap); mips_multi_num_insns++; } /* Add the given label definition to the current multi-insn sequence. The definition should include the colon. */ static void mips_multi_add_label (const char *label) { struct mips_multi_member *member; member = mips_multi_add (); member->is_label_p = true; member->format = label; } /* Return the index of the last member of the current multi-insn sequence. */ static unsigned int mips_multi_last_index (void) { return mips_multi_members.length () - 1; } /* Add a copy of an existing instruction to the current multi-insn sequence. I is the index of the instruction that should be copied. */ static void mips_multi_copy_insn (unsigned int i) { struct mips_multi_member *member; member = mips_multi_add (); memcpy (member, &mips_multi_members[i], sizeof (*member)); gcc_assert (!member->is_label_p); } /* Change the operand of an existing instruction in the current multi-insn sequence. I is the index of the instruction, OP is the index of the operand, and X is the new value. */ static void mips_multi_set_operand (unsigned int i, unsigned int op, rtx x) { mips_multi_members[i].operands[op] = x; } /* Write out the asm code for the current multi-insn sequence. */ static void mips_multi_write (void) { struct mips_multi_member *member; unsigned int i; FOR_EACH_VEC_ELT (mips_multi_members, i, member) if (member->is_label_p) fprintf (asm_out_file, "%s\n", member->format); else output_asm_insn (member->format, member->operands); } /* Return one word of double-word value OP, taking into account the fixed endianness of certain registers. HIGH_P is true to select the high part, false to select the low part. */ rtx mips_subword (rtx op, bool high_p) { unsigned int byte, offset; machine_mode mode; mode = GET_MODE (op); if (mode == VOIDmode) mode = TARGET_64BIT ? TImode : DImode; if (TARGET_BIG_ENDIAN ? !high_p : high_p) byte = UNITS_PER_WORD; else byte = 0; if (FP_REG_RTX_P (op)) { /* Paired FPRs are always ordered little-endian. */ offset = (UNITS_PER_WORD < UNITS_PER_HWFPVALUE ? high_p : byte != 0); return gen_rtx_REG (word_mode, REGNO (op) + offset); } if (MEM_P (op)) return mips_rewrite_small_data (adjust_address (op, word_mode, byte)); return simplify_gen_subreg (word_mode, op, mode, byte); } /* Return true if SRC should be moved into DEST using "MULT $0, $0". SPLIT_TYPE is the condition under which moves should be split. */ static bool mips_mult_move_p (rtx dest, rtx src, enum mips_split_type split_type) { return ((split_type != SPLIT_FOR_SPEED || mips_tuning_info.fast_mult_zero_zero_p) && src == const0_rtx && REG_P (dest) && GET_MODE_SIZE (GET_MODE (dest)) == 2 * UNITS_PER_WORD && (ISA_HAS_DSP_MULT ? ACC_REG_P (REGNO (dest)) : MD_REG_P (REGNO (dest)))); } /* Return true if a move from SRC to DEST should be split into two. SPLIT_TYPE describes the split condition. */ bool mips_split_move_p (rtx dest, rtx src, enum mips_split_type split_type) { /* Check whether the move can be done using some variant of MULT $0,$0. */ if (mips_mult_move_p (dest, src, split_type)) return false; /* FPR-to-FPR moves can be done in a single instruction, if they're allowed at all. */ unsigned int size = GET_MODE_SIZE (GET_MODE (dest)); if (size == 8 && FP_REG_RTX_P (src) && FP_REG_RTX_P (dest)) return false; /* Check for floating-point loads and stores. */ if (size == 8 && ISA_HAS_LDC1_SDC1) { if (FP_REG_RTX_P (dest) && MEM_P (src)) return false; if (FP_REG_RTX_P (src) && MEM_P (dest)) return false; } /* Check if MSA moves need splitting. */ if (MSA_SUPPORTED_MODE_P (GET_MODE (dest))) return mips_split_128bit_move_p (dest, src); /* Otherwise split all multiword moves. */ return size > UNITS_PER_WORD; } /* Split a move from SRC to DEST, given that mips_split_move_p holds. SPLIT_TYPE describes the split condition. INSN is the insn being split, if we know it, NULL otherwise. */ void mips_split_move (rtx dest, rtx src, enum mips_split_type split_type, rtx insn_) { rtx low_dest; gcc_checking_assert (mips_split_move_p (dest, src, split_type)); if (MSA_SUPPORTED_MODE_P (GET_MODE (dest))) mips_split_128bit_move (dest, src); else if (FP_REG_RTX_P (dest) || FP_REG_RTX_P (src)) { if (!TARGET_64BIT && GET_MODE (dest) == DImode) emit_insn (gen_move_doubleword_fprdi (dest, src)); else if (!TARGET_64BIT && GET_MODE (dest) == DFmode) emit_insn (gen_move_doubleword_fprdf (dest, src)); else if (!TARGET_64BIT && GET_MODE (dest) == V2SFmode) emit_insn (gen_move_doubleword_fprv2sf (dest, src)); else if (!TARGET_64BIT && GET_MODE (dest) == V2SImode) emit_insn (gen_move_doubleword_fprv2si (dest, src)); else if (!TARGET_64BIT && GET_MODE (dest) == V4HImode) emit_insn (gen_move_doubleword_fprv4hi (dest, src)); else if (!TARGET_64BIT && GET_MODE (dest) == V8QImode) emit_insn (gen_move_doubleword_fprv8qi (dest, src)); else if (TARGET_64BIT && GET_MODE (dest) == TFmode) emit_insn (gen_move_doubleword_fprtf (dest, src)); else gcc_unreachable (); } else if (REG_P (dest) && REGNO (dest) == MD_REG_FIRST) { low_dest = mips_subword (dest, false); mips_emit_move (low_dest, mips_subword (src, false)); if (TARGET_64BIT) emit_insn (gen_mthidi_ti (dest, mips_subword (src, true), low_dest)); else emit_insn (gen_mthisi_di (dest, mips_subword (src, true), low_dest)); } else if (REG_P (src) && REGNO (src) == MD_REG_FIRST) { mips_emit_move (mips_subword (dest, false), mips_subword (src, false)); if (TARGET_64BIT) emit_insn (gen_mfhidi_ti (mips_subword (dest, true), src)); else emit_insn (gen_mfhisi_di (mips_subword (dest, true), src)); } else { /* The operation can be split into two normal moves. Decide in which order to do them. */ low_dest = mips_subword (dest, false); if (REG_P (low_dest) && reg_overlap_mentioned_p (low_dest, src)) { mips_emit_move (mips_subword (dest, true), mips_subword (src, true)); mips_emit_move (low_dest, mips_subword (src, false)); } else { mips_emit_move (low_dest, mips_subword (src, false)); mips_emit_move (mips_subword (dest, true), mips_subword (src, true)); } } /* This is a hack. See if the next insn uses DEST and if so, see if we can forward SRC for DEST. This is most useful if the next insn is a simple store. */ rtx_insn *insn = (rtx_insn *)insn_; struct mips_address_info addr = {}; if (insn) { rtx_insn *next = next_nonnote_nondebug_insn_bb (insn); if (next) { rtx set = single_set (next); if (set && SET_SRC (set) == dest) { if (MEM_P (src)) { rtx tmp = XEXP (src, 0); mips_classify_address (&addr, tmp, GET_MODE (tmp), true); if (addr.reg && !reg_overlap_mentioned_p (dest, addr.reg)) validate_change (next, &SET_SRC (set), src, false); } else validate_change (next, &SET_SRC (set), src, false); } } } } /* Return the split type for instruction INSN. */ static enum mips_split_type mips_insn_split_type (rtx insn) { basic_block bb = BLOCK_FOR_INSN (insn); if (bb) { if (optimize_bb_for_speed_p (bb)) return SPLIT_FOR_SPEED; else return SPLIT_FOR_SIZE; } /* Once CFG information has been removed, we should trust the optimization decisions made by previous passes and only split where necessary. */ return SPLIT_IF_NECESSARY; } /* Return true if a 128-bit move from SRC to DEST should be split. */ bool mips_split_128bit_move_p (rtx dest, rtx src) { /* MSA-to-MSA moves can be done in a single instruction. */ if (FP_REG_RTX_P (src) && FP_REG_RTX_P (dest)) return false; /* Check for MSA loads and stores. */ if (FP_REG_RTX_P (dest) && MEM_P (src)) return false; if (FP_REG_RTX_P (src) && MEM_P (dest)) return false; /* Check for MSA set to an immediate const vector with valid replicated element. */ if (FP_REG_RTX_P (dest) && mips_const_vector_same_int_p (src, GET_MODE (src), -512, 511)) return false; /* Check for MSA load zero immediate. */ if (FP_REG_RTX_P (dest) && src == CONST0_RTX (GET_MODE (src))) return false; return true; } /* Split a 128-bit move from SRC to DEST. */ void mips_split_128bit_move (rtx dest, rtx src) { int byte, index; rtx low_dest, low_src, d, s; if (FP_REG_RTX_P (dest)) { gcc_assert (!MEM_P (src)); rtx new_dest = dest; if (!TARGET_64BIT) { if (GET_MODE (dest) != V4SImode) new_dest = simplify_gen_subreg (V4SImode, dest, GET_MODE (dest), 0); } else { if (GET_MODE (dest) != V2DImode) new_dest = simplify_gen_subreg (V2DImode, dest, GET_MODE (dest), 0); } for (byte = 0, index = 0; byte < GET_MODE_SIZE (TImode); byte += UNITS_PER_WORD, index++) { s = mips_subword_at_byte (src, byte); if (!TARGET_64BIT) emit_insn (gen_msa_insert_w (new_dest, s, new_dest, GEN_INT (1 << index))); else emit_insn (gen_msa_insert_d (new_dest, s, new_dest, GEN_INT (1 << index))); } } else if (FP_REG_RTX_P (src)) { gcc_assert (!MEM_P (dest)); rtx new_src = src; if (!TARGET_64BIT) { if (GET_MODE (src) != V4SImode) new_src = simplify_gen_subreg (V4SImode, src, GET_MODE (src), 0); } else { if (GET_MODE (src) != V2DImode) new_src = simplify_gen_subreg (V2DImode, src, GET_MODE (src), 0); } for (byte = 0, index = 0; byte < GET_MODE_SIZE (TImode); byte += UNITS_PER_WORD, index++) { d = mips_subword_at_byte (dest, byte); if (!TARGET_64BIT) emit_insn (gen_msa_copy_s_w (d, new_src, GEN_INT (index))); else emit_insn (gen_msa_copy_s_d (d, new_src, GEN_INT (index))); } } else { low_dest = mips_subword_at_byte (dest, 0); low_src = mips_subword_at_byte (src, 0); gcc_assert (REG_P (low_dest) && REG_P (low_src)); /* Make sure the source register is not written before reading. */ if (REGNO (low_dest) <= REGNO (low_src)) { for (byte = 0; byte < GET_MODE_SIZE (TImode); byte += UNITS_PER_WORD) { d = mips_subword_at_byte (dest, byte); s = mips_subword_at_byte (src, byte); mips_emit_move (d, s); } } else { for (byte = GET_MODE_SIZE (TImode) - UNITS_PER_WORD; byte >= 0; byte -= UNITS_PER_WORD) { d = mips_subword_at_byte (dest, byte); s = mips_subword_at_byte (src, byte); mips_emit_move (d, s); } } } } /* Split a COPY_S.D with operands DEST, SRC and INDEX. GEN is a function used to generate subregs. */ void mips_split_msa_copy_d (rtx dest, rtx src, rtx index, rtx (*gen_fn)(rtx, rtx, rtx)) { gcc_assert ((GET_MODE (src) == V2DImode && GET_MODE (dest) == DImode) || (GET_MODE (src) == V2DFmode && GET_MODE (dest) == DFmode)); /* Note that low is always from the lower index, and high is always from the higher index. */ rtx low = mips_subword (dest, false); rtx high = mips_subword (dest, true); rtx new_src = simplify_gen_subreg (V4SImode, src, GET_MODE (src), 0); emit_insn (gen_fn (low, new_src, GEN_INT (INTVAL (index) * 2))); emit_insn (gen_fn (high, new_src, GEN_INT (INTVAL (index) * 2 + 1))); } /* Split a INSERT.D with operand DEST, SRC1.INDEX and SRC2. */ void mips_split_msa_insert_d (rtx dest, rtx src1, rtx index, rtx src2) { int i; gcc_assert (GET_MODE (dest) == GET_MODE (src1)); gcc_assert ((GET_MODE (dest) == V2DImode && (GET_MODE (src2) == DImode || src2 == const0_rtx)) || (GET_MODE (dest) == V2DFmode && GET_MODE (src2) == DFmode)); /* Note that low is always from the lower index, and high is always from the higher index. */ rtx low = mips_subword (src2, false); rtx high = mips_subword (src2, true); rtx new_dest = simplify_gen_subreg (V4SImode, dest, GET_MODE (dest), 0); rtx new_src1 = simplify_gen_subreg (V4SImode, src1, GET_MODE (src1), 0); i = exact_log2 (INTVAL (index)); gcc_assert (i != -1); emit_insn (gen_msa_insert_w (new_dest, low, new_src1, GEN_INT (1 << (i * 2)))); emit_insn (gen_msa_insert_w (new_dest, high, new_dest, GEN_INT (1 << (i * 2 + 1)))); } /* Split FILL.D. */ void mips_split_msa_fill_d (rtx dest, rtx src) { gcc_assert ((GET_MODE (dest) == V2DImode && (GET_MODE (src) == DImode || src == const0_rtx)) || (GET_MODE (dest) == V2DFmode && GET_MODE (src) == DFmode)); /* Note that low is always from the lower index, and high is always from the higher index. */ rtx low, high; if (src == const0_rtx) { low = src; high = src; } else { low = mips_subword (src, false); high = mips_subword (src, true); } rtx new_dest = simplify_gen_subreg (V4SImode, dest, GET_MODE (dest), 0); emit_insn (gen_msa_fill_w (new_dest, low)); emit_insn (gen_msa_insert_w (new_dest, high, new_dest, GEN_INT (1 << 1))); emit_insn (gen_msa_insert_w (new_dest, high, new_dest, GEN_INT (1 << 3))); } /* Return true if a move from SRC to DEST in INSN should be split. */ bool mips_split_move_insn_p (rtx dest, rtx src, rtx insn) { return mips_split_move_p (dest, src, mips_insn_split_type (insn)); } /* Split a move from SRC to DEST in INSN, given that mips_split_move_insn_p holds. */ void mips_split_move_insn (rtx dest, rtx src, rtx insn) { mips_split_move (dest, src, mips_insn_split_type (insn), insn); } /* Return the appropriate instructions to move SRC into DEST. Assume that SRC is operand 1 and DEST is operand 0. */ const char * mips_output_move (rtx dest, rtx src) { enum rtx_code dest_code = GET_CODE (dest); enum rtx_code src_code = GET_CODE (src); machine_mode mode = GET_MODE (dest); bool dbl_p = (GET_MODE_SIZE (mode) == 8); bool msa_p = MSA_SUPPORTED_MODE_P (mode); enum mips_symbol_type symbol_type; if (mips_split_move_p (dest, src, SPLIT_IF_NECESSARY)) return "#"; if (msa_p && dest_code == REG && FP_REG_P (REGNO (dest)) && src_code == CONST_VECTOR && CONST_INT_P (CONST_VECTOR_ELT (src, 0))) { gcc_assert (mips_const_vector_same_int_p (src, mode, -512, 511)); return "ldi.%v0\t%w0,%E1"; } if ((src_code == REG && GP_REG_P (REGNO (src))) || (!TARGET_MIPS16 && src == CONST0_RTX (mode))) { if (dest_code == REG) { if (GP_REG_P (REGNO (dest))) return "move\t%0,%z1"; if (mips_mult_move_p (dest, src, SPLIT_IF_NECESSARY)) { if (ISA_HAS_DSP_MULT) return "mult\t%q0,%.,%."; else return "mult\t%.,%."; } /* Moves to HI are handled by special .md insns. */ if (REGNO (dest) == LO_REGNUM) return "mtlo\t%z1"; if (DSP_ACC_REG_P (REGNO (dest))) { static char retval[] = "mt__\t%z1,%q0"; retval[2] = reg_names[REGNO (dest)][4]; retval[3] = reg_names[REGNO (dest)][5]; return retval; } if (FP_REG_P (REGNO (dest))) { if (msa_p) { gcc_assert (src == CONST0_RTX (GET_MODE (src))); return "ldi.%v0\t%w0,0"; } return dbl_p ? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0"; } if (ALL_COP_REG_P (REGNO (dest))) { static char retval[] = "dmtc_\t%z1,%0"; retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest)); return dbl_p ? retval : retval + 1; } } if (dest_code == MEM) switch (GET_MODE_SIZE (mode)) { case 1: return "sb\t%z1,%0"; case 2: return "sh\t%z1,%0"; case 4: return "sw\t%z1,%0"; case 8: return "sd\t%z1,%0"; default: gcc_unreachable (); } } if (dest_code == REG && GP_REG_P (REGNO (dest))) { if (src_code == REG) { /* Moves from HI are handled by special .md insns. */ if (REGNO (src) == LO_REGNUM) { /* When generating VR4120 or VR4130 code, we use MACC and DMACC instead of MFLO. This avoids both the normal MIPS III HI/LO hazards and the errata related to -mfix-vr4130. */ if (ISA_HAS_MACCHI) return dbl_p ? "dmacc\t%0,%.,%." : "macc\t%0,%.,%."; return "mflo\t%0"; } if (DSP_ACC_REG_P (REGNO (src))) { static char retval[] = "mf__\t%0,%q1"; retval[2] = reg_names[REGNO (src)][4]; retval[3] = reg_names[REGNO (src)][5]; return retval; } if (FP_REG_P (REGNO (src))) { gcc_assert (!msa_p); return dbl_p ? "dmfc1\t%0,%1" : "mfc1\t%0,%1"; } if (ALL_COP_REG_P (REGNO (src))) { static char retval[] = "dmfc_\t%0,%1"; retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src)); return dbl_p ? retval : retval + 1; } } if (src_code == MEM) switch (GET_MODE_SIZE (mode)) { case 1: return "lbu\t%0,%1"; case 2: return "lhu\t%0,%1"; case 4: return "lw\t%0,%1"; case 8: return "ld\t%0,%1"; default: gcc_unreachable (); } if (src_code == CONST_INT) { /* Don't use the X format for the operand itself, because that will give out-of-range numbers for 64-bit hosts and 32-bit targets. */ if (!TARGET_MIPS16) return "li\t%0,%1\t\t\t# %X1"; if (SMALL_OPERAND_UNSIGNED (INTVAL (src))) return "li\t%0,%1"; if (SMALL_OPERAND_UNSIGNED (-INTVAL (src))) return "#"; } if (src_code == HIGH) return TARGET_MIPS16 ? "#" : "lui\t%0,%h1"; if (CONST_GP_P (src)) return "move\t%0,%1"; if (mips_symbolic_constant_p (src, SYMBOL_CONTEXT_LEA, &symbol_type) && mips_lo_relocs[symbol_type] != 0) { /* A signed 16-bit constant formed by applying a relocation operator to a symbolic address. */ gcc_assert (!mips_split_p[symbol_type]); return "li\t%0,%R1"; } if (symbolic_operand (src, VOIDmode)) { gcc_assert (TARGET_MIPS16 ? TARGET_MIPS16_TEXT_LOADS : !TARGET_EXPLICIT_RELOCS); return dbl_p ? "dla\t%0,%1" : "la\t%0,%1"; } } if (src_code == REG && FP_REG_P (REGNO (src))) { if (dest_code == REG && FP_REG_P (REGNO (dest))) { if (GET_MODE (dest) == V2SFmode) return "mov.ps\t%0,%1"; else if (msa_p) return "move.v\t%w0,%w1"; else return dbl_p ? "mov.d\t%0,%1" : "mov.s\t%0,%1"; } if (dest_code == MEM) { if (msa_p) return "st.%v1\t%w1,%0"; return dbl_p ? "sdc1\t%1,%0" : "swc1\t%1,%0"; } } if (dest_code == REG && FP_REG_P (REGNO (dest))) { if (src_code == MEM) { if (msa_p) return "ld.%v0\t%w0,%1"; return dbl_p ? "ldc1\t%0,%1" : "lwc1\t%0,%1"; } } if (dest_code == REG && ALL_COP_REG_P (REGNO (dest)) && src_code == MEM) { static char retval[] = "l_c_\t%0,%1"; retval[1] = (dbl_p ? 'd' : 'w'); retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest)); return retval; } if (dest_code == MEM && src_code == REG && ALL_COP_REG_P (REGNO (src))) { static char retval[] = "s_c_\t%1,%0"; retval[1] = (dbl_p ? 'd' : 'w'); retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src)); return retval; } gcc_unreachable (); } /* Return true if CMP1 is a suitable second operand for integer ordering test CODE. See also the *sCC patterns in mips.md. */ static bool mips_int_order_operand_ok_p (enum rtx_code code, rtx cmp1) { switch (code) { case GT: case GTU: return reg_or_0_operand (cmp1, VOIDmode); case GE: case GEU: return !TARGET_MIPS16 && cmp1 == const1_rtx; case LT: case LTU: return arith_operand (cmp1, VOIDmode); case LE: return sle_operand (cmp1, VOIDmode); case LEU: return sleu_operand (cmp1, VOIDmode); default: gcc_unreachable (); } } /* Return true if *CMP1 (of mode MODE) is a valid second operand for integer ordering test *CODE, or if an equivalent combination can be formed by adjusting *CODE and *CMP1. When returning true, update *CODE and *CMP1 with the chosen code and operand, otherwise leave them alone. */ static bool mips_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1, machine_mode mode) { HOST_WIDE_INT plus_one; if (mips_int_order_operand_ok_p (*code, *cmp1)) return true; if (CONST_INT_P (*cmp1)) switch (*code) { case LE: plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode); if (INTVAL (*cmp1) < plus_one) { *code = LT; *cmp1 = force_reg (mode, GEN_INT (plus_one)); return true; } break; case LEU: plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode); if (plus_one != 0) { *code = LTU; *cmp1 = force_reg (mode, GEN_INT (plus_one)); return true; } break; default: break; } return false; } /* Compare CMP0 and CMP1 using ordering test CODE and store the result in TARGET. CMP0 and TARGET are register_operands. If INVERT_PTR is nonnull, it's OK to set TARGET to the inverse of the result and flip *INVERT_PTR instead. */ static void mips_emit_int_order_test (enum rtx_code code, bool *invert_ptr, rtx target, rtx cmp0, rtx cmp1) { machine_mode mode; /* First see if there is a MIPS instruction that can do this operation. If not, try doing the same for the inverse operation. If that also fails, force CMP1 into a register and try again. */ mode = GET_MODE (cmp0); if (mips_canonicalize_int_order_test (&code, &cmp1, mode)) mips_emit_binary (code, target, cmp0, cmp1); else { enum rtx_code inv_code = reverse_condition (code); if (!mips_canonicalize_int_order_test (&inv_code, &cmp1, mode)) { cmp1 = force_reg (mode, cmp1); mips_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1); } else if (invert_ptr == 0) { rtx inv_target; inv_target = mips_force_binary (GET_MODE (target), inv_code, cmp0, cmp1); mips_emit_binary (XOR, target, inv_target, const1_rtx); } else { *invert_ptr = !*invert_ptr; mips_emit_binary (inv_code, target, cmp0, cmp1); } } } /* Return a register that is zero iff CMP0 and CMP1 are equal. The register will have the same mode as CMP0. */ static rtx mips_zero_if_equal (rtx cmp0, rtx cmp1) { if (cmp1 == const0_rtx) return cmp0; if (uns_arith_operand (cmp1, VOIDmode)) return expand_binop (GET_MODE (cmp0), xor_optab, cmp0, cmp1, 0, 0, OPTAB_DIRECT); return expand_binop (GET_MODE (cmp0), sub_optab, cmp0, cmp1, 0, 0, OPTAB_DIRECT); } /* Convert *CODE into a code that can be used in a floating-point scc instruction (C.cond.fmt). Return true if the values of the condition code registers will be inverted, with 0 indicating that the condition holds. */ static bool mips_reversed_fp_cond (enum rtx_code *code) { switch (*code) { case NE: case LTGT: case ORDERED: *code = reverse_condition_maybe_unordered (*code); return true; default: return false; } } /* Allocate a floating-point condition-code register of mode MODE. These condition code registers are used for certain kinds of compound operation, such as compare and branches, vconds, and built-in functions. At expand time, their use is entirely controlled by MIPS-specific code and is entirely internal to these compound operations. We could (and did in the past) expose condition-code values as pseudo registers and leave the register allocator to pick appropriate registers. The problem is that it is not practically possible for the rtl optimizers to guarantee that no spills will be needed, even when AVOID_CCMODE_COPIES is defined. We would therefore need spill and reload sequences to handle the worst case. Although such sequences do exist, they are very expensive and are not something we'd want to use. This is especially true of CCV2 and CCV4, where all the shuffling would greatly outweigh whatever benefit the vectorization itself provides. The main benefit of having more than one condition-code register is to allow the pipelining of operations, especially those involving comparisons and conditional moves. We don't really expect the registers to be live for long periods, and certainly never want them to be live across calls. Also, there should be no penalty attached to using all the available registers. They are simply bits in the same underlying FPU control register. We therefore expose the hardware registers from the outset and use a simple round-robin allocation scheme. */ static rtx mips_allocate_fcc (machine_mode mode) { unsigned int regno, count; gcc_assert (TARGET_HARD_FLOAT && ISA_HAS_8CC); if (mode == CCmode) count = 1; else if (mode == CCV2mode) count = 2; else if (mode == CCV4mode) count = 4; else gcc_unreachable (); cfun->machine->next_fcc += -cfun->machine->next_fcc & (count - 1); if (cfun->machine->next_fcc > ST_REG_LAST - ST_REG_FIRST) cfun->machine->next_fcc = 0; regno = ST_REG_FIRST + cfun->machine->next_fcc; cfun->machine->next_fcc += count; return gen_rtx_REG (mode, regno); } /* Convert a comparison into something that can be used in a branch or conditional move. On entry, *OP0 and *OP1 are the values being compared and *CODE is the code used to compare them. Update *CODE, *OP0 and *OP1 so that they describe the final comparison. If NEED_EQ_NE_P, then only EQ or NE comparisons against zero are possible, otherwise any standard branch condition can be used. The standard branch conditions are: - EQ or NE between two registers. - any comparison between a register and zero. - if compact branches are available then any condition is valid. */ static void mips_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p) { rtx cmp_op0 = *op0; rtx cmp_op1 = *op1; if (GET_MODE_CLASS (GET_MODE (*op0)) == MODE_INT) { if (!need_eq_ne_p && *op1 == const0_rtx) ; else if (*code == EQ || *code == NE) { if (need_eq_ne_p) { *op0 = mips_zero_if_equal (cmp_op0, cmp_op1); *op1 = const0_rtx; } else *op1 = force_reg (GET_MODE (cmp_op0), cmp_op1); } else if (!need_eq_ne_p && TARGET_CB_MAYBE) { bool swap = false; switch (*code) { case LE: swap = true; *code = GE; break; case GT: swap = true; *code = LT; break; case LEU: swap = true; *code = GEU; break; case GTU: swap = true; *code = LTU; break; case GE: case LT: case GEU: case LTU: /* Do nothing. */ break; default: gcc_unreachable (); } *op1 = force_reg (GET_MODE (cmp_op0), cmp_op1); if (swap) { rtx tmp = *op1; *op1 = *op0; *op0 = tmp; } } else { /* The comparison needs a separate scc instruction. Store the result of the scc in *OP0 and compare it against zero. */ bool invert = false; *op0 = gen_reg_rtx (GET_MODE (cmp_op0)); mips_emit_int_order_test (*code, &invert, *op0, cmp_op0, cmp_op1); *code = (invert ? EQ : NE); *op1 = const0_rtx; } } else if (ALL_FIXED_POINT_MODE_P (GET_MODE (cmp_op0))) { *op0 = gen_rtx_REG (CCDSPmode, CCDSP_CC_REGNUM); mips_emit_binary (*code, *op0, cmp_op0, cmp_op1); *code = NE; *op1 = const0_rtx; } else { enum rtx_code cmp_code; /* Floating-point tests use a separate C.cond.fmt or CMP.cond.fmt comparison to set a register. The branch or conditional move will then compare that register against zero. Set CMP_CODE to the code of the comparison instruction and *CODE to the code that the branch or move should use. */ cmp_code = *code; if (ISA_HAS_CCF) { /* All FP conditions can be implemented directly with CMP.cond.fmt or by reversing the operands. */ *code = NE; *op0 = gen_reg_rtx (CCFmode); } else { /* Three FP conditions cannot be implemented by reversing the operands for C.cond.fmt, instead a reversed condition code is required and a test for false. */ *code = mips_reversed_fp_cond (&cmp_code) ? EQ : NE; if (ISA_HAS_8CC) *op0 = mips_allocate_fcc (CCmode); else *op0 = gen_rtx_REG (CCmode, FPSW_REGNUM); } *op1 = const0_rtx; mips_emit_binary (cmp_code, *op0, cmp_op0, cmp_op1); } } /* Try performing the comparison in OPERANDS[1], whose arms are OPERANDS[2] and OPERAND[3]. Store the result in OPERANDS[0]. On 64-bit targets, the mode of the comparison and target will always be SImode, thus possibly narrower than that of the comparison's operands. */ void mips_expand_scc (rtx operands[]) { rtx target = operands[0]; enum rtx_code code = GET_CODE (operands[1]); rtx op0 = operands[2]; rtx op1 = operands[3]; gcc_assert (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT); if (code == EQ || code == NE) { if (ISA_HAS_SEQ_SNE && reg_imm10_operand (op1, GET_MODE (op1))) mips_emit_binary (code, target, op0, op1); else { rtx zie = mips_zero_if_equal (op0, op1); mips_emit_binary (code, target, zie, const0_rtx); } } else mips_emit_int_order_test (code, 0, target, op0, op1); } /* Compare OPERANDS[1] with OPERANDS[2] using comparison code CODE and jump to OPERANDS[3] if the condition holds. */ void mips_expand_conditional_branch (rtx *operands) { enum rtx_code code = GET_CODE (operands[0]); rtx op0 = operands[1]; rtx op1 = operands[2]; rtx condition; mips_emit_compare (&code, &op0, &op1, TARGET_MIPS16); condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1); emit_jump_insn (gen_condjump (condition, operands[3])); } /* Implement: (set temp (COND:CCV2 CMP_OP0 CMP_OP1)) (set DEST (unspec [TRUE_SRC FALSE_SRC temp] UNSPEC_MOVE_TF_PS)) */ void mips_expand_vcondv2sf (rtx dest, rtx true_src, rtx false_src, enum rtx_code cond, rtx cmp_op0, rtx cmp_op1) { rtx cmp_result; bool reversed_p; reversed_p = mips_reversed_fp_cond (&cond); cmp_result = mips_allocate_fcc (CCV2mode); emit_insn (gen_scc_ps (cmp_result, gen_rtx_fmt_ee (cond, VOIDmode, cmp_op0, cmp_op1))); if (reversed_p) emit_insn (gen_mips_cond_move_tf_ps (dest, false_src, true_src, cmp_result)); else emit_insn (gen_mips_cond_move_tf_ps (dest, true_src, false_src, cmp_result)); } /* Perform the comparison in OPERANDS[1]. Move OPERANDS[2] into OPERANDS[0] if the condition holds, otherwise move OPERANDS[3] into OPERANDS[0]. */ void mips_expand_conditional_move (rtx *operands) { rtx cond; enum rtx_code code = GET_CODE (operands[1]); rtx op0 = XEXP (operands[1], 0); rtx op1 = XEXP (operands[1], 1); mips_emit_compare (&code, &op0, &op1, true); cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1); /* There is no direct support for general conditional GP move involving two registers using SEL. */ if (ISA_HAS_SEL && INTEGRAL_MODE_P (GET_MODE (operands[2])) && register_operand (operands[2], VOIDmode) && register_operand (operands[3], VOIDmode)) { machine_mode mode = GET_MODE (operands[0]); rtx temp = gen_reg_rtx (mode); rtx temp2 = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (temp, gen_rtx_IF_THEN_ELSE (mode, cond, operands[2], const0_rtx))); /* Flip the test for the second operand. */ cond = gen_rtx_fmt_ee ((code == EQ) ? NE : EQ, GET_MODE (op0), op0, op1); emit_insn (gen_rtx_SET (temp2, gen_rtx_IF_THEN_ELSE (mode, cond, operands[3], const0_rtx))); /* Merge the two results, at least one is guaranteed to be zero. */ emit_insn (gen_rtx_SET (operands[0], gen_rtx_IOR (mode, temp, temp2))); } else { if (FLOAT_MODE_P (GET_MODE (operands[2])) && !ISA_HAS_SEL) { operands[2] = force_reg (GET_MODE (operands[0]), operands[2]); operands[3] = force_reg (GET_MODE (operands[0]), operands[3]); } emit_insn (gen_rtx_SET (operands[0], gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), cond, operands[2], operands[3]))); } } /* Perform the comparison in COMPARISON, then trap if the condition holds. */ void mips_expand_conditional_trap (rtx comparison) { rtx op0, op1; machine_mode mode; enum rtx_code code; /* MIPS conditional trap instructions don't have GT or LE flavors, so we must swap the operands and convert to LT and GE respectively. */ code = GET_CODE (comparison); switch (code) { case GT: case LE: case GTU: case LEU: code = swap_condition (code); op0 = XEXP (comparison, 1); op1 = XEXP (comparison, 0); break; default: op0 = XEXP (comparison, 0); op1 = XEXP (comparison, 1); break; } mode = GET_MODE (XEXP (comparison, 0)); op0 = force_reg (mode, op0); if (!(ISA_HAS_COND_TRAPI ? arith_operand (op1, mode) : reg_or_0_operand (op1, mode))) op1 = force_reg (mode, op1); emit_insn (gen_rtx_TRAP_IF (VOIDmode, gen_rtx_fmt_ee (code, mode, op0, op1), const0_rtx)); } /* Initialize *CUM for a call to a function of type FNTYPE. */ void mips_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype) { memset (cum, 0, sizeof (*cum)); cum->prototype = (fntype && prototype_p (fntype)); cum->gp_reg_found = (cum->prototype && stdarg_p (fntype)); } /* Fill INFO with information about a single argument. CUM is the cumulative state for earlier arguments. MODE is the mode of this argument and TYPE is its type (if known). NAMED is true if this is a named (fixed) argument rather than a variable one. */ static void mips_get_arg_info (struct mips_arg_info *info, const CUMULATIVE_ARGS *cum, machine_mode mode, const_tree type, bool named) { bool doubleword_aligned_p; unsigned int num_bytes, num_words, max_regs; /* Work out the size of the argument. */ num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode); num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* Decide whether it should go in a floating-point register, assuming one is free. Later code checks for availability. The checks against UNITS_PER_FPVALUE handle the soft-float and single-float cases. */ switch (mips_abi) { case ABI_EABI: /* The EABI conventions have traditionally been defined in terms of TYPE_MODE, regardless of the actual type. */ info->fpr_p = ((GET_MODE_CLASS (mode) == MODE_FLOAT || mode == V2SFmode) && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE); break; case ABI_32: case ABI_O64: /* Only leading floating-point scalars are passed in floating-point registers. We also handle vector floats the same say, which is OK because they are not covered by the standard ABI. */ gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || mode != V2SFmode); info->fpr_p = (!cum->gp_reg_found && cum->arg_number < 2 && (type == 0 || SCALAR_FLOAT_TYPE_P (type) || VECTOR_FLOAT_TYPE_P (type)) && (GET_MODE_CLASS (mode) == MODE_FLOAT || mode == V2SFmode) && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE); break; case ABI_N32: case ABI_64: /* Scalar, complex and vector floating-point types are passed in floating-point registers, as long as this is a named rather than a variable argument. */ gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || mode != V2SFmode); info->fpr_p = (named && (type == 0 || FLOAT_TYPE_P (type)) && (GET_MODE_CLASS (mode) == MODE_FLOAT || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT || mode == V2SFmode) && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE); /* ??? According to the ABI documentation, the real and imaginary parts of complex floats should be passed in individual registers. The real and imaginary parts of stack arguments are supposed to be contiguous and there should be an extra word of padding at the end. This has two problems. First, it makes it impossible to use a single "void *" va_list type, since register and stack arguments are passed differently. (At the time of writing, MIPSpro cannot handle complex float varargs correctly.) Second, it's unclear what should happen when there is only one register free. For now, we assume that named complex floats should go into FPRs if there are two FPRs free, otherwise they should be passed in the same way as a struct containing two floats. */ if (info->fpr_p && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT && GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE) { if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1) info->fpr_p = false; else num_words = 2; } break; default: gcc_unreachable (); } /* See whether the argument has doubleword alignment. */ doubleword_aligned_p = (mips_function_arg_boundary (mode, type) > BITS_PER_WORD); /* Set REG_OFFSET to the register count we're interested in. The EABI allocates the floating-point registers separately, but the other ABIs allocate them like integer registers. */ info->reg_offset = (mips_abi == ABI_EABI && info->fpr_p ? cum->num_fprs : cum->num_gprs); /* Advance to an even register if the argument is doubleword-aligned. */ if (doubleword_aligned_p) info->reg_offset += info->reg_offset & 1; /* Work out the offset of a stack argument. */ info->stack_offset = cum->stack_words; if (doubleword_aligned_p) info->stack_offset += info->stack_offset & 1; max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset; /* Partition the argument between registers and stack. */ info->reg_words = MIN (num_words, max_regs); info->stack_words = num_words - info->reg_words; } /* INFO describes a register argument that has the normal format for the argument's mode. Return the register it uses, assuming that FPRs are available if HARD_FLOAT_P. */ static unsigned int mips_arg_regno (const struct mips_arg_info *info, bool hard_float_p) { if (!info->fpr_p || !hard_float_p) return GP_ARG_FIRST + info->reg_offset; else if (mips_abi == ABI_32 && TARGET_DOUBLE_FLOAT && info->reg_offset > 0) /* In o32, the second argument is always passed in $f14 for TARGET_DOUBLE_FLOAT, regardless of whether the first argument was a word or doubleword. */ return FP_ARG_FIRST + 2; else return FP_ARG_FIRST + info->reg_offset; } /* Implement TARGET_STRICT_ARGUMENT_NAMING. */ static bool mips_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED) { return !TARGET_OLDABI; } /* Implement TARGET_FUNCTION_ARG. */ static rtx mips_function_arg (cumulative_args_t cum_v, const function_arg_info &arg) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); struct mips_arg_info info; /* We will be called with an end marker after the last argument has been seen. Whatever we return will be passed to the call expander. If we need a MIPS16 fp_code, return a REG with the code stored as the mode. */ if (arg.end_marker_p ()) { if (TARGET_MIPS16 && cum->fp_code != 0) return gen_rtx_REG ((machine_mode) cum->fp_code, 0); else return NULL; } mips_get_arg_info (&info, cum, arg.mode, arg.type, arg.named); /* Return straight away if the whole argument is passed on the stack. */ if (info.reg_offset == MAX_ARGS_IN_REGISTERS) return NULL; /* The n32 and n64 ABIs say that if any 64-bit chunk of the structure contains a double in its entirety, then that 64-bit chunk is passed in a floating-point register. */ if (TARGET_NEWABI && TARGET_HARD_FLOAT && arg.named && arg.type != 0 && TREE_CODE (arg.type) == RECORD_TYPE && TYPE_SIZE_UNIT (arg.type) && tree_fits_uhwi_p (TYPE_SIZE_UNIT (arg.type))) { tree field; /* First check to see if there is any such field. */ for (field = TYPE_FIELDS (arg.type); field; field = DECL_CHAIN (field)) if (TREE_CODE (field) == FIELD_DECL && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field)) && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD && tree_fits_shwi_p (bit_position (field)) && int_bit_position (field) % BITS_PER_WORD == 0) break; if (field != 0) { /* Now handle the special case by returning a PARALLEL indicating where each 64-bit chunk goes. INFO.REG_WORDS chunks are passed in registers. */ unsigned int i; HOST_WIDE_INT bitpos; rtx ret; /* assign_parms checks the mode of ENTRY_PARM, so we must use the actual mode here. */ ret = gen_rtx_PARALLEL (arg.mode, rtvec_alloc (info.reg_words)); bitpos = 0; field = TYPE_FIELDS (arg.type); for (i = 0; i < info.reg_words; i++) { rtx reg; bool zero_width_field_abi_change = false; for (; field; field = DECL_CHAIN (field)) { if (TREE_CODE (field) != FIELD_DECL) continue; /* Ignore zero-width fields. And, if the ignored field is not a C++ zero-width bit-field, it may be an ABI change. */ if (DECL_FIELD_CXX_ZERO_WIDTH_BIT_FIELD (field)) continue; if (DECL_SIZE (field) && integer_zerop (DECL_SIZE (field))) { zero_width_field_abi_change = true; continue; } if (int_bit_position (field) >= bitpos) break; } if (field && int_bit_position (field) == bitpos && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field)) && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD) reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i); else { reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i); zero_width_field_abi_change = false; } if (zero_width_field_abi_change && warn_psabi) { static unsigned last_reported_type_uid; unsigned uid = TYPE_UID (TYPE_MAIN_VARIANT (arg.type)); if (uid != last_reported_type_uid) { static const char *url = CHANGES_ROOT_URL "gcc-12/changes.html#mips_zero_width_fields"; inform (input_location, "the ABI for passing a value containing " "zero-width fields before an adjacent " "64-bit floating-point field was changed " "in GCC %{12.1%}", url); last_reported_type_uid = uid; } } XVECEXP (ret, 0, i) = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (bitpos / BITS_PER_UNIT)); bitpos += BITS_PER_WORD; } return ret; } } /* Handle the n32/n64 conventions for passing complex floating-point arguments in FPR pairs. The real part goes in the lower register and the imaginary part goes in the upper register. */ if (TARGET_NEWABI && info.fpr_p && GET_MODE_CLASS (arg.mode) == MODE_COMPLEX_FLOAT) { rtx real, imag; machine_mode inner; unsigned int regno; inner = GET_MODE_INNER (arg.mode); regno = FP_ARG_FIRST + info.reg_offset; if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner)) { /* Real part in registers, imaginary part on stack. */ gcc_assert (info.stack_words == info.reg_words); return gen_rtx_REG (inner, regno); } else { gcc_assert (info.stack_words == 0); real = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (inner, regno), const0_rtx); imag = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (inner, regno + info.reg_words / 2), GEN_INT (GET_MODE_SIZE (inner))); return gen_rtx_PARALLEL (arg.mode, gen_rtvec (2, real, imag)); } } return gen_rtx_REG (arg.mode, mips_arg_regno (&info, TARGET_HARD_FLOAT)); } /* Implement TARGET_FUNCTION_ARG_ADVANCE. */ static void mips_function_arg_advance (cumulative_args_t cum_v, const function_arg_info &arg) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); struct mips_arg_info info; mips_get_arg_info (&info, cum, arg.mode, arg.type, arg.named); if (!info.fpr_p) cum->gp_reg_found = true; /* See the comment above the CUMULATIVE_ARGS structure in mips.h for an explanation of what this code does. It assumes that we're using either the o32 or the o64 ABI, both of which pass at most 2 arguments in FPRs. */ if (cum->arg_number < 2 && info.fpr_p) cum->fp_code += (arg.mode == SFmode ? 1 : 2) << (cum->arg_number * 2); /* Advance the register count. This has the effect of setting num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned argument required us to skip the final GPR and pass the whole argument on the stack. */ if (mips_abi != ABI_EABI || !info.fpr_p) cum->num_gprs = info.reg_offset + info.reg_words; else if (info.reg_words > 0) cum->num_fprs += MAX_FPRS_PER_FMT; /* Advance the stack word count. */ if (info.stack_words > 0) cum->stack_words = info.stack_offset + info.stack_words; cum->arg_number++; } /* Implement TARGET_ARG_PARTIAL_BYTES. */ static int mips_arg_partial_bytes (cumulative_args_t cum, const function_arg_info &arg) { struct mips_arg_info info; mips_get_arg_info (&info, get_cumulative_args (cum), arg.mode, arg.type, arg.named); return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0; } /* Implement TARGET_FUNCTION_ARG_BOUNDARY. Every parameter gets at least PARM_BOUNDARY bits of alignment, but will be given anything up to STACK_BOUNDARY bits if the type requires it. */ static unsigned int mips_function_arg_boundary (machine_mode mode, const_tree type) { unsigned int alignment; alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode); if (alignment < PARM_BOUNDARY) alignment = PARM_BOUNDARY; if (alignment > STACK_BOUNDARY) alignment = STACK_BOUNDARY; return alignment; } /* Implement TARGET_GET_RAW_RESULT_MODE and TARGET_GET_RAW_ARG_MODE. */ static fixed_size_mode mips_get_reg_raw_mode (int regno) { if (TARGET_FLOATXX && FP_REG_P (regno)) return DFmode; return default_get_reg_raw_mode (regno); } /* Implement TARGET_FUNCTION_ARG_PADDING; return PAD_UPWARD if the first byte of the stack slot has useful data, PAD_DOWNWARD if the last byte does. */ static pad_direction mips_function_arg_padding (machine_mode mode, const_tree type) { /* On little-endian targets, the first byte of every stack argument is passed in the first byte of the stack slot. */ if (!BYTES_BIG_ENDIAN) return PAD_UPWARD; /* Otherwise, integral types are padded downward: the last byte of a stack argument is passed in the last byte of the stack slot. */ if (type != 0 ? (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type) || FIXED_POINT_TYPE_P (type)) : (SCALAR_INT_MODE_P (mode) || ALL_SCALAR_FIXED_POINT_MODE_P (mode))) return PAD_DOWNWARD; /* Big-endian o64 pads floating-point arguments downward. */ if (mips_abi == ABI_O64) if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT) return PAD_DOWNWARD; /* Other types are padded upward for o32, o64, n32 and n64. */ if (mips_abi != ABI_EABI) return PAD_UPWARD; /* Arguments smaller than a stack slot are padded downward. */ if (mode != BLKmode ? GET_MODE_BITSIZE (mode) >= PARM_BOUNDARY : int_size_in_bytes (type) >= (PARM_BOUNDARY / BITS_PER_UNIT)) return PAD_UPWARD; return PAD_DOWNWARD; } /* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...). Return !BYTES_BIG_ENDIAN if the least significant byte of the register has useful data. Return the opposite if the most significant byte does. */ bool mips_pad_reg_upward (machine_mode mode, tree type) { /* No shifting is required for floating-point arguments. */ if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT) return !BYTES_BIG_ENDIAN; /* Otherwise, apply the same padding to register arguments as we do to stack arguments. */ return mips_function_arg_padding (mode, type) == PAD_UPWARD; } /* Return nonzero when an argument must be passed by reference. */ static bool mips_pass_by_reference (cumulative_args_t, const function_arg_info &arg) { if (mips_abi == ABI_EABI) { int size; /* ??? How should SCmode be handled? */ if (arg.mode == DImode || arg.mode == DFmode || arg.mode == DQmode || arg.mode == UDQmode || arg.mode == DAmode || arg.mode == UDAmode) return 0; size = arg.type_size_in_bytes (); return size == -1 || size > UNITS_PER_WORD; } else { /* If we have a variable-sized parameter, we have no choice. */ return targetm.calls.must_pass_in_stack (arg); } } /* Implement TARGET_CALLEE_COPIES. */ static bool mips_callee_copies (cumulative_args_t, const function_arg_info &arg) { return mips_abi == ABI_EABI && arg.named; } /* See whether VALTYPE is a record whose fields should be returned in floating-point registers. If so, return the number of fields and list them in FIELDS (which should have two elements). Return 0 otherwise. For n32 & n64, a structure with one or two fields is returned in floating-point registers as long as every field has a floating-point type. The C++ FE used to remove zero-width bit-fields in GCC 11 and earlier. To make a proper diagnostic, this function will set HAS_CXX_ZERO_WIDTH_BF to true once a C++ zero-width bit-field shows up, and then ignore it. We had failed to ignore C++17 empty bases in GCC 7, 8, 9, 10, and 11. This caused an ABI incompatibility between C++14 and C++17. This is fixed now and to make a proper diagnostic, this function will set HAS_CXX17_EMPTY_BASE to true once a C++17 empty base shows up, and then ignore it. The caller should use the value of HAS_CXX17_EMPTY_BASE and/or HAS_CXX_ZERO_WIDTH_BF to emit a proper -Wpsabi inform. */ static int mips_fpr_return_fields (const_tree valtype, tree *fields, bool *has_cxx_zero_width_bf, bool *has_cxx17_empty_base) { tree field; int i; if (!TARGET_NEWABI) return 0; if (TREE_CODE (valtype) != RECORD_TYPE) return 0; i = 0; for (field = TYPE_FIELDS (valtype); field != 0; field = DECL_CHAIN (field)) { if (TREE_CODE (field) != FIELD_DECL) continue; if (cxx17_empty_base_field_p (field)) { *has_cxx17_empty_base = true; continue; } if (DECL_FIELD_CXX_ZERO_WIDTH_BIT_FIELD (field)) { *has_cxx_zero_width_bf = true; continue; } if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))) return 0; if (i == 2) return 0; fields[i++] = field; } return i; } /* Implement TARGET_RETURN_IN_MSB. For n32 & n64, we should return a value in the most significant part of $2/$3 if: - the target is big-endian; - the value has a structure or union type (we generalize this to cover aggregates from other languages too); and - the structure is not returned in floating-point registers. */ static bool mips_return_in_msb (const_tree valtype) { if (!TARGET_NEWABI || !TARGET_BIG_ENDIAN || !AGGREGATE_TYPE_P (valtype)) return false; tree fields[2]; bool has_cxx_zero_width_bf = false; /* Its value is not used. */ bool has_cxx17_empty_base = false; return (mips_fpr_return_fields (valtype, fields, &has_cxx_zero_width_bf, &has_cxx17_empty_base) == 0 || has_cxx_zero_width_bf); } /* Return true if the function return value MODE will get returned in a floating-point register. */ static bool mips_return_mode_in_fpr_p (machine_mode mode) { gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || mode != V2SFmode); return ((GET_MODE_CLASS (mode) == MODE_FLOAT || mode == V2SFmode || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_HWFPVALUE); } /* Return the representation of an FPR return register when the value being returned in FP_RETURN has mode VALUE_MODE and the return type itself has mode TYPE_MODE. On NewABI targets, the two modes may be different for structures like: struct __attribute__((packed)) foo { float f; } where we return the SFmode value of "f" in FP_RETURN, but where the structure itself has mode BLKmode. */ static rtx mips_return_fpr_single (machine_mode type_mode, machine_mode value_mode) { rtx x; x = gen_rtx_REG (value_mode, FP_RETURN); if (type_mode != value_mode) { x = gen_rtx_EXPR_LIST (VOIDmode, x, const0_rtx); x = gen_rtx_PARALLEL (type_mode, gen_rtvec (1, x)); } return x; } /* Return a composite value in a pair of floating-point registers. MODE1 and OFFSET1 are the mode and byte offset for the first value, likewise MODE2 and OFFSET2 for the second. MODE is the mode of the complete value. For n32 & n64, $f0 always holds the first value and $f2 the second. Otherwise the values are packed together as closely as possible. */ static rtx mips_return_fpr_pair (machine_mode mode, machine_mode mode1, HOST_WIDE_INT offset1, machine_mode mode2, HOST_WIDE_INT offset2) { int inc; inc = (TARGET_NEWABI || mips_abi == ABI_32 ? 2 : MAX_FPRS_PER_FMT); return gen_rtx_PARALLEL (mode, gen_rtvec (2, gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode1, FP_RETURN), GEN_INT (offset1)), gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode2, FP_RETURN + inc), GEN_INT (offset2)))); } /* Implement TARGET_FUNCTION_VALUE and TARGET_LIBCALL_VALUE. For normal calls, VALTYPE is the return type and MODE is VOIDmode. For libcalls, VALTYPE is null and MODE is the mode of the return value. */ static rtx mips_function_value_1 (const_tree valtype, const_tree fn_decl_or_type, machine_mode mode) { if (valtype) { tree fields[2]; int unsigned_p; const_tree func; if (fn_decl_or_type && DECL_P (fn_decl_or_type)) func = fn_decl_or_type; else func = NULL; mode = TYPE_MODE (valtype); unsigned_p = TYPE_UNSIGNED (valtype); /* Since TARGET_PROMOTE_FUNCTION_MODE unconditionally promotes, return values, promote the mode here too. */ mode = promote_function_mode (valtype, mode, &unsigned_p, func, 1); bool has_cxx_zero_width_bf = false; bool has_cxx17_empty_base = false; int use_fpr = mips_fpr_return_fields (valtype, fields, &has_cxx_zero_width_bf, &has_cxx17_empty_base); /* If has_cxx_zero_width_bf and has_cxx17_empty_base are both true, it *happens* that there is no ABI change. So we won't inform in this case. */ if (TARGET_HARD_FLOAT && warn_psabi && has_cxx_zero_width_bf && !has_cxx17_empty_base && use_fpr != 0) { static unsigned last_reported_type_uid; unsigned uid = TYPE_UID (TYPE_MAIN_VARIANT (valtype)); if (uid != last_reported_type_uid) { static const char *url = CHANGES_ROOT_URL "gcc-12/changes.html#zero_width_bitfields"; inform (input_location, "the ABI for returning a value containing " "zero-width bit-fields but otherwise an aggregate " "with only one or two floating-point fields was " "changed in GCC %{12.1%}", url); last_reported_type_uid = uid; } } if (has_cxx_zero_width_bf) use_fpr = 0; if (TARGET_HARD_FLOAT && warn_psabi && use_fpr != 0 && has_cxx17_empty_base) { static unsigned last_reported_type_uid; unsigned uid = TYPE_UID (TYPE_MAIN_VARIANT (valtype)); if (uid != last_reported_type_uid) { static const char *url = CHANGES_ROOT_URL "gcc-12/changes.html#mips_cxx17_empty_bases"; inform (input_location, "the ABI for returning a value with C++17 empty " "bases but otherwise an aggregate with only one or " "two floating-point fields was changed in GCC " "%{12.1%}", url); last_reported_type_uid = uid; } } /* Handle structures whose fields are returned in $f0/$f2. */ switch (use_fpr) { case 1: return mips_return_fpr_single (mode, TYPE_MODE (TREE_TYPE (fields[0]))); case 2: return mips_return_fpr_pair (mode, TYPE_MODE (TREE_TYPE (fields[0])), int_byte_position (fields[0]), TYPE_MODE (TREE_TYPE (fields[1])), int_byte_position (fields[1])); } /* If a value is passed in the most significant part of a register, see whether we have to round the mode up to a whole number of words. */ if (mips_return_in_msb (valtype)) { HOST_WIDE_INT size = int_size_in_bytes (valtype); if (size % UNITS_PER_WORD != 0) { size += UNITS_PER_WORD - size % UNITS_PER_WORD; mode = int_mode_for_size (size * BITS_PER_UNIT, 0).require (); } } /* For EABI, the class of return register depends entirely on MODE. For example, "struct { some_type x; }" and "union { some_type x; }" are returned in the same way as a bare "some_type" would be. Other ABIs only use FPRs for scalar, complex or vector types. */ if (mips_abi != ABI_EABI && !FLOAT_TYPE_P (valtype)) return gen_rtx_REG (mode, GP_RETURN); } if (!TARGET_MIPS16) { /* Handle long doubles for n32 & n64. */ if (mode == TFmode) return mips_return_fpr_pair (mode, DImode, 0, DImode, GET_MODE_SIZE (mode) / 2); if (mips_return_mode_in_fpr_p (mode)) { if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) return mips_return_fpr_pair (mode, GET_MODE_INNER (mode), 0, GET_MODE_INNER (mode), GET_MODE_SIZE (mode) / 2); else return gen_rtx_REG (mode, FP_RETURN); } } return gen_rtx_REG (mode, GP_RETURN); } /* Implement TARGET_FUNCTION_VALUE. */ static rtx mips_function_value (const_tree valtype, const_tree fn_decl_or_type, bool outgoing ATTRIBUTE_UNUSED) { return mips_function_value_1 (valtype, fn_decl_or_type, VOIDmode); } /* Implement TARGET_LIBCALL_VALUE. */ static rtx mips_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED) { return mips_function_value_1 (NULL_TREE, NULL_TREE, mode); } /* Implement TARGET_FUNCTION_VALUE_REGNO_P. On the MIPS, R2 R3 and F0 F2 are the only register thus used. */ static bool mips_function_value_regno_p (const unsigned int regno) { /* Most types only require one GPR or one FPR for return values but for hard-float two FPRs can be used for _Complex types (for all ABIs) and long doubles (for n64). */ if (regno == GP_RETURN || regno == FP_RETURN || (FP_RETURN != GP_RETURN && regno == FP_RETURN + 2)) return true; /* For o32 FP32, _Complex double will be returned in four 32-bit registers. This does not apply to o32 FPXX as floating-point function argument and return registers are described as 64-bit even though floating-point registers are primarily described as 32-bit internally. See: mips_get_reg_raw_mode. */ if ((mips_abi == ABI_32 && TARGET_FLOAT32) && FP_RETURN != GP_RETURN && (regno == FP_RETURN + 1 || regno == FP_RETURN + 3)) return true; return false; } /* Implement TARGET_RETURN_IN_MEMORY. Under the o32 and o64 ABIs, all BLKmode objects are returned in memory. Under the n32, n64 and embedded ABIs, small structures are returned in a register. Objects with varying size must still be returned in memory, of course. */ static bool mips_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED) { if (TARGET_OLDABI) /* Ensure that any floating point vector types are returned via memory even if they are supported through a vector mode with some ASEs. */ return (VECTOR_FLOAT_TYPE_P (type) || TYPE_MODE (type) == BLKmode); return (!IN_RANGE (int_size_in_bytes (type), 0, 2 * UNITS_PER_WORD)); } /* Implement TARGET_SETUP_INCOMING_VARARGS. */ static void mips_setup_incoming_varargs (cumulative_args_t cum, const function_arg_info &arg, int *pretend_size ATTRIBUTE_UNUSED, int no_rtl) { CUMULATIVE_ARGS local_cum; int gp_saved, fp_saved; /* The caller has advanced CUM up to, but not beyond, the last named argument. Advance a local copy of CUM past the last "real" named argument, to find out how many registers are left over. */ local_cum = *get_cumulative_args (cum); mips_function_arg_advance (pack_cumulative_args (&local_cum), arg); /* Found out how many registers we need to save. */ gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs; fp_saved = (EABI_FLOAT_VARARGS_P ? MAX_ARGS_IN_REGISTERS - local_cum.num_fprs : 0); if (!no_rtl) { if (gp_saved > 0) { rtx ptr, mem; ptr = plus_constant (Pmode, virtual_incoming_args_rtx, REG_PARM_STACK_SPACE (cfun->decl) - gp_saved * UNITS_PER_WORD); mem = gen_frame_mem (BLKmode, ptr); set_mem_alias_set (mem, get_varargs_alias_set ()); move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST, mem, gp_saved); } if (fp_saved > 0) { /* We can't use move_block_from_reg, because it will use the wrong mode. */ machine_mode mode; int off, i; /* Set OFF to the offset from virtual_incoming_args_rtx of the first float register. The FP save area lies below the integer one, and is aligned to UNITS_PER_FPVALUE bytes. */ off = ROUND_DOWN (-gp_saved * UNITS_PER_WORD, UNITS_PER_FPVALUE); off -= fp_saved * UNITS_PER_FPREG; mode = TARGET_SINGLE_FLOAT ? SFmode : DFmode; for (i = local_cum.num_fprs; i < MAX_ARGS_IN_REGISTERS; i += MAX_FPRS_PER_FMT) { rtx ptr, mem; ptr = plus_constant (Pmode, virtual_incoming_args_rtx, off); mem = gen_frame_mem (mode, ptr); set_mem_alias_set (mem, get_varargs_alias_set ()); mips_emit_move (mem, gen_rtx_REG (mode, FP_ARG_FIRST + i)); off += UNITS_PER_HWFPVALUE; } } } if (REG_PARM_STACK_SPACE (cfun->decl) == 0) cfun->machine->varargs_size = (gp_saved * UNITS_PER_WORD + fp_saved * UNITS_PER_FPREG); } /* Implement TARGET_BUILTIN_VA_LIST. */ static tree mips_build_builtin_va_list (void) { if (EABI_FLOAT_VARARGS_P) { /* We keep 3 pointers, and two offsets. Two pointers are to the overflow area, which starts at the CFA. One of these is constant, for addressing into the GPR save area below it. The other is advanced up the stack through the overflow region. The third pointer is to the bottom of the GPR save area. Since the FPR save area is just below it, we can address FPR slots off this pointer. We also keep two one-byte offsets, which are to be subtracted from the constant pointers to yield addresses in the GPR and FPR save areas. These are downcounted as float or non-float arguments are used, and when they get to zero, the argument must be obtained from the overflow region. */ tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff, f_res, record; tree array, index; record = lang_hooks.types.make_type (RECORD_TYPE); f_ovfl = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__overflow_argptr"), ptr_type_node); f_gtop = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__gpr_top"), ptr_type_node); f_ftop = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__fpr_top"), ptr_type_node); f_goff = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__gpr_offset"), unsigned_char_type_node); f_foff = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__fpr_offset"), unsigned_char_type_node); /* Explicitly pad to the size of a pointer, so that -Wpadded won't warn on every user file. */ index = build_int_cst (NULL_TREE, GET_MODE_SIZE (ptr_mode) - 2 - 1); array = build_array_type (unsigned_char_type_node, build_index_type (index)); f_res = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__reserved"), array); DECL_FIELD_CONTEXT (f_ovfl) = record; DECL_FIELD_CONTEXT (f_gtop) = record; DECL_FIELD_CONTEXT (f_ftop) = record; DECL_FIELD_CONTEXT (f_goff) = record; DECL_FIELD_CONTEXT (f_foff) = record; DECL_FIELD_CONTEXT (f_res) = record; TYPE_FIELDS (record) = f_ovfl; DECL_CHAIN (f_ovfl) = f_gtop; DECL_CHAIN (f_gtop) = f_ftop; DECL_CHAIN (f_ftop) = f_goff; DECL_CHAIN (f_goff) = f_foff; DECL_CHAIN (f_foff) = f_res; layout_type (record); return record; } else /* Otherwise, we use 'void *'. */ return ptr_type_node; } /* Implement TARGET_EXPAND_BUILTIN_VA_START. */ static void mips_va_start (tree valist, rtx nextarg) { if (EABI_FLOAT_VARARGS_P) { const CUMULATIVE_ARGS *cum; tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff; tree ovfl, gtop, ftop, goff, foff; tree t; int gpr_save_area_size; int fpr_save_area_size; int fpr_offset; cum = &crtl->args.info; gpr_save_area_size = (MAX_ARGS_IN_REGISTERS - cum->num_gprs) * UNITS_PER_WORD; fpr_save_area_size = (MAX_ARGS_IN_REGISTERS - cum->num_fprs) * UNITS_PER_FPREG; f_ovfl = TYPE_FIELDS (va_list_type_node); f_gtop = DECL_CHAIN (f_ovfl); f_ftop = DECL_CHAIN (f_gtop); f_goff = DECL_CHAIN (f_ftop); f_foff = DECL_CHAIN (f_goff); ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl, NULL_TREE); gtop = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop, NULL_TREE); ftop = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop, NULL_TREE); goff = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff, NULL_TREE); foff = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff, NULL_TREE); /* Emit code to initialize OVFL, which points to the next varargs stack argument. CUM->STACK_WORDS gives the number of stack words used by named arguments. */ t = make_tree (TREE_TYPE (ovfl), virtual_incoming_args_rtx); if (cum->stack_words > 0) t = fold_build_pointer_plus_hwi (t, cum->stack_words * UNITS_PER_WORD); t = build2 (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Emit code to initialize GTOP, the top of the GPR save area. */ t = make_tree (TREE_TYPE (gtop), virtual_incoming_args_rtx); t = build2 (MODIFY_EXPR, TREE_TYPE (gtop), gtop, t); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Emit code to initialize FTOP, the top of the FPR save area. This address is gpr_save_area_bytes below GTOP, rounded down to the next fp-aligned boundary. */ t = make_tree (TREE_TYPE (ftop), virtual_incoming_args_rtx); fpr_offset = gpr_save_area_size + UNITS_PER_FPVALUE - 1; fpr_offset &= -UNITS_PER_FPVALUE; if (fpr_offset) t = fold_build_pointer_plus_hwi (t, -fpr_offset); t = build2 (MODIFY_EXPR, TREE_TYPE (ftop), ftop, t); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Emit code to initialize GOFF, the offset from GTOP of the next GPR argument. */ t = build2 (MODIFY_EXPR, TREE_TYPE (goff), goff, build_int_cst (TREE_TYPE (goff), gpr_save_area_size)); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Likewise emit code to initialize FOFF, the offset from FTOP of the next FPR argument. */ t = build2 (MODIFY_EXPR, TREE_TYPE (foff), foff, build_int_cst (TREE_TYPE (foff), fpr_save_area_size)); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } else { nextarg = plus_constant (Pmode, nextarg, -cfun->machine->varargs_size); std_expand_builtin_va_start (valist, nextarg); } } /* Like std_gimplify_va_arg_expr, but apply alignment to zero-sized types as well. */ static tree mips_std_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p, gimple_seq *post_p) { tree addr, t, type_size, rounded_size, valist_tmp; unsigned HOST_WIDE_INT align, boundary; bool indirect; indirect = pass_va_arg_by_reference (type); if (indirect) type = build_pointer_type (type); align = PARM_BOUNDARY / BITS_PER_UNIT; boundary = targetm.calls.function_arg_boundary (TYPE_MODE (type), type); /* When we align parameter on stack for caller, if the parameter alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee here with caller. */ if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT) boundary = MAX_SUPPORTED_STACK_ALIGNMENT; boundary /= BITS_PER_UNIT; /* Hoist the valist value into a temporary for the moment. */ valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL); /* va_list pointer is aligned to PARM_BOUNDARY. If argument actually requires greater alignment, we must perform dynamic alignment. */ if (boundary > align) { t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp, fold_build_pointer_plus_hwi (valist_tmp, boundary - 1)); gimplify_and_add (t, pre_p); t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp, fold_build2 (BIT_AND_EXPR, TREE_TYPE (valist), valist_tmp, build_int_cst (TREE_TYPE (valist), -boundary))); gimplify_and_add (t, pre_p); } else boundary = align; /* If the actual alignment is less than the alignment of the type, adjust the type accordingly so that we don't assume strict alignment when dereferencing the pointer. */ boundary *= BITS_PER_UNIT; if (boundary < TYPE_ALIGN (type)) { type = build_variant_type_copy (type); SET_TYPE_ALIGN (type, boundary); } /* Compute the rounded size of the type. */ type_size = size_in_bytes (type); rounded_size = round_up (type_size, align); /* Reduce rounded_size so it's sharable with the postqueue. */ gimplify_expr (&rounded_size, pre_p, post_p, is_gimple_val, fb_rvalue); /* Get AP. */ addr = valist_tmp; if (PAD_VARARGS_DOWN && !integer_zerop (rounded_size)) { /* Small args are padded downward. */ t = fold_build2_loc (input_location, GT_EXPR, sizetype, rounded_size, size_int (align)); t = fold_build3 (COND_EXPR, sizetype, t, size_zero_node, size_binop (MINUS_EXPR, rounded_size, type_size)); addr = fold_build_pointer_plus (addr, t); } /* Compute new value for AP. */ t = fold_build_pointer_plus (valist_tmp, rounded_size); t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t); gimplify_and_add (t, pre_p); addr = fold_convert (build_pointer_type (type), addr); if (indirect) addr = build_va_arg_indirect_ref (addr); return build_va_arg_indirect_ref (addr); } /* Implement TARGET_GIMPLIFY_VA_ARG_EXPR. */ static tree mips_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p, gimple_seq *post_p) { tree addr; bool indirect_p; indirect_p = pass_va_arg_by_reference (type); if (indirect_p) type = build_pointer_type (type); if (!EABI_FLOAT_VARARGS_P) addr = mips_std_gimplify_va_arg_expr (valist, type, pre_p, post_p); else { tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff; tree ovfl, top, off, align; HOST_WIDE_INT size, rsize, osize; tree t, u; f_ovfl = TYPE_FIELDS (va_list_type_node); f_gtop = DECL_CHAIN (f_ovfl); f_ftop = DECL_CHAIN (f_gtop); f_goff = DECL_CHAIN (f_ftop); f_foff = DECL_CHAIN (f_goff); /* Let: TOP be the top of the GPR or FPR save area; OFF be the offset from TOP of the next register; ADDR_RTX be the address of the argument; SIZE be the number of bytes in the argument type; RSIZE be the number of bytes used to store the argument when it's in the register save area; and OSIZE be the number of bytes used to store it when it's in the stack overflow area. The code we want is: 1: off &= -rsize; // round down 2: if (off != 0) 3: { 4: addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0); 5: off -= rsize; 6: } 7: else 8: { 9: ovfl = ((intptr_t) ovfl + osize - 1) & -osize; 10: addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0); 11: ovfl += osize; 14: } [1] and [9] can sometimes be optimized away. */ ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl, NULL_TREE); size = int_size_in_bytes (type); if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FPVALUE) { top = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), unshare_expr (valist), f_ftop, NULL_TREE); off = build3 (COMPONENT_REF, TREE_TYPE (f_foff), unshare_expr (valist), f_foff, NULL_TREE); /* When va_start saves FPR arguments to the stack, each slot takes up UNITS_PER_HWFPVALUE bytes, regardless of the argument's precision. */ rsize = UNITS_PER_HWFPVALUE; /* Overflow arguments are padded to UNITS_PER_WORD bytes (= PARM_BOUNDARY bits). This can be different from RSIZE in two cases: (1) On 32-bit targets when TYPE is a structure such as: struct s { float f; }; Such structures are passed in paired FPRs, so RSIZE will be 8 bytes. However, the structure only takes up 4 bytes of memory, so OSIZE will only be 4. (2) In combinations such as -mgp64 -msingle-float -fshort-double. Doubles passed in registers will then take up 4 (UNITS_PER_HWFPVALUE) bytes, but those passed on the stack take up UNITS_PER_WORD bytes. */ osize = MAX (GET_MODE_SIZE (TYPE_MODE (type)), UNITS_PER_WORD); } else { top = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), unshare_expr (valist), f_gtop, NULL_TREE); off = build3 (COMPONENT_REF, TREE_TYPE (f_goff), unshare_expr (valist), f_goff, NULL_TREE); rsize = ROUND_UP (size, UNITS_PER_WORD); if (rsize > UNITS_PER_WORD) { /* [1] Emit code for: off &= -rsize. */ t = build2 (BIT_AND_EXPR, TREE_TYPE (off), unshare_expr (off), build_int_cst (TREE_TYPE (off), -rsize)); gimplify_assign (unshare_expr (off), t, pre_p); } osize = rsize; } /* [2] Emit code to branch if off == 0. */ t = build2 (NE_EXPR, boolean_type_node, unshare_expr (off), build_int_cst (TREE_TYPE (off), 0)); addr = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE); /* [5] Emit code for: off -= rsize. We do this as a form of post-decrement not available to C. */ t = fold_convert (TREE_TYPE (off), build_int_cst (NULL_TREE, rsize)); t = build2 (POSTDECREMENT_EXPR, TREE_TYPE (off), off, t); /* [4] Emit code for: addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0). */ t = fold_convert (sizetype, t); t = fold_build1 (NEGATE_EXPR, sizetype, t); t = fold_build_pointer_plus (top, t); if (BYTES_BIG_ENDIAN && rsize > size) t = fold_build_pointer_plus_hwi (t, rsize - size); COND_EXPR_THEN (addr) = t; if (osize > UNITS_PER_WORD) { /* [9] Emit: ovfl = ((intptr_t) ovfl + osize - 1) & -osize. */ t = fold_build_pointer_plus_hwi (unshare_expr (ovfl), osize - 1); u = build_int_cst (TREE_TYPE (t), -osize); t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, u); align = build2 (MODIFY_EXPR, TREE_TYPE (ovfl), unshare_expr (ovfl), t); } else align = NULL; /* [10, 11] Emit code for: addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0) ovfl += osize. */ u = fold_convert (TREE_TYPE (ovfl), build_int_cst (NULL_TREE, osize)); t = build2 (POSTINCREMENT_EXPR, TREE_TYPE (ovfl), ovfl, u); if (BYTES_BIG_ENDIAN && osize > size) t = fold_build_pointer_plus_hwi (t, osize - size); /* String [9] and [10, 11] together. */ if (align) t = build2 (COMPOUND_EXPR, TREE_TYPE (t), align, t); COND_EXPR_ELSE (addr) = t; addr = fold_convert (build_pointer_type (type), addr); addr = build_va_arg_indirect_ref (addr); } if (indirect_p) addr = build_va_arg_indirect_ref (addr); return addr; } /* Declare a unique, locally-binding function called NAME, then start its definition. */ static void mips_start_unique_function (const char *name) { tree decl; decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name), build_function_type_list (void_type_node, NULL_TREE)); DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL, NULL_TREE, void_type_node); TREE_PUBLIC (decl) = 1; TREE_STATIC (decl) = 1; cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl)); targetm.asm_out.unique_section (decl, 0); switch_to_section (get_named_section (decl, NULL, 0)); targetm.asm_out.globalize_label (asm_out_file, name); fputs ("\t.hidden\t", asm_out_file); assemble_name (asm_out_file, name); putc ('\n', asm_out_file); } /* Start a definition of function NAME. MIPS16_P indicates whether the function contains MIPS16 code. */ static void mips_start_function_definition (const char *name, bool mips16_p) { if (mips16_p) fprintf (asm_out_file, "\t.set\tmips16\n"); else fprintf (asm_out_file, "\t.set\tnomips16\n"); if (TARGET_MICROMIPS) fprintf (asm_out_file, "\t.set\tmicromips\n"); #ifdef HAVE_GAS_MICROMIPS else fprintf (asm_out_file, "\t.set\tnomicromips\n"); #endif if (!flag_inhibit_size_directive) { fputs ("\t.ent\t", asm_out_file); assemble_name (asm_out_file, name); fputs ("\n", asm_out_file); } ASM_OUTPUT_TYPE_DIRECTIVE (asm_out_file, name, "function"); /* Start the definition proper. */ assemble_name (asm_out_file, name); fputs (":\n", asm_out_file); } /* End a function definition started by mips_start_function_definition. */ static void mips_end_function_definition (const char *name) { if (!flag_inhibit_size_directive) { fputs ("\t.end\t", asm_out_file); assemble_name (asm_out_file, name); fputs ("\n", asm_out_file); } } /* If *STUB_PTR points to a stub, output a comdat-style definition for it, then free *STUB_PTR. */ static void mips_finish_stub (mips_one_only_stub **stub_ptr) { mips_one_only_stub *stub = *stub_ptr; if (!stub) return; const char *name = stub->get_name (); mips_start_unique_function (name); mips_start_function_definition (name, false); stub->output_body (); mips_end_function_definition (name); delete stub; *stub_ptr = 0; } /* Return true if calls to X can use R_MIPS_CALL* relocations. */ static bool mips_ok_for_lazy_binding_p (rtx x) { return (TARGET_USE_GOT && GET_CODE (x) == SYMBOL_REF && !SYMBOL_REF_BIND_NOW_P (x) && !mips_symbol_binds_local_p (x)); } /* Load function address ADDR into register DEST. TYPE is as for mips_expand_call. Return true if we used an explicit lazy-binding sequence. */ static bool mips_load_call_address (enum mips_call_type type, rtx dest, rtx addr) { /* If we're generating PIC, and this call is to a global function, try to allow its address to be resolved lazily. This isn't possible for sibcalls when $gp is call-saved because the value of $gp on entry to the stub would be our caller's gp, not ours. */ if (TARGET_EXPLICIT_RELOCS && !(type == MIPS_CALL_SIBCALL && TARGET_CALL_SAVED_GP) && mips_ok_for_lazy_binding_p (addr)) { addr = mips_got_load (dest, addr, SYMBOL_GOTOFF_CALL); emit_insn (gen_rtx_SET (dest, addr)); return true; } else { mips_emit_move (dest, addr); return false; } } /* Each locally-defined hard-float MIPS16 function has a local symbol associated with it. This hash table maps the function symbol (FUNC) to the local symbol (LOCAL). */ static GTY (()) hash_map *mips16_local_aliases; /* FUNC is the symbol for a locally-defined hard-float MIPS16 function. Return a local alias for it, creating a new one if necessary. */ static rtx mips16_local_alias (rtx func) { /* Create the hash table if this is the first call. */ if (mips16_local_aliases == NULL) mips16_local_aliases = hash_map::create_ggc (37); /* Look up the function symbol, creating a new entry if need be. */ bool existed; const char *func_name = XSTR (func, 0); rtx *slot = &mips16_local_aliases->get_or_insert (func_name, &existed); gcc_assert (slot != NULL); if (!existed) { rtx local; /* Create a new SYMBOL_REF for the local symbol. The choice of __fn_local_* is based on the __fn_stub_* names that we've traditionally used for the non-MIPS16 stub. */ func_name = targetm.strip_name_encoding (XSTR (func, 0)); const char *local_name = ACONCAT (("__fn_local_", func_name, NULL)); local = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (local_name)); SYMBOL_REF_FLAGS (local) = SYMBOL_REF_FLAGS (func) | SYMBOL_FLAG_LOCAL; /* Create a new structure to represent the mapping. */ *slot = local; } return *slot; } /* A chained list of functions for which mips16_build_call_stub has already generated a stub. NAME is the name of the function and FP_RET_P is true if the function returns a value in floating-point registers. */ struct mips16_stub { struct mips16_stub *next; char *name; bool fp_ret_p; }; static struct mips16_stub *mips16_stubs; /* Return the two-character string that identifies floating-point return mode MODE in the name of a MIPS16 function stub. */ static const char * mips16_call_stub_mode_suffix (machine_mode mode) { if (mode == SFmode) return "sf"; else if (mode == DFmode) return "df"; else if (mode == SCmode) return "sc"; else if (mode == DCmode) return "dc"; else if (mode == V2SFmode) { gcc_assert (TARGET_PAIRED_SINGLE_FLOAT); return "df"; } else gcc_unreachable (); } /* Write instructions to move a 32-bit value between general register GPREG and floating-point register FPREG. DIRECTION is 't' to move from GPREG to FPREG and 'f' to move in the opposite direction. */ static void mips_output_32bit_xfer (char direction, unsigned int gpreg, unsigned int fpreg) { fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction, reg_names[gpreg], reg_names[fpreg]); } /* Likewise for 64-bit values. */ static void mips_output_64bit_xfer (char direction, unsigned int gpreg, unsigned int fpreg) { if (TARGET_64BIT) fprintf (asm_out_file, "\tdm%cc1\t%s,%s\n", direction, reg_names[gpreg], reg_names[fpreg]); else if (ISA_HAS_MXHC1) { fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction, reg_names[gpreg + TARGET_BIG_ENDIAN], reg_names[fpreg]); fprintf (asm_out_file, "\tm%chc1\t%s,%s\n", direction, reg_names[gpreg + TARGET_LITTLE_ENDIAN], reg_names[fpreg]); } else if (TARGET_FLOATXX && direction == 't') { /* Use the argument save area to move via memory. */ fprintf (asm_out_file, "\tsw\t%s,0($sp)\n", reg_names[gpreg]); fprintf (asm_out_file, "\tsw\t%s,4($sp)\n", reg_names[gpreg + 1]); fprintf (asm_out_file, "\tldc1\t%s,0($sp)\n", reg_names[fpreg]); } else if (TARGET_FLOATXX && direction == 'f') { /* Use the argument save area to move via memory. */ fprintf (asm_out_file, "\tsdc1\t%s,0($sp)\n", reg_names[fpreg]); fprintf (asm_out_file, "\tlw\t%s,0($sp)\n", reg_names[gpreg]); fprintf (asm_out_file, "\tlw\t%s,4($sp)\n", reg_names[gpreg + 1]); } else { /* Move the least-significant word. */ fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction, reg_names[gpreg + TARGET_BIG_ENDIAN], reg_names[fpreg]); /* ...then the most significant word. */ fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction, reg_names[gpreg + TARGET_LITTLE_ENDIAN], reg_names[fpreg + 1]); } } /* Write out code to move floating-point arguments into or out of general registers. FP_CODE is the code describing which arguments are present (see the comment above the definition of CUMULATIVE_ARGS in mips.h). DIRECTION is as for mips_output_32bit_xfer. */ static void mips_output_args_xfer (int fp_code, char direction) { unsigned int gparg, fparg, f; CUMULATIVE_ARGS cum; /* This code only works for o32 and o64. */ gcc_assert (TARGET_OLDABI); mips_init_cumulative_args (&cum, NULL); for (f = (unsigned int) fp_code; f != 0; f >>= 2) { machine_mode mode; struct mips_arg_info info; if ((f & 3) == 1) mode = SFmode; else if ((f & 3) == 2) mode = DFmode; else gcc_unreachable (); mips_get_arg_info (&info, &cum, mode, NULL, true); gparg = mips_arg_regno (&info, false); fparg = mips_arg_regno (&info, true); if (mode == SFmode) mips_output_32bit_xfer (direction, gparg, fparg); else mips_output_64bit_xfer (direction, gparg, fparg); function_arg_info arg (mode, /*named=*/true); mips_function_arg_advance (pack_cumulative_args (&cum), arg); } } /* Write a MIPS16 stub for the current function. This stub is used for functions which take arguments in the floating-point registers. It is normal-mode code that moves the floating-point arguments into the general registers and then jumps to the MIPS16 code. */ static void mips16_build_function_stub (void) { const char *fnname, *alias_name, *separator; char *secname, *stubname; tree stubdecl; unsigned int f; rtx symbol, alias; /* Create the name of the stub, and its unique section. */ symbol = XEXP (DECL_RTL (current_function_decl), 0); alias = mips16_local_alias (symbol); fnname = targetm.strip_name_encoding (XSTR (symbol, 0)); alias_name = targetm.strip_name_encoding (XSTR (alias, 0)); secname = ACONCAT ((".mips16.fn.", fnname, NULL)); stubname = ACONCAT (("__fn_stub_", fnname, NULL)); /* Build a decl for the stub. */ stubdecl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (stubname), build_function_type_list (void_type_node, NULL_TREE)); set_decl_section_name (stubdecl, secname); DECL_RESULT (stubdecl) = build_decl (BUILTINS_LOCATION, RESULT_DECL, NULL_TREE, void_type_node); /* Output a comment. */ fprintf (asm_out_file, "\t# Stub function for %s (", current_function_name ()); separator = ""; for (f = (unsigned int) crtl->args.info.fp_code; f != 0; f >>= 2) { fprintf (asm_out_file, "%s%s", separator, (f & 3) == 1 ? "float" : "double"); separator = ", "; } fprintf (asm_out_file, ")\n"); /* Start the function definition. */ assemble_start_function (stubdecl, stubname); mips_start_function_definition (stubname, false); /* If generating pic2 code, either set up the global pointer or switch to pic0. */ if (TARGET_ABICALLS_PIC2) { if (TARGET_ABSOLUTE_ABICALLS) fprintf (asm_out_file, "\t.option\tpic0\n"); else { output_asm_insn ("%(.cpload\t%^%)", NULL); /* Emit an R_MIPS_NONE relocation to tell the linker what the target function is. Use a local GOT access when loading the symbol, to cut down on the number of unnecessary GOT entries for stubs that aren't needed. */ output_asm_insn (".reloc\t0,R_MIPS_NONE,%0", &symbol); symbol = alias; } } /* Load the address of the MIPS16 function into $25. Do this first so that targets with coprocessor interlocks can use an MFC1 to fill the delay slot. */ output_asm_insn ("la\t%^,%0", &symbol); /* Move the arguments from floating-point registers to general registers. */ mips_output_args_xfer (crtl->args.info.fp_code, 'f'); /* Jump to the MIPS16 function. */ output_asm_insn ("jr\t%^", NULL); if (TARGET_ABICALLS_PIC2 && TARGET_ABSOLUTE_ABICALLS) fprintf (asm_out_file, "\t.option\tpic2\n"); mips_end_function_definition (stubname); /* If the linker needs to create a dynamic symbol for the target function, it will associate the symbol with the stub (which, unlike the target function, follows the proper calling conventions). It is therefore useful to have a local alias for the target function, so that it can still be identified as MIPS16 code. As an optimization, this symbol can also be used for indirect MIPS16 references from within this file. */ ASM_OUTPUT_DEF (asm_out_file, alias_name, fnname); switch_to_section (function_section (current_function_decl)); } /* The current function is a MIPS16 function that returns a value in an FPR. Copy the return value from its soft-float to its hard-float location. libgcc2 has special non-MIPS16 helper functions for each case. */ static void mips16_copy_fpr_return_value (void) { rtx fn, insn, retval; tree return_type; machine_mode return_mode; const char *name; return_type = DECL_RESULT (current_function_decl); return_mode = DECL_MODE (return_type); name = ACONCAT (("__mips16_ret_", mips16_call_stub_mode_suffix (return_mode), NULL)); fn = mips16_stub_function (name); /* The function takes arguments in $2 (and possibly $3), so calls to it cannot be lazily bound. */ SYMBOL_REF_FLAGS (fn) |= SYMBOL_FLAG_BIND_NOW; /* Model the call as something that takes the GPR return value as argument and returns an "updated" value. */ retval = gen_rtx_REG (return_mode, GP_RETURN); insn = mips_expand_call (MIPS_CALL_EPILOGUE, retval, fn, const0_rtx, NULL_RTX, false); use_reg (&CALL_INSN_FUNCTION_USAGE (insn), retval); } /* Consider building a stub for a MIPS16 call to function *FN_PTR. RETVAL is the location of the return value, or null if this is a "call" rather than a "call_value". ARGS_SIZE is the size of the arguments and FP_CODE is the code built by mips_function_arg; see the comment before the fp_code field in CUMULATIVE_ARGS for details. There are three alternatives: - If a stub was needed, emit the call and return the call insn itself. - If we can avoid using a stub by redirecting the call, set *FN_PTR to the new target and return null. - If *FN_PTR doesn't need a stub, return null and leave *FN_PTR unmodified. A stub is needed for calls to functions that, in normal mode, receive arguments in FPRs or return values in FPRs. The stub copies the arguments from their soft-float positions to their hard-float positions, calls the real function, then copies the return value from its hard-float position to its soft-float position. We can emit a JAL to *FN_PTR even when *FN_PTR might need a stub. If *FN_PTR turns out to be to a non-MIPS16 function, the linker automatically redirects the JAL to the stub, otherwise the JAL continues to call FN directly. */ static rtx_insn * mips16_build_call_stub (rtx retval, rtx *fn_ptr, rtx args_size, int fp_code) { const char *fnname; bool fp_ret_p; struct mips16_stub *l; rtx_insn *insn; rtx pattern, fn; /* We don't need to do anything if we aren't in MIPS16 mode, or if we were invoked with the -msoft-float option. */ if (!TARGET_MIPS16 || TARGET_SOFT_FLOAT_ABI) return NULL; /* Figure out whether the value might come back in a floating-point register. */ fp_ret_p = retval && mips_return_mode_in_fpr_p (GET_MODE (retval)); /* We don't need to do anything if there were no floating-point arguments and the value will not be returned in a floating-point register. */ if (fp_code == 0 && !fp_ret_p) return NULL; /* We don't need to do anything if this is a call to a special MIPS16 support function. */ fn = *fn_ptr; if (mips16_stub_function_p (fn)) return NULL; /* If we're calling a locally-defined MIPS16 function, we know that it will return values in both the "soft-float" and "hard-float" registers. There is no need to use a stub to move the latter to the former. */ if (fp_code == 0 && mips16_local_function_p (fn)) return NULL; /* This code will only work for o32 and o64 abis. The other ABI's require more sophisticated support. */ gcc_assert (TARGET_OLDABI); /* If we're calling via a function pointer, use one of the magic libgcc.a stubs provided for each (FP_CODE, FP_RET_P) combination. Each stub expects the function address to arrive in register $2. */ if (GET_CODE (fn) != SYMBOL_REF || !call_insn_operand (fn, VOIDmode)) { char buf[32]; rtx stub_fn, addr; rtx_insn *insn; bool lazy_p; /* If this is a locally-defined and locally-binding function, avoid the stub by calling the local alias directly. */ if (mips16_local_function_p (fn)) { *fn_ptr = mips16_local_alias (fn); return NULL; } /* Create a SYMBOL_REF for the libgcc.a function. */ if (fp_ret_p) sprintf (buf, "__mips16_call_stub_%s_%d", mips16_call_stub_mode_suffix (GET_MODE (retval)), fp_code); else sprintf (buf, "__mips16_call_stub_%d", fp_code); stub_fn = mips16_stub_function (buf); /* The function uses $2 as an argument, so calls to it cannot be lazily bound. */ SYMBOL_REF_FLAGS (stub_fn) |= SYMBOL_FLAG_BIND_NOW; /* Load the target function into $2. */ addr = gen_rtx_REG (Pmode, GP_REG_FIRST + 2); lazy_p = mips_load_call_address (MIPS_CALL_NORMAL, addr, fn); /* Emit the call. */ insn = mips_expand_call (MIPS_CALL_NORMAL, retval, stub_fn, args_size, NULL_RTX, lazy_p); /* Tell GCC that this call does indeed use the value of $2. */ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), addr); /* If we are handling a floating-point return value, we need to save $18 in the function prologue. Putting a note on the call will mean that df_regs_ever_live_p ($18) will be true if the call is not eliminated, and we can check that in the prologue code. */ if (fp_ret_p) CALL_INSN_FUNCTION_USAGE (insn) = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (word_mode, 18)), CALL_INSN_FUNCTION_USAGE (insn)); return insn; } /* We know the function we are going to call. If we have already built a stub, we don't need to do anything further. */ fnname = targetm.strip_name_encoding (XSTR (fn, 0)); for (l = mips16_stubs; l != NULL; l = l->next) if (strcmp (l->name, fnname) == 0) break; if (l == NULL) { const char *separator; char *secname, *stubname; tree stubid, stubdecl; unsigned int f; /* If the function does not return in FPRs, the special stub section is named .mips16.call.FNNAME If the function does return in FPRs, the stub section is named .mips16.call.fp.FNNAME Build a decl for the stub. */ secname = ACONCAT ((".mips16.call.", fp_ret_p ? "fp." : "", fnname, NULL)); stubname = ACONCAT (("__call_stub_", fp_ret_p ? "fp_" : "", fnname, NULL)); stubid = get_identifier (stubname); stubdecl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, stubid, build_function_type_list (void_type_node, NULL_TREE)); set_decl_section_name (stubdecl, secname); DECL_RESULT (stubdecl) = build_decl (BUILTINS_LOCATION, RESULT_DECL, NULL_TREE, void_type_node); /* Output a comment. */ fprintf (asm_out_file, "\t# Stub function to call %s%s (", (fp_ret_p ? (GET_MODE (retval) == SFmode ? "float " : "double ") : ""), fnname); separator = ""; for (f = (unsigned int) fp_code; f != 0; f >>= 2) { fprintf (asm_out_file, "%s%s", separator, (f & 3) == 1 ? "float" : "double"); separator = ", "; } fprintf (asm_out_file, ")\n"); /* Start the function definition. */ assemble_start_function (stubdecl, stubname); mips_start_function_definition (stubname, false); if (fp_ret_p) { fprintf (asm_out_file, "\t.cfi_startproc\n"); /* Create a fake CFA 4 bytes below the stack pointer. This works around unwinders (like libgcc's) that expect the CFA for non-signal frames to be unique. */ fprintf (asm_out_file, "\t.cfi_def_cfa 29,-4\n"); /* "Save" $sp in itself so we don't use the fake CFA. This is: DW_CFA_val_expression r29, { DW_OP_reg29 }. */ fprintf (asm_out_file, "\t.cfi_escape 0x16,29,1,0x6d\n"); /* Save the return address in $18. The stub's caller knows that $18 might be clobbered, even though $18 is usually a call-saved register. Do it early on in case the last move to a floating-point register can be scheduled into the delay slot of the call we are about to make. */ fprintf (asm_out_file, "\tmove\t%s,%s\n", reg_names[GP_REG_FIRST + 18], reg_names[RETURN_ADDR_REGNUM]); } else { /* Load the address of the MIPS16 function into $25. Do this first so that targets with coprocessor interlocks can use an MFC1 to fill the delay slot. */ if (TARGET_EXPLICIT_RELOCS) { output_asm_insn ("lui\t%^,%%hi(%0)", &fn); output_asm_insn ("addiu\t%^,%^,%%lo(%0)", &fn); } else output_asm_insn ("la\t%^,%0", &fn); } /* Move the arguments from general registers to floating-point registers. */ mips_output_args_xfer (fp_code, 't'); if (fp_ret_p) { /* Now call the non-MIPS16 function. */ output_asm_insn (mips_output_jump (&fn, 0, -1, true), &fn); fprintf (asm_out_file, "\t.cfi_register 31,18\n"); /* Move the result from floating-point registers to general registers. */ switch (GET_MODE (retval)) { case E_SCmode: mips_output_32bit_xfer ('f', GP_RETURN + TARGET_BIG_ENDIAN, TARGET_BIG_ENDIAN ? FP_REG_FIRST + 2 : FP_REG_FIRST); mips_output_32bit_xfer ('f', GP_RETURN + TARGET_LITTLE_ENDIAN, TARGET_LITTLE_ENDIAN ? FP_REG_FIRST + 2 : FP_REG_FIRST); if (GET_MODE (retval) == SCmode && TARGET_64BIT) { /* On 64-bit targets, complex floats are returned in a single GPR, such that "sd" on a suitably-aligned target would store the value correctly. */ fprintf (asm_out_file, "\tdsll\t%s,%s,32\n", reg_names[GP_RETURN + TARGET_BIG_ENDIAN], reg_names[GP_RETURN + TARGET_BIG_ENDIAN]); fprintf (asm_out_file, "\tdsll\t%s,%s,32\n", reg_names[GP_RETURN + TARGET_LITTLE_ENDIAN], reg_names[GP_RETURN + TARGET_LITTLE_ENDIAN]); fprintf (asm_out_file, "\tdsrl\t%s,%s,32\n", reg_names[GP_RETURN + TARGET_BIG_ENDIAN], reg_names[GP_RETURN + TARGET_BIG_ENDIAN]); fprintf (asm_out_file, "\tor\t%s,%s,%s\n", reg_names[GP_RETURN], reg_names[GP_RETURN], reg_names[GP_RETURN + 1]); } break; case E_SFmode: mips_output_32bit_xfer ('f', GP_RETURN, FP_REG_FIRST); break; case E_DCmode: mips_output_64bit_xfer ('f', GP_RETURN + (8 / UNITS_PER_WORD), FP_REG_FIRST + 2); /* FALLTHRU */ case E_DFmode: case E_V2SFmode: gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || GET_MODE (retval) != V2SFmode); mips_output_64bit_xfer ('f', GP_RETURN, FP_REG_FIRST); break; default: gcc_unreachable (); } fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 18]); fprintf (asm_out_file, "\t.cfi_endproc\n"); } else { /* Jump to the previously-loaded address. */ output_asm_insn ("jr\t%^", NULL); } #ifdef ASM_DECLARE_FUNCTION_SIZE ASM_DECLARE_FUNCTION_SIZE (asm_out_file, stubname, stubdecl); #endif mips_end_function_definition (stubname); /* Record this stub. */ l = XNEW (struct mips16_stub); l->name = xstrdup (fnname); l->fp_ret_p = fp_ret_p; l->next = mips16_stubs; mips16_stubs = l; } /* If we expect a floating-point return value, but we've built a stub which does not expect one, then we're in trouble. We can't use the existing stub, because it won't handle the floating-point value. We can't build a new stub, because the linker won't know which stub to use for the various calls in this object file. Fortunately, this case is illegal, since it means that a function was declared in two different ways in a single compilation. */ if (fp_ret_p && !l->fp_ret_p) error ("cannot handle inconsistent calls to %qs", fnname); if (retval == NULL_RTX) pattern = gen_call_internal_direct (fn, args_size); else pattern = gen_call_value_internal_direct (retval, fn, args_size); insn = mips_emit_call_insn (pattern, fn, fn, false); /* If we are calling a stub which handles a floating-point return value, we need to arrange to save $18 in the prologue. We do this by marking the function call as using the register. The prologue will later see that it is used, and emit code to save it. */ if (fp_ret_p) CALL_INSN_FUNCTION_USAGE (insn) = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (word_mode, 18)), CALL_INSN_FUNCTION_USAGE (insn)); return insn; } /* Expand a call of type TYPE. RESULT is where the result will go (null for "call"s and "sibcall"s), ADDR is the address of the function, ARGS_SIZE is the size of the arguments and AUX is the value passed to us by mips_function_arg. LAZY_P is true if this call already involves a lazily-bound function address (such as when calling functions through a MIPS16 hard-float stub). Return the call itself. */ rtx_insn * mips_expand_call (enum mips_call_type type, rtx result, rtx addr, rtx args_size, rtx aux, bool lazy_p) { rtx orig_addr, pattern; rtx_insn *insn; int fp_code; fp_code = aux == 0 ? 0 : (int) GET_MODE (aux); insn = mips16_build_call_stub (result, &addr, args_size, fp_code); if (insn) { gcc_assert (!lazy_p && type == MIPS_CALL_NORMAL); return insn; } orig_addr = addr; if (!call_insn_operand (addr, VOIDmode)) { if (type == MIPS_CALL_EPILOGUE) addr = MIPS_EPILOGUE_TEMP (Pmode); else addr = gen_reg_rtx (Pmode); lazy_p |= mips_load_call_address (type, addr, orig_addr); } if (result == 0) { rtx (*fn) (rtx, rtx); if (type == MIPS_CALL_SIBCALL) fn = gen_sibcall_internal; else fn = gen_call_internal; pattern = fn (addr, args_size); } else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2) { /* Handle return values created by mips_return_fpr_pair. */ rtx (*fn) (rtx, rtx, rtx, rtx); rtx reg1, reg2; if (type == MIPS_CALL_SIBCALL) fn = gen_sibcall_value_multiple_internal; else fn = gen_call_value_multiple_internal; reg1 = XEXP (XVECEXP (result, 0, 0), 0); reg2 = XEXP (XVECEXP (result, 0, 1), 0); pattern = fn (reg1, addr, args_size, reg2); } else { rtx (*fn) (rtx, rtx, rtx); if (type == MIPS_CALL_SIBCALL) fn = gen_sibcall_value_internal; else fn = gen_call_value_internal; /* Handle return values created by mips_return_fpr_single. */ if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 1) result = XEXP (XVECEXP (result, 0, 0), 0); pattern = fn (result, addr, args_size); } return mips_emit_call_insn (pattern, orig_addr, addr, lazy_p); } /* Split call instruction INSN into a $gp-clobbering call and (where necessary) an instruction to restore $gp from its save slot. CALL_PATTERN is the pattern of the new call. */ void mips_split_call (rtx insn, rtx call_pattern) { emit_call_insn (call_pattern); if (!find_reg_note (insn, REG_NORETURN, 0)) mips_restore_gp_from_cprestore_slot (gen_rtx_REG (Pmode, POST_CALL_TMP_REG)); } /* Return true if a call to DECL may need to use JALX. */ static bool mips_call_may_need_jalx_p (tree decl) { /* If the current translation unit would use a different mode for DECL, assume that the call needs JALX. */ if (mips_get_compress_mode (decl) != TARGET_COMPRESSION) return true; /* mips_get_compress_mode is always accurate for locally-binding functions in the current translation unit. */ if (!DECL_EXTERNAL (decl) && targetm.binds_local_p (decl)) return false; /* When -minterlink-compressed is in effect, assume that functions could use a different encoding mode unless an attribute explicitly tells us otherwise. */ if (TARGET_INTERLINK_COMPRESSED) { if (!TARGET_COMPRESSION && mips_get_compress_off_flags (DECL_ATTRIBUTES (decl)) ==0) return true; if (TARGET_COMPRESSION && mips_get_compress_on_flags (DECL_ATTRIBUTES (decl)) == 0) return true; } return false; } /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */ static bool mips_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED) { if (!TARGET_SIBCALLS) return false; /* Interrupt handlers need special epilogue code and therefore can't use sibcalls. */ if (mips_interrupt_type_p (TREE_TYPE (current_function_decl))) return false; /* Direct Js are only possible to functions that use the same ISA encoding. There is no JX counterpoart of JALX. */ if (decl && const_call_insn_operand (XEXP (DECL_RTL (decl), 0), VOIDmode) && mips_call_may_need_jalx_p (decl)) return false; /* Sibling calls should not prevent lazy binding. Lazy-binding stubs require $gp to be valid on entry, so sibcalls can only use stubs if $gp is call-clobbered. */ if (decl && TARGET_CALL_SAVED_GP && !TARGET_ABICALLS_PIC0 && !targetm.binds_local_p (decl)) return false; /* Otherwise OK. */ return true; } /* Implement TARGET_USE_MOVE_BY_PIECES_INFRASTRUCTURE_P. */ bool mips_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT size, unsigned int align, enum by_pieces_operation op, bool speed_p) { if (op == STORE_BY_PIECES) return mips_store_by_pieces_p (size, align); if (op == MOVE_BY_PIECES && HAVE_cpymemsi) { /* cpymemsi is meant to generate code that is at least as good as move_by_pieces. However, cpymemsi effectively uses a by-pieces implementation both for moves smaller than a word and for word-aligned moves of no more than MIPS_MAX_MOVE_BYTES_STRAIGHT bytes. We should allow the tree-level optimisers to do such moves by pieces, as it often exposes other optimization opportunities. We might as well continue to use cpymemsi at the rtl level though, as it produces better code when scheduling is disabled (such as at -O). */ if (currently_expanding_to_rtl) return false; if (align < BITS_PER_WORD) return size < UNITS_PER_WORD; return size <= MIPS_MAX_MOVE_BYTES_STRAIGHT; } return default_use_by_pieces_infrastructure_p (size, align, op, speed_p); } /* Implement a handler for STORE_BY_PIECES operations for TARGET_USE_MOVE_BY_PIECES_INFRASTRUCTURE_P. */ bool mips_store_by_pieces_p (unsigned HOST_WIDE_INT size, unsigned int align) { /* Storing by pieces involves moving constants into registers of size MIN (ALIGN, BITS_PER_WORD), then storing them. We need to decide whether it is cheaper to load the address of constant data into a register and use a block move instead. */ /* If the data is only byte aligned, then: (a1) A block move of less than 4 bytes would involve three 3 LBs and 3 SBs. We might as well use 3 single-instruction LIs and 3 SBs instead. (a2) A block move of 4 bytes from aligned source data can use an LW/SWL/SWR sequence. This is often better than the 4 LIs and 4 SBs that we would generate when storing by pieces. */ if (align <= BITS_PER_UNIT) return size < 4; /* If the data is 2-byte aligned, then: (b1) A block move of less than 4 bytes would use a combination of LBs, LHs, SBs and SHs. We get better code by using single-instruction LIs, SBs and SHs instead. (b2) A block move of 4 bytes from aligned source data would again use an LW/SWL/SWR sequence. In most cases, loading the address of the source data would require at least one extra instruction. It is often more efficient to use 2 single-instruction LIs and 2 SHs instead. (b3) A block move of up to 3 additional bytes would be like (b1). (b4) A block move of 8 bytes from aligned source data can use two LW/SWL/SWR sequences or a single LD/SDL/SDR sequence. Both sequences are better than the 4 LIs and 4 SHs that we'd generate when storing by pieces. The reasoning for higher alignments is similar: (c1) A block move of less than 4 bytes would be the same as (b1). (c2) A block move of 4 bytes would use an LW/SW sequence. Again, loading the address of the source data would typically require at least one extra instruction. It is generally better to use LUI/ORI/SW instead. (c3) A block move of up to 3 additional bytes would be like (b1). (c4) A block move of 8 bytes can use two LW/SW sequences or a single LD/SD sequence, and in these cases we've traditionally preferred the memory copy over the more bulky constant moves. */ return size < 8; } /* Emit straight-line code to move LENGTH bytes from SRC to DEST. Assume that the areas do not overlap. */ static void mips_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length) { HOST_WIDE_INT offset, delta; unsigned HOST_WIDE_INT bits; int i; machine_mode mode; rtx *regs; /* Work out how many bits to move at a time. If both operands have half-word alignment, it is usually better to move in half words. For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr. Otherwise move word-sized chunks. For ISA_HAS_LWL_LWR we rely on the lwl/lwr & swl/swr load. Otherwise picking the minimum of alignment or BITS_PER_WORD gets us the desired size for bits. */ if (!ISA_HAS_LWL_LWR) bits = MIN (BITS_PER_WORD, MIN (MEM_ALIGN (src), MEM_ALIGN (dest))); else { if (MEM_ALIGN (src) == BITS_PER_WORD / 2 && MEM_ALIGN (dest) == BITS_PER_WORD / 2) bits = BITS_PER_WORD / 2; else bits = BITS_PER_WORD; } mode = int_mode_for_size (bits, 0).require (); delta = bits / BITS_PER_UNIT; /* Allocate a buffer for the temporary registers. */ regs = XALLOCAVEC (rtx, length / delta); /* Load as many BITS-sized chunks as possible. Use a normal load if the source has enough alignment, otherwise use left/right pairs. */ for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++) { regs[i] = gen_reg_rtx (mode); if (MEM_ALIGN (src) >= bits) mips_emit_move (regs[i], adjust_address (src, mode, offset)); else { rtx part = adjust_address (src, BLKmode, offset); set_mem_size (part, delta); if (!mips_expand_ext_as_unaligned_load (regs[i], part, bits, 0, 0)) gcc_unreachable (); } } /* Copy the chunks to the destination. */ for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++) if (MEM_ALIGN (dest) >= bits) mips_emit_move (adjust_address (dest, mode, offset), regs[i]); else { rtx part = adjust_address (dest, BLKmode, offset); set_mem_size (part, delta); if (!mips_expand_ins_as_unaligned_store (part, regs[i], bits, 0)) gcc_unreachable (); } /* Mop up any left-over bytes. */ if (offset < length) { src = adjust_address (src, BLKmode, offset); dest = adjust_address (dest, BLKmode, offset); move_by_pieces (dest, src, length - offset, MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), RETURN_BEGIN); } } /* Helper function for doing a loop-based block operation on memory reference MEM. Each iteration of the loop will operate on LENGTH bytes of MEM. Create a new base register for use within the loop and point it to the start of MEM. Create a new memory reference that uses this register. Store them in *LOOP_REG and *LOOP_MEM respectively. */ static void mips_adjust_block_mem (rtx mem, HOST_WIDE_INT length, rtx *loop_reg, rtx *loop_mem) { *loop_reg = copy_addr_to_reg (XEXP (mem, 0)); /* Although the new mem does not refer to a known location, it does keep up to LENGTH bytes of alignment. */ *loop_mem = change_address (mem, BLKmode, *loop_reg); set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT)); } /* Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER bytes at a time. LENGTH must be at least BYTES_PER_ITER. Assume that the memory regions do not overlap. */ static void mips_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length, HOST_WIDE_INT bytes_per_iter) { rtx_code_label *label; rtx src_reg, dest_reg, final_src, test; HOST_WIDE_INT leftover; leftover = length % bytes_per_iter; length -= leftover; /* Create registers and memory references for use within the loop. */ mips_adjust_block_mem (src, bytes_per_iter, &src_reg, &src); mips_adjust_block_mem (dest, bytes_per_iter, &dest_reg, &dest); /* Calculate the value that SRC_REG should have after the last iteration of the loop. */ final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length), 0, 0, OPTAB_WIDEN); /* Emit the start of the loop. */ label = gen_label_rtx (); emit_label (label); /* Emit the loop body. */ mips_block_move_straight (dest, src, bytes_per_iter); /* Move on to the next block. */ mips_emit_move (src_reg, plus_constant (Pmode, src_reg, bytes_per_iter)); mips_emit_move (dest_reg, plus_constant (Pmode, dest_reg, bytes_per_iter)); /* Emit the loop condition. */ test = gen_rtx_NE (VOIDmode, src_reg, final_src); if (Pmode == DImode) emit_jump_insn (gen_cbranchdi4 (test, src_reg, final_src, label)); else emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label)); /* Mop up any left-over bytes. */ if (leftover) mips_block_move_straight (dest, src, leftover); else /* Temporary fix for PR79150. */ emit_insn (gen_nop ()); } /* Expand a cpymemsi instruction, which copies LENGTH bytes from memory reference SRC to memory reference DEST. */ bool mips_expand_block_move (rtx dest, rtx src, rtx length) { if (!ISA_HAS_LWL_LWR && (MEM_ALIGN (src) < MIPS_MIN_MOVE_MEM_ALIGN || MEM_ALIGN (dest) < MIPS_MIN_MOVE_MEM_ALIGN)) return false; if (CONST_INT_P (length)) { if (INTVAL (length) <= MIPS_MAX_MOVE_BYTES_STRAIGHT) { mips_block_move_straight (dest, src, INTVAL (length)); return true; } else if (optimize) { mips_block_move_loop (dest, src, INTVAL (length), MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER); return true; } } return false; } /* Expand a loop of synci insns for the address range [BEGIN, END). */ void mips_expand_synci_loop (rtx begin, rtx end) { rtx inc, cmp_result, mask, length; rtx_code_label *label, *end_label; /* Create end_label. */ end_label = gen_label_rtx (); /* Check if begin equals end. */ cmp_result = gen_rtx_EQ (VOIDmode, begin, end); emit_jump_insn (gen_condjump (cmp_result, end_label)); /* Load INC with the cache line size (rdhwr INC,$1). */ inc = gen_reg_rtx (Pmode); emit_insn (PMODE_INSN (gen_rdhwr_synci_step, (inc))); /* Check if inc is 0. */ cmp_result = gen_rtx_EQ (VOIDmode, inc, const0_rtx); emit_jump_insn (gen_condjump (cmp_result, end_label)); /* Calculate mask. */ mask = mips_force_unary (Pmode, NEG, inc); /* Mask out begin by mask. */ begin = mips_force_binary (Pmode, AND, begin, mask); /* Calculate length. */ length = mips_force_binary (Pmode, MINUS, end, begin); /* Loop back to here. */ label = gen_label_rtx (); emit_label (label); emit_insn (gen_synci (begin)); /* Update length. */ mips_emit_binary (MINUS, length, length, inc); /* Update begin. */ mips_emit_binary (PLUS, begin, begin, inc); /* Check if length is greater than 0. */ cmp_result = gen_rtx_GT (VOIDmode, length, const0_rtx); emit_jump_insn (gen_condjump (cmp_result, label)); emit_label (end_label); } /* Expand a QI or HI mode atomic memory operation. GENERATOR contains a pointer to the gen_* function that generates the SI mode underlying atomic operation using masks that we calculate. RESULT is the return register for the operation. Its value is NULL if unused. MEM is the location of the atomic access. OLDVAL is the first operand for the operation. NEWVAL is the optional second operand for the operation. Its value is NULL if unused. */ void mips_expand_atomic_qihi (union mips_gen_fn_ptrs generator, rtx result, rtx mem, rtx oldval, rtx newval) { rtx orig_addr, memsi_addr, memsi, shift, shiftsi, unshifted_mask; rtx unshifted_mask_reg, mask, inverted_mask, si_op; rtx res = NULL; machine_mode mode; mode = GET_MODE (mem); /* Compute the address of the containing SImode value. */ orig_addr = force_reg (Pmode, XEXP (mem, 0)); memsi_addr = mips_force_binary (Pmode, AND, orig_addr, force_reg (Pmode, GEN_INT (-4))); /* Create a memory reference for it. */ memsi = gen_rtx_MEM (SImode, memsi_addr); set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER); MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem); /* Work out the byte offset of the QImode or HImode value, counting from the least significant byte. */ shift = mips_force_binary (Pmode, AND, orig_addr, GEN_INT (3)); if (TARGET_BIG_ENDIAN) mips_emit_binary (XOR, shift, shift, GEN_INT (mode == QImode ? 3 : 2)); /* Multiply by eight to convert the shift value from bytes to bits. */ mips_emit_binary (ASHIFT, shift, shift, GEN_INT (3)); /* Make the final shift an SImode value, so that it can be used in SImode operations. */ shiftsi = force_reg (SImode, gen_lowpart (SImode, shift)); /* Set MASK to an inclusive mask of the QImode or HImode value. */ unshifted_mask = GEN_INT (GET_MODE_MASK (mode)); unshifted_mask_reg = force_reg (SImode, unshifted_mask); mask = mips_force_binary (SImode, ASHIFT, unshifted_mask_reg, shiftsi); /* Compute the equivalent exclusive mask. */ inverted_mask = gen_reg_rtx (SImode); emit_insn (gen_rtx_SET (inverted_mask, gen_rtx_NOT (SImode, mask))); /* Shift the old value into place. */ if (oldval != const0_rtx) { oldval = convert_modes (SImode, mode, oldval, true); oldval = force_reg (SImode, oldval); oldval = mips_force_binary (SImode, ASHIFT, oldval, shiftsi); } /* Do the same for the new value. */ if (newval && newval != const0_rtx) { newval = convert_modes (SImode, mode, newval, true); newval = force_reg (SImode, newval); newval = mips_force_binary (SImode, ASHIFT, newval, shiftsi); } /* Do the SImode atomic access. */ if (result) res = gen_reg_rtx (SImode); if (newval) si_op = generator.fn_6 (res, memsi, mask, inverted_mask, oldval, newval); else if (result) si_op = generator.fn_5 (res, memsi, mask, inverted_mask, oldval); else si_op = generator.fn_4 (memsi, mask, inverted_mask, oldval); emit_insn (si_op); if (result) { /* Shift and convert the result. */ mips_emit_binary (AND, res, res, mask); mips_emit_binary (LSHIFTRT, res, res, shiftsi); mips_emit_move (result, gen_lowpart (GET_MODE (result), res)); } } /* Return true if it is possible to use left/right accesses for a bitfield of WIDTH bits starting BITPOS bits into BLKmode memory OP. When returning true, update *LEFT and *RIGHT as follows: *LEFT is a QImode reference to the first byte if big endian or the last byte if little endian. This address can be used in the left-side instructions (LWL, SWL, LDL, SDL). *RIGHT is a QImode reference to the opposite end of the field and can be used in the patterning right-side instruction. */ static bool mips_get_unaligned_mem (rtx op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos, rtx *left, rtx *right) { rtx first, last; /* Check that the size is valid. */ if (width != 32 && (!TARGET_64BIT || width != 64)) return false; /* We can only access byte-aligned values. Since we are always passed a reference to the first byte of the field, it is not necessary to do anything with BITPOS after this check. */ if (bitpos % BITS_PER_UNIT != 0) return false; /* Reject aligned bitfields: we want to use a normal load or store instead of a left/right pair. */ if (MEM_ALIGN (op) >= width) return false; /* Get references to both ends of the field. */ first = adjust_address (op, QImode, 0); last = adjust_address (op, QImode, width / BITS_PER_UNIT - 1); /* Allocate to LEFT and RIGHT according to endianness. LEFT should correspond to the MSB and RIGHT to the LSB. */ if (TARGET_BIG_ENDIAN) *left = first, *right = last; else *left = last, *right = first; return true; } /* Try to use left/right loads to expand an "extv" or "extzv" pattern. DEST, SRC, WIDTH and BITPOS are the operands passed to the expander; the operation is the equivalent of: (set DEST (*_extract SRC WIDTH BITPOS)) Return true on success. */ bool mips_expand_ext_as_unaligned_load (rtx dest, rtx src, HOST_WIDE_INT width, HOST_WIDE_INT bitpos, bool unsigned_p) { rtx left, right, temp; rtx dest1 = NULL_RTX; /* If TARGET_64BIT, the destination of a 32-bit "extz" or "extzv" will be a DImode, create a new temp and emit a zero extend at the end. */ if (GET_MODE (dest) == DImode && (REG_P (dest) || (SUBREG_P (dest) && !MEM_P (SUBREG_REG (dest)))) && GET_MODE_BITSIZE (SImode) == width) { dest1 = dest; dest = gen_reg_rtx (SImode); } if (!mips_get_unaligned_mem (src, width, bitpos, &left, &right)) return false; temp = gen_reg_rtx (GET_MODE (dest)); if (GET_MODE (dest) == DImode) { emit_insn (gen_mov_ldl (temp, src, left)); emit_insn (gen_mov_ldr (dest, copy_rtx (src), right, temp)); } else { emit_insn (gen_mov_lwl (temp, src, left)); emit_insn (gen_mov_lwr (dest, copy_rtx (src), right, temp)); } /* If we were loading 32bits and the original register was DI then sign/zero extend into the orignal dest. */ if (dest1) { if (unsigned_p) emit_insn (gen_zero_extendsidi2 (dest1, dest)); else emit_insn (gen_extendsidi2 (dest1, dest)); } return true; } /* Try to use left/right stores to expand an "ins" pattern. DEST, WIDTH, BITPOS and SRC are the operands passed to the expander; the operation is the equivalent of: (set (zero_extract DEST WIDTH BITPOS) SRC) Return true on success. */ bool mips_expand_ins_as_unaligned_store (rtx dest, rtx src, HOST_WIDE_INT width, HOST_WIDE_INT bitpos) { rtx left, right; machine_mode mode; if (!mips_get_unaligned_mem (dest, width, bitpos, &left, &right)) return false; mode = int_mode_for_size (width, 0).require (); src = gen_lowpart (mode, src); if (mode == DImode) { emit_insn (gen_mov_sdl (dest, src, left)); emit_insn (gen_mov_sdr (copy_rtx (dest), copy_rtx (src), right)); } else { emit_insn (gen_mov_swl (dest, src, left)); emit_insn (gen_mov_swr (copy_rtx (dest), copy_rtx (src), right)); } return true; } /* Return true if X is a MEM with the same size as MODE. */ bool mips_mem_fits_mode_p (machine_mode mode, rtx x) { return (MEM_P (x) && MEM_SIZE_KNOWN_P (x) && MEM_SIZE (x) == GET_MODE_SIZE (mode)); } /* Return true if (zero_extract OP WIDTH BITPOS) can be used as the source of an "ext" instruction or the destination of an "ins" instruction. OP must be a register operand and the following conditions must hold: 0 <= BITPOS < GET_MODE_BITSIZE (GET_MODE (op)) 0 < WIDTH <= GET_MODE_BITSIZE (GET_MODE (op)) 0 < BITPOS + WIDTH <= GET_MODE_BITSIZE (GET_MODE (op)) Also reject lengths equal to a word as they are better handled by the move patterns. */ bool mips_use_ins_ext_p (rtx op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos) { if (!ISA_HAS_EXT_INS || !register_operand (op, VOIDmode) || GET_MODE_BITSIZE (GET_MODE (op)) > BITS_PER_WORD) return false; if (!IN_RANGE (width, 1, GET_MODE_BITSIZE (GET_MODE (op)) - 1)) return false; if (bitpos < 0 || bitpos + width > GET_MODE_BITSIZE (GET_MODE (op))) return false; return true; } /* Check if MASK and SHIFT are valid in mask-low-and-shift-left operation if MAXLEN is the maxium length of consecutive bits that can make up MASK. MODE is the mode of the operation. See mask_low_and_shift_len for the actual definition. */ bool mask_low_and_shift_p (machine_mode mode, rtx mask, rtx shift, int maxlen) { return IN_RANGE (mask_low_and_shift_len (mode, mask, shift), 1, maxlen); } /* Return true iff OP1 and OP2 are valid operands together for the *and3 and *and3_mips16 patterns. For the cases to consider, see the table in the comment before the pattern. */ bool and_operands_ok (machine_mode mode, rtx op1, rtx op2) { if (memory_operand (op1, mode)) { if (TARGET_MIPS16) { struct mips_address_info addr; if (!mips_classify_address (&addr, op1, mode, false)) return false; } return and_load_operand (op2, mode); } else return and_reg_operand (op2, mode); } /* The canonical form of a mask-low-and-shift-left operation is (and (ashift X SHIFT) MASK) where MASK has the lower SHIFT number of bits cleared. Thus we need to shift MASK to the right before checking if it is a valid mask value. MODE is the mode of the operation. If true return the length of the mask, otherwise return -1. */ int mask_low_and_shift_len (machine_mode mode, rtx mask, rtx shift) { HOST_WIDE_INT shval; shval = INTVAL (shift) & (GET_MODE_BITSIZE (mode) - 1); return exact_log2 ((UINTVAL (mask) >> shval) + 1); } /* Return true if -msplit-addresses is selected and should be honored. -msplit-addresses is a half-way house between explicit relocations and the traditional assembler macros. It can split absolute 32-bit symbolic constants into a high/lo_sum pair but uses macros for other sorts of access. Like explicit relocation support for REL targets, it relies on GNU extensions in the assembler and the linker. Although this code should work for -O0, it has traditionally been treated as an optimization. */ static bool mips_split_addresses_p (void) { return (TARGET_SPLIT_ADDRESSES && optimize && !TARGET_MIPS16 && !flag_pic && !ABI_HAS_64BIT_SYMBOLS); } /* (Re-)Initialize mips_split_p, mips_lo_relocs and mips_hi_relocs. */ static void mips_init_relocs (void) { memset (mips_split_p, '\0', sizeof (mips_split_p)); memset (mips_split_hi_p, '\0', sizeof (mips_split_hi_p)); memset (mips_use_pcrel_pool_p, '\0', sizeof (mips_use_pcrel_pool_p)); memset (mips_hi_relocs, '\0', sizeof (mips_hi_relocs)); memset (mips_lo_relocs, '\0', sizeof (mips_lo_relocs)); if (TARGET_MIPS16_PCREL_LOADS) mips_use_pcrel_pool_p[SYMBOL_ABSOLUTE] = true; else { if (ABI_HAS_64BIT_SYMBOLS) { if (TARGET_EXPLICIT_RELOCS) { mips_split_p[SYMBOL_64_HIGH] = true; mips_hi_relocs[SYMBOL_64_HIGH] = "%highest("; mips_lo_relocs[SYMBOL_64_HIGH] = "%higher("; mips_split_p[SYMBOL_64_MID] = true; mips_hi_relocs[SYMBOL_64_MID] = "%higher("; mips_lo_relocs[SYMBOL_64_MID] = "%hi("; mips_split_p[SYMBOL_64_LOW] = true; mips_hi_relocs[SYMBOL_64_LOW] = "%hi("; mips_lo_relocs[SYMBOL_64_LOW] = "%lo("; mips_split_p[SYMBOL_ABSOLUTE] = true; mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo("; } } else { if (TARGET_EXPLICIT_RELOCS || mips_split_addresses_p () || TARGET_MIPS16) { mips_split_p[SYMBOL_ABSOLUTE] = true; mips_hi_relocs[SYMBOL_ABSOLUTE] = "%hi("; mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo("; } } } if (TARGET_MIPS16) { /* The high part is provided by a pseudo copy of $gp. */ mips_split_p[SYMBOL_GP_RELATIVE] = true; mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gprel("; } else if (TARGET_EXPLICIT_RELOCS) /* Small data constants are kept whole until after reload, then lowered by mips_rewrite_small_data. */ mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gp_rel("; if (TARGET_EXPLICIT_RELOCS) { mips_split_p[SYMBOL_GOT_PAGE_OFST] = true; if (TARGET_NEWABI) { mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got_page("; mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%got_ofst("; } else { mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got("; mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%lo("; } if (TARGET_MIPS16) /* Expose the use of $28 as soon as possible. */ mips_split_hi_p[SYMBOL_GOT_PAGE_OFST] = true; if (TARGET_XGOT) { /* The HIGH and LO_SUM are matched by special .md patterns. */ mips_split_p[SYMBOL_GOT_DISP] = true; mips_split_p[SYMBOL_GOTOFF_DISP] = true; mips_hi_relocs[SYMBOL_GOTOFF_DISP] = "%got_hi("; mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_lo("; mips_split_p[SYMBOL_GOTOFF_CALL] = true; mips_hi_relocs[SYMBOL_GOTOFF_CALL] = "%call_hi("; mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call_lo("; } else { if (TARGET_NEWABI) mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_disp("; else mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got("; mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call16("; if (TARGET_MIPS16) /* Expose the use of $28 as soon as possible. */ mips_split_p[SYMBOL_GOT_DISP] = true; } } if (TARGET_NEWABI) { mips_split_p[SYMBOL_GOTOFF_LOADGP] = true; mips_hi_relocs[SYMBOL_GOTOFF_LOADGP] = "%hi(%neg(%gp_rel("; mips_lo_relocs[SYMBOL_GOTOFF_LOADGP] = "%lo(%neg(%gp_rel("; } mips_lo_relocs[SYMBOL_TLSGD] = "%tlsgd("; mips_lo_relocs[SYMBOL_TLSLDM] = "%tlsldm("; if (TARGET_MIPS16_PCREL_LOADS) { mips_use_pcrel_pool_p[SYMBOL_DTPREL] = true; mips_use_pcrel_pool_p[SYMBOL_TPREL] = true; } else { mips_split_p[SYMBOL_DTPREL] = true; mips_hi_relocs[SYMBOL_DTPREL] = "%dtprel_hi("; mips_lo_relocs[SYMBOL_DTPREL] = "%dtprel_lo("; mips_split_p[SYMBOL_TPREL] = true; mips_hi_relocs[SYMBOL_TPREL] = "%tprel_hi("; mips_lo_relocs[SYMBOL_TPREL] = "%tprel_lo("; } mips_lo_relocs[SYMBOL_GOTTPREL] = "%gottprel("; mips_lo_relocs[SYMBOL_HALF] = "%half("; } /* Print symbolic operand OP, which is part of a HIGH or LO_SUM in context CONTEXT. RELOCS is the array of relocations to use. */ static void mips_print_operand_reloc (FILE *file, rtx op, enum mips_symbol_context context, const char **relocs) { enum mips_symbol_type symbol_type; const char *p; symbol_type = mips_classify_symbolic_expression (op, context); gcc_assert (relocs[symbol_type]); fputs (relocs[symbol_type], file); output_addr_const (file, mips_strip_unspec_address (op)); for (p = relocs[symbol_type]; *p != 0; p++) if (*p == '(') fputc (')', file); } /* Start a new block with the given asm switch enabled. If we need to print a directive, emit PREFIX before it and SUFFIX after it. */ static void mips_push_asm_switch_1 (struct mips_asm_switch *asm_switch, const char *prefix, const char *suffix) { if (asm_switch->nesting_level == 0) fprintf (asm_out_file, "%s.set\tno%s%s", prefix, asm_switch->name, suffix); asm_switch->nesting_level++; } /* Likewise, but end a block. */ static void mips_pop_asm_switch_1 (struct mips_asm_switch *asm_switch, const char *prefix, const char *suffix) { gcc_assert (asm_switch->nesting_level); asm_switch->nesting_level--; if (asm_switch->nesting_level == 0) fprintf (asm_out_file, "%s.set\t%s%s", prefix, asm_switch->name, suffix); } /* Wrappers around mips_push_asm_switch_1 and mips_pop_asm_switch_1 that either print a complete line or print nothing. */ void mips_push_asm_switch (struct mips_asm_switch *asm_switch) { mips_push_asm_switch_1 (asm_switch, "\t", "\n"); } void mips_pop_asm_switch (struct mips_asm_switch *asm_switch) { mips_pop_asm_switch_1 (asm_switch, "\t", "\n"); } /* Print the text for PRINT_OPERAND punctation character CH to FILE. The punctuation characters are: '(' Start a nested ".set noreorder" block. ')' End a nested ".set noreorder" block. '[' Start a nested ".set noat" block. ']' End a nested ".set noat" block. '<' Start a nested ".set nomacro" block. '>' End a nested ".set nomacro" block. '*' Behave like %(%< if generating a delayed-branch sequence. '#' Print a nop if in a ".set noreorder" block. '/' Like '#', but do nothing within a delayed-branch sequence. '?' Print "l" if mips_branch_likely is true '~' Print a nop if mips_branch_likely is true '.' Print the name of the register with a hard-wired zero (zero or $0). '@' Print the name of the assembler temporary register (at or $1). '^' Print the name of the pic call-through register (t9 or $25). '+' Print the name of the gp register (usually gp or $28). '$' Print the name of the stack pointer register (sp or $29). ':' Print "c" to use the compact version if the delay slot is a nop. '!' Print "s" to use the short version if the delay slot contains a 16-bit instruction. See also mips_init_print_operand_punct. */ static void mips_print_operand_punctuation (FILE *file, int ch) { switch (ch) { case '(': mips_push_asm_switch_1 (&mips_noreorder, "", "\n\t"); break; case ')': mips_pop_asm_switch_1 (&mips_noreorder, "\n\t", ""); break; case '[': mips_push_asm_switch_1 (&mips_noat, "", "\n\t"); break; case ']': mips_pop_asm_switch_1 (&mips_noat, "\n\t", ""); break; case '<': mips_push_asm_switch_1 (&mips_nomacro, "", "\n\t"); break; case '>': mips_pop_asm_switch_1 (&mips_nomacro, "\n\t", ""); break; case '*': if (final_sequence != 0) { mips_print_operand_punctuation (file, '('); mips_print_operand_punctuation (file, '<'); } break; case '#': if (mips_noreorder.nesting_level > 0) fputs ("\n\tnop", file); break; case '/': /* Print an extra newline so that the delayed insn is separated from the following ones. This looks neater and is consistent with non-nop delayed sequences. */ if (mips_noreorder.nesting_level > 0 && final_sequence == 0) fputs ("\n\tnop\n", file); break; case '?': if (mips_branch_likely) putc ('l', file); break; case '~': if (mips_branch_likely) fputs ("\n\tnop", file); break; case '.': fputs (reg_names[GP_REG_FIRST + 0], file); break; case '@': fputs (reg_names[AT_REGNUM], file); break; case '^': fputs (reg_names[PIC_FUNCTION_ADDR_REGNUM], file); break; case '+': fputs (reg_names[PIC_OFFSET_TABLE_REGNUM], file); break; case '$': fputs (reg_names[STACK_POINTER_REGNUM], file); break; case ':': /* When final_sequence is 0, the delay slot will be a nop. We can use the compact version where available. The %: formatter will only be present if a compact form of the branch is available. */ if (final_sequence == 0) putc ('c', file); break; case '!': /* If the delay slot instruction is short, then use the compact version. */ if (TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED && mips_isa_rev <= 5 && (final_sequence == 0 || get_attr_length (final_sequence->insn (1)) == 2)) putc ('s', file); break; default: gcc_unreachable (); break; } } /* Initialize mips_print_operand_punct. */ static void mips_init_print_operand_punct (void) { const char *p; for (p = "()[]<>*#/?~.@^+$:!"; *p; p++) mips_print_operand_punct[(unsigned char) *p] = true; } /* PRINT_OPERAND prefix LETTER refers to the integer branch instruction associated with condition CODE. Print the condition part of the opcode to FILE. */ static void mips_print_int_branch_condition (FILE *file, enum rtx_code code, int letter) { switch (code) { case EQ: case NE: case GT: case GE: case LT: case LE: case GTU: case GEU: case LTU: case LEU: /* Conveniently, the MIPS names for these conditions are the same as their RTL equivalents. */ fputs (GET_RTX_NAME (code), file); break; default: output_operand_lossage ("'%%%c' is not a valid operand prefix", letter); break; } } /* Likewise floating-point branches. */ static void mips_print_float_branch_condition (FILE *file, enum rtx_code code, int letter) { switch (code) { case EQ: if (ISA_HAS_CCF) fputs ("c1eqz", file); else fputs ("c1f", file); break; case NE: if (ISA_HAS_CCF) fputs ("c1nez", file); else fputs ("c1t", file); break; default: output_operand_lossage ("'%%%c' is not a valid operand prefix", letter); break; } } /* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P. */ static bool mips_print_operand_punct_valid_p (unsigned char code) { return mips_print_operand_punct[code]; } /* Implement TARGET_PRINT_OPERAND. The MIPS-specific operand codes are: 'E' Print CONST_INT OP element 0 of a replicated CONST_VECTOR in decimal. 'X' Print CONST_INT OP in hexadecimal format. 'x' Print the low 16 bits of CONST_INT OP in hexadecimal format. 'd' Print CONST_INT OP in decimal. 'B' Print CONST_INT OP element 0 of a replicated CONST_VECTOR as an unsigned byte [0..255]. 'm' Print one less than CONST_INT OP in decimal. 'y' Print exact log2 of CONST_INT OP in decimal. 'h' Print the high-part relocation associated with OP, after stripping any outermost HIGH. 'R' Print the low-part relocation associated with OP. 'C' Print the integer branch condition for comparison OP. 'N' Print the inverse of the integer branch condition for comparison OP. 'F' Print the FPU branch condition for comparison OP. 'W' Print the inverse of the FPU branch condition for comparison OP. 'w' Print a MSA register. 'T' Print 'f' for (eq:CC ...), 't' for (ne:CC ...), 'z' for (eq:?I ...), 'n' for (ne:?I ...). 't' Like 'T', but with the EQ/NE cases reversed 'Y' Print mips_fp_conditions[INTVAL (OP)] 'Z' Print OP and a comma for ISA_HAS_8CC, otherwise print nothing. 'q' Print a DSP accumulator register. 'D' Print the second part of a double-word register or memory operand. 'L' Print the low-order register in a double-word register operand. 'M' Print high-order register in a double-word register operand. 'z' Print $0 if OP is zero, otherwise print OP normally. 'b' Print the address of a memory operand, without offset. 'v' Print the insn size suffix b, h, w or d for vector modes V16QI, V8HI, V4SI, V2SI, and w, d for vector modes V4SF, V2DF respectively. 'V' Print exact log2 of CONST_INT OP element 0 of a replicated CONST_VECTOR in decimal. */ static void mips_print_operand (FILE *file, rtx op, int letter) { enum rtx_code code; if (mips_print_operand_punct_valid_p (letter)) { mips_print_operand_punctuation (file, letter); return; } gcc_assert (op); code = GET_CODE (op); switch (letter) { case 'E': if (GET_CODE (op) == CONST_VECTOR) { gcc_assert (mips_const_vector_same_val_p (op, GET_MODE (op))); op = CONST_VECTOR_ELT (op, 0); gcc_assert (CONST_INT_P (op)); fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op)); } else output_operand_lossage ("invalid use of '%%%c'", letter); break; case 'X': if (CONST_INT_P (op)) fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op)); else output_operand_lossage ("invalid use of '%%%c'", letter); break; case 'x': if (CONST_INT_P (op)) fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op) & 0xffff); else output_operand_lossage ("invalid use of '%%%c'", letter); break; case 'd': if (CONST_INT_P (op)) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op)); else output_operand_lossage ("invalid use of '%%%c'", letter); break; case 'B': if (GET_CODE (op) == CONST_VECTOR) { gcc_assert (mips_const_vector_same_val_p (op, GET_MODE (op))); op = CONST_VECTOR_ELT (op, 0); gcc_assert (CONST_INT_P (op)); unsigned HOST_WIDE_INT val8 = UINTVAL (op) & GET_MODE_MASK (QImode); fprintf (file, HOST_WIDE_INT_PRINT_UNSIGNED, val8); } else output_operand_lossage ("invalid use of '%%%c'", letter); break; case 'm': if (CONST_INT_P (op)) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op) - 1); else output_operand_lossage ("invalid use of '%%%c'", letter); break; case 'y': if (CONST_INT_P (op)) { int val = exact_log2 (INTVAL (op)); if (val != -1) fprintf (file, "%d", val); else output_operand_lossage ("invalid use of '%%%c'", letter); } else output_operand_lossage ("invalid use of '%%%c'", letter); break; case 'V': if (GET_CODE (op) == CONST_VECTOR) { machine_mode mode = GET_MODE_INNER (GET_MODE (op)); unsigned HOST_WIDE_INT val = UINTVAL (CONST_VECTOR_ELT (op, 0)); int vlog2 = exact_log2 (val & GET_MODE_MASK (mode)); if (vlog2 != -1) fprintf (file, "%d", vlog2); else output_operand_lossage ("invalid use of '%%%c'", letter); } else output_operand_lossage ("invalid use of '%%%c'", letter); break; case 'h': if (code == HIGH) op = XEXP (op, 0); mips_print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_hi_relocs); break; case 'R': mips_print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_lo_relocs); break; case 'C': mips_print_int_branch_condition (file, code, letter); break; case 'N': mips_print_int_branch_condition (file, reverse_condition (code), letter); break; case 'F': mips_print_float_branch_condition (file, code, letter); break; case 'W': mips_print_float_branch_condition (file, reverse_condition (code), letter); break; case 'T': case 't': { int truth = (code == NE) == (letter == 'T'); fputc ("zfnt"[truth * 2 + ST_REG_P (REGNO (XEXP (op, 0)))], file); } break; case 'Y': if (code == CONST_INT && UINTVAL (op) < ARRAY_SIZE (mips_fp_conditions)) fputs (mips_fp_conditions[UINTVAL (op)], file); else output_operand_lossage ("'%%%c' is not a valid operand prefix", letter); break; case 'Z': if (ISA_HAS_8CC || ISA_HAS_CCF) { mips_print_operand (file, op, 0); fputc (',', file); } break; case 'q': if (code == REG && MD_REG_P (REGNO (op))) fprintf (file, "$ac0"); else if (code == REG && DSP_ACC_REG_P (REGNO (op))) fprintf (file, "$ac%c", reg_names[REGNO (op)][3]); else output_operand_lossage ("invalid use of '%%%c'", letter); break; case 'w': if (code == REG && MSA_REG_P (REGNO (op))) fprintf (file, "$w%s", ®_names[REGNO (op)][2]); else output_operand_lossage ("invalid use of '%%%c'", letter); break; case 'v': switch (GET_MODE (op)) { case E_V16QImode: fprintf (file, "b"); break; case E_V8HImode: fprintf (file, "h"); break; case E_V4SImode: case E_V4SFmode: fprintf (file, "w"); break; case E_V2DImode: case E_V2DFmode: fprintf (file, "d"); break; default: output_operand_lossage ("invalid use of '%%%c'", letter); } break; default: switch (code) { case REG: { unsigned int regno = REGNO (op); if ((letter == 'M' && TARGET_LITTLE_ENDIAN) || (letter == 'L' && TARGET_BIG_ENDIAN) || letter == 'D') regno++; else if (letter && letter != 'z' && letter != 'M' && letter != 'L') output_operand_lossage ("invalid use of '%%%c'", letter); /* We need to print $0 .. $31 for COP0 registers. */ if (COP0_REG_P (regno)) fprintf (file, "$%s", ®_names[regno][4]); else fprintf (file, "%s", reg_names[regno]); } break; case MEM: if (letter == 'D') output_address (GET_MODE (op), plus_constant (Pmode, XEXP (op, 0), 4)); else if (letter == 'b') { gcc_assert (REG_P (XEXP (op, 0))); mips_print_operand (file, XEXP (op, 0), 0); } else if (letter && letter != 'z') output_operand_lossage ("invalid use of '%%%c'", letter); else output_address (GET_MODE (op), XEXP (op, 0)); break; default: if (letter == 'z' && op == CONST0_RTX (GET_MODE (op))) fputs (reg_names[GP_REG_FIRST], file); else if (letter && letter != 'z') output_operand_lossage ("invalid use of '%%%c'", letter); else if (CONST_GP_P (op)) fputs (reg_names[GLOBAL_POINTER_REGNUM], file); else output_addr_const (file, mips_strip_unspec_address (op)); break; } } } /* Implement TARGET_PRINT_OPERAND_ADDRESS. */ static void mips_print_operand_address (FILE *file, machine_mode /*mode*/, rtx x) { struct mips_address_info addr; if (mips_classify_address (&addr, x, word_mode, true)) switch (addr.type) { case ADDRESS_REG: mips_print_operand (file, addr.offset, 0); fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]); return; case ADDRESS_LO_SUM: mips_print_operand_reloc (file, addr.offset, SYMBOL_CONTEXT_MEM, mips_lo_relocs); fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]); return; case ADDRESS_CONST_INT: output_addr_const (file, x); fprintf (file, "(%s)", reg_names[GP_REG_FIRST]); return; case ADDRESS_SYMBOLIC: output_addr_const (file, mips_strip_unspec_address (x)); return; } gcc_unreachable (); } /* Implement TARGET_ENCODE_SECTION_INFO. */ static void mips_encode_section_info (tree decl, rtx rtl, int first) { default_encode_section_info (decl, rtl, first); if (TREE_CODE (decl) == FUNCTION_DECL) { rtx symbol = XEXP (rtl, 0); tree type = TREE_TYPE (decl); /* Encode whether the symbol is short or long. */ if ((TARGET_LONG_CALLS && !mips_near_type_p (type)) || mips_far_type_p (type)) SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LONG_CALL; } } /* Implement TARGET_SELECT_RTX_SECTION. */ static section * mips_select_rtx_section (machine_mode mode, rtx x, unsigned HOST_WIDE_INT align) { /* ??? Consider using mergeable small data sections. */ if (mips_rtx_constant_in_small_data_p (mode)) return get_named_section (NULL, ".sdata", 0); return default_elf_select_rtx_section (mode, x, align); } /* Implement TARGET_IN_SMALL_DATA_P. */ static bool mips_in_small_data_p (const_tree decl) { unsigned HOST_WIDE_INT size; if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL) return false; /* We don't yet generate small-data references for -mabicalls or VxWorks RTP code. See the related -G handling in mips_option_override. */ if (TARGET_ABICALLS || TARGET_VXWORKS_RTP) return false; if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0) { const char *name; /* Reject anything that isn't in a known small-data section. */ name = DECL_SECTION_NAME (decl); if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0) return false; /* If a symbol is defined externally, the assembler will use the usual -G rules when deciding how to implement macros. */ if (mips_lo_relocs[SYMBOL_GP_RELATIVE] || !DECL_EXTERNAL (decl)) return true; } else if (TARGET_EMBEDDED_DATA) { /* Don't put constants into the small data section: we want them to be in ROM rather than RAM. */ if (TREE_CODE (decl) != VAR_DECL) return false; if (TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl) && (!DECL_INITIAL (decl) || TREE_CONSTANT (DECL_INITIAL (decl)))) return false; } /* Enforce -mlocal-sdata. */ if (!TARGET_LOCAL_SDATA && !TREE_PUBLIC (decl)) return false; /* Enforce -mextern-sdata. */ if (!TARGET_EXTERN_SDATA && DECL_P (decl)) { if (DECL_EXTERNAL (decl)) return false; if (DECL_COMMON (decl) && DECL_INITIAL (decl) == NULL) return false; } /* We have traditionally not treated zero-sized objects as small data, so this is now effectively part of the ABI. */ size = int_size_in_bytes (TREE_TYPE (decl)); return size > 0 && size <= mips_small_data_threshold; } /* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P. We don't want to use anchors for small data: the GP register acts as an anchor in that case. We also don't want to use them for PC-relative accesses, where the PC acts as an anchor. */ static bool mips_use_anchors_for_symbol_p (const_rtx symbol) { switch (mips_classify_symbol (symbol, SYMBOL_CONTEXT_MEM)) { case SYMBOL_PC_RELATIVE: case SYMBOL_GP_RELATIVE: return false; default: return default_use_anchors_for_symbol_p (symbol); } } /* The MIPS debug format wants all automatic variables and arguments to be in terms of the virtual frame pointer (stack pointer before any adjustment in the function), while the MIPS 3.0 linker wants the frame pointer to be the stack pointer after the initial adjustment. So, we do the adjustment here. The arg pointer (which is eliminated) points to the virtual frame pointer, while the frame pointer (which may be eliminated) points to the stack pointer after the initial adjustments. */ HOST_WIDE_INT mips_debugger_offset (rtx addr, HOST_WIDE_INT offset) { rtx offset2 = const0_rtx; rtx reg = eliminate_constant_term (addr, &offset2); if (offset == 0) offset = INTVAL (offset2); if (reg == stack_pointer_rtx || reg == frame_pointer_rtx || reg == hard_frame_pointer_rtx) { offset -= cfun->machine->frame.total_size; if (reg == hard_frame_pointer_rtx) offset += cfun->machine->frame.hard_frame_pointer_offset; } return offset; } /* Implement ASM_OUTPUT_EXTERNAL. */ void mips_output_external (FILE *file, tree decl, const char *name) { default_elf_asm_output_external (file, decl, name); /* We output the name if and only if TREE_SYMBOL_REFERENCED is set in order to avoid putting out names that are never really used. */ if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl))) { if (!TARGET_EXPLICIT_RELOCS && mips_in_small_data_p (decl)) { /* When using assembler macros, emit .extern directives for all small-data externs so that the assembler knows how big they are. In most cases it would be safe (though pointless) to emit .externs for other symbols too. One exception is when an object is within the -G limit but declared by the user to be in a section other than .sbss or .sdata. */ fputs ("\t.extern\t", file); assemble_name (file, name); fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC "\n", int_size_in_bytes (TREE_TYPE (decl))); } } } /* Implement TARGET_ASM_OUTPUT_SOURCE_FILENAME. */ static void mips_output_filename (FILE *stream, const char *name) { /* If we are emitting DWARF-2, let dwarf2out handle the ".file" directives. */ if (dwarf_debuginfo_p ()) return; else if (mips_output_filename_first_time) { mips_output_filename_first_time = 0; num_source_filenames += 1; current_function_file = name; fprintf (stream, "\t.file\t%d ", num_source_filenames); output_quoted_string (stream, name); putc ('\n', stream); } /* If we are emitting stabs, let dbxout.cc handle this (except for the mips_output_filename_first_time case). */ else if (write_symbols == DBX_DEBUG) return; else if (name != current_function_file && strcmp (name, current_function_file) != 0) { num_source_filenames += 1; current_function_file = name; fprintf (stream, "\t.file\t%d ", num_source_filenames); output_quoted_string (stream, name); putc ('\n', stream); } } /* Implement TARGET_ASM_OUTPUT_DWARF_DTPREL. */ static void ATTRIBUTE_UNUSED mips_output_dwarf_dtprel (FILE *file, int size, rtx x) { switch (size) { case 4: fputs ("\t.dtprelword\t", file); break; case 8: fputs ("\t.dtpreldword\t", file); break; default: gcc_unreachable (); } output_addr_const (file, x); fputs ("+0x8000", file); } /* Implement TARGET_DWARF_REGISTER_SPAN. */ static rtx mips_dwarf_register_span (rtx reg) { rtx high, low; machine_mode mode; /* TARGET_FLOATXX is implemented as 32-bit floating-point registers but ensures that double-precision registers are treated as if they were 64-bit physical registers. The code will run correctly with 32-bit or 64-bit registers which means that dwarf information cannot be precise for all scenarios. We choose to state that the 64-bit values are stored in a single 64-bit 'piece'. This slightly unusual construct can then be interpreted as either a pair of registers if the registers are 32-bit or a single 64-bit register depending on hardware. */ mode = GET_MODE (reg); if (FP_REG_P (REGNO (reg)) && TARGET_FLOATXX && GET_MODE_SIZE (mode) > UNITS_PER_FPREG) { return gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, reg)); } /* By default, GCC maps increasing register numbers to increasing memory locations, but paired FPRs are always little-endian, regardless of the prevailing endianness. */ else if (FP_REG_P (REGNO (reg)) && TARGET_BIG_ENDIAN && MAX_FPRS_PER_FMT > 1 && GET_MODE_SIZE (mode) > UNITS_PER_FPREG) { gcc_assert (GET_MODE_SIZE (mode) == UNITS_PER_HWFPVALUE); high = mips_subword (reg, true); low = mips_subword (reg, false); return gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, high, low)); } return NULL_RTX; } /* Implement TARGET_DWARF_FRAME_REG_MODE. */ static machine_mode mips_dwarf_frame_reg_mode (int regno) { machine_mode mode = default_dwarf_frame_reg_mode (regno); if (FP_REG_P (regno) && mips_abi == ABI_32 && !TARGET_FLOAT32) mode = SImode; return mode; } /* DSP ALU can bypass data with no delays for the following pairs. */ enum insn_code dspalu_bypass_table[][2] = { {CODE_FOR_mips_addsc, CODE_FOR_mips_addwc}, {CODE_FOR_mips_cmpu_eq_qb, CODE_FOR_mips_pick_qb}, {CODE_FOR_mips_cmpu_lt_qb, CODE_FOR_mips_pick_qb}, {CODE_FOR_mips_cmpu_le_qb, CODE_FOR_mips_pick_qb}, {CODE_FOR_mips_cmp_eq_ph, CODE_FOR_mips_pick_ph}, {CODE_FOR_mips_cmp_lt_ph, CODE_FOR_mips_pick_ph}, {CODE_FOR_mips_cmp_le_ph, CODE_FOR_mips_pick_ph}, {CODE_FOR_mips_wrdsp, CODE_FOR_mips_insv} }; int mips_dspalu_bypass_p (rtx out_insn, rtx in_insn) { int i; int num_bypass = ARRAY_SIZE (dspalu_bypass_table); enum insn_code out_icode = (enum insn_code) INSN_CODE (out_insn); enum insn_code in_icode = (enum insn_code) INSN_CODE (in_insn); for (i = 0; i < num_bypass; i++) { if (out_icode == dspalu_bypass_table[i][0] && in_icode == dspalu_bypass_table[i][1]) return true; } return false; } /* Implement ASM_OUTPUT_ASCII. */ void mips_output_ascii (FILE *stream, const char *string, size_t len) { size_t i; int cur_pos; cur_pos = 17; fprintf (stream, "\t.ascii\t\""); for (i = 0; i < len; i++) { int c; c = (unsigned char) string[i]; if (ISPRINT (c)) { if (c == '\\' || c == '\"') { putc ('\\', stream); cur_pos++; } putc (c, stream); cur_pos++; } else { fprintf (stream, "\\%03o", c); cur_pos += 4; } if (cur_pos > 72 && i+1 < len) { cur_pos = 17; fprintf (stream, "\"\n\t.ascii\t\""); } } fprintf (stream, "\"\n"); } /* Return the pseudo-op for full SYMBOL_(D)TPREL address *ADDR. Update *ADDR with the operand that should be printed. */ const char * mips_output_tls_reloc_directive (rtx *addr) { enum mips_symbol_type type; type = mips_classify_symbolic_expression (*addr, SYMBOL_CONTEXT_LEA); *addr = mips_strip_unspec_address (*addr); switch (type) { case SYMBOL_DTPREL: return Pmode == SImode ? ".dtprelword\t%0" : ".dtpreldword\t%0"; case SYMBOL_TPREL: return Pmode == SImode ? ".tprelword\t%0" : ".tpreldword\t%0"; default: gcc_unreachable (); } } /* Emit either a label, .comm, or .lcomm directive. When using assembler macros, mark the symbol as written so that mips_asm_output_external won't emit an .extern for it. STREAM is the output file, NAME is the name of the symbol, INIT_STRING is the string that should be written before the symbol and FINAL_STRING is the string that should be written after it. FINAL_STRING is a printf format that consumes the remaining arguments. */ void mips_declare_object (FILE *stream, const char *name, const char *init_string, const char *final_string, ...) { va_list ap; fputs (init_string, stream); assemble_name (stream, name); va_start (ap, final_string); vfprintf (stream, final_string, ap); va_end (ap); if (!TARGET_EXPLICIT_RELOCS) { tree name_tree = get_identifier (name); TREE_ASM_WRITTEN (name_tree) = 1; } } /* Declare a common object of SIZE bytes using asm directive INIT_STRING. NAME is the name of the object and ALIGN is the required alignment in bytes. TAKES_ALIGNMENT_P is true if the directive takes a third alignment argument. */ void mips_declare_common_object (FILE *stream, const char *name, const char *init_string, unsigned HOST_WIDE_INT size, unsigned int align, bool takes_alignment_p) { if (!takes_alignment_p) { size += (align / BITS_PER_UNIT) - 1; size -= size % (align / BITS_PER_UNIT); mips_declare_object (stream, name, init_string, "," HOST_WIDE_INT_PRINT_UNSIGNED "\n", size); } else mips_declare_object (stream, name, init_string, "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n", size, align / BITS_PER_UNIT); } /* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON. This is usually the same as the elfos.h version, but we also need to handle -muninit-const-in-rodata. */ void mips_output_aligned_decl_common (FILE *stream, tree decl, const char *name, unsigned HOST_WIDE_INT size, unsigned int align) { /* If the target wants uninitialized const declarations in .rdata then don't put them in .comm. */ if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA && TREE_CODE (decl) == VAR_DECL && TREE_READONLY (decl) && (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node)) { if (TREE_PUBLIC (decl) && DECL_NAME (decl)) targetm.asm_out.globalize_label (stream, name); switch_to_section (readonly_data_section); ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT)); mips_declare_object (stream, name, "", ":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n", size); } else mips_declare_common_object (stream, name, "\n\t.comm\t", size, align, true); } #ifdef ASM_OUTPUT_SIZE_DIRECTIVE extern int size_directive_output; /* Implement ASM_DECLARE_OBJECT_NAME. This is like most of the standard ELF definitions except that it uses mips_declare_object to emit the label. */ void mips_declare_object_name (FILE *stream, const char *name, tree decl ATTRIBUTE_UNUSED) { #ifdef ASM_OUTPUT_TYPE_DIRECTIVE #ifdef USE_GNU_UNIQUE_OBJECT /* As in elfos.h. */ if (USE_GNU_UNIQUE_OBJECT && DECL_ONE_ONLY (decl) && (!DECL_ARTIFICIAL (decl) || !TREE_READONLY (decl))) ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "gnu_unique_object"); else #endif ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object"); #endif size_directive_output = 0; if (!flag_inhibit_size_directive && DECL_SIZE (decl)) { HOST_WIDE_INT size; size_directive_output = 1; size = int_size_in_bytes (TREE_TYPE (decl)); ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size); } mips_declare_object (stream, name, "", ":\n"); } /* Implement ASM_FINISH_DECLARE_OBJECT. This is generic ELF stuff. */ void mips_finish_declare_object (FILE *stream, tree decl, int top_level, int at_end) { const char *name; name = XSTR (XEXP (DECL_RTL (decl), 0), 0); if (!flag_inhibit_size_directive && DECL_SIZE (decl) != 0 && !at_end && top_level && DECL_INITIAL (decl) == error_mark_node && !size_directive_output) { HOST_WIDE_INT size; size_directive_output = 1; size = int_size_in_bytes (TREE_TYPE (decl)); ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size); } } #endif /* Mark text contents as code or data, mainly for the purpose of correct disassembly. Emit a local symbol and set its type appropriately for that purpose. Also emit `.insn' if marking contents as code so that the ISA mode is recorded and any padding that follows is disassembled as correct instructions. */ void mips_set_text_contents_type (FILE *file ATTRIBUTE_UNUSED, const char *prefix ATTRIBUTE_UNUSED, unsigned long num ATTRIBUTE_UNUSED, bool function_p ATTRIBUTE_UNUSED) { #ifdef ASM_OUTPUT_TYPE_DIRECTIVE char buf[(sizeof (num) * 10) / 4 + 2]; const char *fnname; char *sname; rtx symbol; sprintf (buf, "%lu", num); symbol = XEXP (DECL_RTL (current_function_decl), 0); fnname = targetm.strip_name_encoding (XSTR (symbol, 0)); sname = ACONCAT ((prefix, fnname, "_", buf, NULL)); ASM_OUTPUT_TYPE_DIRECTIVE (file, sname, function_p ? "function" : "object"); assemble_name (file, sname); fputs (":\n", file); if (function_p) fputs ("\t.insn\n", file); #endif } /* Return the FOO in the name of the ".mdebug.FOO" section associated with the current ABI. */ static const char * mips_mdebug_abi_name (void) { switch (mips_abi) { case ABI_32: return "abi32"; case ABI_O64: return "abiO64"; case ABI_N32: return "abiN32"; case ABI_64: return "abi64"; case ABI_EABI: return TARGET_64BIT ? "eabi64" : "eabi32"; default: gcc_unreachable (); } } /* Implement TARGET_ASM_FILE_START. */ static void mips_file_start (void) { default_file_start (); /* Generate a special section to describe the ABI switches used to produce the resultant binary. */ /* Record the ABI itself. Modern versions of binutils encode this information in the ELF header flags, but GDB needs the information in order to correctly debug binaries produced by older binutils. See the function mips_gdbarch_init in gdb/mips-tdep.c. */ fprintf (asm_out_file, "\t.section .mdebug.%s\n\t.previous\n", mips_mdebug_abi_name ()); /* There is no ELF header flag to distinguish long32 forms of the EABI from long64 forms. Emit a special section to help tools such as GDB. Do the same for o64, which is sometimes used with -mlong64. */ if (mips_abi == ABI_EABI || mips_abi == ABI_O64) fprintf (asm_out_file, "\t.section .gcc_compiled_long%d\n" "\t.previous\n", TARGET_LONG64 ? 64 : 32); /* Record the NaN encoding. */ if (HAVE_AS_NAN || mips_nan != MIPS_IEEE_754_DEFAULT) fprintf (asm_out_file, "\t.nan\t%s\n", mips_nan == MIPS_IEEE_754_2008 ? "2008" : "legacy"); #ifdef HAVE_AS_DOT_MODULE /* Record the FP ABI. See below for comments. */ if (TARGET_NO_FLOAT) #ifdef HAVE_AS_GNU_ATTRIBUTE fputs ("\t.gnu_attribute 4, 0\n", asm_out_file); #else ; #endif else if (!TARGET_HARD_FLOAT_ABI) fputs ("\t.module\tsoftfloat\n", asm_out_file); else if (!TARGET_DOUBLE_FLOAT) fputs ("\t.module\tsinglefloat\n", asm_out_file); else if (TARGET_FLOATXX) fputs ("\t.module\tfp=xx\n", asm_out_file); else if (TARGET_FLOAT64) fputs ("\t.module\tfp=64\n", asm_out_file); else fputs ("\t.module\tfp=32\n", asm_out_file); if (TARGET_ODD_SPREG) fputs ("\t.module\toddspreg\n", asm_out_file); else fputs ("\t.module\tnooddspreg\n", asm_out_file); fprintf (asm_out_file, "\t.module\tarch=%s\n", mips_arch_info->name); /* FIXME: DSPR3 is not supported by GCC? gas does support it */ if (TARGET_DSPR2) fputs ("\t.module\tdspr2\n", asm_out_file); else if (TARGET_DSP) fputs ("\t.module\tdsp\n", asm_out_file); if (TARGET_EVA) fputs ("\t.module\teva\n", asm_out_file); if (TARGET_MCU) fputs ("\t.module\tmcu\n", asm_out_file); if (TARGET_MDMX) fputs ("\t.module\tmdmx\n", asm_out_file); if (TARGET_MIPS3D) fputs ("\t.module\tmips3d\n", asm_out_file); if (TARGET_MT) fputs ("\t.module\tmt\n", asm_out_file); if (TARGET_SMARTMIPS) fputs ("\t.module\tsmartmips\n", asm_out_file); if (TARGET_VIRT) fputs ("\t.module\tvirt\n", asm_out_file); if (TARGET_MSA) fputs ("\t.module\tmsa\n", asm_out_file); if (TARGET_XPA) fputs ("\t.module\txpa\n", asm_out_file); /* FIXME: MIPS16E2 is not supported by GCC? gas does support it */ if (TARGET_CRC) fputs ("\t.module\tcrc\n", asm_out_file); if (TARGET_GINV) fputs ("\t.module\tginv\n", asm_out_file); if (TARGET_LOONGSON_MMI) fputs ("\t.module\tloongson-mmi\n", asm_out_file); /* FIXME: LOONGSON-CAM is not supported by GCC? gas does support it */ if (TARGET_LOONGSON_EXT2) fputs ("\t.module\tloongson-ext2\n", asm_out_file); else if (TARGET_LOONGSON_EXT) fputs ("\t.module\tloongson-ext\n", asm_out_file); #else #ifdef HAVE_AS_GNU_ATTRIBUTE { int attr; /* No floating-point operations, -mno-float. */ if (TARGET_NO_FLOAT) attr = 0; /* Soft-float code, -msoft-float. */ else if (!TARGET_HARD_FLOAT_ABI) attr = 3; /* Single-float code, -msingle-float. */ else if (!TARGET_DOUBLE_FLOAT) attr = 2; /* 64-bit FP registers on a 32-bit target, -mips32r2 -mfp64. Reserved attr=4. This case used 12 callee-saved double-precision registers and is deprecated. */ /* 64-bit or 32-bit FP registers on a 32-bit target, -mfpxx. */ else if (TARGET_FLOATXX) attr = 5; /* 64-bit FP registers on a 32-bit target, -mfp64 -modd-spreg. */ else if (mips_abi == ABI_32 && TARGET_FLOAT64 && TARGET_ODD_SPREG) attr = 6; /* 64-bit FP registers on a 32-bit target, -mfp64 -mno-odd-spreg. */ else if (mips_abi == ABI_32 && TARGET_FLOAT64) attr = 7; /* Regular FP code, FP regs same size as GP regs, -mdouble-float. */ else attr = 1; fprintf (asm_out_file, "\t.gnu_attribute 4, %d\n", attr); /* 128-bit MSA. */ if (ISA_HAS_MSA) fprintf (asm_out_file, "\t.gnu_attribute 8, 1\n"); } #endif #endif /* If TARGET_ABICALLS, tell GAS to generate -KPIC code. */ if (TARGET_ABICALLS) { fprintf (asm_out_file, "\t.abicalls\n"); if (TARGET_ABICALLS_PIC0) fprintf (asm_out_file, "\t.option\tpic0\n"); } if (flag_verbose_asm) fprintf (asm_out_file, "\n%s -G value = %d, Arch = %s, ISA = %d\n", ASM_COMMENT_START, mips_small_data_threshold, mips_arch_info->name, mips_isa); } /* Implement TARGET_ASM_CODE_END. */ static void mips_code_end (void) { mips_finish_stub (&mips16_rdhwr_stub); mips_finish_stub (&mips16_get_fcsr_stub); mips_finish_stub (&mips16_set_fcsr_stub); } /* Make the last instruction frame-related and note that it performs the operation described by FRAME_PATTERN. */ static void mips_set_frame_expr (rtx frame_pattern) { rtx_insn *insn; insn = get_last_insn (); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR, frame_pattern, REG_NOTES (insn)); } /* Return a frame-related rtx that stores REG at MEM. REG must be a single register. */ static rtx mips_frame_set (rtx mem, rtx reg) { rtx set; set = gen_rtx_SET (mem, reg); RTX_FRAME_RELATED_P (set) = 1; return set; } /* Record that the epilogue has restored call-saved register REG. */ static void mips_add_cfa_restore (rtx reg) { mips_epilogue.cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, mips_epilogue.cfa_restores); } /* If a MIPS16e SAVE or RESTORE instruction saves or restores register mips16e_s2_s8_regs[X], it must also save the registers in indexes X + 1 onwards. Likewise mips16e_a0_a3_regs. */ static const unsigned char mips16e_s2_s8_regs[] = { 30, 23, 22, 21, 20, 19, 18 }; static const unsigned char mips16e_a0_a3_regs[] = { 4, 5, 6, 7 }; /* A list of the registers that can be saved by the MIPS16e SAVE instruction, ordered from the uppermost in memory to the lowest in memory. */ static const unsigned char mips16e_save_restore_regs[] = { 31, 30, 23, 22, 21, 20, 19, 18, 17, 16, 7, 6, 5, 4 }; /* Return the index of the lowest X in the range [0, SIZE) for which bit REGS[X] is set in MASK. Return SIZE if there is no such X. */ static unsigned int mips16e_find_first_register (unsigned int mask, const unsigned char *regs, unsigned int size) { unsigned int i; for (i = 0; i < size; i++) if (BITSET_P (mask, regs[i])) break; return i; } /* *MASK_PTR is a mask of general-purpose registers and *NUM_REGS_PTR is the number of set bits. If *MASK_PTR contains REGS[X] for some X in [0, SIZE), adjust *MASK_PTR and *NUM_REGS_PTR so that the same is true for all indexes (X, SIZE). */ static void mips16e_mask_registers (unsigned int *mask_ptr, const unsigned char *regs, unsigned int size, unsigned int *num_regs_ptr) { unsigned int i; i = mips16e_find_first_register (*mask_ptr, regs, size); for (i++; i < size; i++) if (!BITSET_P (*mask_ptr, regs[i])) { *num_regs_ptr += 1; *mask_ptr |= 1 << regs[i]; } } /* Return a simplified form of X using the register values in REG_VALUES. REG_VALUES[R] is the last value assigned to hard register R, or null if R has not been modified. This function is rather limited, but is good enough for our purposes. */ static rtx mips16e_collect_propagate_value (rtx x, rtx *reg_values) { x = avoid_constant_pool_reference (x); if (UNARY_P (x)) { rtx x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values); return simplify_gen_unary (GET_CODE (x), GET_MODE (x), x0, GET_MODE (XEXP (x, 0))); } if (ARITHMETIC_P (x)) { rtx x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values); rtx x1 = mips16e_collect_propagate_value (XEXP (x, 1), reg_values); return simplify_gen_binary (GET_CODE (x), GET_MODE (x), x0, x1); } if (REG_P (x) && reg_values[REGNO (x)] && !rtx_unstable_p (reg_values[REGNO (x)])) return reg_values[REGNO (x)]; return x; } /* Return true if (set DEST SRC) stores an argument register into its caller-allocated save slot, storing the number of that argument register in *REGNO_PTR if so. REG_VALUES is as for mips16e_collect_propagate_value. */ static bool mips16e_collect_argument_save_p (rtx dest, rtx src, rtx *reg_values, unsigned int *regno_ptr) { unsigned int argno, regno; HOST_WIDE_INT offset, required_offset; rtx addr, base; /* Check that this is a word-mode store. */ if (!MEM_P (dest) || !REG_P (src) || GET_MODE (dest) != word_mode) return false; /* Check that the register being saved is an unmodified argument register. */ regno = REGNO (src); if (!IN_RANGE (regno, GP_ARG_FIRST, GP_ARG_LAST) || reg_values[regno]) return false; argno = regno - GP_ARG_FIRST; /* Check whether the address is an appropriate stack-pointer or frame-pointer access. */ addr = mips16e_collect_propagate_value (XEXP (dest, 0), reg_values); mips_split_plus (addr, &base, &offset); required_offset = cfun->machine->frame.total_size + argno * UNITS_PER_WORD; if (base == hard_frame_pointer_rtx) required_offset -= cfun->machine->frame.hard_frame_pointer_offset; else if (base != stack_pointer_rtx) return false; if (offset != required_offset) return false; *regno_ptr = regno; return true; } /* A subroutine of mips_expand_prologue, called only when generating MIPS16e SAVE instructions. Search the start of the function for any instructions that save argument registers into their caller-allocated save slots. Delete such instructions and return a value N such that saving [GP_ARG_FIRST, GP_ARG_FIRST + N) would make all the deleted instructions redundant. */ static unsigned int mips16e_collect_argument_saves (void) { rtx reg_values[FIRST_PSEUDO_REGISTER]; rtx_insn *insn, *next; rtx set, dest, src; unsigned int nargs, regno; push_topmost_sequence (); nargs = 0; memset (reg_values, 0, sizeof (reg_values)); for (insn = get_insns (); insn; insn = next) { next = NEXT_INSN (insn); if (NOTE_P (insn) || DEBUG_INSN_P (insn)) continue; if (!INSN_P (insn)) break; set = PATTERN (insn); if (GET_CODE (set) != SET) break; dest = SET_DEST (set); src = SET_SRC (set); if (mips16e_collect_argument_save_p (dest, src, reg_values, ®no)) { if (!BITSET_P (cfun->machine->frame.mask, regno)) { delete_insn (insn); nargs = MAX (nargs, (regno - GP_ARG_FIRST) + 1); } } else if (REG_P (dest) && GET_MODE (dest) == word_mode) reg_values[REGNO (dest)] = mips16e_collect_propagate_value (src, reg_values); else break; } pop_topmost_sequence (); return nargs; } /* Return a move between register REGNO and memory location SP + OFFSET. REG_PARM_P is true if SP + OFFSET belongs to REG_PARM_STACK_SPACE. Make the move a load if RESTORE_P, otherwise make it a store. */ static rtx mips16e_save_restore_reg (bool restore_p, bool reg_parm_p, HOST_WIDE_INT offset, unsigned int regno) { rtx reg, mem; mem = gen_frame_mem (SImode, plus_constant (Pmode, stack_pointer_rtx, offset)); reg = gen_rtx_REG (SImode, regno); if (restore_p) { mips_add_cfa_restore (reg); return gen_rtx_SET (reg, mem); } if (reg_parm_p) return gen_rtx_SET (mem, reg); return mips_frame_set (mem, reg); } /* Return RTL for a MIPS16e SAVE or RESTORE instruction; RESTORE_P says which. The instruction must: - Allocate or deallocate SIZE bytes in total; SIZE is known to be nonzero. - Save or restore as many registers in *MASK_PTR as possible. The instruction saves the first registers at the top of the allocated area, with the other registers below it. - Save NARGS argument registers above the allocated area. (NARGS is always zero if RESTORE_P.) The SAVE and RESTORE instructions cannot save and restore all general registers, so there may be some registers left over for the caller to handle. Destructively modify *MASK_PTR so that it contains the registers that still need to be saved or restored. The caller can save these registers in the memory immediately below *OFFSET_PTR, which is a byte offset from the bottom of the allocated stack area. */ static rtx mips16e_build_save_restore (bool restore_p, unsigned int *mask_ptr, HOST_WIDE_INT *offset_ptr, unsigned int nargs, HOST_WIDE_INT size) { rtx pattern, set; HOST_WIDE_INT offset, top_offset; unsigned int i, regno; int n; gcc_assert (cfun->machine->frame.num_fp == 0); /* Calculate the number of elements in the PARALLEL. We need one element for the stack adjustment, one for each argument register save, and one for each additional register move. */ n = 1 + nargs; for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++) if (BITSET_P (*mask_ptr, mips16e_save_restore_regs[i])) n++; /* Create the final PARALLEL. */ pattern = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (n)); n = 0; /* Add the stack pointer adjustment. */ set = gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, restore_p ? size : -size)); RTX_FRAME_RELATED_P (set) = 1; XVECEXP (pattern, 0, n++) = set; /* Stack offsets in the PARALLEL are relative to the old stack pointer. */ top_offset = restore_p ? size : 0; /* Save the arguments. */ for (i = 0; i < nargs; i++) { offset = top_offset + i * UNITS_PER_WORD; set = mips16e_save_restore_reg (restore_p, true, offset, GP_ARG_FIRST + i); XVECEXP (pattern, 0, n++) = set; } /* Then fill in the other register moves. */ offset = top_offset; for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++) { regno = mips16e_save_restore_regs[i]; if (BITSET_P (*mask_ptr, regno)) { offset -= UNITS_PER_WORD; set = mips16e_save_restore_reg (restore_p, false, offset, regno); XVECEXP (pattern, 0, n++) = set; *mask_ptr &= ~(1 << regno); } } /* Tell the caller what offset it should use for the remaining registers. */ *offset_ptr = size + (offset - top_offset); gcc_assert (n == XVECLEN (pattern, 0)); return pattern; } /* PATTERN is a PARALLEL whose first element adds ADJUST to the stack pointer. Return true if PATTERN matches the kind of instruction generated by mips16e_build_save_restore. If INFO is nonnull, initialize it when returning true. */ bool mips16e_save_restore_pattern_p (rtx pattern, HOST_WIDE_INT adjust, struct mips16e_save_restore_info *info) { unsigned int i, nargs, mask, extra; HOST_WIDE_INT top_offset, save_offset, offset; rtx set, reg, mem, base; int n; if (!GENERATE_MIPS16E_SAVE_RESTORE) return false; /* Stack offsets in the PARALLEL are relative to the old stack pointer. */ top_offset = adjust > 0 ? adjust : 0; /* Interpret all other members of the PARALLEL. */ save_offset = top_offset - UNITS_PER_WORD; mask = 0; nargs = 0; i = 0; for (n = 1; n < XVECLEN (pattern, 0); n++) { /* Check that we have a SET. */ set = XVECEXP (pattern, 0, n); if (GET_CODE (set) != SET) return false; /* Check that the SET is a load (if restoring) or a store (if saving). */ mem = adjust > 0 ? SET_SRC (set) : SET_DEST (set); if (!MEM_P (mem)) return false; /* Check that the address is the sum of the stack pointer and a possibly-zero constant offset. */ mips_split_plus (XEXP (mem, 0), &base, &offset); if (base != stack_pointer_rtx) return false; /* Check that SET's other operand is a register. */ reg = adjust > 0 ? SET_DEST (set) : SET_SRC (set); if (!REG_P (reg)) return false; /* Check for argument saves. */ if (offset == top_offset + nargs * UNITS_PER_WORD && REGNO (reg) == GP_ARG_FIRST + nargs) nargs++; else if (offset == save_offset) { while (mips16e_save_restore_regs[i++] != REGNO (reg)) if (i == ARRAY_SIZE (mips16e_save_restore_regs)) return false; mask |= 1 << REGNO (reg); save_offset -= UNITS_PER_WORD; } else return false; } /* Check that the restrictions on register ranges are met. */ extra = 0; mips16e_mask_registers (&mask, mips16e_s2_s8_regs, ARRAY_SIZE (mips16e_s2_s8_regs), &extra); mips16e_mask_registers (&mask, mips16e_a0_a3_regs, ARRAY_SIZE (mips16e_a0_a3_regs), &extra); if (extra != 0) return false; /* Make sure that the topmost argument register is not saved twice. The checks above ensure that the same is then true for the other argument registers. */ if (nargs > 0 && BITSET_P (mask, GP_ARG_FIRST + nargs - 1)) return false; /* Pass back information, if requested. */ if (info) { info->nargs = nargs; info->mask = mask; info->size = (adjust > 0 ? adjust : -adjust); } return true; } /* Add a MIPS16e SAVE or RESTORE register-range argument to string S for the register range [MIN_REG, MAX_REG]. Return a pointer to the null terminator. */ static char * mips16e_add_register_range (char *s, unsigned int min_reg, unsigned int max_reg) { if (min_reg != max_reg) s += sprintf (s, ",%s-%s", reg_names[min_reg], reg_names[max_reg]); else s += sprintf (s, ",%s", reg_names[min_reg]); return s; } /* Return the assembly instruction for a MIPS16e SAVE or RESTORE instruction. PATTERN and ADJUST are as for mips16e_save_restore_pattern_p. */ const char * mips16e_output_save_restore (rtx pattern, HOST_WIDE_INT adjust) { static char buffer[300]; struct mips16e_save_restore_info info; unsigned int i, end; char *s; /* Parse the pattern. */ if (!mips16e_save_restore_pattern_p (pattern, adjust, &info)) gcc_unreachable (); /* Add the mnemonic. */ s = strcpy (buffer, adjust > 0 ? "restore\t" : "save\t"); s += strlen (s); /* Save the arguments. */ if (info.nargs > 1) s += sprintf (s, "%s-%s,", reg_names[GP_ARG_FIRST], reg_names[GP_ARG_FIRST + info.nargs - 1]); else if (info.nargs == 1) s += sprintf (s, "%s,", reg_names[GP_ARG_FIRST]); /* Emit the amount of stack space to allocate or deallocate. */ s += sprintf (s, "%d", (int) info.size); /* Save or restore $16. */ if (BITSET_P (info.mask, 16)) s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 16]); /* Save or restore $17. */ if (BITSET_P (info.mask, 17)) s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 17]); /* Save or restore registers in the range $s2...$s8, which mips16e_s2_s8_regs lists in decreasing order. Note that this is a software register range; the hardware registers are not numbered consecutively. */ end = ARRAY_SIZE (mips16e_s2_s8_regs); i = mips16e_find_first_register (info.mask, mips16e_s2_s8_regs, end); if (i < end) s = mips16e_add_register_range (s, mips16e_s2_s8_regs[end - 1], mips16e_s2_s8_regs[i]); /* Save or restore registers in the range $a0...$a3. */ end = ARRAY_SIZE (mips16e_a0_a3_regs); i = mips16e_find_first_register (info.mask, mips16e_a0_a3_regs, end); if (i < end) s = mips16e_add_register_range (s, mips16e_a0_a3_regs[i], mips16e_a0_a3_regs[end - 1]); /* Save or restore $31. */ if (BITSET_P (info.mask, RETURN_ADDR_REGNUM)) s += sprintf (s, ",%s", reg_names[RETURN_ADDR_REGNUM]); return buffer; } /* Return true if the current function returns its value in a floating-point register in MIPS16 mode. */ static bool mips16_cfun_returns_in_fpr_p (void) { tree return_type = DECL_RESULT (current_function_decl); return (TARGET_MIPS16 && TARGET_HARD_FLOAT_ABI && !aggregate_value_p (return_type, current_function_decl) && mips_return_mode_in_fpr_p (DECL_MODE (return_type))); } /* Return true if predicate PRED is true for at least one instruction. Cache the result in *CACHE, and assume that the result is true if *CACHE is already true. */ static bool mips_find_gp_ref (bool *cache, bool (*pred) (rtx_insn *)) { rtx_insn *insn, *subinsn; if (!*cache) { push_topmost_sequence (); for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) FOR_EACH_SUBINSN (subinsn, insn) if (USEFUL_INSN_P (subinsn) && pred (subinsn)) { *cache = true; break; } pop_topmost_sequence (); } return *cache; } /* Return true if INSN refers to the global pointer in an "inflexible" way. See mips_cfun_has_inflexible_gp_ref_p for details. */ static bool mips_insn_has_inflexible_gp_ref_p (rtx_insn *insn) { /* Uses of pic_offset_table_rtx in CALL_INSN_FUNCTION_USAGE indicate that the target could be a traditional MIPS lazily-binding stub. */ return find_reg_fusage (insn, USE, pic_offset_table_rtx); } /* Return true if the current function refers to the global pointer in a way that forces $28 to be valid. This means that we can't change the choice of global pointer, even for NewABI code. One example of this (and one which needs several checks) is that $28 must be valid when calling traditional MIPS lazy-binding stubs. (This restriction does not apply to PLTs.) */ static bool mips_cfun_has_inflexible_gp_ref_p (void) { /* If the function has a nonlocal goto, $28 must hold the correct global pointer for the target function. That is, the target of the goto implicitly uses $28. */ if (crtl->has_nonlocal_goto) return true; if (TARGET_ABICALLS_PIC2) { /* Symbolic accesses implicitly use the global pointer unless -mexplicit-relocs is in effect. JAL macros to symbolic addresses might go to traditional MIPS lazy-binding stubs. */ if (!TARGET_EXPLICIT_RELOCS) return true; /* FUNCTION_PROFILER includes a JAL to _mcount, which again can be lazily-bound. */ if (crtl->profile) return true; /* MIPS16 functions that return in FPRs need to call an external libgcc routine. This call is only made explict during mips_expand_epilogue, and it too might be lazily bound. */ if (mips16_cfun_returns_in_fpr_p ()) return true; } return mips_find_gp_ref (&cfun->machine->has_inflexible_gp_insn_p, mips_insn_has_inflexible_gp_ref_p); } /* Return true if INSN refers to the global pointer in a "flexible" way. See mips_cfun_has_flexible_gp_ref_p for details. */ static bool mips_insn_has_flexible_gp_ref_p (rtx_insn *insn) { return (get_attr_got (insn) != GOT_UNSET || mips_small_data_pattern_p (PATTERN (insn)) || reg_overlap_mentioned_p (pic_offset_table_rtx, PATTERN (insn))); } /* Return true if the current function references the global pointer, but if those references do not inherently require the global pointer to be $28. Assume !mips_cfun_has_inflexible_gp_ref_p (). */ static bool mips_cfun_has_flexible_gp_ref_p (void) { /* Reload can sometimes introduce constant pool references into a function that otherwise didn't need them. For example, suppose we have an instruction like: (set (reg:DF R1) (float:DF (reg:SI R2))) If R2 turns out to be a constant such as 1, the instruction may have a REG_EQUAL note saying that R1 == 1.0. Reload then has the option of using this constant if R2 doesn't get allocated to a register. In cases like these, reload will have added the constant to the pool but no instruction will yet refer to it. */ if (TARGET_ABICALLS_PIC2 && !reload_completed && crtl->uses_const_pool) return true; return mips_find_gp_ref (&cfun->machine->has_flexible_gp_insn_p, mips_insn_has_flexible_gp_ref_p); } /* Return the register that should be used as the global pointer within this function. Return INVALID_REGNUM if the function doesn't need a global pointer. */ static unsigned int mips_global_pointer (void) { unsigned int regno; /* $gp is always available unless we're using a GOT. */ if (!TARGET_USE_GOT) return GLOBAL_POINTER_REGNUM; /* If there are inflexible references to $gp, we must use the standard register. */ if (mips_cfun_has_inflexible_gp_ref_p ()) return GLOBAL_POINTER_REGNUM; /* If there are no current references to $gp, then the only uses we can introduce later are those involved in long branches. */ if (TARGET_ABSOLUTE_JUMPS && !mips_cfun_has_flexible_gp_ref_p ()) return INVALID_REGNUM; /* If the global pointer is call-saved, try to use a call-clobbered alternative. */ if (TARGET_CALL_SAVED_GP && crtl->is_leaf) for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) if (!df_regs_ever_live_p (regno) && call_used_regs[regno] && !fixed_regs[regno] && regno != PIC_FUNCTION_ADDR_REGNUM) return regno; return GLOBAL_POINTER_REGNUM; } /* Return true if the current function's prologue must load the global pointer value into pic_offset_table_rtx and store the same value in the function's cprestore slot (if any). One problem we have to deal with is that, when emitting GOT-based position independent code, long-branch sequences will need to load the address of the branch target from the GOT. We don't know until the very end of compilation whether (and where) the function needs long branches, so we must ensure that _any_ branch can access the global pointer in some form. However, we do not want to pessimize the usual case in which all branches are short. We handle this as follows: (1) During reload, we set cfun->machine->global_pointer to INVALID_REGNUM if we _know_ that the current function doesn't need a global pointer. This is only valid if long branches don't need the GOT. Otherwise, we assume that we might need a global pointer and pick an appropriate register. (2) If cfun->machine->global_pointer != INVALID_REGNUM, we ensure that the global pointer is available at every block boundary bar entry and exit. We do this in one of two ways: - If the function has a cprestore slot, we ensure that this slot is valid at every branch. However, as explained in point (6) below, there is no guarantee that pic_offset_table_rtx itself is valid if new uses of the global pointer are introduced after the first post-epilogue split. We guarantee that the cprestore slot is valid by loading it into a fake register, CPRESTORE_SLOT_REGNUM. We then make this register live at every block boundary bar function entry and exit. It is then invalid to move the load (and thus the preceding store) across a block boundary. - If the function has no cprestore slot, we guarantee that pic_offset_table_rtx itself is valid at every branch. See mips_eh_uses for the handling of the register liveness. (3) During prologue and epilogue generation, we emit "ghost" placeholder instructions to manipulate the global pointer. (4) During prologue generation, we set cfun->machine->must_initialize_gp_p and cfun->machine->must_restore_gp_when_clobbered_p if we already know that the function needs a global pointer. (There is no need to set them earlier than this, and doing it as late as possible leads to fewer false positives.) (5) If cfun->machine->must_initialize_gp_p is true during a split_insns pass, we split the ghost instructions into real instructions. These split instructions can then be optimized in the usual way. Otherwise, we keep the ghost instructions intact, and optimize for the case where they aren't needed. We still have the option of splitting them later, if we need to introduce new uses of the global pointer. For example, the scheduler ignores a ghost instruction that stores $28 to the stack, but it handles the split form of the ghost instruction as an ordinary store. (6) [OldABI only.] If cfun->machine->must_restore_gp_when_clobbered_p is true during the first post-epilogue split_insns pass, we split calls and restore_gp patterns into instructions that explicitly load pic_offset_table_rtx from the cprestore slot. Otherwise, we split these patterns into instructions that _don't_ load from the cprestore slot. If cfun->machine->must_restore_gp_when_clobbered_p is true at the time of the split, then any instructions that exist at that time can make free use of pic_offset_table_rtx. However, if we want to introduce new uses of the global pointer after the split, we must explicitly load the value from the cprestore slot, since pic_offset_table_rtx itself might not be valid at a given point in the function. The idea is that we want to be able to delete redundant loads from the cprestore slot in the usual case where no long branches are needed. (7) If cfun->machine->must_initialize_gp_p is still false at the end of md_reorg, we decide whether the global pointer is needed for long branches. If so, we set cfun->machine->must_initialize_gp_p to true and split the ghost instructions into real instructions at that stage. Note that the ghost instructions must have a zero length for three reasons: - Giving the length of the underlying $gp sequence might cause us to use long branches in cases where they aren't really needed. - They would perturb things like alignment calculations. - More importantly, the hazard detection in md_reorg relies on empty instructions having a zero length. If we find a long branch and split the ghost instructions at the end of md_reorg, the split could introduce more long branches. That isn't a problem though, because we still do the split before the final shorten_branches pass. This is extremely ugly, but it seems like the best compromise between correctness and efficiency. */ bool mips_must_initialize_gp_p (void) { return cfun->machine->must_initialize_gp_p; } /* Return true if REGNO is a register that is ordinarily call-clobbered but must nevertheless be preserved by an interrupt handler. */ static bool mips_interrupt_extra_call_saved_reg_p (unsigned int regno) { if ((ISA_HAS_HILO || TARGET_DSP) && MD_REG_P (regno)) return true; if (TARGET_DSP && DSP_ACC_REG_P (regno)) return true; if (GP_REG_P (regno) && cfun->machine->use_shadow_register_set == SHADOW_SET_NO) { /* $0 is hard-wired. */ if (regno == GP_REG_FIRST) return false; /* The interrupt handler can treat kernel registers as scratch registers. */ if (KERNEL_REG_P (regno)) return false; /* The function will return the stack pointer to its original value anyway. */ if (regno == STACK_POINTER_REGNUM) return false; /* Otherwise, return true for registers that aren't ordinarily call-clobbered. */ return call_used_regs[regno]; } return false; } /* Return true if the current function should treat register REGNO as call-saved. */ static bool mips_cfun_call_saved_reg_p (unsigned int regno) { /* If the user makes an ordinarily-call-saved register global, that register is no longer call-saved. */ if (global_regs[regno]) return false; /* Interrupt handlers need to save extra registers. */ if (cfun->machine->interrupt_handler_p && mips_interrupt_extra_call_saved_reg_p (regno)) return true; /* call_insns preserve $28 unless they explicitly say otherwise, so call_used_regs[] treats $28 as call-saved. However, we want the ABI property rather than the default call_insn property here. */ return (regno == GLOBAL_POINTER_REGNUM ? TARGET_CALL_SAVED_GP : !call_used_regs[regno]); } /* Return true if the function body might clobber register REGNO. We know that REGNO is call-saved. */ static bool mips_cfun_might_clobber_call_saved_reg_p (unsigned int regno) { /* Some functions should be treated as clobbering all call-saved registers. */ if (crtl->saves_all_registers) return true; /* DF handles cases where a register is explicitly referenced in the rtl. Incoming values are passed in call-clobbered registers, so we can assume that any live call-saved register is set within the function. */ if (df_regs_ever_live_p (regno)) return true; /* Check for registers that are clobbered by FUNCTION_PROFILER. These clobbers are not explicit in the rtl. */ if (crtl->profile && MIPS_SAVE_REG_FOR_PROFILING_P (regno)) return true; /* If we're using a call-saved global pointer, the function's prologue will need to set it up. */ if (cfun->machine->global_pointer == regno) return true; /* The function's prologue will need to set the frame pointer if frame_pointer_needed. */ if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) return true; /* If a MIPS16 function returns a value in FPRs, its epilogue will need to call an external libgcc routine. This yet-to-be generated call_insn will clobber $31. */ if (regno == RETURN_ADDR_REGNUM && mips16_cfun_returns_in_fpr_p ()) return true; /* If REGNO is ordinarily call-clobbered, we must assume that any called function could modify it. */ if (cfun->machine->interrupt_handler_p && !crtl->is_leaf && mips_interrupt_extra_call_saved_reg_p (regno)) return true; return false; } /* Return true if the current function must save register REGNO. */ static bool mips_save_reg_p (unsigned int regno) { if (mips_cfun_call_saved_reg_p (regno)) { if (mips_cfun_might_clobber_call_saved_reg_p (regno)) return true; /* Save both registers in an FPR pair if either one is used. This is needed for the case when MIN_FPRS_PER_FMT == 1, which allows the odd register to be used without the even register. */ if (FP_REG_P (regno) && MAX_FPRS_PER_FMT == 2 && mips_cfun_might_clobber_call_saved_reg_p (regno + 1)) return true; } /* We need to save the incoming return address if __builtin_eh_return is being used to set a different return address. */ if (regno == RETURN_ADDR_REGNUM && crtl->calls_eh_return) return true; return false; } /* Populate the current function's mips_frame_info structure. MIPS stack frames look like: +-------------------------------+ | | | incoming stack arguments | | | +-------------------------------+ | | | caller-allocated save area | A | for register arguments | | | +-------------------------------+ <-- incoming stack pointer | | | callee-allocated save area | B | for arguments that are | | split between registers and | | the stack | | | +-------------------------------+ <-- arg_pointer_rtx | | C | callee-allocated save area | | for register varargs | | | +-------------------------------+ <-- frame_pointer_rtx | | + cop0_sp_offset | COP0 reg save area | + UNITS_PER_WORD | | +-------------------------------+ <-- frame_pointer_rtx + acc_sp_offset | | + UNITS_PER_WORD | accumulator save area | | | +-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset | | + UNITS_PER_HWFPVALUE | FPR save area | | | +-------------------------------+ <-- stack_pointer_rtx + gp_sp_offset | | + UNITS_PER_WORD | GPR save area | | | +-------------------------------+ <-- frame_pointer_rtx with | | \ -fstack-protector | local variables | | var_size | | / +-------------------------------+ | | \ | $gp save area | | cprestore_size | | / P +-------------------------------+ <-- hard_frame_pointer_rtx for | | \ MIPS16 code | outgoing stack arguments | | | | | +-------------------------------+ | args_size | | | | caller-allocated save area | | | for register arguments | | | | / +-------------------------------+ <-- stack_pointer_rtx frame_pointer_rtx without -fstack-protector hard_frame_pointer_rtx for non-MIPS16 code. At least two of A, B and C will be empty. Dynamic stack allocations such as alloca insert data at point P. They decrease stack_pointer_rtx but leave frame_pointer_rtx and hard_frame_pointer_rtx unchanged. */ static void mips_compute_frame_info (void) { struct mips_frame_info *frame; HOST_WIDE_INT offset, size; unsigned int regno, i; /* Skip re-computing the frame info after reload completed. */ if (reload_completed) return; /* Set this function's interrupt properties. */ if (mips_interrupt_type_p (TREE_TYPE (current_function_decl))) { if (mips_isa_rev < 2) error ("the % attribute requires a MIPS32r2 processor or greater"); else if (TARGET_MIPS16) error ("interrupt handlers cannot be MIPS16 functions"); else { cfun->machine->interrupt_handler_p = true; cfun->machine->int_mask = mips_interrupt_mask (TREE_TYPE (current_function_decl)); cfun->machine->use_shadow_register_set = mips_use_shadow_register_set (TREE_TYPE (current_function_decl)); cfun->machine->keep_interrupts_masked_p = mips_keep_interrupts_masked_p (TREE_TYPE (current_function_decl)); cfun->machine->use_debug_exception_return_p = mips_use_debug_exception_return_p (TREE_TYPE (current_function_decl)); } } frame = &cfun->machine->frame; memset (frame, 0, sizeof (*frame)); size = get_frame_size (); /* The first two blocks contain the outgoing argument area and the $gp save slot. This area isn't needed in leaf functions. We can also skip it if we know that none of the called functions will use this space. But if the target-independent frame size is nonzero, we have already committed to allocating these in TARGET_STARTING_FRAME_OFFSET for !FRAME_GROWS_DOWNWARD. */ if ((size == 0 || FRAME_GROWS_DOWNWARD) && (crtl->is_leaf || (cfun->machine->optimize_call_stack && !flag_pic))) { /* The MIPS 3.0 linker does not like functions that dynamically allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it looks like we are trying to create a second frame pointer to the function, so allocate some stack space to make it happy. */ if (cfun->calls_alloca) frame->args_size = REG_PARM_STACK_SPACE (cfun->decl); else frame->args_size = 0; frame->cprestore_size = 0; } else { frame->args_size = crtl->outgoing_args_size; frame->cprestore_size = MIPS_GP_SAVE_AREA_SIZE; } /* MIPS16 code offsets the frame pointer by the size of the outgoing arguments. This tends to increase the chances of using unextended instructions for local variables and incoming arguments. */ if (TARGET_MIPS16) frame->hard_frame_pointer_offset = frame->args_size; /* PR 69129 / 69012: Beware of a possible race condition. mips_global_pointer might call mips_cfun_has_inflexible_gp_ref_p which in turn can call mips_find_gp_ref which will iterate over the current insn sequence. If any of these insns use the cprestore_save_slot_operand or cprestore_load_slot_operand predicates in order to be recognised then they will call mips_cprestore_address_p which calls mips_get_cprestore_base_and_offset which expects the frame information to be filled in... In fact mips_get_cprestore_base_and_offset only needs the args_size and hard_frame_pointer_offset fields to be filled in, which is why the global_pointer field is initialised here and not earlier. */ cfun->machine->global_pointer = mips_global_pointer (); offset = frame->args_size + frame->cprestore_size; /* Move above the local variables. */ frame->var_size = MIPS_STACK_ALIGN (size); offset += frame->var_size; /* Find out which GPRs we need to save. */ for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) if (mips_save_reg_p (regno)) { frame->num_gp++; frame->mask |= 1 << (regno - GP_REG_FIRST); } /* If this function calls eh_return, we must also save and restore the EH data registers. */ if (crtl->calls_eh_return) for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; i++) { frame->num_gp++; frame->mask |= 1 << (EH_RETURN_DATA_REGNO (i) - GP_REG_FIRST); } /* The MIPS16e SAVE and RESTORE instructions have two ranges of registers: $a3-$a0 and $s2-$s8. If we save one register in the range, we must save all later registers too. */ if (GENERATE_MIPS16E_SAVE_RESTORE) { mips16e_mask_registers (&frame->mask, mips16e_s2_s8_regs, ARRAY_SIZE (mips16e_s2_s8_regs), &frame->num_gp); mips16e_mask_registers (&frame->mask, mips16e_a0_a3_regs, ARRAY_SIZE (mips16e_a0_a3_regs), &frame->num_gp); } /* Move above the GPR save area. */ if (frame->num_gp > 0) { offset += MIPS_STACK_ALIGN (frame->num_gp * UNITS_PER_WORD); frame->gp_sp_offset = offset - UNITS_PER_WORD; } /* Find out which FPRs we need to save. This loop must iterate over the same space as its companion in mips_for_each_saved_gpr_and_fpr. */ if (TARGET_HARD_FLOAT) for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno += MAX_FPRS_PER_FMT) if (mips_save_reg_p (regno)) { frame->num_fp += MAX_FPRS_PER_FMT; frame->fmask |= ~(~0U << MAX_FPRS_PER_FMT) << (regno - FP_REG_FIRST); } /* Move above the FPR save area. */ if (frame->num_fp > 0) { offset += MIPS_STACK_ALIGN (frame->num_fp * UNITS_PER_FPREG); frame->fp_sp_offset = offset - UNITS_PER_HWFPVALUE; } /* Add in space for the interrupt context information. */ if (cfun->machine->interrupt_handler_p) { /* Check HI/LO. */ if (mips_save_reg_p (LO_REGNUM) || mips_save_reg_p (HI_REGNUM)) { frame->num_acc++; frame->acc_mask |= (1 << 0); } /* Check accumulators 1, 2, 3. */ for (i = DSP_ACC_REG_FIRST; i <= DSP_ACC_REG_LAST; i += 2) if (mips_save_reg_p (i) || mips_save_reg_p (i + 1)) { frame->num_acc++; frame->acc_mask |= 1 << (((i - DSP_ACC_REG_FIRST) / 2) + 1); } /* All interrupt context functions need space to preserve STATUS. */ frame->num_cop0_regs++; /* We need to save EPC regardless of whether interrupts remain masked as exceptions will corrupt EPC. */ frame->num_cop0_regs++; } /* Move above the accumulator save area. */ if (frame->num_acc > 0) { /* Each accumulator needs 2 words. */ offset += frame->num_acc * 2 * UNITS_PER_WORD; frame->acc_sp_offset = offset - UNITS_PER_WORD; } /* Move above the COP0 register save area. */ if (frame->num_cop0_regs > 0) { offset += frame->num_cop0_regs * UNITS_PER_WORD; frame->cop0_sp_offset = offset - UNITS_PER_WORD; } /* Determine if we can save the callee-saved registers in the frame header. Restrict this to functions where there is no other reason to allocate stack space so that we can eliminate the instructions that modify the stack pointer. */ if (TARGET_OLDABI && optimize > 0 && flag_frame_header_optimization && !MAIN_NAME_P (DECL_NAME (current_function_decl)) && cfun->machine->varargs_size == 0 && crtl->args.pretend_args_size == 0 && frame->var_size == 0 && frame->num_acc == 0 && frame->num_cop0_regs == 0 && frame->num_fp == 0 && frame->num_gp > 0 && frame->num_gp <= MAX_ARGS_IN_REGISTERS && !GENERATE_MIPS16E_SAVE_RESTORE && !cfun->machine->interrupt_handler_p && cfun->machine->does_not_use_frame_header && cfun->machine->optimize_call_stack && !cfun->machine->callers_may_not_allocate_frame && !mips_cfun_has_cprestore_slot_p ()) { offset = 0; frame->gp_sp_offset = REG_PARM_STACK_SPACE(cfun) - UNITS_PER_WORD; cfun->machine->use_frame_header_for_callee_saved_regs = true; } /* Move above the callee-allocated varargs save area. */ offset += MIPS_STACK_ALIGN (cfun->machine->varargs_size); frame->arg_pointer_offset = offset; /* Move above the callee-allocated area for pretend stack arguments. */ offset += crtl->args.pretend_args_size; frame->total_size = offset; /* Work out the offsets of the save areas from the top of the frame. */ if (frame->gp_sp_offset > 0) frame->gp_save_offset = frame->gp_sp_offset - offset; if (frame->fp_sp_offset > 0) frame->fp_save_offset = frame->fp_sp_offset - offset; if (frame->acc_sp_offset > 0) frame->acc_save_offset = frame->acc_sp_offset - offset; if (frame->num_cop0_regs > 0) frame->cop0_save_offset = frame->cop0_sp_offset - offset; } /* Return the style of GP load sequence that is being used for the current function. */ enum mips_loadgp_style mips_current_loadgp_style (void) { if (!TARGET_USE_GOT || cfun->machine->global_pointer == INVALID_REGNUM) return LOADGP_NONE; if (TARGET_RTP_PIC) return LOADGP_RTP; if (TARGET_ABSOLUTE_ABICALLS) return LOADGP_ABSOLUTE; return TARGET_NEWABI ? LOADGP_NEWABI : LOADGP_OLDABI; } /* Implement TARGET_FRAME_POINTER_REQUIRED. */ static bool mips_frame_pointer_required (void) { /* If the function contains dynamic stack allocations, we need to use the frame pointer to access the static parts of the frame. */ if (cfun->calls_alloca) return true; /* In MIPS16 mode, we need a frame pointer for a large frame; otherwise, reload may be unable to compute the address of a local variable, since there is no way to add a large constant to the stack pointer without using a second temporary register. */ if (TARGET_MIPS16) { mips_compute_frame_info (); if (!SMALL_OPERAND (cfun->machine->frame.total_size)) return true; } return false; } /* Make sure that we're not trying to eliminate to the wrong hard frame pointer. */ static bool mips_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to) { return (to == HARD_FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM); } /* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer or argument pointer. TO is either the stack pointer or hard frame pointer. */ HOST_WIDE_INT mips_initial_elimination_offset (int from, int to) { HOST_WIDE_INT offset; mips_compute_frame_info (); /* Set OFFSET to the offset from the end-of-prologue stack pointer. */ switch (from) { case FRAME_POINTER_REGNUM: if (FRAME_GROWS_DOWNWARD) offset = (cfun->machine->frame.args_size + cfun->machine->frame.cprestore_size + cfun->machine->frame.var_size); else offset = 0; break; case ARG_POINTER_REGNUM: offset = cfun->machine->frame.arg_pointer_offset; break; default: gcc_unreachable (); } if (to == HARD_FRAME_POINTER_REGNUM) offset -= cfun->machine->frame.hard_frame_pointer_offset; return offset; } /* Implement TARGET_EXTRA_LIVE_ON_ENTRY. */ static void mips_extra_live_on_entry (bitmap regs) { if (TARGET_USE_GOT) { /* PIC_FUNCTION_ADDR_REGNUM is live if we need it to set up the global pointer. */ if (!TARGET_ABSOLUTE_ABICALLS) bitmap_set_bit (regs, PIC_FUNCTION_ADDR_REGNUM); /* The prologue may set MIPS16_PIC_TEMP_REGNUM to the value of the global pointer. */ if (TARGET_MIPS16) bitmap_set_bit (regs, MIPS16_PIC_TEMP_REGNUM); /* See the comment above load_call for details. */ bitmap_set_bit (regs, GOT_VERSION_REGNUM); } } /* Implement RETURN_ADDR_RTX. We do not support moving back to a previous frame. */ rtx mips_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) { if (count != 0) return const0_rtx; return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); } /* Emit code to change the current function's return address to ADDRESS. SCRATCH is available as a scratch register, if needed. ADDRESS and SCRATCH are both word-mode GPRs. */ void mips_set_return_address (rtx address, rtx scratch) { rtx slot_address; gcc_assert (BITSET_P (cfun->machine->frame.mask, RETURN_ADDR_REGNUM)); slot_address = mips_add_offset (scratch, stack_pointer_rtx, cfun->machine->frame.gp_sp_offset); mips_emit_move (gen_frame_mem (GET_MODE (address), slot_address), address); } /* Return true if the current function has a cprestore slot. */ bool mips_cfun_has_cprestore_slot_p (void) { return (cfun->machine->global_pointer != INVALID_REGNUM && cfun->machine->frame.cprestore_size > 0); } /* Fill *BASE and *OFFSET such that *BASE + *OFFSET refers to the cprestore slot. LOAD_P is true if the caller wants to load from the cprestore slot; it is false if the caller wants to store to the slot. */ static void mips_get_cprestore_base_and_offset (rtx *base, HOST_WIDE_INT *offset, bool load_p) { const struct mips_frame_info *frame; frame = &cfun->machine->frame; /* .cprestore always uses the stack pointer instead of the frame pointer. We have a free choice for direct stores for non-MIPS16 functions, and for MIPS16 functions whose cprestore slot is in range of the stack pointer. Using the stack pointer would sometimes give more (early) scheduling freedom, but using the frame pointer would sometimes give more (late) scheduling freedom. It's hard to predict which applies to a given function, so let's keep things simple. Loads must always use the frame pointer in functions that call alloca, and there's little benefit to using the stack pointer otherwise. */ if (frame_pointer_needed && !(TARGET_CPRESTORE_DIRECTIVE && !load_p)) { *base = hard_frame_pointer_rtx; *offset = frame->args_size - frame->hard_frame_pointer_offset; } else { *base = stack_pointer_rtx; *offset = frame->args_size; } } /* Return true if X is the load or store address of the cprestore slot; LOAD_P says which. */ bool mips_cprestore_address_p (rtx x, bool load_p) { rtx given_base, required_base; HOST_WIDE_INT given_offset, required_offset; mips_split_plus (x, &given_base, &given_offset); mips_get_cprestore_base_and_offset (&required_base, &required_offset, load_p); return given_base == required_base && given_offset == required_offset; } /* Return a MEM rtx for the cprestore slot. LOAD_P is true if we are going to load from it, false if we are going to store to it. Use TEMP as a temporary register if need be. */ static rtx mips_cprestore_slot (rtx temp, bool load_p) { rtx base; HOST_WIDE_INT offset; mips_get_cprestore_base_and_offset (&base, &offset, load_p); return gen_frame_mem (Pmode, mips_add_offset (temp, base, offset)); } /* Emit instructions to save global pointer value GP into cprestore slot MEM. OFFSET is the offset that MEM applies to the base register. MEM may not be a legitimate address. If it isn't, TEMP is a temporary register that can be used, otherwise it is a SCRATCH. */ void mips_save_gp_to_cprestore_slot (rtx mem, rtx offset, rtx gp, rtx temp) { if (TARGET_CPRESTORE_DIRECTIVE) { gcc_assert (gp == pic_offset_table_rtx); emit_insn (PMODE_INSN (gen_cprestore, (mem, offset))); } else mips_emit_move (mips_cprestore_slot (temp, false), gp); } /* Restore $gp from its save slot, using TEMP as a temporary base register if need be. This function is for o32 and o64 abicalls only. See mips_must_initialize_gp_p for details about how we manage the global pointer. */ void mips_restore_gp_from_cprestore_slot (rtx temp) { gcc_assert (TARGET_ABICALLS && TARGET_OLDABI && epilogue_completed); if (!cfun->machine->must_restore_gp_when_clobbered_p) { emit_note (NOTE_INSN_DELETED); return; } if (TARGET_MIPS16) { mips_emit_move (temp, mips_cprestore_slot (temp, true)); mips_emit_move (pic_offset_table_rtx, temp); } else mips_emit_move (pic_offset_table_rtx, mips_cprestore_slot (temp, true)); if (!TARGET_EXPLICIT_RELOCS) emit_insn (gen_blockage ()); } /* A function to save or store a register. The first argument is the register and the second is the stack slot. */ typedef void (*mips_save_restore_fn) (rtx, rtx); /* Use FN to save or restore register REGNO. MODE is the register's mode and OFFSET is the offset of its save slot from the current stack pointer. */ static void mips_save_restore_reg (machine_mode mode, int regno, HOST_WIDE_INT offset, mips_save_restore_fn fn) { rtx mem; mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx, offset)); fn (gen_rtx_REG (mode, regno), mem); } /* Call FN for each accumulator that is saved by the current function. SP_OFFSET is the offset of the current stack pointer from the start of the frame. */ static void mips_for_each_saved_acc (HOST_WIDE_INT sp_offset, mips_save_restore_fn fn) { HOST_WIDE_INT offset; int regno; offset = cfun->machine->frame.acc_sp_offset - sp_offset; if (BITSET_P (cfun->machine->frame.acc_mask, 0)) { mips_save_restore_reg (word_mode, LO_REGNUM, offset, fn); offset -= UNITS_PER_WORD; mips_save_restore_reg (word_mode, HI_REGNUM, offset, fn); offset -= UNITS_PER_WORD; } for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno++) if (BITSET_P (cfun->machine->frame.acc_mask, ((regno - DSP_ACC_REG_FIRST) / 2) + 1)) { mips_save_restore_reg (word_mode, regno, offset, fn); offset -= UNITS_PER_WORD; } } /* Save register REG to MEM. Make the instruction frame-related. */ static void mips_save_reg (rtx reg, rtx mem) { if (GET_MODE (reg) == DFmode && (!TARGET_FLOAT64 || mips_abi == ABI_32)) { rtx x1, x2; mips_emit_move_or_split (mem, reg, SPLIT_IF_NECESSARY); x1 = mips_frame_set (mips_subword (mem, false), mips_subword (reg, false)); x2 = mips_frame_set (mips_subword (mem, true), mips_subword (reg, true)); mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x1, x2))); } else mips_emit_save_slot_move (mem, reg, MIPS_PROLOGUE_TEMP (GET_MODE (reg))); } /* Capture the register combinations that are allowed in a SWM or LWM instruction. The entries are ordered by number of registers set in the mask. We also ignore the single register encodings because a normal SW/LW is preferred. */ static const unsigned int umips_swm_mask[17] = { 0xc0ff0000, 0x80ff0000, 0x40ff0000, 0x807f0000, 0x00ff0000, 0x803f0000, 0x007f0000, 0x801f0000, 0x003f0000, 0x800f0000, 0x001f0000, 0x80070000, 0x000f0000, 0x80030000, 0x00070000, 0x80010000, 0x00030000 }; static const unsigned int umips_swm_encoding[17] = { 25, 24, 9, 23, 8, 22, 7, 21, 6, 20, 5, 19, 4, 18, 3, 17, 2 }; /* Try to use a microMIPS LWM or SWM instruction to save or restore as many GPRs in *MASK as possible. *OFFSET is the offset from the stack pointer of the topmost save slot. Remove from *MASK all registers that were handled using LWM and SWM. Update *OFFSET so that it points to the first unused save slot. */ static bool umips_build_save_restore (mips_save_restore_fn fn, unsigned *mask, HOST_WIDE_INT *offset) { int nregs; unsigned int i, j; rtx pattern, set, reg, mem; HOST_WIDE_INT this_offset; rtx this_base; /* Try matching $16 to $31 (s0 to ra). */ for (i = 0; i < ARRAY_SIZE (umips_swm_mask); i++) if ((*mask & 0xffff0000) == umips_swm_mask[i]) break; if (i == ARRAY_SIZE (umips_swm_mask)) return false; /* Get the offset of the lowest save slot. */ nregs = (umips_swm_encoding[i] & 0xf) + (umips_swm_encoding[i] >> 4); this_offset = *offset - UNITS_PER_WORD * (nregs - 1); /* LWM/SWM can only support offsets from -2048 to 2047. */ if (!UMIPS_12BIT_OFFSET_P (this_offset)) return false; /* Create the final PARALLEL. */ pattern = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs)); this_base = stack_pointer_rtx; /* For registers $16-$23 and $30. */ for (j = 0; j < (umips_swm_encoding[i] & 0xf); j++) { HOST_WIDE_INT offset = this_offset + j * UNITS_PER_WORD; mem = gen_frame_mem (SImode, plus_constant (Pmode, this_base, offset)); unsigned int regno = (j != 8) ? 16 + j : 30; *mask &= ~(1 << regno); reg = gen_rtx_REG (SImode, regno); if (fn == mips_save_reg) set = mips_frame_set (mem, reg); else { set = gen_rtx_SET (reg, mem); mips_add_cfa_restore (reg); } XVECEXP (pattern, 0, j) = set; } /* For register $31. */ if (umips_swm_encoding[i] >> 4) { HOST_WIDE_INT offset = this_offset + j * UNITS_PER_WORD; *mask &= ~(1 << 31); mem = gen_frame_mem (SImode, plus_constant (Pmode, this_base, offset)); reg = gen_rtx_REG (SImode, 31); if (fn == mips_save_reg) set = mips_frame_set (mem, reg); else { set = gen_rtx_SET (reg, mem); mips_add_cfa_restore (reg); } XVECEXP (pattern, 0, j) = set; } pattern = emit_insn (pattern); if (fn == mips_save_reg) RTX_FRAME_RELATED_P (pattern) = 1; /* Adjust the last offset. */ *offset -= UNITS_PER_WORD * nregs; return true; } /* Call FN for each register that is saved by the current function. SP_OFFSET is the offset of the current stack pointer from the start of the frame. */ static void mips_for_each_saved_gpr_and_fpr (HOST_WIDE_INT sp_offset, mips_save_restore_fn fn) { machine_mode fpr_mode; int regno; const struct mips_frame_info *frame = &cfun->machine->frame; HOST_WIDE_INT offset; unsigned int mask; /* Save registers starting from high to low. The debuggers prefer at least the return register be stored at func+4, and also it allows us not to need a nop in the epilogue if at least one register is reloaded in addition to return address. */ offset = frame->gp_sp_offset - sp_offset; mask = frame->mask; if (TARGET_MICROMIPS) umips_build_save_restore (fn, &mask, &offset); for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--) if (BITSET_P (mask, regno - GP_REG_FIRST)) { /* Record the ra offset for use by mips_function_profiler. */ if (regno == RETURN_ADDR_REGNUM) cfun->machine->frame.ra_fp_offset = offset + sp_offset; mips_save_restore_reg (word_mode, regno, offset, fn); offset -= UNITS_PER_WORD; } /* This loop must iterate over the same space as its companion in mips_compute_frame_info. */ offset = cfun->machine->frame.fp_sp_offset - sp_offset; fpr_mode = (TARGET_SINGLE_FLOAT ? SFmode : DFmode); for (regno = FP_REG_LAST - MAX_FPRS_PER_FMT + 1; regno >= FP_REG_FIRST; regno -= MAX_FPRS_PER_FMT) if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST)) { if (!TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT && (fixed_regs[regno] || fixed_regs[regno + 1])) { if (fixed_regs[regno]) mips_save_restore_reg (SFmode, regno + 1, offset, fn); else mips_save_restore_reg (SFmode, regno, offset, fn); } else mips_save_restore_reg (fpr_mode, regno, offset, fn); offset -= GET_MODE_SIZE (fpr_mode); } } /* Return true if a move between register REGNO and its save slot (MEM) can be done in a single move. LOAD_P is true if we are loading from the slot, false if we are storing to it. */ static bool mips_direct_save_slot_move_p (unsigned int regno, rtx mem, bool load_p) { /* There is a specific MIPS16 instruction for saving $31 to the stack. */ if (TARGET_MIPS16 && !load_p && regno == RETURN_ADDR_REGNUM) return false; return mips_secondary_reload_class (REGNO_REG_CLASS (regno), GET_MODE (mem), mem, load_p) == NO_REGS; } /* Emit a move from SRC to DEST, given that one of them is a register save slot and that the other is a register. TEMP is a temporary GPR of the same mode that is available if need be. */ void mips_emit_save_slot_move (rtx dest, rtx src, rtx temp) { unsigned int regno; rtx mem; if (REG_P (src)) { regno = REGNO (src); mem = dest; } else { regno = REGNO (dest); mem = src; } if (regno == cfun->machine->global_pointer && !mips_must_initialize_gp_p ()) { /* We don't yet know whether we'll need this instruction or not. Postpone the decision by emitting a ghost move. This move is specifically not frame-related; only the split version is. */ if (TARGET_64BIT) emit_insn (gen_move_gpdi (dest, src)); else emit_insn (gen_move_gpsi (dest, src)); return; } if (regno == HI_REGNUM) { if (REG_P (dest)) { mips_emit_move (temp, src); if (TARGET_64BIT) emit_insn (gen_mthidi_ti (gen_rtx_REG (TImode, MD_REG_FIRST), temp, gen_rtx_REG (DImode, LO_REGNUM))); else emit_insn (gen_mthisi_di (gen_rtx_REG (DImode, MD_REG_FIRST), temp, gen_rtx_REG (SImode, LO_REGNUM))); } else { if (TARGET_64BIT) emit_insn (gen_mfhidi_ti (temp, gen_rtx_REG (TImode, MD_REG_FIRST))); else emit_insn (gen_mfhisi_di (temp, gen_rtx_REG (DImode, MD_REG_FIRST))); mips_emit_move (dest, temp); } } else if (mips_direct_save_slot_move_p (regno, mem, mem == src)) mips_emit_move (dest, src); else { gcc_assert (!reg_overlap_mentioned_p (dest, temp)); mips_emit_move (temp, src); mips_emit_move (dest, temp); } if (MEM_P (dest)) mips_set_frame_expr (mips_frame_set (dest, src)); } /* If we're generating n32 or n64 abicalls, and the current function does not use $28 as its global pointer, emit a cplocal directive. Use pic_offset_table_rtx as the argument to the directive. */ static void mips_output_cplocal (void) { if (!TARGET_EXPLICIT_RELOCS && mips_must_initialize_gp_p () && cfun->machine->global_pointer != GLOBAL_POINTER_REGNUM) output_asm_insn (".cplocal %+", 0); } /* Implement TARGET_OUTPUT_FUNCTION_PROLOGUE. */ static void mips_output_function_prologue (FILE *file) { const char *fnname; /* In MIPS16 mode, we may need to generate a non-MIPS16 stub to handle floating-point arguments. */ if (TARGET_MIPS16 && TARGET_HARD_FLOAT_ABI && crtl->args.info.fp_code != 0) mips16_build_function_stub (); /* Get the function name the same way that toplev.cc does before calling assemble_start_function. This is needed so that the name used here exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */ fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); mips_start_function_definition (fnname, TARGET_MIPS16); /* Output MIPS-specific frame information. */ if (!flag_inhibit_size_directive) { const struct mips_frame_info *frame; frame = &cfun->machine->frame; /* .frame FRAMEREG, FRAMESIZE, RETREG. */ fprintf (file, "\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s\t\t" "# vars= " HOST_WIDE_INT_PRINT_DEC ", regs= %d/%d" ", args= " HOST_WIDE_INT_PRINT_DEC ", gp= " HOST_WIDE_INT_PRINT_DEC "\n", reg_names[frame_pointer_needed ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM], (frame_pointer_needed ? frame->total_size - frame->hard_frame_pointer_offset : frame->total_size), reg_names[RETURN_ADDR_REGNUM], frame->var_size, frame->num_gp, frame->num_fp, frame->args_size, frame->cprestore_size); /* .mask MASK, OFFSET. */ fprintf (file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n", frame->mask, frame->gp_save_offset); /* .fmask MASK, OFFSET. */ fprintf (file, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n", frame->fmask, frame->fp_save_offset); } /* Handle the initialization of $gp for SVR4 PIC, if applicable. Also emit the ".set noreorder; .set nomacro" sequence for functions that need it. */ if (mips_must_initialize_gp_p () && mips_current_loadgp_style () == LOADGP_OLDABI) { if (TARGET_MIPS16) { /* This is a fixed-form sequence. The position of the first two instructions is important because of the way _gp_disp is defined. */ output_asm_insn ("li\t$2,%%hi(_gp_disp)", 0); output_asm_insn ("addiu\t$3,$pc,%%lo(_gp_disp)", 0); output_asm_insn ("sll\t$2,16", 0); output_asm_insn ("addu\t$2,$3", 0); } else { /* .cpload must be in a .set noreorder but not a .set nomacro block. */ mips_push_asm_switch (&mips_noreorder); output_asm_insn (".cpload\t%^", 0); if (!cfun->machine->all_noreorder_p) mips_pop_asm_switch (&mips_noreorder); else mips_push_asm_switch (&mips_nomacro); } } else if (cfun->machine->all_noreorder_p) { mips_push_asm_switch (&mips_noreorder); mips_push_asm_switch (&mips_nomacro); } /* Tell the assembler which register we're using as the global pointer. This is needed for thunks, since they can use either explicit relocs or assembler macros. */ mips_output_cplocal (); } /* Implement TARGET_OUTPUT_FUNCTION_EPILOGUE. */ static void mips_output_function_epilogue (FILE *) { const char *fnname; /* Reinstate the normal $gp. */ SET_REGNO (pic_offset_table_rtx, GLOBAL_POINTER_REGNUM); mips_output_cplocal (); if (cfun->machine->all_noreorder_p) { mips_pop_asm_switch (&mips_nomacro); mips_pop_asm_switch (&mips_noreorder); } /* Get the function name the same way that toplev.cc does before calling assemble_start_function. This is needed so that the name used here exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */ fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); mips_end_function_definition (fnname); } /* Emit an optimisation barrier for accesses to the current frame. */ static void mips_frame_barrier (void) { emit_clobber (gen_frame_mem (BLKmode, stack_pointer_rtx)); } /* The __gnu_local_gp symbol. */ static GTY(()) rtx mips_gnu_local_gp; /* If we're generating n32 or n64 abicalls, emit instructions to set up the global pointer. */ static void mips_emit_loadgp (void) { rtx addr, offset, incoming_address, base, index, pic_reg; pic_reg = TARGET_MIPS16 ? MIPS16_PIC_TEMP : pic_offset_table_rtx; switch (mips_current_loadgp_style ()) { case LOADGP_ABSOLUTE: if (mips_gnu_local_gp == NULL) { mips_gnu_local_gp = gen_rtx_SYMBOL_REF (Pmode, "__gnu_local_gp"); SYMBOL_REF_FLAGS (mips_gnu_local_gp) |= SYMBOL_FLAG_LOCAL; } emit_insn (PMODE_INSN (gen_loadgp_absolute, (pic_reg, mips_gnu_local_gp))); break; case LOADGP_OLDABI: /* Added by mips_output_function_prologue. */ break; case LOADGP_NEWABI: addr = XEXP (DECL_RTL (current_function_decl), 0); offset = mips_unspec_address (addr, SYMBOL_GOTOFF_LOADGP); incoming_address = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM); emit_insn (PMODE_INSN (gen_loadgp_newabi, (pic_reg, offset, incoming_address))); break; case LOADGP_RTP: base = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_BASE)); index = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_INDEX)); emit_insn (PMODE_INSN (gen_loadgp_rtp, (pic_reg, base, index))); break; default: return; } if (TARGET_MIPS16) emit_insn (PMODE_INSN (gen_copygp_mips16, (pic_offset_table_rtx, pic_reg))); /* Emit a blockage if there are implicit uses of the GP register. This includes profiled functions, because FUNCTION_PROFILE uses a jal macro. */ if (!TARGET_EXPLICIT_RELOCS || crtl->profile) emit_insn (gen_loadgp_blockage ()); } #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP) #if PROBE_INTERVAL > 32768 #error Cannot use indexed addressing mode for stack probing #endif /* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive. These are offsets from the current stack pointer. */ static void mips_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size) { if (TARGET_MIPS16) sorry ("%<-fstack-check=specific%> not implemented for MIPS16"); /* See if we have a constant small number of probes to generate. If so, that's the easy case. */ if (first + size <= 32768) { HOST_WIDE_INT i; /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until it exceeds SIZE. If only one probe is needed, this will not generate any code. Then probe at FIRST + SIZE. */ for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL) emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx, -(first + i))); emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx, -(first + size))); } /* Otherwise, do the same as above, but in a loop. Note that we must be extra careful with variables wrapping around because we might be at the very top (or the very bottom) of the address space and we have to be able to handle this case properly; in particular, we use an equality test for the loop condition. */ else { HOST_WIDE_INT rounded_size; rtx r3 = MIPS_PROLOGUE_TEMP (Pmode); rtx r12 = MIPS_PROLOGUE_TEMP2 (Pmode); /* Sanity check for the addressing mode we're going to use. */ gcc_assert (first <= 32768); /* Step 1: round SIZE to the previous multiple of the interval. */ rounded_size = ROUND_DOWN (size, PROBE_INTERVAL); /* Step 2: compute initial and final value of the loop counter. */ /* TEST_ADDR = SP + FIRST. */ emit_insn (gen_rtx_SET (r3, plus_constant (Pmode, stack_pointer_rtx, -first))); /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */ if (rounded_size > 32768) { emit_move_insn (r12, GEN_INT (rounded_size)); emit_insn (gen_rtx_SET (r12, gen_rtx_MINUS (Pmode, r3, r12))); } else emit_insn (gen_rtx_SET (r12, plus_constant (Pmode, r3, -rounded_size))); /* Step 3: the loop do { TEST_ADDR = TEST_ADDR + PROBE_INTERVAL probe at TEST_ADDR } while (TEST_ADDR != LAST_ADDR) probes at FIRST + N * PROBE_INTERVAL for values of N from 1 until it is equal to ROUNDED_SIZE. */ emit_insn (PMODE_INSN (gen_probe_stack_range, (r3, r3, r12))); /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time that SIZE is equal to ROUNDED_SIZE. */ if (size != rounded_size) emit_stack_probe (plus_constant (Pmode, r12, rounded_size - size)); } /* Make sure nothing is scheduled before we are done. */ emit_insn (gen_blockage ()); } /* Probe a range of stack addresses from REG1 to REG2 inclusive. These are absolute addresses. */ const char * mips_output_probe_stack_range (rtx reg1, rtx reg2) { static int labelno = 0; char loop_lab[32], tmp[64]; rtx xops[2]; ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++); /* Loop. */ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab); /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */ xops[0] = reg1; xops[1] = GEN_INT (-PROBE_INTERVAL); if (TARGET_64BIT && TARGET_LONG64) output_asm_insn ("daddiu\t%0,%0,%1", xops); else output_asm_insn ("addiu\t%0,%0,%1", xops); /* Probe at TEST_ADDR, test if TEST_ADDR == LAST_ADDR and branch. */ xops[1] = reg2; strcpy (tmp, "%(%machine->global_pointer != INVALID_REGNUM) { /* Check whether an insn uses pic_offset_table_rtx, either explicitly or implicitly. If so, we can commit to using a global pointer straight away, otherwise we need to defer the decision. */ if (mips_cfun_has_inflexible_gp_ref_p () || mips_cfun_has_flexible_gp_ref_p ()) { cfun->machine->must_initialize_gp_p = true; cfun->machine->must_restore_gp_when_clobbered_p = true; } SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer); } frame = &cfun->machine->frame; size = frame->total_size; if (flag_stack_usage_info) current_function_static_stack_size = size; if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK || flag_stack_clash_protection) { if (crtl->is_leaf && !cfun->calls_alloca) { if (size > PROBE_INTERVAL && size > get_stack_check_protect ()) mips_emit_probe_stack_range (get_stack_check_protect (), size - get_stack_check_protect ()); } else if (size > 0) mips_emit_probe_stack_range (get_stack_check_protect (), size); } /* Save the registers. Allocate up to MIPS_MAX_FIRST_STACK_STEP bytes beforehand; this is enough to cover the register save area without going out of range. */ if (((frame->mask | frame->fmask | frame->acc_mask) != 0) || frame->num_cop0_regs > 0) { HOST_WIDE_INT step1; step1 = MIN (size, MIPS_MAX_FIRST_STACK_STEP); if (GENERATE_MIPS16E_SAVE_RESTORE) { HOST_WIDE_INT offset; unsigned int mask, regno; /* Try to merge argument stores into the save instruction. */ nargs = mips16e_collect_argument_saves (); /* Build the save instruction. */ mask = frame->mask; rtx insn = mips16e_build_save_restore (false, &mask, &offset, nargs, step1); RTX_FRAME_RELATED_P (emit_insn (insn)) = 1; mips_frame_barrier (); size -= step1; /* Check if we need to save other registers. */ for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++) if (BITSET_P (mask, regno - GP_REG_FIRST)) { offset -= UNITS_PER_WORD; mips_save_restore_reg (word_mode, regno, offset, mips_save_reg); } } else { if (cfun->machine->interrupt_handler_p) { HOST_WIDE_INT offset; rtx mem; /* If this interrupt is using a shadow register set, we need to get the stack pointer from the previous register set. */ if (cfun->machine->use_shadow_register_set == SHADOW_SET_YES) emit_insn (PMODE_INSN (gen_mips_rdpgpr, (stack_pointer_rtx, stack_pointer_rtx))); if (!cfun->machine->keep_interrupts_masked_p) { if (cfun->machine->int_mask == INT_MASK_EIC) /* Move from COP0 Cause to K0. */ emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K0_REG_NUM), gen_rtx_REG (SImode, COP0_CAUSE_REG_NUM))); } /* Move from COP0 EPC to K1. */ emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K1_REG_NUM), gen_rtx_REG (SImode, COP0_EPC_REG_NUM))); /* Allocate the first part of the frame. */ rtx insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-step1)); RTX_FRAME_RELATED_P (emit_insn (insn)) = 1; mips_frame_barrier (); size -= step1; /* Start at the uppermost location for saving. */ offset = frame->cop0_sp_offset - size; /* Push EPC into its stack slot. */ mem = gen_frame_mem (word_mode, plus_constant (Pmode, stack_pointer_rtx, offset)); mips_emit_move (mem, gen_rtx_REG (word_mode, K1_REG_NUM)); offset -= UNITS_PER_WORD; /* Move from COP0 Status to K1. */ emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K1_REG_NUM), gen_rtx_REG (SImode, COP0_STATUS_REG_NUM))); /* Right justify the RIPL in k0. */ if (!cfun->machine->keep_interrupts_masked_p && cfun->machine->int_mask == INT_MASK_EIC) emit_insn (gen_lshrsi3 (gen_rtx_REG (SImode, K0_REG_NUM), gen_rtx_REG (SImode, K0_REG_NUM), GEN_INT (CAUSE_IPL))); /* Push Status into its stack slot. */ mem = gen_frame_mem (word_mode, plus_constant (Pmode, stack_pointer_rtx, offset)); mips_emit_move (mem, gen_rtx_REG (word_mode, K1_REG_NUM)); offset -= UNITS_PER_WORD; /* Insert the RIPL into our copy of SR (k1) as the new IPL. */ if (!cfun->machine->keep_interrupts_masked_p && cfun->machine->int_mask == INT_MASK_EIC) { emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM), TARGET_MCU ? GEN_INT (7) : GEN_INT (6), GEN_INT (SR_IPL), gen_rtx_REG (SImode, K0_REG_NUM))); if (TARGET_MCU) { emit_insn (gen_lshrsi3 (gen_rtx_REG (SImode, K0_REG_NUM), gen_rtx_REG (SImode, K0_REG_NUM), GEN_INT (7))); emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM), GEN_INT (1), GEN_INT (SR_IPL+8), gen_rtx_REG (SImode, K0_REG_NUM))); } } /* Clear all interrupt mask bits up to and including the handler's interrupt line. */ if (!cfun->machine->keep_interrupts_masked_p && cfun->machine->int_mask != INT_MASK_EIC) emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM), GEN_INT (cfun->machine->int_mask + 1), GEN_INT (SR_IM0), gen_rtx_REG (SImode, GP_REG_FIRST))); if (!cfun->machine->keep_interrupts_masked_p) /* Enable interrupts by clearing the KSU ERL and EXL bits. IE is already the correct value, so we don't have to do anything explicit. */ emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM), GEN_INT (4), GEN_INT (SR_EXL), gen_rtx_REG (SImode, GP_REG_FIRST))); else /* Disable interrupts by clearing the KSU, ERL, EXL, and IE bits. */ emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM), GEN_INT (5), GEN_INT (SR_IE), gen_rtx_REG (SImode, GP_REG_FIRST))); if (TARGET_HARD_FLOAT) /* Disable COP1 for hard-float. This will lead to an exception if floating-point code is executed in an ISR. */ emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM), GEN_INT (1), GEN_INT (SR_COP1), gen_rtx_REG (SImode, GP_REG_FIRST))); } else { if (step1 != 0) { rtx insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-step1)); RTX_FRAME_RELATED_P (emit_insn (insn)) = 1; mips_frame_barrier (); size -= step1; } } mips_for_each_saved_acc (size, mips_save_reg); mips_for_each_saved_gpr_and_fpr (size, mips_save_reg); } } /* Allocate the rest of the frame. */ if (size > 0) { if (SMALL_OPERAND (-size)) RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-size)))) = 1; else { mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (size)); if (TARGET_MIPS16) { /* There are no instructions to add or subtract registers from the stack pointer, so use the frame pointer as a temporary. We should always be using a frame pointer in this case anyway. */ gcc_assert (frame_pointer_needed); mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx); emit_insn (gen_sub3_insn (hard_frame_pointer_rtx, hard_frame_pointer_rtx, MIPS_PROLOGUE_TEMP (Pmode))); mips_emit_move (stack_pointer_rtx, hard_frame_pointer_rtx); } else emit_insn (gen_sub3_insn (stack_pointer_rtx, stack_pointer_rtx, MIPS_PROLOGUE_TEMP (Pmode))); /* Describe the combined effect of the previous instructions. */ mips_set_frame_expr (gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -size))); } mips_frame_barrier (); } /* Set up the frame pointer, if we're using one. */ if (frame_pointer_needed) { HOST_WIDE_INT offset; offset = frame->hard_frame_pointer_offset; if (offset == 0) { rtx insn = mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; } else if (SMALL_OPERAND (offset)) { rtx insn = gen_add3_insn (hard_frame_pointer_rtx, stack_pointer_rtx, GEN_INT (offset)); RTX_FRAME_RELATED_P (emit_insn (insn)) = 1; } else { mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (offset)); mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx); emit_insn (gen_add3_insn (hard_frame_pointer_rtx, hard_frame_pointer_rtx, MIPS_PROLOGUE_TEMP (Pmode))); mips_set_frame_expr (gen_rtx_SET (hard_frame_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, offset))); } } mips_emit_loadgp (); /* Initialize the $gp save slot. */ if (mips_cfun_has_cprestore_slot_p ()) { rtx base, mem, gp, temp; HOST_WIDE_INT offset; mips_get_cprestore_base_and_offset (&base, &offset, false); mem = gen_frame_mem (Pmode, plus_constant (Pmode, base, offset)); gp = TARGET_MIPS16 ? MIPS16_PIC_TEMP : pic_offset_table_rtx; temp = (SMALL_OPERAND (offset) ? gen_rtx_SCRATCH (Pmode) : MIPS_PROLOGUE_TEMP (Pmode)); emit_insn (PMODE_INSN (gen_potential_cprestore, (mem, GEN_INT (offset), gp, temp))); mips_get_cprestore_base_and_offset (&base, &offset, true); mem = gen_frame_mem (Pmode, plus_constant (Pmode, base, offset)); emit_insn (PMODE_INSN (gen_use_cprestore, (mem))); } /* We need to search back to the last use of K0 or K1. */ if (cfun->machine->interrupt_handler_p) { rtx_insn *insn; for (insn = get_last_insn (); insn != NULL_RTX; insn = PREV_INSN (insn)) if (INSN_P (insn) && mips_refers_to_kernel_reg_p (PATTERN (insn))) break; /* Emit a move from K1 to COP0 Status after insn. */ gcc_assert (insn != NULL_RTX); emit_insn_after (gen_cop0_move (gen_rtx_REG (SImode, COP0_STATUS_REG_NUM), gen_rtx_REG (SImode, K1_REG_NUM)), insn); } /* If we are profiling, make sure no instructions are scheduled before the call to mcount. */ if (crtl->profile) emit_insn (gen_blockage ()); } /* Attach all pending register saves to the previous instruction. Return that instruction. */ static rtx_insn * mips_epilogue_emit_cfa_restores (void) { rtx_insn *insn; insn = get_last_insn (); if (mips_epilogue.cfa_restores) { gcc_assert (insn && !REG_NOTES (insn)); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = mips_epilogue.cfa_restores; mips_epilogue.cfa_restores = 0; } return insn; } /* Like mips_epilogue_emit_cfa_restores, but also record that the CFA is now at REG + OFFSET. */ static void mips_epilogue_set_cfa (rtx reg, HOST_WIDE_INT offset) { rtx_insn *insn; insn = mips_epilogue_emit_cfa_restores (); if (reg != mips_epilogue.cfa_reg || offset != mips_epilogue.cfa_offset) { RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = alloc_reg_note (REG_CFA_DEF_CFA, plus_constant (Pmode, reg, offset), REG_NOTES (insn)); mips_epilogue.cfa_reg = reg; mips_epilogue.cfa_offset = offset; } } /* Emit instructions to restore register REG from slot MEM. Also update the cfa_restores list. */ static void mips_restore_reg (rtx reg, rtx mem) { /* There's no MIPS16 instruction to load $31 directly. Load into $7 instead and adjust the return insn appropriately. */ if (TARGET_MIPS16 && REGNO (reg) == RETURN_ADDR_REGNUM) reg = gen_rtx_REG (GET_MODE (reg), GP_REG_FIRST + 7); else if (GET_MODE (reg) == DFmode && (!TARGET_FLOAT64 || mips_abi == ABI_32)) { mips_add_cfa_restore (mips_subword (reg, true)); mips_add_cfa_restore (mips_subword (reg, false)); } else mips_add_cfa_restore (reg); mips_emit_save_slot_move (reg, mem, MIPS_EPILOGUE_TEMP (GET_MODE (reg))); if (REGNO (reg) == REGNO (mips_epilogue.cfa_reg)) /* The CFA is currently defined in terms of the register whose value we have just restored. Redefine the CFA in terms of the stack pointer. */ mips_epilogue_set_cfa (stack_pointer_rtx, mips_epilogue.cfa_restore_sp_offset); } /* Emit code to set the stack pointer to BASE + OFFSET, given that BASE + OFFSET is NEW_FRAME_SIZE bytes below the top of the frame. BASE, if not the stack pointer, is available as a temporary. */ static void mips_deallocate_stack (rtx base, rtx offset, HOST_WIDE_INT new_frame_size) { if (base == stack_pointer_rtx && offset == const0_rtx) return; mips_frame_barrier (); if (offset == const0_rtx) { emit_move_insn (stack_pointer_rtx, base); mips_epilogue_set_cfa (stack_pointer_rtx, new_frame_size); } else if (TARGET_MIPS16 && base != stack_pointer_rtx) { emit_insn (gen_add3_insn (base, base, offset)); mips_epilogue_set_cfa (base, new_frame_size); emit_move_insn (stack_pointer_rtx, base); } else { emit_insn (gen_add3_insn (stack_pointer_rtx, base, offset)); mips_epilogue_set_cfa (stack_pointer_rtx, new_frame_size); } } /* Emit any instructions needed before a return. */ void mips_expand_before_return (void) { /* When using a call-clobbered gp, we start out with unified call insns that include instructions to restore the gp. We then split these unified calls after reload. These split calls explicitly clobber gp, so there is no need to define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED. For consistency, we should also insert an explicit clobber of $28 before return insns, so that the post-reload optimizers know that the register is not live on exit. */ if (TARGET_CALL_CLOBBERED_GP) emit_clobber (pic_offset_table_rtx); } /* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P says which. */ void mips_expand_epilogue (bool sibcall_p) { const struct mips_frame_info *frame; HOST_WIDE_INT step1, step2; rtx base, adjust; rtx_insn *insn; bool use_jraddiusp_p = false; if (!sibcall_p && mips_can_use_return_insn ()) { emit_jump_insn (gen_return ()); return; } /* In MIPS16 mode, if the return value should go into a floating-point register, we need to call a helper routine to copy it over. */ if (mips16_cfun_returns_in_fpr_p ()) mips16_copy_fpr_return_value (); /* Split the frame into two. STEP1 is the amount of stack we should deallocate before restoring the registers. STEP2 is the amount we should deallocate afterwards. Start off by assuming that no registers need to be restored. */ frame = &cfun->machine->frame; step1 = frame->total_size; step2 = 0; /* Work out which register holds the frame address. */ if (!frame_pointer_needed) base = stack_pointer_rtx; else { base = hard_frame_pointer_rtx; step1 -= frame->hard_frame_pointer_offset; } mips_epilogue.cfa_reg = base; mips_epilogue.cfa_offset = step1; mips_epilogue.cfa_restores = NULL_RTX; /* If we need to restore registers, deallocate as much stack as possible in the second step without going out of range. */ if ((frame->mask | frame->fmask | frame->acc_mask) != 0 || frame->num_cop0_regs > 0) { step2 = MIN (step1, MIPS_MAX_FIRST_STACK_STEP); step1 -= step2; } /* Get an rtx for STEP1 that we can add to BASE. */ adjust = GEN_INT (step1); if (!SMALL_OPERAND (step1)) { mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), adjust); adjust = MIPS_EPILOGUE_TEMP (Pmode); } mips_deallocate_stack (base, adjust, step2); /* If we're using addressing macros, $gp is implicitly used by all SYMBOL_REFs. We must emit a blockage insn before restoring $gp from the stack. */ if (TARGET_CALL_SAVED_GP && !TARGET_EXPLICIT_RELOCS) emit_insn (gen_blockage ()); mips_epilogue.cfa_restore_sp_offset = step2; if (GENERATE_MIPS16E_SAVE_RESTORE && frame->mask != 0) { unsigned int regno, mask; HOST_WIDE_INT offset; rtx restore; /* Generate the restore instruction. */ mask = frame->mask; restore = mips16e_build_save_restore (true, &mask, &offset, 0, step2); /* Restore any other registers manually. */ for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++) if (BITSET_P (mask, regno - GP_REG_FIRST)) { offset -= UNITS_PER_WORD; mips_save_restore_reg (word_mode, regno, offset, mips_restore_reg); } /* Restore the remaining registers and deallocate the final bit of the frame. */ mips_frame_barrier (); emit_insn (restore); mips_epilogue_set_cfa (stack_pointer_rtx, 0); } else { /* Restore the registers. */ mips_for_each_saved_acc (frame->total_size - step2, mips_restore_reg); mips_for_each_saved_gpr_and_fpr (frame->total_size - step2, mips_restore_reg); if (cfun->machine->interrupt_handler_p) { HOST_WIDE_INT offset; rtx mem; offset = frame->cop0_sp_offset - (frame->total_size - step2); /* Restore the original EPC. */ mem = gen_frame_mem (word_mode, plus_constant (Pmode, stack_pointer_rtx, offset)); mips_emit_move (gen_rtx_REG (word_mode, K1_REG_NUM), mem); offset -= UNITS_PER_WORD; /* Move to COP0 EPC. */ emit_insn (gen_cop0_move (gen_rtx_REG (SImode, COP0_EPC_REG_NUM), gen_rtx_REG (SImode, K1_REG_NUM))); /* Restore the original Status. */ mem = gen_frame_mem (word_mode, plus_constant (Pmode, stack_pointer_rtx, offset)); mips_emit_move (gen_rtx_REG (word_mode, K1_REG_NUM), mem); offset -= UNITS_PER_WORD; /* If we don't use shadow register set, we need to update SP. */ if (cfun->machine->use_shadow_register_set == SHADOW_SET_NO) mips_deallocate_stack (stack_pointer_rtx, GEN_INT (step2), 0); else /* The choice of position is somewhat arbitrary in this case. */ mips_epilogue_emit_cfa_restores (); /* Move to COP0 Status. */ emit_insn (gen_cop0_move (gen_rtx_REG (SImode, COP0_STATUS_REG_NUM), gen_rtx_REG (SImode, K1_REG_NUM))); } else if (TARGET_MICROMIPS && !crtl->calls_eh_return && !sibcall_p && step2 > 0 && mips_unsigned_immediate_p (step2, 5, 2)) use_jraddiusp_p = true; else /* Deallocate the final bit of the frame. */ mips_deallocate_stack (stack_pointer_rtx, GEN_INT (step2), 0); } if (cfun->machine->use_frame_header_for_callee_saved_regs) mips_epilogue_emit_cfa_restores (); else if (!use_jraddiusp_p) gcc_assert (!mips_epilogue.cfa_restores); /* Add in the __builtin_eh_return stack adjustment. We need to use a temporary in MIPS16 code. */ if (crtl->calls_eh_return) { if (TARGET_MIPS16) { mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), stack_pointer_rtx); emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode), MIPS_EPILOGUE_TEMP (Pmode), EH_RETURN_STACKADJ_RTX)); mips_emit_move (stack_pointer_rtx, MIPS_EPILOGUE_TEMP (Pmode)); } else emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, EH_RETURN_STACKADJ_RTX)); } if (!sibcall_p) { mips_expand_before_return (); if (cfun->machine->interrupt_handler_p) { /* Interrupt handlers generate eret or deret. */ if (cfun->machine->use_debug_exception_return_p) emit_jump_insn (gen_mips_deret ()); else emit_jump_insn (gen_mips_eret ()); } else { rtx pat; /* When generating MIPS16 code, the normal mips_for_each_saved_gpr_and_fpr path will restore the return address into $7 rather than $31. */ if (TARGET_MIPS16 && !GENERATE_MIPS16E_SAVE_RESTORE && BITSET_P (frame->mask, RETURN_ADDR_REGNUM)) { /* simple_returns cannot rely on values that are only available on paths through the epilogue (because return paths that do not pass through the epilogue may nevertheless reuse a simple_return that occurs at the end of the epilogue). Use a normal return here instead. */ rtx reg = gen_rtx_REG (Pmode, GP_REG_FIRST + 7); pat = gen_return_internal (reg); } else if (use_jraddiusp_p) pat = gen_jraddiusp (GEN_INT (step2)); else { rtx reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM); pat = gen_simple_return_internal (reg); } emit_jump_insn (pat); if (use_jraddiusp_p) mips_epilogue_set_cfa (stack_pointer_rtx, step2); } } /* Search from the beginning to the first use of K0 or K1. */ if (cfun->machine->interrupt_handler_p && !cfun->machine->keep_interrupts_masked_p) { for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn)) if (INSN_P (insn) && mips_refers_to_kernel_reg_p (PATTERN (insn))) break; gcc_assert (insn != NULL_RTX); /* Insert disable interrupts before the first use of K0 or K1. */ emit_insn_before (gen_mips_di (), insn); emit_insn_before (gen_mips_ehb (), insn); } } /* Return nonzero if this function is known to have a null epilogue. This allows the optimizer to omit jumps to jumps if no stack was created. */ bool mips_can_use_return_insn (void) { /* Interrupt handlers need to go through the epilogue. */ if (cfun->machine->interrupt_handler_p) return false; if (!reload_completed) return false; if (crtl->profile) return false; /* In MIPS16 mode, a function that returns a floating-point value needs to arrange to copy the return value into the floating-point registers. */ if (mips16_cfun_returns_in_fpr_p ()) return false; return (cfun->machine->frame.total_size == 0 && !cfun->machine->use_frame_header_for_callee_saved_regs); } /* Return true if register REGNO can store a value of mode MODE. The result of this function is cached in mips_hard_regno_mode_ok. */ static bool mips_hard_regno_mode_ok_uncached (unsigned int regno, machine_mode mode) { unsigned int size; enum mode_class mclass; if (mode == CCV2mode) return (ISA_HAS_8CC && ST_REG_P (regno) && (regno - ST_REG_FIRST) % 2 == 0); if (mode == CCV4mode) return (ISA_HAS_8CC && ST_REG_P (regno) && (regno - ST_REG_FIRST) % 4 == 0); if (mode == CCmode) return ISA_HAS_8CC ? ST_REG_P (regno) : regno == FPSW_REGNUM; size = GET_MODE_SIZE (mode); mclass = GET_MODE_CLASS (mode); if (GP_REG_P (regno) && mode != CCFmode && !MSA_SUPPORTED_MODE_P (mode)) return ((regno - GP_REG_FIRST) & 1) == 0 || size <= UNITS_PER_WORD; /* For MSA, allow TImode and 128-bit vector modes in all FPR. */ if (FP_REG_P (regno) && MSA_SUPPORTED_MODE_P (mode)) return true; if (FP_REG_P (regno) && (((regno - FP_REG_FIRST) % MAX_FPRS_PER_FMT) == 0 || (MIN_FPRS_PER_FMT == 1 && size <= UNITS_PER_FPREG))) { /* Deny use of odd-numbered registers for 32-bit data for the o32 FP64A ABI. */ if (TARGET_O32_FP64A_ABI && size <= 4 && (regno & 1) != 0) return false; /* The FPXX ABI requires double-precision values to be placed in even-numbered registers. Disallow odd-numbered registers with CCFmode because CCFmode double-precision compares will write a 64-bit value to a register. */ if (mode == CCFmode) return !(TARGET_FLOATXX && (regno & 1) != 0); /* Allow 64-bit vector modes for Loongson MultiMedia extensions Instructions (MMI). */ if (TARGET_LOONGSON_MMI && (mode == V2SImode || mode == V4HImode || mode == V8QImode || mode == DImode)) return true; if (mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT || mclass == MODE_VECTOR_FLOAT) return size <= UNITS_PER_FPVALUE; /* Allow integer modes that fit into a single register. We need to put integers into FPRs when using instructions like CVT and TRUNC. There's no point allowing sizes smaller than a word, because the FPU has no appropriate load/store instructions. */ if (mclass == MODE_INT) return size >= MIN_UNITS_PER_WORD && size <= UNITS_PER_FPREG; } /* Don't allow vector modes in accumulators. */ if (ACC_REG_P (regno) && !VECTOR_MODE_P (mode) && (INTEGRAL_MODE_P (mode) || ALL_FIXED_POINT_MODE_P (mode))) { if (MD_REG_P (regno)) { /* After a multiplication or division, clobbering HI makes the value of LO unpredictable, and vice versa. This means that, for all interesting cases, HI and LO are effectively a single register. We model this by requiring that any value that uses HI also uses LO. */ if (size <= UNITS_PER_WORD * 2) return regno == (size <= UNITS_PER_WORD ? LO_REGNUM : MD_REG_FIRST); } else { /* DSP accumulators do not have the same restrictions as HI and LO, so we can treat them as normal doubleword registers. */ if (size <= UNITS_PER_WORD) return true; if (size <= UNITS_PER_WORD * 2 && ((regno - DSP_ACC_REG_FIRST) & 1) == 0) return true; } } if (ALL_COP_REG_P (regno)) return mclass == MODE_INT && size <= UNITS_PER_WORD; if (regno == GOT_VERSION_REGNUM) return mode == SImode; return false; } /* Implement TARGET_HARD_REGNO_MODE_OK. */ static bool mips_hard_regno_mode_ok (unsigned int regno, machine_mode mode) { return mips_hard_regno_mode_ok_p[mode][regno]; } /* Return nonzero if register OLD_REG can be renamed to register NEW_REG. */ bool mips_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED, unsigned int new_reg) { /* Interrupt functions can only use registers that have already been saved by the prologue, even if they would normally be call-clobbered. */ if (cfun->machine->interrupt_handler_p && !df_regs_ever_live_p (new_reg)) return false; return true; } /* Return nonzero if register REGNO can be used as a scratch register in peephole2. */ bool mips_hard_regno_scratch_ok (unsigned int regno) { /* See mips_hard_regno_rename_ok. */ if (cfun->machine->interrupt_handler_p && !df_regs_ever_live_p (regno)) return false; return true; } /* Implement TARGET_HARD_REGNO_CALL_PART_CLOBBERED. Odd-numbered single-precision registers are not considered callee-saved for o32 FPXX as they will be clobbered when run on an FR=1 FPU. MSA vector registers with MODE > 64 bits are part clobbered too. */ static bool mips_hard_regno_call_part_clobbered (unsigned int, unsigned int regno, machine_mode mode) { if (TARGET_FLOATXX && hard_regno_nregs (regno, mode) == 1 && FP_REG_P (regno) && (regno & 1) != 0) return true; if (ISA_HAS_MSA && FP_REG_P (regno) && GET_MODE_SIZE (mode) > 8) return true; return false; } /* Implement TARGET_HARD_REGNO_NREGS. */ static unsigned int mips_hard_regno_nregs (unsigned int regno, machine_mode mode) { if (ST_REG_P (regno)) /* The size of FP status registers is always 4, because they only hold CCmode values, and CCmode is always considered to be 4 bytes wide. */ return (GET_MODE_SIZE (mode) + 3) / 4; if (FP_REG_P (regno)) { if (MSA_SUPPORTED_MODE_P (mode)) return 1; return (GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG; } /* All other registers are word-sized. */ return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; } /* Implement CLASS_MAX_NREGS, taking the maximum of the cases in mips_hard_regno_nregs. */ int mips_class_max_nregs (enum reg_class rclass, machine_mode mode) { int size; HARD_REG_SET left; size = 0x8000; left = reg_class_contents[rclass]; if (hard_reg_set_intersect_p (left, reg_class_contents[(int) ST_REGS])) { if (mips_hard_regno_mode_ok (ST_REG_FIRST, mode)) size = MIN (size, 4); left &= ~reg_class_contents[ST_REGS]; } if (hard_reg_set_intersect_p (left, reg_class_contents[(int) FP_REGS])) { if (mips_hard_regno_mode_ok (FP_REG_FIRST, mode)) { if (MSA_SUPPORTED_MODE_P (mode)) size = MIN (size, UNITS_PER_MSA_REG); else size = MIN (size, UNITS_PER_FPREG); } left &= ~reg_class_contents[FP_REGS]; } if (!hard_reg_set_empty_p (left)) size = MIN (size, UNITS_PER_WORD); return (GET_MODE_SIZE (mode) + size - 1) / size; } /* Implement TARGET_CAN_CHANGE_MODE_CLASS. */ static bool mips_can_change_mode_class (machine_mode from, machine_mode to, reg_class_t rclass) { /* Allow conversions between different Loongson integer vectors, and between those vectors and DImode. */ if (GET_MODE_SIZE (from) == 8 && GET_MODE_SIZE (to) == 8 && INTEGRAL_MODE_P (from) && INTEGRAL_MODE_P (to)) return true; /* Allow conversions between different MSA vector modes. */ if (MSA_SUPPORTED_MODE_P (from) && MSA_SUPPORTED_MODE_P (to)) return true; /* Otherwise, there are several problems with changing the modes of values in floating-point registers: - When a multi-word value is stored in paired floating-point registers, the first register always holds the low word. We therefore can't allow FPRs to change between single-word and multi-word modes on big-endian targets. - GCC assumes that each word of a multiword register can be accessed individually using SUBREGs. This is not true for floating-point registers if they are bigger than a word. - Loading a 32-bit value into a 64-bit floating-point register will not sign-extend the value, despite what LOAD_EXTEND_OP says. We can't allow FPRs to change from SImode to a wider mode on 64-bit targets. - If the FPU has already interpreted a value in one format, we must not ask it to treat the value as having a different format. We therefore disallow all mode changes involving FPRs. */ return !reg_classes_intersect_p (FP_REGS, rclass); } /* Implement target hook small_register_classes_for_mode_p. */ static bool mips_small_register_classes_for_mode_p (machine_mode mode ATTRIBUTE_UNUSED) { return TARGET_MIPS16; } /* Return true if moves in mode MODE can use the FPU's mov.fmt instruction, or use the MSA's move.v instruction. */ static bool mips_mode_ok_for_mov_fmt_p (machine_mode mode) { switch (mode) { case E_CCFmode: case E_SFmode: return TARGET_HARD_FLOAT; case E_DFmode: return TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT; case E_V2SFmode: return TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT; default: return MSA_SUPPORTED_MODE_P (mode); } } /* Implement TARGET_MODES_TIEABLE_P. */ static bool mips_modes_tieable_p (machine_mode mode1, machine_mode mode2) { /* FPRs allow no mode punning, so it's not worth tying modes if we'd prefer to put one of them in FPRs. */ return (mode1 == mode2 || (!mips_mode_ok_for_mov_fmt_p (mode1) && !mips_mode_ok_for_mov_fmt_p (mode2))); } /* Implement TARGET_PREFERRED_RELOAD_CLASS. */ static reg_class_t mips_preferred_reload_class (rtx x, reg_class_t rclass) { if (mips_dangerous_for_la25_p (x) && reg_class_subset_p (LEA_REGS, rclass)) return LEA_REGS; if (reg_class_subset_p (FP_REGS, rclass) && mips_mode_ok_for_mov_fmt_p (GET_MODE (x))) return FP_REGS; if (reg_class_subset_p (GR_REGS, rclass)) rclass = GR_REGS; if (TARGET_MIPS16 && reg_class_subset_p (M16_REGS, rclass)) rclass = M16_REGS; return rclass; } /* RCLASS is a class involved in a REGISTER_MOVE_COST calculation. Return a "canonical" class to represent it in later calculations. */ static reg_class_t mips_canonicalize_move_class (reg_class_t rclass) { /* All moves involving accumulator registers have the same cost. */ if (reg_class_subset_p (rclass, ACC_REGS)) rclass = ACC_REGS; /* Likewise promote subclasses of general registers to the most interesting containing class. */ if (TARGET_MIPS16 && reg_class_subset_p (rclass, M16_REGS)) rclass = M16_REGS; else if (reg_class_subset_p (rclass, GENERAL_REGS)) rclass = GENERAL_REGS; return rclass; } /* Return the cost of moving a value from a register of class FROM to a GPR. Return 0 for classes that are unions of other classes handled by this function. */ static int mips_move_to_gpr_cost (reg_class_t from) { switch (from) { case M16_REGS: case GENERAL_REGS: /* A MIPS16 MOVE instruction, or a non-MIPS16 MOVE macro. */ return 2; case ACC_REGS: /* MFLO and MFHI. */ return 6; case FP_REGS: /* MFC1, etc. */ return 4; case COP0_REGS: case COP2_REGS: case COP3_REGS: /* This choice of value is historical. */ return 5; default: return 0; } } /* Return the cost of moving a value from a GPR to a register of class TO. Return 0 for classes that are unions of other classes handled by this function. */ static int mips_move_from_gpr_cost (reg_class_t to) { switch (to) { case M16_REGS: case GENERAL_REGS: /* A MIPS16 MOVE instruction, or a non-MIPS16 MOVE macro. */ return 2; case ACC_REGS: /* MTLO and MTHI. */ return 6; case FP_REGS: /* MTC1, etc. */ return 4; case COP0_REGS: case COP2_REGS: case COP3_REGS: /* This choice of value is historical. */ return 5; default: return 0; } } /* Implement TARGET_REGISTER_MOVE_COST. Return 0 for classes that are the maximum of the move costs for subclasses; regclass will work out the maximum for us. */ static int mips_register_move_cost (machine_mode mode, reg_class_t from, reg_class_t to) { reg_class_t dregs; int cost1, cost2; from = mips_canonicalize_move_class (from); to = mips_canonicalize_move_class (to); /* Handle moves that can be done without using general-purpose registers. */ if (from == FP_REGS) { if (to == FP_REGS && mips_mode_ok_for_mov_fmt_p (mode)) /* MOV.FMT. */ return 4; } /* Handle cases in which only one class deviates from the ideal. */ dregs = TARGET_MIPS16 ? M16_REGS : GENERAL_REGS; if (from == dregs) return mips_move_from_gpr_cost (to); if (to == dregs) return mips_move_to_gpr_cost (from); /* Handles cases that require a GPR temporary. */ cost1 = mips_move_to_gpr_cost (from); if (cost1 != 0) { cost2 = mips_move_from_gpr_cost (to); if (cost2 != 0) return cost1 + cost2; } return 0; } /* Implement TARGET_REGISTER_PRIORITY. */ static int mips_register_priority (int hard_regno) { /* Treat MIPS16 registers with higher priority than other regs. */ if (TARGET_MIPS16 && TEST_HARD_REG_BIT (reg_class_contents[M16_REGS], hard_regno)) return 1; return 0; } /* Implement TARGET_MEMORY_MOVE_COST. */ static int mips_memory_move_cost (machine_mode mode, reg_class_t rclass, bool in) { return (mips_cost->memory_latency + memory_move_secondary_cost (mode, rclass, in)); } /* Implement TARGET_SECONDARY_MEMORY_NEEDED. When targeting the o32 FPXX ABI, all moves with a length of doubleword or greater must be performed by FR-mode-aware instructions. This can be achieved using MFHC1/MTHC1 when these instructions are available but otherwise moves must go via memory. For the o32 FP64A ABI, all odd-numbered moves with a length of doubleword or greater are required to use memory. Using MTC1/MFC1 to access the lower-half of these registers would require a forbidden single-precision access. We require all double-word moves to use memory because adding even and odd floating-point registers classes would have a significant impact on the backend. */ static bool mips_secondary_memory_needed (machine_mode mode, reg_class_t class1, reg_class_t class2) { /* Ignore spilled pseudos. */ if (lra_in_progress && (class1 == NO_REGS || class2 == NO_REGS)) return false; if (((class1 == FP_REGS) != (class2 == FP_REGS)) && ((TARGET_FLOATXX && !ISA_HAS_MXHC1) || TARGET_O32_FP64A_ABI) && GET_MODE_SIZE (mode) >= 8) return true; return false; } /* Return the register class required for a secondary register when copying between one of the registers in RCLASS and value X, which has mode MODE. X is the source of the move if IN_P, otherwise it is the destination. Return NO_REGS if no secondary register is needed. */ enum reg_class mips_secondary_reload_class (enum reg_class rclass, machine_mode mode, rtx x, bool) { int regno; /* If X is a constant that cannot be loaded into $25, it must be loaded into some other GPR. No other register class allows a direct move. */ if (mips_dangerous_for_la25_p (x)) return reg_class_subset_p (rclass, LEA_REGS) ? NO_REGS : LEA_REGS; regno = true_regnum (x); if (TARGET_MIPS16) { /* In MIPS16 mode, every move must involve a member of M16_REGS. */ if (!reg_class_subset_p (rclass, M16_REGS) && !M16_REG_P (regno)) return M16_REGS; return NO_REGS; } /* Copying from accumulator registers to anywhere other than a general register requires a temporary general register. */ if (reg_class_subset_p (rclass, ACC_REGS)) return GP_REG_P (regno) ? NO_REGS : GR_REGS; if (ACC_REG_P (regno)) return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS; if (reg_class_subset_p (rclass, FP_REGS)) { if (regno < 0 || (MEM_P (x) && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8))) /* In this case we can use lwc1, swc1, ldc1 or sdc1. We'll use pairs of lwc1s and swc1s if ldc1 and sdc1 are not supported. */ return NO_REGS; if (MEM_P (x) && MSA_SUPPORTED_MODE_P (mode)) /* In this case we can use MSA LD.* and ST.*. */ return NO_REGS; if (GP_REG_P (regno) || x == CONST0_RTX (mode)) /* In this case we can use mtc1, mfc1, dmtc1 or dmfc1. */ return NO_REGS; if (CONSTANT_P (x) && !targetm.cannot_force_const_mem (mode, x)) /* We can force the constant to memory and use lwc1 and ldc1. As above, we will use pairs of lwc1s if ldc1 is not supported. */ return NO_REGS; if (FP_REG_P (regno) && mips_mode_ok_for_mov_fmt_p (mode)) /* In this case we can use mov.fmt. */ return NO_REGS; /* Otherwise, we need to reload through an integer register. */ return GR_REGS; } if (FP_REG_P (regno)) return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS; return NO_REGS; } /* Implement TARGET_MODE_REP_EXTENDED. */ static int mips_mode_rep_extended (scalar_int_mode mode, scalar_int_mode mode_rep) { /* On 64-bit targets, SImode register values are sign-extended to DImode. */ if (TARGET_64BIT && mode == SImode && mode_rep == DImode) return SIGN_EXTEND; return UNKNOWN; } /* Implement TARGET_VALID_POINTER_MODE. */ static bool mips_valid_pointer_mode (scalar_int_mode mode) { return mode == SImode || (TARGET_64BIT && mode == DImode); } /* Implement TARGET_VECTOR_MODE_SUPPORTED_P. */ static bool mips_vector_mode_supported_p (machine_mode mode) { switch (mode) { case E_V2SFmode: return TARGET_PAIRED_SINGLE_FLOAT; case E_V2HImode: case E_V4QImode: case E_V2HQmode: case E_V2UHQmode: case E_V2HAmode: case E_V2UHAmode: case E_V4QQmode: case E_V4UQQmode: return TARGET_DSP; case E_V2SImode: case E_V4HImode: case E_V8QImode: return TARGET_LOONGSON_MMI; default: return MSA_SUPPORTED_MODE_P (mode); } } /* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */ static bool mips_scalar_mode_supported_p (scalar_mode mode) { if (ALL_FIXED_POINT_MODE_P (mode) && GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD) return true; return default_scalar_mode_supported_p (mode); } /* Implement TARGET_VECTORIZE_PREFERRED_SIMD_MODE. */ static machine_mode mips_preferred_simd_mode (scalar_mode mode) { if (TARGET_PAIRED_SINGLE_FLOAT && mode == SFmode) return V2SFmode; if (!ISA_HAS_MSA) return word_mode; switch (mode) { case E_QImode: return V16QImode; case E_HImode: return V8HImode; case E_SImode: return V4SImode; case E_DImode: return V2DImode; case E_SFmode: return V4SFmode; case E_DFmode: return V2DFmode; default: break; } return word_mode; } /* Implement TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES. */ static unsigned int mips_autovectorize_vector_modes (vector_modes *modes, bool) { if (ISA_HAS_MSA) modes->safe_push (V16QImode); return 0; } /* Implement TARGET_INIT_LIBFUNCS. */ static void mips_init_libfuncs (void) { if (TARGET_FIX_VR4120) { /* Register the special divsi3 and modsi3 functions needed to work around VR4120 division errata. */ set_optab_libfunc (sdiv_optab, SImode, "__vr4120_divsi3"); set_optab_libfunc (smod_optab, SImode, "__vr4120_modsi3"); } if (TARGET_MIPS16 && TARGET_HARD_FLOAT_ABI) { /* Register the MIPS16 -mhard-float stubs. */ set_optab_libfunc (add_optab, SFmode, "__mips16_addsf3"); set_optab_libfunc (sub_optab, SFmode, "__mips16_subsf3"); set_optab_libfunc (smul_optab, SFmode, "__mips16_mulsf3"); set_optab_libfunc (sdiv_optab, SFmode, "__mips16_divsf3"); set_optab_libfunc (eq_optab, SFmode, "__mips16_eqsf2"); set_optab_libfunc (ne_optab, SFmode, "__mips16_nesf2"); set_optab_libfunc (gt_optab, SFmode, "__mips16_gtsf2"); set_optab_libfunc (ge_optab, SFmode, "__mips16_gesf2"); set_optab_libfunc (lt_optab, SFmode, "__mips16_ltsf2"); set_optab_libfunc (le_optab, SFmode, "__mips16_lesf2"); set_optab_libfunc (unord_optab, SFmode, "__mips16_unordsf2"); set_conv_libfunc (sfix_optab, SImode, SFmode, "__mips16_fix_truncsfsi"); set_conv_libfunc (sfloat_optab, SFmode, SImode, "__mips16_floatsisf"); set_conv_libfunc (ufloat_optab, SFmode, SImode, "__mips16_floatunsisf"); if (TARGET_DOUBLE_FLOAT) { set_optab_libfunc (add_optab, DFmode, "__mips16_adddf3"); set_optab_libfunc (sub_optab, DFmode, "__mips16_subdf3"); set_optab_libfunc (smul_optab, DFmode, "__mips16_muldf3"); set_optab_libfunc (sdiv_optab, DFmode, "__mips16_divdf3"); set_optab_libfunc (eq_optab, DFmode, "__mips16_eqdf2"); set_optab_libfunc (ne_optab, DFmode, "__mips16_nedf2"); set_optab_libfunc (gt_optab, DFmode, "__mips16_gtdf2"); set_optab_libfunc (ge_optab, DFmode, "__mips16_gedf2"); set_optab_libfunc (lt_optab, DFmode, "__mips16_ltdf2"); set_optab_libfunc (le_optab, DFmode, "__mips16_ledf2"); set_optab_libfunc (unord_optab, DFmode, "__mips16_unorddf2"); set_conv_libfunc (sext_optab, DFmode, SFmode, "__mips16_extendsfdf2"); set_conv_libfunc (trunc_optab, SFmode, DFmode, "__mips16_truncdfsf2"); set_conv_libfunc (sfix_optab, SImode, DFmode, "__mips16_fix_truncdfsi"); set_conv_libfunc (sfloat_optab, DFmode, SImode, "__mips16_floatsidf"); set_conv_libfunc (ufloat_optab, DFmode, SImode, "__mips16_floatunsidf"); } } /* The MIPS16 ISA does not have an encoding for "sync", so we rely on an external non-MIPS16 routine to implement __sync_synchronize. Similarly for the rest of the ll/sc libfuncs. */ if (TARGET_MIPS16) { synchronize_libfunc = init_one_libfunc ("__sync_synchronize"); init_sync_libfuncs (UNITS_PER_WORD); } } /* Build up a multi-insn sequence that loads label TARGET into $AT. */ static void mips_process_load_label (rtx target) { rtx base, gp, intop; HOST_WIDE_INT offset; mips_multi_start (); switch (mips_abi) { case ABI_N32: mips_multi_add_insn ("lw\t%@,%%got_page(%0)(%+)", target, 0); mips_multi_add_insn ("addiu\t%@,%@,%%got_ofst(%0)", target, 0); break; case ABI_64: mips_multi_add_insn ("ld\t%@,%%got_page(%0)(%+)", target, 0); mips_multi_add_insn ("daddiu\t%@,%@,%%got_ofst(%0)", target, 0); break; default: gp = pic_offset_table_rtx; if (mips_cfun_has_cprestore_slot_p ()) { gp = gen_rtx_REG (Pmode, AT_REGNUM); mips_get_cprestore_base_and_offset (&base, &offset, true); if (!SMALL_OPERAND (offset)) { intop = GEN_INT (CONST_HIGH_PART (offset)); mips_multi_add_insn ("lui\t%0,%1", gp, intop, 0); mips_multi_add_insn ("addu\t%0,%0,%1", gp, base, 0); base = gp; offset = CONST_LOW_PART (offset); } intop = GEN_INT (offset); if (ISA_HAS_LOAD_DELAY) mips_multi_add_insn ("lw\t%0,%1(%2)%#", gp, intop, base, 0); else mips_multi_add_insn ("lw\t%0,%1(%2)", gp, intop, base, 0); } if (ISA_HAS_LOAD_DELAY) mips_multi_add_insn ("lw\t%@,%%got(%0)(%1)%#", target, gp, 0); else mips_multi_add_insn ("lw\t%@,%%got(%0)(%1)", target, gp, 0); mips_multi_add_insn ("addiu\t%@,%@,%%lo(%0)", target, 0); break; } } /* Return the number of instructions needed to load a label into $AT. */ static unsigned int mips_load_label_num_insns (void) { if (cfun->machine->load_label_num_insns == 0) { mips_process_load_label (pc_rtx); cfun->machine->load_label_num_insns = mips_multi_num_insns; } return cfun->machine->load_label_num_insns; } /* Emit an asm sequence to start a noat block and load the address of a label into $1. */ void mips_output_load_label (rtx target) { mips_push_asm_switch (&mips_noat); if (TARGET_EXPLICIT_RELOCS) { mips_process_load_label (target); mips_multi_write (); } else { if (Pmode == DImode) output_asm_insn ("dla\t%@,%0", &target); else output_asm_insn ("la\t%@,%0", &target); } } /* Return the length of INSN. LENGTH is the initial length computed by attributes in the machine-description file. */ int mips_adjust_insn_length (rtx_insn *insn, int length) { /* mips.md uses MAX_PIC_BRANCH_LENGTH as a placeholder for the length of a PIC long-branch sequence. Substitute the correct value. */ if (length == MAX_PIC_BRANCH_LENGTH && JUMP_P (insn) && INSN_CODE (insn) >= 0 && get_attr_type (insn) == TYPE_BRANCH) { /* Add the branch-over instruction and its delay slot, if this is a conditional branch. */ length = simplejump_p (insn) ? 0 : 8; /* Add the size of a load into $AT. */ length += BASE_INSN_LENGTH * mips_load_label_num_insns (); /* Add the length of an indirect jump, ignoring the delay slot. */ length += TARGET_COMPRESSION ? 2 : 4; } /* A unconditional jump has an unfilled delay slot if it is not part of a sequence. A conditional jump normally has a delay slot, but does not on MIPS16. */ if (CALL_P (insn) || (TARGET_MIPS16 ? simplejump_p (insn) : JUMP_P (insn))) length += TARGET_MIPS16 ? 2 : 4; /* See how many nops might be needed to avoid hardware hazards. */ if (!cfun->machine->ignore_hazard_length_p && INSN_P (insn) && INSN_CODE (insn) >= 0) switch (get_attr_hazard (insn)) { case HAZARD_NONE: break; case HAZARD_DELAY: case HAZARD_FORBIDDEN_SLOT: length += NOP_INSN_LENGTH; break; case HAZARD_HILO: length += NOP_INSN_LENGTH * 2; break; } return length; } /* Return the asm template for a call. OPERANDS are the operands, TARGET_OPNO is the operand number of the target. SIZE_OPNO is the operand number of the argument size operand that can optionally hold the call attributes. If SIZE_OPNO is not -1 and the call is indirect, use the function symbol from the call attributes to attach a R_MIPS_JALR relocation to the call. LINK_P indicates whether the jump is a call and needs to set the link register. When generating GOT code without explicit relocation operators, all calls should use assembly macros. Otherwise, all indirect calls should use "jr" or "jalr"; we will arrange to restore $gp afterwards if necessary. Finally, we can only generate direct calls for -mabicalls by temporarily switching to non-PIC mode. For microMIPS jal(r), we try to generate jal(r)s when a 16-bit instruction is in the delay slot of jal(r). Where compact branches are available, we try to use them if the delay slot has a NOP (or equivalently delay slots were not enabled for the instruction anyway). */ const char * mips_output_jump (rtx *operands, int target_opno, int size_opno, bool link_p) { static char buffer[300]; char *s = buffer; bool reg_p = REG_P (operands[target_opno]); const char *and_link = link_p ? "al" : ""; const char *reg = reg_p ? "r" : ""; const char *compact = ""; const char *nop = "%/"; const char *short_delay = link_p ? "%!" : ""; const char *insn_name = TARGET_CB_NEVER || reg_p ? "j" : "b"; /* Compact branches can only be described when the ISA has support for them as both the compact formatter '%:' and the delay slot NOP formatter '%/' work as a mutually exclusive pair. I.e. a NOP is never required if a compact form is available. */ if (!final_sequence && (TARGET_CB_MAYBE || (ISA_HAS_JRC && !link_p && reg_p))) { compact = "c"; nop = ""; } if (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS) sprintf (s, "%%*%s%s\t%%%d%%/", insn_name, and_link, target_opno); else { if (!reg_p && TARGET_ABICALLS_PIC2) s += sprintf (s, ".option\tpic0\n\t"); if (reg_p && mips_get_pic_call_symbol (operands, size_opno)) s += sprintf (s, "%%*.reloc\t1f,%s,%%%d\n1:\t", TARGET_MICROMIPS ? "R_MICROMIPS_JALR" : "R_MIPS_JALR", size_opno); else s += sprintf (s, "%%*"); s += sprintf (s, "%s%s%s%s%s\t%%%d%s", insn_name, and_link, reg, compact, short_delay, target_opno, nop); if (!reg_p && TARGET_ABICALLS_PIC2) s += sprintf (s, "\n\t.option\tpic2"); } return buffer; } /* Return the assembly code for INSN, which has the operands given by OPERANDS, and which branches to OPERANDS[0] if some condition is true. BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[0] is in range of a direct branch. BRANCH_IF_FALSE is an inverted version of BRANCH_IF_TRUE. */ const char * mips_output_conditional_branch (rtx_insn *insn, rtx *operands, const char *branch_if_true, const char *branch_if_false) { unsigned int length; rtx taken; gcc_assert (LABEL_P (operands[0])); length = get_attr_length (insn); if (length <= 8) { /* Just a simple conditional branch. */ mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn)); return branch_if_true; } /* Generate a reversed branch around a direct jump. This fallback does not use branch-likely instructions. */ mips_branch_likely = false; rtx_code_label *not_taken = gen_label_rtx (); taken = operands[0]; /* Generate the reversed branch to NOT_TAKEN. */ operands[0] = not_taken; output_asm_insn (branch_if_false, operands); /* If INSN has a delay slot, we must provide delay slots for both the branch to NOT_TAKEN and the conditional jump. We must also ensure that INSN's delay slot is executed in the appropriate cases. */ if (final_sequence) { /* This first delay slot will always be executed, so use INSN's delay slot if is not annulled. */ if (!INSN_ANNULLED_BRANCH_P (insn)) { final_scan_insn (final_sequence->insn (1), asm_out_file, optimize, 1, NULL); final_sequence->insn (1)->set_deleted (); } else output_asm_insn ("nop", 0); fprintf (asm_out_file, "\n"); } /* Output the unconditional branch to TAKEN. */ if (TARGET_ABSOLUTE_JUMPS && TARGET_CB_MAYBE) { /* Add a hazard nop. */ if (!final_sequence) { output_asm_insn ("nop\t\t# hazard nop", 0); fprintf (asm_out_file, "\n"); } output_asm_insn (MIPS_ABSOLUTE_JUMP ("bc\t%0"), &taken); } else if (TARGET_ABSOLUTE_JUMPS) output_asm_insn (MIPS_ABSOLUTE_JUMP ("j\t%0%/"), &taken); else { mips_output_load_label (taken); if (TARGET_CB_MAYBE) output_asm_insn ("jrc\t%@%]", 0); else output_asm_insn ("jr\t%@%]%/", 0); } /* Now deal with its delay slot; see above. */ if (final_sequence) { /* This delay slot will only be executed if the branch is taken. Use INSN's delay slot if is annulled. */ if (INSN_ANNULLED_BRANCH_P (insn)) { final_scan_insn (final_sequence->insn (1), asm_out_file, optimize, 1, NULL); final_sequence->insn (1)->set_deleted (); } else if (TARGET_CB_NEVER) output_asm_insn ("nop", 0); fprintf (asm_out_file, "\n"); } /* Output NOT_TAKEN. */ targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (not_taken)); return ""; } /* Return the assembly code for INSN, which branches to OPERANDS[0] if some equality condition is true. The condition is given by OPERANDS[1] if !INVERTED_P, otherwise it is the inverse of OPERANDS[1]. OPERANDS[2] is the comparison's first operand; OPERANDS[3] is the second operand and may be zero or a register. */ const char * mips_output_equal_conditional_branch (rtx_insn* insn, rtx *operands, bool inverted_p) { const char *branch[2]; /* For a simple BNEZ or BEQZ microMIPSr3 branch. */ if (TARGET_MICROMIPS && mips_isa_rev <= 5 && operands[3] == const0_rtx && get_attr_length (insn) <= 8) { if (mips_cb == MIPS_CB_OPTIMAL) { branch[!inverted_p] = "%*b%C1z%:\t%2,%0"; branch[inverted_p] = "%*b%N1z%:\t%2,%0"; } else { branch[!inverted_p] = "%*b%C1z\t%2,%0%/"; branch[inverted_p] = "%*b%N1z\t%2,%0%/"; } } else if (TARGET_CB_MAYBE) { if (operands[3] == const0_rtx) { branch[!inverted_p] = MIPS_BRANCH_C ("b%C1z", "%2,%0"); branch[inverted_p] = MIPS_BRANCH_C ("b%N1z", "%2,%0"); } else if (REGNO (operands[2]) != REGNO (operands[3])) { branch[!inverted_p] = MIPS_BRANCH_C ("b%C1", "%2,%3,%0"); branch[inverted_p] = MIPS_BRANCH_C ("b%N1", "%2,%3,%0"); } else { /* This case is degenerate. It should not happen, but does. */ if (GET_CODE (operands[1]) == NE) inverted_p = !inverted_p; branch[!inverted_p] = MIPS_BRANCH_C ("b", "%0"); branch[inverted_p] = "%*\t\t# branch never"; } } else { branch[!inverted_p] = MIPS_BRANCH ("b%C1", "%2,%z3,%0"); branch[inverted_p] = MIPS_BRANCH ("b%N1", "%2,%z3,%0"); } return mips_output_conditional_branch (insn, operands, branch[1], branch[0]); } /* Return the assembly code for INSN, which branches to OPERANDS[0] if some ordering condition is true. The condition is given by OPERANDS[1] if !INVERTED_P, otherwise it is the inverse of OPERANDS[1]. OPERANDS[2] is the comparison's first operand; OPERANDS[3] is the second operand and may be zero or a register. */ const char * mips_output_order_conditional_branch (rtx_insn *insn, rtx *operands, bool inverted_p) { const char *branch[2]; /* Make BRANCH[1] branch to OPERANDS[0] when the condition is true. Make BRANCH[0] branch on the inverse condition. */ if (operands[3] != const0_rtx) { /* Handle degenerate cases that should not, but do, occur. */ if (REGNO (operands[2]) == REGNO (operands[3])) { switch (GET_CODE (operands[1])) { case LT: case LTU: inverted_p = !inverted_p; /* Fall through. */ case GE: case GEU: branch[!inverted_p] = MIPS_BRANCH_C ("b", "%0"); branch[inverted_p] = "%*\t\t# branch never"; break; default: gcc_unreachable (); } } else { branch[!inverted_p] = MIPS_BRANCH_C ("b%C1", "%2,%3,%0"); branch[inverted_p] = MIPS_BRANCH_C ("b%N1", "%2,%3,%0"); } } else { switch (GET_CODE (operands[1])) { /* These cases are equivalent to comparisons against zero. */ case LEU: inverted_p = !inverted_p; /* Fall through. */ case GTU: if (TARGET_CB_MAYBE) { branch[!inverted_p] = MIPS_BRANCH_C ("bnez", "%2,%0"); branch[inverted_p] = MIPS_BRANCH_C ("beqz", "%2,%0"); } else { branch[!inverted_p] = MIPS_BRANCH ("bne", "%2,%.,%0"); branch[inverted_p] = MIPS_BRANCH ("beq", "%2,%.,%0"); } break; /* These cases are always true or always false. */ case LTU: inverted_p = !inverted_p; /* Fall through. */ case GEU: if (TARGET_CB_MAYBE) { branch[!inverted_p] = MIPS_BRANCH_C ("b", "%0"); branch[inverted_p] = "%*\t\t# branch never"; } else { branch[!inverted_p] = MIPS_BRANCH ("beq", "%.,%.,%0"); branch[inverted_p] = MIPS_BRANCH ("bne", "%.,%.,%0"); } break; default: if (TARGET_CB_MAYBE) { branch[!inverted_p] = MIPS_BRANCH_C ("b%C1z", "%2,%0"); branch[inverted_p] = MIPS_BRANCH_C ("b%N1z", "%2,%0"); } else { branch[!inverted_p] = MIPS_BRANCH ("b%C1z", "%2,%0"); branch[inverted_p] = MIPS_BRANCH ("b%N1z", "%2,%0"); } break; } } return mips_output_conditional_branch (insn, operands, branch[1], branch[0]); } /* Start a block of code that needs access to the LL, SC and SYNC instructions. */ static void mips_start_ll_sc_sync_block (void) { if (!ISA_HAS_LL_SC) { output_asm_insn (".set\tpush", 0); if (TARGET_64BIT) output_asm_insn (".set\tmips3", 0); else output_asm_insn (".set\tmips2", 0); } } /* End a block started by mips_start_ll_sc_sync_block. */ static void mips_end_ll_sc_sync_block (void) { if (!ISA_HAS_LL_SC) output_asm_insn (".set\tpop", 0); } /* Output and/or return the asm template for a sync instruction. */ const char * mips_output_sync (void) { mips_start_ll_sc_sync_block (); output_asm_insn ("sync", 0); mips_end_ll_sc_sync_block (); return ""; } /* Return the asm template associated with sync_insn1 value TYPE. IS_64BIT_P is true if we want a 64-bit rather than 32-bit operation. */ static const char * mips_sync_insn1_template (enum attr_sync_insn1 type, bool is_64bit_p) { switch (type) { case SYNC_INSN1_MOVE: return "move\t%0,%z2"; case SYNC_INSN1_LI: return "li\t%0,%2"; case SYNC_INSN1_ADDU: return is_64bit_p ? "daddu\t%0,%1,%z2" : "addu\t%0,%1,%z2"; case SYNC_INSN1_ADDIU: return is_64bit_p ? "daddiu\t%0,%1,%2" : "addiu\t%0,%1,%2"; case SYNC_INSN1_SUBU: return is_64bit_p ? "dsubu\t%0,%1,%z2" : "subu\t%0,%1,%z2"; case SYNC_INSN1_AND: return "and\t%0,%1,%z2"; case SYNC_INSN1_ANDI: return "andi\t%0,%1,%2"; case SYNC_INSN1_OR: return "or\t%0,%1,%z2"; case SYNC_INSN1_ORI: return "ori\t%0,%1,%2"; case SYNC_INSN1_XOR: return "xor\t%0,%1,%z2"; case SYNC_INSN1_XORI: return "xori\t%0,%1,%2"; } gcc_unreachable (); } /* Return the asm template associated with sync_insn2 value TYPE. */ static const char * mips_sync_insn2_template (enum attr_sync_insn2 type) { switch (type) { case SYNC_INSN2_NOP: gcc_unreachable (); case SYNC_INSN2_AND: return "and\t%0,%1,%z2"; case SYNC_INSN2_XOR: return "xor\t%0,%1,%z2"; case SYNC_INSN2_NOT: return "nor\t%0,%1,%."; } gcc_unreachable (); } /* OPERANDS are the operands to a sync loop instruction and INDEX is the value of the one of the sync_* attributes. Return the operand referred to by the attribute, or DEFAULT_VALUE if the insn doesn't have the associated attribute. */ static rtx mips_get_sync_operand (rtx *operands, int index, rtx default_value) { if (index > 0) default_value = operands[index - 1]; return default_value; } /* INSN is a sync loop with operands OPERANDS. Build up a multi-insn sequence for it. */ static void mips_process_sync_loop (rtx_insn *insn, rtx *operands) { rtx at, mem, oldval, newval, inclusive_mask, exclusive_mask; rtx required_oldval, insn1_op2, tmp1, tmp2, tmp3, cmp; unsigned int tmp3_insn; enum attr_sync_insn1 insn1; enum attr_sync_insn2 insn2; bool is_64bit_p; int memmodel_attr; enum memmodel model; /* Read an operand from the sync_WHAT attribute and store it in variable WHAT. DEFAULT is the default value if no attribute is specified. */ #define READ_OPERAND(WHAT, DEFAULT) \ WHAT = mips_get_sync_operand (operands, (int) get_attr_sync_##WHAT (insn), \ DEFAULT) /* Read the memory. */ READ_OPERAND (mem, 0); gcc_assert (mem); is_64bit_p = (GET_MODE_BITSIZE (GET_MODE (mem)) == 64); /* Read the other attributes. */ at = gen_rtx_REG (GET_MODE (mem), AT_REGNUM); READ_OPERAND (oldval, at); READ_OPERAND (cmp, 0); READ_OPERAND (newval, at); READ_OPERAND (inclusive_mask, 0); READ_OPERAND (exclusive_mask, 0); READ_OPERAND (required_oldval, 0); READ_OPERAND (insn1_op2, 0); insn1 = get_attr_sync_insn1 (insn); insn2 = get_attr_sync_insn2 (insn); /* Don't bother setting CMP result that is never used. */ if (cmp && find_reg_note (insn, REG_UNUSED, cmp)) cmp = 0; memmodel_attr = get_attr_sync_memmodel (insn); switch (memmodel_attr) { case 10: model = MEMMODEL_ACQ_REL; break; case 11: model = MEMMODEL_ACQUIRE; break; default: model = memmodel_from_int (INTVAL (operands[memmodel_attr])); } mips_multi_start (); /* Output the release side of the memory barrier. */ if (need_atomic_barrier_p (model, true)) { if (required_oldval == 0 && TARGET_OCTEON) { /* Octeon doesn't reorder reads, so a full barrier can be created by using SYNCW to order writes combined with the write from the following SC. When the SC successfully completes, we know that all preceding writes are also committed to the coherent memory system. It is possible for a single SYNCW to fail, but a pair of them will never fail, so we use two. */ mips_multi_add_insn ("syncw", NULL); mips_multi_add_insn ("syncw", NULL); } else mips_multi_add_insn ("sync", NULL); } /* Output the branch-back label. */ mips_multi_add_label ("1:"); /* OLDVAL = *MEM. */ mips_multi_add_insn (is_64bit_p ? "lld\t%0,%1" : "ll\t%0,%1", oldval, mem, NULL); /* if ((OLDVAL & INCLUSIVE_MASK) != REQUIRED_OLDVAL) goto 2. */ if (required_oldval) { if (inclusive_mask == 0) tmp1 = oldval; else { gcc_assert (oldval != at); mips_multi_add_insn ("and\t%0,%1,%2", at, oldval, inclusive_mask, NULL); tmp1 = at; } if (TARGET_CB_NEVER) mips_multi_add_insn ("bne\t%0,%z1,2f", tmp1, required_oldval, NULL); /* CMP = 0 [delay slot]. */ if (cmp) mips_multi_add_insn ("li\t%0,0", cmp, NULL); if (TARGET_CB_MAYBE && required_oldval == const0_rtx) mips_multi_add_insn ("bnezc\t%0,2f", tmp1, NULL); else if (TARGET_CB_MAYBE) mips_multi_add_insn ("bnec\t%0,%1,2f", tmp1, required_oldval, NULL); } /* $TMP1 = OLDVAL & EXCLUSIVE_MASK. */ if (exclusive_mask == 0) tmp1 = const0_rtx; else { gcc_assert (oldval != at); mips_multi_add_insn ("and\t%0,%1,%z2", at, oldval, exclusive_mask, NULL); tmp1 = at; } /* $TMP2 = INSN1 (OLDVAL, INSN1_OP2). We can ignore moves if $TMP4 != INSN1_OP2, since we'll still emit at least one instruction in that case. */ if (insn1 == SYNC_INSN1_MOVE && (tmp1 != const0_rtx || insn2 != SYNC_INSN2_NOP)) tmp2 = insn1_op2; else { mips_multi_add_insn (mips_sync_insn1_template (insn1, is_64bit_p), newval, oldval, insn1_op2, NULL); tmp2 = newval; } /* $TMP3 = INSN2 ($TMP2, INCLUSIVE_MASK). */ if (insn2 == SYNC_INSN2_NOP) tmp3 = tmp2; else { mips_multi_add_insn (mips_sync_insn2_template (insn2), newval, tmp2, inclusive_mask, NULL); tmp3 = newval; } tmp3_insn = mips_multi_last_index (); /* $AT = $TMP1 | $TMP3. */ if (tmp1 == const0_rtx || tmp3 == const0_rtx) { mips_multi_set_operand (tmp3_insn, 0, at); tmp3 = at; } else { gcc_assert (tmp1 != tmp3); mips_multi_add_insn ("or\t%0,%1,%2", at, tmp1, tmp3, NULL); } /* if (!commit (*MEM = $AT)) goto 1. This will sometimes be a delayed branch; see the write code below for details. */ mips_multi_add_insn (is_64bit_p ? "scd\t%0,%1" : "sc\t%0,%1", at, mem, NULL); /* When using branch likely (-mfix-r10000), the delay slot instruction will be annulled on false. The normal delay slot instructions calculate the overall result of the atomic operation and must not be annulled. To ensure this behavior unconditionally use a NOP in the delay slot for the branch likely case. */ if (TARGET_CB_MAYBE) mips_multi_add_insn ("beqzc\t%0,1b", at, NULL); else mips_multi_add_insn ("beq%?\t%0,%.,1b%~", at, NULL); /* if (INSN1 != MOVE && INSN1 != LI) NEWVAL = $TMP3 [delay slot]. */ if (insn1 != SYNC_INSN1_MOVE && insn1 != SYNC_INSN1_LI && tmp3 != newval) { mips_multi_copy_insn (tmp3_insn); mips_multi_set_operand (mips_multi_last_index (), 0, newval); } else if (!(required_oldval && cmp) && !mips_branch_likely) mips_multi_add_insn ("nop", NULL); /* CMP = 1 -- either standalone or in a delay slot. */ if (required_oldval && cmp) mips_multi_add_insn ("li\t%0,1", cmp, NULL); /* Output the acquire side of the memory barrier. */ if (TARGET_SYNC_AFTER_SC && need_atomic_barrier_p (model, false)) mips_multi_add_insn ("sync", NULL); /* Output the exit label, if needed. */ if (required_oldval) mips_multi_add_label ("2:"); #undef READ_OPERAND } /* Output and/or return the asm template for sync loop INSN, which has the operands given by OPERANDS. */ const char * mips_output_sync_loop (rtx_insn *insn, rtx *operands) { /* Use branch-likely instructions to work around the LL/SC R10000 errata. */ mips_branch_likely = TARGET_FIX_R10000; mips_process_sync_loop (insn, operands); mips_push_asm_switch (&mips_noreorder); mips_push_asm_switch (&mips_nomacro); mips_push_asm_switch (&mips_noat); mips_start_ll_sc_sync_block (); mips_multi_write (); mips_end_ll_sc_sync_block (); mips_pop_asm_switch (&mips_noat); mips_pop_asm_switch (&mips_nomacro); mips_pop_asm_switch (&mips_noreorder); return ""; } /* Return the number of individual instructions in sync loop INSN, which has the operands given by OPERANDS. */ unsigned int mips_sync_loop_insns (rtx_insn *insn, rtx *operands) { /* Use branch-likely instructions to work around the LL/SC R10000 errata. */ mips_branch_likely = TARGET_FIX_R10000; mips_process_sync_loop (insn, operands); return mips_multi_num_insns; } /* Return the assembly code for DIV or DDIV instruction DIVISION, which has the operands given by OPERANDS. Add in a divide-by-zero check if needed. When working around R4000 and R4400 errata, we need to make sure that the division is not immediately followed by a shift[1][2]. We also need to stop the division from being put into a branch delay slot[3]. The easiest way to avoid both problems is to add a nop after the division. When a divide-by-zero check is needed, this nop can be used to fill the branch delay slot. [1] If a double-word or a variable shift executes immediately after starting an integer division, the shift may give an incorrect result. See quotations of errata #16 and #28 from "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0" in mips.md for details. [2] A similar bug to [1] exists for all revisions of the R4000 and the R4400 when run in an MC configuration. From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0": "19. In this following sequence: ddiv (or ddivu or div or divu) dsll32 (or dsrl32, dsra32) if an MPT stall occurs, while the divide is slipping the cpu pipeline, then the following double shift would end up with an incorrect result. Workaround: The compiler needs to avoid generating any sequence with divide followed by extended double shift." This erratum is also present in "MIPS R4400MC Errata, Processor Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0 & 3.0" as errata #10 and #4, respectively. [3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0" (also valid for MIPS R4000MC processors): "52. R4000SC: This bug does not apply for the R4000PC. There are two flavors of this bug: 1) If the instruction just after divide takes an RF exception (tlb-refill, tlb-invalid) and gets an instruction cache miss (both primary and secondary) and the line which is currently in secondary cache at this index had the first data word, where the bits 5..2 are set, then R4000 would get a wrong result for the div. ##1 nop div r8, r9 ------------------- # end-of page. -tlb-refill nop ##2 nop div r8, r9 ------------------- # end-of page. -tlb-invalid nop 2) If the divide is in the taken branch delay slot, where the target takes RF exception and gets an I-cache miss for the exception vector or where I-cache miss occurs for the target address, under the above mentioned scenarios, the div would get wrong results. ##1 j r2 # to next page mapped or unmapped div r8,r9 # this bug would be there as long # as there is an ICache miss and nop # the "data pattern" is present ##2 beq r0, r0, NextPage # to Next page div r8,r9 nop This bug is present for div, divu, ddiv, and ddivu instructions. Workaround: For item 1), OS could make sure that the next page after the divide instruction is also mapped. For item 2), the compiler could make sure that the divide instruction is not in the branch delay slot." These processors have PRId values of 0x00004220 and 0x00004300 for the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400. */ const char * mips_output_division (const char *division, rtx *operands) { const char *s; s = division; if (TARGET_FIX_R4000 || TARGET_FIX_R4400) { output_asm_insn (s, operands); s = "nop"; } if (TARGET_CHECK_ZERO_DIV) { if (TARGET_MIPS16) { output_asm_insn (s, operands); s = "bnez\t%2,1f\n\tbreak\t7\n1:"; } else if (GENERATE_DIVIDE_TRAPS) { /* Avoid long replay penalty on load miss by putting the trap before the divide. */ if (TUNE_74K) output_asm_insn ("teq\t%2,%.,7", operands); else { output_asm_insn (s, operands); s = "teq\t%2,%.,7"; } } else { if (flag_delayed_branch) { output_asm_insn ("%(bne\t%2,%.,1f", operands); output_asm_insn (s, operands); s = "break\t7%)\n1:"; } else { output_asm_insn (s, operands); s = "bne\t%2,%.,1f\n\tnop\n\tbreak\t7\n1:"; } } } return s; } /* Return the assembly code for MSA DIV_{S,U}.DF or MOD_{S,U}.DF instructions, which has the operands given by OPERANDS. Add in a divide-by-zero check if needed. */ const char * mips_msa_output_division (const char *division, rtx *operands) { const char *s; s = division; if (TARGET_CHECK_ZERO_DIV) { output_asm_insn ("%(bnz.%v0\t%w2,1f", operands); output_asm_insn (s, operands); s = "break\t7%)\n1:"; } return s; } /* Return the assembly code for MSA immediate shift instructions, which has the operands given by OPERANDS. Truncate the shift amount to make GAS happy. */ const char * mips_msa_output_shift_immediate (const char *shift, rtx *operands) { rtx amount = operands[2]; machine_mode mode = amount->mode; unsigned val = UINTVAL (CONST_VECTOR_ELT (amount, 0)); val &= GET_MODE_UNIT_BITSIZE (mode) - 1; if (!val) return ""; rtx c = gen_int_mode (val, GET_MODE_INNER (mode)); operands[2] = gen_const_vec_duplicate (mode, c); return shift; } /* Return true if destination of IN_INSN is used as add source in OUT_INSN. Both IN_INSN and OUT_INSN are of type fmadd. Example: madd.s dst, x, y, z madd.s a, dst, b, c */ bool mips_fmadd_bypass (rtx_insn *out_insn, rtx_insn *in_insn) { int dst_reg, src_reg; gcc_assert (get_attr_type (in_insn) == TYPE_FMADD); gcc_assert (get_attr_type (out_insn) == TYPE_FMADD); extract_insn (in_insn); dst_reg = REG_P (recog_data.operand[0]); extract_insn (out_insn); src_reg = REG_P (recog_data.operand[1]); if (dst_reg == src_reg) return true; return false; } /* Return true if IN_INSN is a multiply-add or multiply-subtract instruction and if OUT_INSN assigns to the accumulator operand. */ bool mips_linked_madd_p (rtx_insn *out_insn, rtx_insn *in_insn) { enum attr_accum_in accum_in; int accum_in_opnum; rtx accum_in_op; if (recog_memoized (in_insn) < 0) return false; accum_in = get_attr_accum_in (in_insn); if (accum_in == ACCUM_IN_NONE) return false; accum_in_opnum = accum_in - ACCUM_IN_0; extract_insn (in_insn); gcc_assert (accum_in_opnum < recog_data.n_operands); accum_in_op = recog_data.operand[accum_in_opnum]; return reg_set_p (accum_in_op, out_insn); } /* True if the dependency between OUT_INSN and IN_INSN is on the store data rather than the address. We need this because the cprestore pattern is type "store", but is defined using an UNSPEC_VOLATILE, which causes the default routine to abort. We just return false for that case. */ bool mips_store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn) { if (GET_CODE (PATTERN (in_insn)) == UNSPEC_VOLATILE) return false; return store_data_bypass_p (out_insn, in_insn); } /* Variables and flags used in scheduler hooks when tuning for Loongson 2E/2F. */ static struct { /* Variables to support Loongson 2E/2F round-robin [F]ALU1/2 dispatch strategy. */ /* If true, then next ALU1/2 instruction will go to ALU1. */ bool alu1_turn_p; /* If true, then next FALU1/2 unstruction will go to FALU1. */ bool falu1_turn_p; /* Codes to query if [f]alu{1,2}_core units are subscribed or not. */ int alu1_core_unit_code; int alu2_core_unit_code; int falu1_core_unit_code; int falu2_core_unit_code; /* True if current cycle has a multi instruction. This flag is used in mips_ls2_dfa_post_advance_cycle. */ bool cycle_has_multi_p; /* Instructions to subscribe ls2_[f]alu{1,2}_turn_enabled units. These are used in mips_ls2_dfa_post_advance_cycle to initialize DFA state. E.g., when alu1_turn_enabled_insn is issued it makes next ALU1/2 instruction to go ALU1. */ rtx_insn *alu1_turn_enabled_insn; rtx_insn *alu2_turn_enabled_insn; rtx_insn *falu1_turn_enabled_insn; rtx_insn *falu2_turn_enabled_insn; } mips_ls2; /* Implement TARGET_SCHED_ADJUST_COST. We assume that anti and output dependencies have no cost, except on the 20Kc where output-dependence is treated like input-dependence. */ static int mips_adjust_cost (rtx_insn *, int dep_type, rtx_insn *, int cost, unsigned int) { if (dep_type != 0 && (dep_type != REG_DEP_OUTPUT || !TUNE_20KC)) return 0; return cost; } /* Return the number of instructions that can be issued per cycle. */ static int mips_issue_rate (void) { switch (mips_tune) { case PROCESSOR_74KC: case PROCESSOR_74KF2_1: case PROCESSOR_74KF1_1: case PROCESSOR_74KF3_2: /* The 74k is not strictly quad-issue cpu, but can be seen as one by the scheduler. It can issue 1 ALU, 1 AGEN and 2 FPU insns, but in reality only a maximum of 3 insns can be issued as floating-point loads and stores also require a slot in the AGEN pipe. */ case PROCESSOR_R10000: /* All R10K Processors are quad-issue (being the first MIPS processors to support this feature). */ return 4; case PROCESSOR_20KC: case PROCESSOR_R4130: case PROCESSOR_R5400: case PROCESSOR_R5500: case PROCESSOR_R5900: case PROCESSOR_R7000: case PROCESSOR_R9000: case PROCESSOR_OCTEON: case PROCESSOR_OCTEON2: case PROCESSOR_OCTEON3: case PROCESSOR_I6400: case PROCESSOR_GS264E: return 2; case PROCESSOR_SB1: case PROCESSOR_SB1A: /* This is actually 4, but we get better performance if we claim 3. This is partly because of unwanted speculative code motion with the larger number, and partly because in most common cases we can't reach the theoretical max of 4. */ return 3; case PROCESSOR_LOONGSON_2E: case PROCESSOR_LOONGSON_2F: case PROCESSOR_GS464: case PROCESSOR_GS464E: case PROCESSOR_P5600: case PROCESSOR_P6600: return 4; case PROCESSOR_XLP: return (reload_completed ? 4 : 3); default: return 1; } } /* Implement TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN hook for Loongson2. */ static void mips_ls2_init_dfa_post_cycle_insn (void) { start_sequence (); emit_insn (gen_ls2_alu1_turn_enabled_insn ()); mips_ls2.alu1_turn_enabled_insn = get_insns (); end_sequence (); start_sequence (); emit_insn (gen_ls2_alu2_turn_enabled_insn ()); mips_ls2.alu2_turn_enabled_insn = get_insns (); end_sequence (); start_sequence (); emit_insn (gen_ls2_falu1_turn_enabled_insn ()); mips_ls2.falu1_turn_enabled_insn = get_insns (); end_sequence (); start_sequence (); emit_insn (gen_ls2_falu2_turn_enabled_insn ()); mips_ls2.falu2_turn_enabled_insn = get_insns (); end_sequence (); mips_ls2.alu1_core_unit_code = get_cpu_unit_code ("ls2_alu1_core"); mips_ls2.alu2_core_unit_code = get_cpu_unit_code ("ls2_alu2_core"); mips_ls2.falu1_core_unit_code = get_cpu_unit_code ("ls2_falu1_core"); mips_ls2.falu2_core_unit_code = get_cpu_unit_code ("ls2_falu2_core"); } /* Implement TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN hook. Init data used in mips_dfa_post_advance_cycle. */ static void mips_init_dfa_post_cycle_insn (void) { if (TUNE_LOONGSON_2EF) mips_ls2_init_dfa_post_cycle_insn (); } /* Initialize STATE when scheduling for Loongson 2E/2F. Support round-robin dispatch scheme by enabling only one of ALU1/ALU2 and one of FALU1/FALU2 units for ALU1/2 and FALU1/2 instructions respectively. */ static void mips_ls2_dfa_post_advance_cycle (state_t state) { if (cpu_unit_reservation_p (state, mips_ls2.alu1_core_unit_code)) { /* Though there are no non-pipelined ALU1 insns, we can get an instruction of type 'multi' before reload. */ gcc_assert (mips_ls2.cycle_has_multi_p); mips_ls2.alu1_turn_p = false; } mips_ls2.cycle_has_multi_p = false; if (cpu_unit_reservation_p (state, mips_ls2.alu2_core_unit_code)) /* We have a non-pipelined alu instruction in the core, adjust round-robin counter. */ mips_ls2.alu1_turn_p = true; if (mips_ls2.alu1_turn_p) { if (state_transition (state, mips_ls2.alu1_turn_enabled_insn) >= 0) gcc_unreachable (); } else { if (state_transition (state, mips_ls2.alu2_turn_enabled_insn) >= 0) gcc_unreachable (); } if (cpu_unit_reservation_p (state, mips_ls2.falu1_core_unit_code)) { /* There are no non-pipelined FALU1 insns. */ gcc_unreachable (); mips_ls2.falu1_turn_p = false; } if (cpu_unit_reservation_p (state, mips_ls2.falu2_core_unit_code)) /* We have a non-pipelined falu instruction in the core, adjust round-robin counter. */ mips_ls2.falu1_turn_p = true; if (mips_ls2.falu1_turn_p) { if (state_transition (state, mips_ls2.falu1_turn_enabled_insn) >= 0) gcc_unreachable (); } else { if (state_transition (state, mips_ls2.falu2_turn_enabled_insn) >= 0) gcc_unreachable (); } } /* Implement TARGET_SCHED_DFA_POST_ADVANCE_CYCLE. This hook is being called at the start of each cycle. */ static void mips_dfa_post_advance_cycle (void) { if (TUNE_LOONGSON_2EF) mips_ls2_dfa_post_advance_cycle (curr_state); } /* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD. This should be as wide as the scheduling freedom in the DFA. */ static int mips_multipass_dfa_lookahead (void) { /* Can schedule up to 4 of the 6 function units in any one cycle. */ if (TUNE_SB1) return 4; if (TUNE_LOONGSON_2EF || TUNE_GS464 || TUNE_GS464E) return 4; if (TUNE_OCTEON || TUNE_GS264E) return 2; if (TUNE_P5600 || TUNE_P6600 || TUNE_I6400) return 4; return 0; } /* Remove the instruction at index LOWER from ready queue READY and reinsert it in front of the instruction at index HIGHER. LOWER must be <= HIGHER. */ static void mips_promote_ready (rtx_insn **ready, int lower, int higher) { rtx_insn *new_head; int i; new_head = ready[lower]; for (i = lower; i < higher; i++) ready[i] = ready[i + 1]; ready[i] = new_head; } /* If the priority of the instruction at POS2 in the ready queue READY is within LIMIT units of that of the instruction at POS1, swap the instructions if POS2 is not already less than POS1. */ static void mips_maybe_swap_ready (rtx_insn **ready, int pos1, int pos2, int limit) { if (pos1 < pos2 && INSN_PRIORITY (ready[pos1]) + limit >= INSN_PRIORITY (ready[pos2])) { rtx_insn *temp; temp = ready[pos1]; ready[pos1] = ready[pos2]; ready[pos2] = temp; } } /* Used by TUNE_MACC_CHAINS to record the last scheduled instruction that may clobber hi or lo. */ static rtx_insn *mips_macc_chains_last_hilo; /* A TUNE_MACC_CHAINS helper function. Record that instruction INSN has been scheduled, updating mips_macc_chains_last_hilo appropriately. */ static void mips_macc_chains_record (rtx_insn *insn) { if (get_attr_may_clobber_hilo (insn)) mips_macc_chains_last_hilo = insn; } /* A TUNE_MACC_CHAINS helper function. Search ready queue READY, which has NREADY elements, looking for a multiply-add or multiply-subtract instruction that is cumulative with mips_macc_chains_last_hilo. If there is one, promote it ahead of anything else that might clobber hi or lo. */ static void mips_macc_chains_reorder (rtx_insn **ready, int nready) { int i, j; if (mips_macc_chains_last_hilo != 0) for (i = nready - 1; i >= 0; i--) if (mips_linked_madd_p (mips_macc_chains_last_hilo, ready[i])) { for (j = nready - 1; j > i; j--) if (recog_memoized (ready[j]) >= 0 && get_attr_may_clobber_hilo (ready[j])) { mips_promote_ready (ready, i, j); break; } break; } } /* The last instruction to be scheduled. */ static rtx_insn *vr4130_last_insn; /* A note_stores callback used by vr4130_true_reg_dependence_p. DATA points to an rtx that is initially an instruction. Nullify the rtx if the instruction uses the value of register X. */ static void vr4130_true_reg_dependence_p_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) { rtx *insn_ptr; insn_ptr = (rtx *) data; if (REG_P (x) && *insn_ptr != 0 && reg_referenced_p (x, PATTERN (*insn_ptr))) *insn_ptr = 0; } /* Return true if there is true register dependence between vr4130_last_insn and INSN. */ static bool vr4130_true_reg_dependence_p (rtx insn) { note_stores (vr4130_last_insn, vr4130_true_reg_dependence_p_1, &insn); return insn == 0; } /* A TUNE_MIPS4130 helper function. Given that INSN1 is at the head of the ready queue and that INSN2 is the instruction after it, return true if it is worth promoting INSN2 ahead of INSN1. Look for cases in which INSN1 and INSN2 can probably issue in parallel, but for which (INSN2, INSN1) should be less sensitive to instruction alignment than (INSN1, INSN2). See 4130.md for more details. */ static bool vr4130_swap_insns_p (rtx_insn *insn1, rtx_insn *insn2) { sd_iterator_def sd_it; dep_t dep; /* Check for the following case: 1) there is some other instruction X with an anti dependence on INSN1; 2) X has a higher priority than INSN2; and 3) X is an arithmetic instruction (and thus has no unit restrictions). If INSN1 is the last instruction blocking X, it would better to choose (INSN1, X) over (INSN2, INSN1). */ FOR_EACH_DEP (insn1, SD_LIST_FORW, sd_it, dep) if (DEP_TYPE (dep) == REG_DEP_ANTI && INSN_PRIORITY (DEP_CON (dep)) > INSN_PRIORITY (insn2) && recog_memoized (DEP_CON (dep)) >= 0 && get_attr_vr4130_class (DEP_CON (dep)) == VR4130_CLASS_ALU) return false; if (vr4130_last_insn != 0 && recog_memoized (insn1) >= 0 && recog_memoized (insn2) >= 0) { /* See whether INSN1 and INSN2 use different execution units, or if they are both ALU-type instructions. If so, they can probably execute in parallel. */ enum attr_vr4130_class class1 = get_attr_vr4130_class (insn1); enum attr_vr4130_class class2 = get_attr_vr4130_class (insn2); if (class1 != class2 || class1 == VR4130_CLASS_ALU) { /* If only one of the instructions has a dependence on vr4130_last_insn, prefer to schedule the other one first. */ bool dep1_p = vr4130_true_reg_dependence_p (insn1); bool dep2_p = vr4130_true_reg_dependence_p (insn2); if (dep1_p != dep2_p) return dep1_p; /* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn is not an ALU-type instruction and if INSN1 uses the same execution unit. (Note that if this condition holds, we already know that INSN2 uses a different execution unit.) */ if (class1 != VR4130_CLASS_ALU && recog_memoized (vr4130_last_insn) >= 0 && class1 == get_attr_vr4130_class (vr4130_last_insn)) return true; } } return false; } /* A TUNE_MIPS4130 helper function. (READY, NREADY) describes a ready queue with at least two instructions. Swap the first two if vr4130_swap_insns_p says that it could be worthwhile. */ static void vr4130_reorder (rtx_insn **ready, int nready) { if (vr4130_swap_insns_p (ready[nready - 1], ready[nready - 2])) mips_promote_ready (ready, nready - 2, nready - 1); } /* Record whether last 74k AGEN instruction was a load or store. */ static enum attr_type mips_last_74k_agen_insn = TYPE_UNKNOWN; /* Initialize mips_last_74k_agen_insn from INSN. A null argument resets to TYPE_UNKNOWN state. */ static void mips_74k_agen_init (rtx_insn *insn) { if (!insn || CALL_P (insn) || JUMP_P (insn)) mips_last_74k_agen_insn = TYPE_UNKNOWN; else { enum attr_type type = get_attr_type (insn); if (type == TYPE_LOAD || type == TYPE_STORE) mips_last_74k_agen_insn = type; } } /* A TUNE_74K helper function. The 74K AGEN pipeline likes multiple loads to be grouped together, and multiple stores to be grouped together. Swap things around in the ready queue to make this happen. */ static void mips_74k_agen_reorder (rtx_insn **ready, int nready) { int i; int store_pos, load_pos; store_pos = -1; load_pos = -1; for (i = nready - 1; i >= 0; i--) { rtx_insn *insn = ready[i]; if (USEFUL_INSN_P (insn)) switch (get_attr_type (insn)) { case TYPE_STORE: if (store_pos == -1) store_pos = i; break; case TYPE_LOAD: if (load_pos == -1) load_pos = i; break; default: break; } } if (load_pos == -1 || store_pos == -1) return; switch (mips_last_74k_agen_insn) { case TYPE_UNKNOWN: /* Prefer to schedule loads since they have a higher latency. */ case TYPE_LOAD: /* Swap loads to the front of the queue. */ mips_maybe_swap_ready (ready, load_pos, store_pos, 4); break; case TYPE_STORE: /* Swap stores to the front of the queue. */ mips_maybe_swap_ready (ready, store_pos, load_pos, 4); break; default: break; } } /* Implement TARGET_SCHED_INIT. */ static void mips_sched_init (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED, int max_ready ATTRIBUTE_UNUSED) { mips_macc_chains_last_hilo = 0; vr4130_last_insn = 0; mips_74k_agen_init (NULL); /* When scheduling for Loongson2, branch instructions go to ALU1, therefore basic block is most likely to start with round-robin counter pointed to ALU2. */ mips_ls2.alu1_turn_p = false; mips_ls2.falu1_turn_p = true; } /* Subroutine used by TARGET_SCHED_REORDER and TARGET_SCHED_REORDER2. */ static void mips_sched_reorder_1 (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED, rtx_insn **ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED) { if (!reload_completed && TUNE_MACC_CHAINS && *nreadyp > 0) mips_macc_chains_reorder (ready, *nreadyp); if (reload_completed && TUNE_MIPS4130 && !TARGET_VR4130_ALIGN && *nreadyp > 1) vr4130_reorder (ready, *nreadyp); if (TUNE_74K) mips_74k_agen_reorder (ready, *nreadyp); } /* Implement TARGET_SCHED_REORDER. */ static int mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED, rtx_insn **ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED) { mips_sched_reorder_1 (file, verbose, ready, nreadyp, cycle); return mips_issue_rate (); } /* Implement TARGET_SCHED_REORDER2. */ static int mips_sched_reorder2 (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED, rtx_insn **ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED) { mips_sched_reorder_1 (file, verbose, ready, nreadyp, cycle); return cached_can_issue_more; } /* Update round-robin counters for ALU1/2 and FALU1/2. */ static void mips_ls2_variable_issue (rtx_insn *insn) { if (mips_ls2.alu1_turn_p) { if (cpu_unit_reservation_p (curr_state, mips_ls2.alu1_core_unit_code)) mips_ls2.alu1_turn_p = false; } else { if (cpu_unit_reservation_p (curr_state, mips_ls2.alu2_core_unit_code)) mips_ls2.alu1_turn_p = true; } if (mips_ls2.falu1_turn_p) { if (cpu_unit_reservation_p (curr_state, mips_ls2.falu1_core_unit_code)) mips_ls2.falu1_turn_p = false; } else { if (cpu_unit_reservation_p (curr_state, mips_ls2.falu2_core_unit_code)) mips_ls2.falu1_turn_p = true; } if (recog_memoized (insn) >= 0) mips_ls2.cycle_has_multi_p |= (get_attr_type (insn) == TYPE_MULTI); } /* Implement TARGET_SCHED_VARIABLE_ISSUE. */ static int mips_variable_issue (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED, rtx_insn *insn, int more) { /* Ignore USEs and CLOBBERs; don't count them against the issue rate. */ if (USEFUL_INSN_P (insn)) { if (get_attr_type (insn) != TYPE_GHOST) more--; if (!reload_completed && TUNE_MACC_CHAINS) mips_macc_chains_record (insn); vr4130_last_insn = insn; if (TUNE_74K) mips_74k_agen_init (insn); else if (TUNE_LOONGSON_2EF) mips_ls2_variable_issue (insn); } /* Instructions of type 'multi' should all be split before the second scheduling pass. */ gcc_assert (!reload_completed || recog_memoized (insn) < 0 || get_attr_type (insn) != TYPE_MULTI); cached_can_issue_more = more; return more; } /* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY), return the first operand of the associated PREF or PREFX insn. */ rtx mips_prefetch_cookie (rtx write, rtx locality) { /* store_streamed / load_streamed. */ if (INTVAL (locality) <= 0) return GEN_INT (INTVAL (write) + 4); /* store / load. */ if (INTVAL (locality) <= 2) return write; /* store_retained / load_retained. */ return GEN_INT (INTVAL (write) + 6); } /* Loongson EXT2 only implements pref hint=0 (prefetch for load) and hint=1 (prefetch for store), other hint just scale to hint = 0 and hint = 1. */ rtx mips_loongson_ext2_prefetch_cookie (rtx write, rtx) { /* store. */ if (INTVAL (write) == 1) return GEN_INT (INTVAL (write)); /* load. */ if (INTVAL (write) == 0) return GEN_INT (INTVAL (write)); gcc_unreachable (); } /* Flags that indicate when a built-in function is available. BUILTIN_AVAIL_NON_MIPS16 The function is available on the current target if !TARGET_MIPS16. BUILTIN_AVAIL_MIPS16 The function is available on the current target if TARGET_MIPS16. */ #define BUILTIN_AVAIL_NON_MIPS16 1 #define BUILTIN_AVAIL_MIPS16 2 /* Declare an availability predicate for built-in functions that require non-MIPS16 mode and also require COND to be true. NAME is the main part of the predicate's name. */ #define AVAIL_NON_MIPS16(NAME, COND) \ static unsigned int \ mips_builtin_avail_##NAME (void) \ { \ return (COND) ? BUILTIN_AVAIL_NON_MIPS16 : 0; \ } /* Declare an availability predicate for built-in functions that support both MIPS16 and non-MIPS16 code and also require COND to be true. NAME is the main part of the predicate's name. */ #define AVAIL_ALL(NAME, COND) \ static unsigned int \ mips_builtin_avail_##NAME (void) \ { \ return (COND) ? BUILTIN_AVAIL_NON_MIPS16 | BUILTIN_AVAIL_MIPS16 : 0; \ } /* This structure describes a single built-in function. */ struct mips_builtin_description { /* The code of the main .md file instruction. See mips_builtin_type for more information. */ enum insn_code icode; /* The floating-point comparison code to use with ICODE, if any. */ enum mips_fp_condition cond; /* The name of the built-in function. */ const char *name; /* Specifies how the function should be expanded. */ enum mips_builtin_type builtin_type; /* The function's prototype. */ enum mips_function_type function_type; /* Whether the function is available. */ unsigned int (*avail) (void); /* Whether the function is pure. */ bool is_pure; }; AVAIL_ALL (hard_float, TARGET_HARD_FLOAT_ABI) AVAIL_NON_MIPS16 (paired_single, TARGET_PAIRED_SINGLE_FLOAT) AVAIL_NON_MIPS16 (sb1_paired_single, TARGET_SB1 && TARGET_PAIRED_SINGLE_FLOAT) AVAIL_NON_MIPS16 (mips3d, TARGET_MIPS3D) AVAIL_NON_MIPS16 (dsp, TARGET_DSP) AVAIL_NON_MIPS16 (dspr2, TARGET_DSPR2) AVAIL_NON_MIPS16 (dsp_32, !TARGET_64BIT && TARGET_DSP) AVAIL_NON_MIPS16 (dsp_64, TARGET_64BIT && TARGET_DSP) AVAIL_NON_MIPS16 (dspr2_32, !TARGET_64BIT && TARGET_DSPR2) AVAIL_NON_MIPS16 (loongson, TARGET_LOONGSON_MMI) AVAIL_NON_MIPS16 (cache, TARGET_CACHE_BUILTIN) AVAIL_NON_MIPS16 (msa, TARGET_MSA) /* Construct a mips_builtin_description from the given arguments. INSN is the name of the associated instruction pattern, without the leading CODE_FOR_mips_. CODE is the floating-point condition code associated with the function. It can be 'f' if the field is not applicable. NAME is the name of the function itself, without the leading "__builtin_mips_". BUILTIN_TYPE and FUNCTION_TYPE are mips_builtin_description fields. AVAIL is the name of the availability predicate, without the leading mips_builtin_avail_. */ #define MIPS_BUILTIN(INSN, COND, NAME, BUILTIN_TYPE, \ FUNCTION_TYPE, AVAIL, PURE) \ { CODE_FOR_mips_ ## INSN, MIPS_FP_COND_ ## COND, \ "__builtin_mips_" NAME, BUILTIN_TYPE, FUNCTION_TYPE, \ mips_builtin_avail_ ## AVAIL, PURE } /* Define __builtin_mips_, which is a MIPS_BUILTIN_DIRECT function mapped to instruction CODE_FOR_mips_, FUNCTION_TYPE and AVAIL are as for MIPS_BUILTIN. */ #define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \ MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, \ AVAIL, false) /* Define __builtin_mips_, which is a MIPS_BUILTIN_DIRECT pure function mapped to instruction CODE_FOR_mips_, FUNCTION_TYPE and AVAIL are as for MIPS_BUILTIN. */ #define DIRECT_BUILTIN_PURE(INSN, FUNCTION_TYPE, AVAIL) \ MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, \ AVAIL, true) /* Define __builtin_mips___{s,d} functions, both of which are subject to mips_builtin_avail_. */ #define CMP_SCALAR_BUILTINS(INSN, COND, AVAIL) \ MIPS_BUILTIN (INSN ## _cond_s, COND, #INSN "_" #COND "_s", \ MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, AVAIL, \ false), \ MIPS_BUILTIN (INSN ## _cond_d, COND, #INSN "_" #COND "_d", \ MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, AVAIL, false) /* Define __builtin_mips_{any,all,upper,lower}___ps. The lower and upper forms are subject to mips_builtin_avail_ while the any and all forms are subject to mips_builtin_avail_mips3d. */ #define CMP_PS_BUILTINS(INSN, COND, AVAIL) \ MIPS_BUILTIN (INSN ## _cond_ps, COND, "any_" #INSN "_" #COND "_ps", \ MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, \ mips3d, false), \ MIPS_BUILTIN (INSN ## _cond_ps, COND, "all_" #INSN "_" #COND "_ps", \ MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, \ mips3d, false), \ MIPS_BUILTIN (INSN ## _cond_ps, COND, "lower_" #INSN "_" #COND "_ps", \ MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, \ AVAIL, false), \ MIPS_BUILTIN (INSN ## _cond_ps, COND, "upper_" #INSN "_" #COND "_ps", \ MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, \ AVAIL, false) /* Define __builtin_mips_{any,all}___4s. The functions are subject to mips_builtin_avail_mips3d. */ #define CMP_4S_BUILTINS(INSN, COND) \ MIPS_BUILTIN (INSN ## _cond_4s, COND, "any_" #INSN "_" #COND "_4s", \ MIPS_BUILTIN_CMP_ANY, \ MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, mips3d, false), \ MIPS_BUILTIN (INSN ## _cond_4s, COND, "all_" #INSN "_" #COND "_4s", \ MIPS_BUILTIN_CMP_ALL, \ MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, mips3d, false) /* Define __builtin_mips_mov{t,f}___ps. The comparison instruction requires mips_builtin_avail_. */ #define MOVTF_BUILTINS(INSN, COND, AVAIL) \ MIPS_BUILTIN (INSN ## _cond_ps, COND, "movt_" #INSN "_" #COND "_ps", \ MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \ AVAIL, false), \ MIPS_BUILTIN (INSN ## _cond_ps, COND, "movf_" #INSN "_" #COND "_ps", \ MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \ AVAIL, false) /* Define all the built-in functions related to C.cond.fmt condition COND. */ #define CMP_BUILTINS(COND) \ MOVTF_BUILTINS (c, COND, paired_single), \ MOVTF_BUILTINS (cabs, COND, mips3d), \ CMP_SCALAR_BUILTINS (cabs, COND, mips3d), \ CMP_PS_BUILTINS (c, COND, paired_single), \ CMP_PS_BUILTINS (cabs, COND, mips3d), \ CMP_4S_BUILTINS (c, COND), \ CMP_4S_BUILTINS (cabs, COND) /* Define __builtin_mips_, which is a MIPS_BUILTIN_DIRECT_NO_TARGET function mapped to instruction CODE_FOR_mips_, FUNCTION_TYPE and AVAIL are as for MIPS_BUILTIN. */ #define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \ MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT_NO_TARGET, \ FUNCTION_TYPE, AVAIL, false) /* Define __builtin_mips_bposge. is 32 for the MIPS32 DSP branch instruction. AVAIL is as for MIPS_BUILTIN. */ #define BPOSGE_BUILTIN(VALUE, AVAIL) \ MIPS_BUILTIN (bposge, f, "bposge" #VALUE, \ MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, AVAIL, false) /* Define a Loongson MIPS_BUILTIN_DIRECT function __builtin_loongson_ for instruction CODE_FOR_loongson_. FUNCTION_TYPE is a builtin_description field. */ #define LOONGSON_BUILTIN_ALIAS(INSN, FN_NAME, FUNCTION_TYPE) \ { CODE_FOR_loongson_ ## INSN, MIPS_FP_COND_f, \ "__builtin_loongson_" #FN_NAME, MIPS_BUILTIN_DIRECT, \ FUNCTION_TYPE, mips_builtin_avail_loongson, false } /* Define a Loongson MIPS_BUILTIN_DIRECT function __builtin_loongson_ for instruction CODE_FOR_loongson_. FUNCTION_TYPE is a builtin_description field. */ #define LOONGSON_BUILTIN(INSN, FUNCTION_TYPE) \ LOONGSON_BUILTIN_ALIAS (INSN, INSN, FUNCTION_TYPE) /* Like LOONGSON_BUILTIN, but add _ to the end of the function name. We use functions of this form when the same insn can be usefully applied to more than one datatype. */ #define LOONGSON_BUILTIN_SUFFIX(INSN, SUFFIX, FUNCTION_TYPE) \ LOONGSON_BUILTIN_ALIAS (INSN, INSN ## _ ## SUFFIX, FUNCTION_TYPE) /* Define an MSA MIPS_BUILTIN_DIRECT pure function __builtin_msa_ for instruction CODE_FOR_msa_. FUNCTION_TYPE is a builtin_description field. */ #define MSA_BUILTIN_PURE(INSN, FUNCTION_TYPE) \ { CODE_FOR_msa_ ## INSN, MIPS_FP_COND_f, \ "__builtin_msa_" #INSN, MIPS_BUILTIN_DIRECT, \ FUNCTION_TYPE, mips_builtin_avail_msa, true } /* Define an MSA MIPS_BUILTIN_DIRECT non-pure function __builtin_msa_ for instruction CODE_FOR_msa_. FUNCTION_TYPE is a builtin_description field. */ #define MSA_BUILTIN(INSN, FUNCTION_TYPE) \ { CODE_FOR_msa_ ## INSN, MIPS_FP_COND_f, \ "__builtin_msa_" #INSN, MIPS_BUILTIN_DIRECT, \ FUNCTION_TYPE, mips_builtin_avail_msa, false } /* Define a remapped MSA MIPS_BUILTIN_DIRECT function __builtin_msa_ for instruction CODE_FOR_msa_. FUNCTION_TYPE is a builtin_description field. */ #define MSA_BUILTIN_REMAP(INSN, INSN2, FUNCTION_TYPE) \ { CODE_FOR_msa_ ## INSN2, MIPS_FP_COND_f, \ "__builtin_msa_" #INSN, MIPS_BUILTIN_DIRECT, \ FUNCTION_TYPE, mips_builtin_avail_msa, false } /* Define an MSA MIPS_BUILTIN_MSA_TEST_BRANCH function __builtin_msa_ for instruction CODE_FOR_msa_. FUNCTION_TYPE is a builtin_description field. */ #define MSA_BUILTIN_TEST_BRANCH(INSN, FUNCTION_TYPE) \ { CODE_FOR_msa_ ## INSN, MIPS_FP_COND_f, \ "__builtin_msa_" #INSN, MIPS_BUILTIN_MSA_TEST_BRANCH, \ FUNCTION_TYPE, mips_builtin_avail_msa, false } /* Define an MSA MIPS_BUILTIN_DIRECT_NO_TARGET function __builtin_msa_ for instruction CODE_FOR_msa_. FUNCTION_TYPE is a builtin_description field. */ #define MSA_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE) \ { CODE_FOR_msa_ ## INSN, MIPS_FP_COND_f, \ "__builtin_msa_" #INSN, MIPS_BUILTIN_DIRECT_NO_TARGET, \ FUNCTION_TYPE, mips_builtin_avail_msa, false } #define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2 #define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3 #define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3 #define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3 #define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3 #define CODE_FOR_mips_mul_ph CODE_FOR_mulv2hi3 #define CODE_FOR_mips_mult CODE_FOR_mulsidi3_32bit #define CODE_FOR_mips_multu CODE_FOR_umulsidi3_32bit #define CODE_FOR_loongson_packsswh CODE_FOR_vec_pack_ssat_v2si #define CODE_FOR_loongson_packsshb CODE_FOR_vec_pack_ssat_v4hi #define CODE_FOR_loongson_packushb CODE_FOR_vec_pack_usat_v4hi #define CODE_FOR_loongson_paddw CODE_FOR_addv2si3 #define CODE_FOR_loongson_paddh CODE_FOR_addv4hi3 #define CODE_FOR_loongson_paddb CODE_FOR_addv8qi3 #define CODE_FOR_loongson_paddsh CODE_FOR_ssaddv4hi3 #define CODE_FOR_loongson_paddsb CODE_FOR_ssaddv8qi3 #define CODE_FOR_loongson_paddush CODE_FOR_usaddv4hi3 #define CODE_FOR_loongson_paddusb CODE_FOR_usaddv8qi3 #define CODE_FOR_loongson_pmaxsh CODE_FOR_smaxv4hi3 #define CODE_FOR_loongson_pmaxub CODE_FOR_umaxv8qi3 #define CODE_FOR_loongson_pminsh CODE_FOR_sminv4hi3 #define CODE_FOR_loongson_pminub CODE_FOR_uminv8qi3 #define CODE_FOR_loongson_pmulhuh CODE_FOR_umulv4hi3_highpart #define CODE_FOR_loongson_pmulhh CODE_FOR_smulv4hi3_highpart #define CODE_FOR_loongson_pmullh CODE_FOR_mulv4hi3 #define CODE_FOR_loongson_psllh CODE_FOR_ashlv4hi3 #define CODE_FOR_loongson_psllw CODE_FOR_ashlv2si3 #define CODE_FOR_loongson_psrlh CODE_FOR_lshrv4hi3 #define CODE_FOR_loongson_psrlw CODE_FOR_lshrv2si3 #define CODE_FOR_loongson_psrah CODE_FOR_ashrv4hi3 #define CODE_FOR_loongson_psraw CODE_FOR_ashrv2si3 #define CODE_FOR_loongson_psubw CODE_FOR_subv2si3 #define CODE_FOR_loongson_psubh CODE_FOR_subv4hi3 #define CODE_FOR_loongson_psubb CODE_FOR_subv8qi3 #define CODE_FOR_loongson_psubsh CODE_FOR_sssubv4hi3 #define CODE_FOR_loongson_psubsb CODE_FOR_sssubv8qi3 #define CODE_FOR_loongson_psubush CODE_FOR_ussubv4hi3 #define CODE_FOR_loongson_psubusb CODE_FOR_ussubv8qi3 #define CODE_FOR_msa_adds_s_b CODE_FOR_ssaddv16qi3 #define CODE_FOR_msa_adds_s_h CODE_FOR_ssaddv8hi3 #define CODE_FOR_msa_adds_s_w CODE_FOR_ssaddv4si3 #define CODE_FOR_msa_adds_s_d CODE_FOR_ssaddv2di3 #define CODE_FOR_msa_adds_u_b CODE_FOR_usaddv16qi3 #define CODE_FOR_msa_adds_u_h CODE_FOR_usaddv8hi3 #define CODE_FOR_msa_adds_u_w CODE_FOR_usaddv4si3 #define CODE_FOR_msa_adds_u_d CODE_FOR_usaddv2di3 #define CODE_FOR_msa_addv_b CODE_FOR_addv16qi3 #define CODE_FOR_msa_addv_h CODE_FOR_addv8hi3 #define CODE_FOR_msa_addv_w CODE_FOR_addv4si3 #define CODE_FOR_msa_addv_d CODE_FOR_addv2di3 #define CODE_FOR_msa_addvi_b CODE_FOR_addv16qi3 #define CODE_FOR_msa_addvi_h CODE_FOR_addv8hi3 #define CODE_FOR_msa_addvi_w CODE_FOR_addv4si3 #define CODE_FOR_msa_addvi_d CODE_FOR_addv2di3 #define CODE_FOR_msa_and_v CODE_FOR_andv16qi3 #define CODE_FOR_msa_andi_b CODE_FOR_andv16qi3 #define CODE_FOR_msa_bmnz_v CODE_FOR_msa_bmnz_b #define CODE_FOR_msa_bmnzi_b CODE_FOR_msa_bmnz_b #define CODE_FOR_msa_bmz_v CODE_FOR_msa_bmz_b #define CODE_FOR_msa_bmzi_b CODE_FOR_msa_bmz_b #define CODE_FOR_msa_bnz_v CODE_FOR_msa_bnz_v_b #define CODE_FOR_msa_bz_v CODE_FOR_msa_bz_v_b #define CODE_FOR_msa_bsel_v CODE_FOR_msa_bsel_b #define CODE_FOR_msa_bseli_b CODE_FOR_msa_bsel_b #define CODE_FOR_msa_ceqi_b CODE_FOR_msa_ceq_b #define CODE_FOR_msa_ceqi_h CODE_FOR_msa_ceq_h #define CODE_FOR_msa_ceqi_w CODE_FOR_msa_ceq_w #define CODE_FOR_msa_ceqi_d CODE_FOR_msa_ceq_d #define CODE_FOR_msa_clti_s_b CODE_FOR_msa_clt_s_b #define CODE_FOR_msa_clti_s_h CODE_FOR_msa_clt_s_h #define CODE_FOR_msa_clti_s_w CODE_FOR_msa_clt_s_w #define CODE_FOR_msa_clti_s_d CODE_FOR_msa_clt_s_d #define CODE_FOR_msa_clti_u_b CODE_FOR_msa_clt_u_b #define CODE_FOR_msa_clti_u_h CODE_FOR_msa_clt_u_h #define CODE_FOR_msa_clti_u_w CODE_FOR_msa_clt_u_w #define CODE_FOR_msa_clti_u_d CODE_FOR_msa_clt_u_d #define CODE_FOR_msa_clei_s_b CODE_FOR_msa_cle_s_b #define CODE_FOR_msa_clei_s_h CODE_FOR_msa_cle_s_h #define CODE_FOR_msa_clei_s_w CODE_FOR_msa_cle_s_w #define CODE_FOR_msa_clei_s_d CODE_FOR_msa_cle_s_d #define CODE_FOR_msa_clei_u_b CODE_FOR_msa_cle_u_b #define CODE_FOR_msa_clei_u_h CODE_FOR_msa_cle_u_h #define CODE_FOR_msa_clei_u_w CODE_FOR_msa_cle_u_w #define CODE_FOR_msa_clei_u_d CODE_FOR_msa_cle_u_d #define CODE_FOR_msa_div_s_b CODE_FOR_divv16qi3 #define CODE_FOR_msa_div_s_h CODE_FOR_divv8hi3 #define CODE_FOR_msa_div_s_w CODE_FOR_divv4si3 #define CODE_FOR_msa_div_s_d CODE_FOR_divv2di3 #define CODE_FOR_msa_div_u_b CODE_FOR_udivv16qi3 #define CODE_FOR_msa_div_u_h CODE_FOR_udivv8hi3 #define CODE_FOR_msa_div_u_w CODE_FOR_udivv4si3 #define CODE_FOR_msa_div_u_d CODE_FOR_udivv2di3 #define CODE_FOR_msa_fadd_w CODE_FOR_addv4sf3 #define CODE_FOR_msa_fadd_d CODE_FOR_addv2df3 #define CODE_FOR_msa_fexdo_w CODE_FOR_vec_pack_trunc_v2df #define CODE_FOR_msa_ftrunc_s_w CODE_FOR_fix_truncv4sfv4si2 #define CODE_FOR_msa_ftrunc_s_d CODE_FOR_fix_truncv2dfv2di2 #define CODE_FOR_msa_ftrunc_u_w CODE_FOR_fixuns_truncv4sfv4si2 #define CODE_FOR_msa_ftrunc_u_d CODE_FOR_fixuns_truncv2dfv2di2 #define CODE_FOR_msa_ffint_s_w CODE_FOR_floatv4siv4sf2 #define CODE_FOR_msa_ffint_s_d CODE_FOR_floatv2div2df2 #define CODE_FOR_msa_ffint_u_w CODE_FOR_floatunsv4siv4sf2 #define CODE_FOR_msa_ffint_u_d CODE_FOR_floatunsv2div2df2 #define CODE_FOR_msa_fsub_w CODE_FOR_subv4sf3 #define CODE_FOR_msa_fsub_d CODE_FOR_subv2df3 #define CODE_FOR_msa_fmadd_w CODE_FOR_fmav4sf4 #define CODE_FOR_msa_fmadd_d CODE_FOR_fmav2df4 #define CODE_FOR_msa_fmsub_w CODE_FOR_fnmav4sf4 #define CODE_FOR_msa_fmsub_d CODE_FOR_fnmav2df4 #define CODE_FOR_msa_fmul_w CODE_FOR_mulv4sf3 #define CODE_FOR_msa_fmul_d CODE_FOR_mulv2df3 #define CODE_FOR_msa_fdiv_w CODE_FOR_divv4sf3 #define CODE_FOR_msa_fdiv_d CODE_FOR_divv2df3 #define CODE_FOR_msa_fmax_w CODE_FOR_smaxv4sf3 #define CODE_FOR_msa_fmax_d CODE_FOR_smaxv2df3 #define CODE_FOR_msa_fmin_w CODE_FOR_sminv4sf3 #define CODE_FOR_msa_fmin_d CODE_FOR_sminv2df3 #define CODE_FOR_msa_fsqrt_w CODE_FOR_sqrtv4sf2 #define CODE_FOR_msa_fsqrt_d CODE_FOR_sqrtv2df2 #define CODE_FOR_msa_max_s_b CODE_FOR_smaxv16qi3 #define CODE_FOR_msa_max_s_h CODE_FOR_smaxv8hi3 #define CODE_FOR_msa_max_s_w CODE_FOR_smaxv4si3 #define CODE_FOR_msa_max_s_d CODE_FOR_smaxv2di3 #define CODE_FOR_msa_maxi_s_b CODE_FOR_smaxv16qi3 #define CODE_FOR_msa_maxi_s_h CODE_FOR_smaxv8hi3 #define CODE_FOR_msa_maxi_s_w CODE_FOR_smaxv4si3 #define CODE_FOR_msa_maxi_s_d CODE_FOR_smaxv2di3 #define CODE_FOR_msa_max_u_b CODE_FOR_umaxv16qi3 #define CODE_FOR_msa_max_u_h CODE_FOR_umaxv8hi3 #define CODE_FOR_msa_max_u_w CODE_FOR_umaxv4si3 #define CODE_FOR_msa_max_u_d CODE_FOR_umaxv2di3 #define CODE_FOR_msa_maxi_u_b CODE_FOR_umaxv16qi3 #define CODE_FOR_msa_maxi_u_h CODE_FOR_umaxv8hi3 #define CODE_FOR_msa_maxi_u_w CODE_FOR_umaxv4si3 #define CODE_FOR_msa_maxi_u_d CODE_FOR_umaxv2di3 #define CODE_FOR_msa_min_s_b CODE_FOR_sminv16qi3 #define CODE_FOR_msa_min_s_h CODE_FOR_sminv8hi3 #define CODE_FOR_msa_min_s_w CODE_FOR_sminv4si3 #define CODE_FOR_msa_min_s_d CODE_FOR_sminv2di3 #define CODE_FOR_msa_mini_s_b CODE_FOR_sminv16qi3 #define CODE_FOR_msa_mini_s_h CODE_FOR_sminv8hi3 #define CODE_FOR_msa_mini_s_w CODE_FOR_sminv4si3 #define CODE_FOR_msa_mini_s_d CODE_FOR_sminv2di3 #define CODE_FOR_msa_min_u_b CODE_FOR_uminv16qi3 #define CODE_FOR_msa_min_u_h CODE_FOR_uminv8hi3 #define CODE_FOR_msa_min_u_w CODE_FOR_uminv4si3 #define CODE_FOR_msa_min_u_d CODE_FOR_uminv2di3 #define CODE_FOR_msa_mini_u_b CODE_FOR_uminv16qi3 #define CODE_FOR_msa_mini_u_h CODE_FOR_uminv8hi3 #define CODE_FOR_msa_mini_u_w CODE_FOR_uminv4si3 #define CODE_FOR_msa_mini_u_d CODE_FOR_uminv2di3 #define CODE_FOR_msa_mod_s_b CODE_FOR_modv16qi3 #define CODE_FOR_msa_mod_s_h CODE_FOR_modv8hi3 #define CODE_FOR_msa_mod_s_w CODE_FOR_modv4si3 #define CODE_FOR_msa_mod_s_d CODE_FOR_modv2di3 #define CODE_FOR_msa_mod_u_b CODE_FOR_umodv16qi3 #define CODE_FOR_msa_mod_u_h CODE_FOR_umodv8hi3 #define CODE_FOR_msa_mod_u_w CODE_FOR_umodv4si3 #define CODE_FOR_msa_mod_u_d CODE_FOR_umodv2di3 #define CODE_FOR_msa_mod_s_b CODE_FOR_modv16qi3 #define CODE_FOR_msa_mod_s_h CODE_FOR_modv8hi3 #define CODE_FOR_msa_mod_s_w CODE_FOR_modv4si3 #define CODE_FOR_msa_mod_s_d CODE_FOR_modv2di3 #define CODE_FOR_msa_mod_u_b CODE_FOR_umodv16qi3 #define CODE_FOR_msa_mod_u_h CODE_FOR_umodv8hi3 #define CODE_FOR_msa_mod_u_w CODE_FOR_umodv4si3 #define CODE_FOR_msa_mod_u_d CODE_FOR_umodv2di3 #define CODE_FOR_msa_mulv_b CODE_FOR_mulv16qi3 #define CODE_FOR_msa_mulv_h CODE_FOR_mulv8hi3 #define CODE_FOR_msa_mulv_w CODE_FOR_mulv4si3 #define CODE_FOR_msa_mulv_d CODE_FOR_mulv2di3 #define CODE_FOR_msa_nlzc_b CODE_FOR_clzv16qi2 #define CODE_FOR_msa_nlzc_h CODE_FOR_clzv8hi2 #define CODE_FOR_msa_nlzc_w CODE_FOR_clzv4si2 #define CODE_FOR_msa_nlzc_d CODE_FOR_clzv2di2 #define CODE_FOR_msa_nor_v CODE_FOR_msa_nor_b #define CODE_FOR_msa_or_v CODE_FOR_iorv16qi3 #define CODE_FOR_msa_ori_b CODE_FOR_iorv16qi3 #define CODE_FOR_msa_nori_b CODE_FOR_msa_nor_b #define CODE_FOR_msa_pcnt_b CODE_FOR_popcountv16qi2 #define CODE_FOR_msa_pcnt_h CODE_FOR_popcountv8hi2 #define CODE_FOR_msa_pcnt_w CODE_FOR_popcountv4si2 #define CODE_FOR_msa_pcnt_d CODE_FOR_popcountv2di2 #define CODE_FOR_msa_xor_v CODE_FOR_xorv16qi3 #define CODE_FOR_msa_xori_b CODE_FOR_xorv16qi3 #define CODE_FOR_msa_sll_b CODE_FOR_vashlv16qi3 #define CODE_FOR_msa_sll_h CODE_FOR_vashlv8hi3 #define CODE_FOR_msa_sll_w CODE_FOR_vashlv4si3 #define CODE_FOR_msa_sll_d CODE_FOR_vashlv2di3 #define CODE_FOR_msa_slli_b CODE_FOR_vashlv16qi3 #define CODE_FOR_msa_slli_h CODE_FOR_vashlv8hi3 #define CODE_FOR_msa_slli_w CODE_FOR_vashlv4si3 #define CODE_FOR_msa_slli_d CODE_FOR_vashlv2di3 #define CODE_FOR_msa_sra_b CODE_FOR_vashrv16qi3 #define CODE_FOR_msa_sra_h CODE_FOR_vashrv8hi3 #define CODE_FOR_msa_sra_w CODE_FOR_vashrv4si3 #define CODE_FOR_msa_sra_d CODE_FOR_vashrv2di3 #define CODE_FOR_msa_srai_b CODE_FOR_vashrv16qi3 #define CODE_FOR_msa_srai_h CODE_FOR_vashrv8hi3 #define CODE_FOR_msa_srai_w CODE_FOR_vashrv4si3 #define CODE_FOR_msa_srai_d CODE_FOR_vashrv2di3 #define CODE_FOR_msa_srl_b CODE_FOR_vlshrv16qi3 #define CODE_FOR_msa_srl_h CODE_FOR_vlshrv8hi3 #define CODE_FOR_msa_srl_w CODE_FOR_vlshrv4si3 #define CODE_FOR_msa_srl_d CODE_FOR_vlshrv2di3 #define CODE_FOR_msa_srli_b CODE_FOR_vlshrv16qi3 #define CODE_FOR_msa_srli_h CODE_FOR_vlshrv8hi3 #define CODE_FOR_msa_srli_w CODE_FOR_vlshrv4si3 #define CODE_FOR_msa_srli_d CODE_FOR_vlshrv2di3 #define CODE_FOR_msa_subv_b CODE_FOR_subv16qi3 #define CODE_FOR_msa_subv_h CODE_FOR_subv8hi3 #define CODE_FOR_msa_subv_w CODE_FOR_subv4si3 #define CODE_FOR_msa_subv_d CODE_FOR_subv2di3 #define CODE_FOR_msa_subvi_b CODE_FOR_subv16qi3 #define CODE_FOR_msa_subvi_h CODE_FOR_subv8hi3 #define CODE_FOR_msa_subvi_w CODE_FOR_subv4si3 #define CODE_FOR_msa_subvi_d CODE_FOR_subv2di3 #define CODE_FOR_msa_move_v CODE_FOR_movv16qi #define CODE_FOR_msa_vshf_b CODE_FOR_vec_permv16qi #define CODE_FOR_msa_vshf_h CODE_FOR_vec_permv8hi #define CODE_FOR_msa_vshf_w CODE_FOR_vec_permv4si #define CODE_FOR_msa_vshf_d CODE_FOR_vec_permv2di #define CODE_FOR_msa_ilvod_d CODE_FOR_msa_ilvl_d #define CODE_FOR_msa_ilvev_d CODE_FOR_msa_ilvr_d #define CODE_FOR_msa_pckod_d CODE_FOR_msa_ilvl_d #define CODE_FOR_msa_pckev_d CODE_FOR_msa_ilvr_d #define CODE_FOR_msa_ldi_b CODE_FOR_msa_ldiv16qi #define CODE_FOR_msa_ldi_h CODE_FOR_msa_ldiv8hi #define CODE_FOR_msa_ldi_w CODE_FOR_msa_ldiv4si #define CODE_FOR_msa_ldi_d CODE_FOR_msa_ldiv2di static const struct mips_builtin_description mips_builtins[] = { #define MIPS_GET_FCSR 0 DIRECT_BUILTIN (get_fcsr, MIPS_USI_FTYPE_VOID, hard_float), #define MIPS_SET_FCSR 1 DIRECT_NO_TARGET_BUILTIN (set_fcsr, MIPS_VOID_FTYPE_USI, hard_float), DIRECT_BUILTIN_PURE (pll_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single), DIRECT_BUILTIN_PURE (pul_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single), DIRECT_BUILTIN_PURE (plu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single), DIRECT_BUILTIN_PURE (puu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single), DIRECT_BUILTIN_PURE (cvt_ps_s, MIPS_V2SF_FTYPE_SF_SF, paired_single), DIRECT_BUILTIN_PURE (cvt_s_pl, MIPS_SF_FTYPE_V2SF, paired_single), DIRECT_BUILTIN_PURE (cvt_s_pu, MIPS_SF_FTYPE_V2SF, paired_single), DIRECT_BUILTIN_PURE (abs_ps, MIPS_V2SF_FTYPE_V2SF, paired_single), DIRECT_BUILTIN_PURE (alnv_ps, MIPS_V2SF_FTYPE_V2SF_V2SF_INT, paired_single), DIRECT_BUILTIN_PURE (addr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d), DIRECT_BUILTIN_PURE (mulr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d), DIRECT_BUILTIN_PURE (cvt_pw_ps, MIPS_V2SF_FTYPE_V2SF, mips3d), DIRECT_BUILTIN_PURE (cvt_ps_pw, MIPS_V2SF_FTYPE_V2SF, mips3d), DIRECT_BUILTIN_PURE (recip1_s, MIPS_SF_FTYPE_SF, mips3d), DIRECT_BUILTIN_PURE (recip1_d, MIPS_DF_FTYPE_DF, mips3d), DIRECT_BUILTIN_PURE (recip1_ps, MIPS_V2SF_FTYPE_V2SF, mips3d), DIRECT_BUILTIN_PURE (recip2_s, MIPS_SF_FTYPE_SF_SF, mips3d), DIRECT_BUILTIN_PURE (recip2_d, MIPS_DF_FTYPE_DF_DF, mips3d), DIRECT_BUILTIN_PURE (recip2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d), DIRECT_BUILTIN_PURE (rsqrt1_s, MIPS_SF_FTYPE_SF, mips3d), DIRECT_BUILTIN_PURE (rsqrt1_d, MIPS_DF_FTYPE_DF, mips3d), DIRECT_BUILTIN_PURE (rsqrt1_ps, MIPS_V2SF_FTYPE_V2SF, mips3d), DIRECT_BUILTIN_PURE (rsqrt2_s, MIPS_SF_FTYPE_SF_SF, mips3d), DIRECT_BUILTIN_PURE (rsqrt2_d, MIPS_DF_FTYPE_DF_DF, mips3d), DIRECT_BUILTIN_PURE (rsqrt2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d), MIPS_FP_CONDITIONS (CMP_BUILTINS), /* Built-in functions for the SB-1 processor. */ DIRECT_BUILTIN (sqrt_ps, MIPS_V2SF_FTYPE_V2SF, sb1_paired_single), /* Built-in functions for the DSP ASE (32-bit and 64-bit). */ DIRECT_BUILTIN_PURE (addq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp), DIRECT_BUILTIN_PURE (addq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp), DIRECT_BUILTIN_PURE (addq_s_w, MIPS_SI_FTYPE_SI_SI, dsp), DIRECT_BUILTIN_PURE (addu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp), DIRECT_BUILTIN_PURE (addu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp), DIRECT_BUILTIN_PURE (subq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp), DIRECT_BUILTIN_PURE (subq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp), DIRECT_BUILTIN_PURE (subq_s_w, MIPS_SI_FTYPE_SI_SI, dsp), DIRECT_BUILTIN_PURE (subu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp), DIRECT_BUILTIN_PURE (subu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp), DIRECT_BUILTIN_PURE (addsc, MIPS_SI_FTYPE_SI_SI, dsp), DIRECT_BUILTIN_PURE (addwc, MIPS_SI_FTYPE_SI_SI, dsp), DIRECT_BUILTIN_PURE (modsub, MIPS_SI_FTYPE_SI_SI, dsp), DIRECT_BUILTIN_PURE (raddu_w_qb, MIPS_SI_FTYPE_V4QI, dsp), DIRECT_BUILTIN_PURE (absq_s_ph, MIPS_V2HI_FTYPE_V2HI, dsp), DIRECT_BUILTIN_PURE (absq_s_w, MIPS_SI_FTYPE_SI, dsp), DIRECT_BUILTIN_PURE (precrq_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dsp), DIRECT_BUILTIN_PURE (precrq_ph_w, MIPS_V2HI_FTYPE_SI_SI, dsp), DIRECT_BUILTIN_PURE (precrq_rs_ph_w, MIPS_V2HI_FTYPE_SI_SI, dsp), DIRECT_BUILTIN_PURE (precrqu_s_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dsp), DIRECT_BUILTIN_PURE (preceq_w_phl, MIPS_SI_FTYPE_V2HI, dsp), DIRECT_BUILTIN_PURE (preceq_w_phr, MIPS_SI_FTYPE_V2HI, dsp), DIRECT_BUILTIN_PURE (precequ_ph_qbl, MIPS_V2HI_FTYPE_V4QI, dsp), DIRECT_BUILTIN_PURE (precequ_ph_qbr, MIPS_V2HI_FTYPE_V4QI, dsp), DIRECT_BUILTIN_PURE (precequ_ph_qbla, MIPS_V2HI_FTYPE_V4QI, dsp), DIRECT_BUILTIN_PURE (precequ_ph_qbra, MIPS_V2HI_FTYPE_V4QI, dsp), DIRECT_BUILTIN_PURE (preceu_ph_qbl, MIPS_V2HI_FTYPE_V4QI, dsp), DIRECT_BUILTIN_PURE (preceu_ph_qbr, MIPS_V2HI_FTYPE_V4QI, dsp), DIRECT_BUILTIN_PURE (preceu_ph_qbla, MIPS_V2HI_FTYPE_V4QI, dsp), DIRECT_BUILTIN_PURE (preceu_ph_qbra, MIPS_V2HI_FTYPE_V4QI, dsp), DIRECT_BUILTIN_PURE (shll_qb, MIPS_V4QI_FTYPE_V4QI_SI, dsp), DIRECT_BUILTIN_PURE (shll_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp), DIRECT_BUILTIN_PURE (shll_s_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp), DIRECT_BUILTIN_PURE (shll_s_w, MIPS_SI_FTYPE_SI_SI, dsp), DIRECT_BUILTIN_PURE (shrl_qb, MIPS_V4QI_FTYPE_V4QI_SI, dsp), DIRECT_BUILTIN_PURE (shra_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp), DIRECT_BUILTIN_PURE (shra_r_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp), DIRECT_BUILTIN_PURE (shra_r_w, MIPS_SI_FTYPE_SI_SI, dsp), DIRECT_BUILTIN_PURE (muleu_s_ph_qbl, MIPS_V2HI_FTYPE_V4QI_V2HI, dsp), DIRECT_BUILTIN_PURE (muleu_s_ph_qbr, MIPS_V2HI_FTYPE_V4QI_V2HI, dsp), DIRECT_BUILTIN_PURE (mulq_rs_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp), DIRECT_BUILTIN_PURE (muleq_s_w_phl, MIPS_SI_FTYPE_V2HI_V2HI, dsp), DIRECT_BUILTIN_PURE (muleq_s_w_phr, MIPS_SI_FTYPE_V2HI_V2HI, dsp), DIRECT_BUILTIN_PURE (bitrev, MIPS_SI_FTYPE_SI, dsp), DIRECT_BUILTIN_PURE (insv, MIPS_SI_FTYPE_SI_SI, dsp), DIRECT_BUILTIN_PURE (repl_qb, MIPS_V4QI_FTYPE_SI, dsp), DIRECT_BUILTIN_PURE (repl_ph, MIPS_V2HI_FTYPE_SI, dsp), DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp), DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp), DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp), DIRECT_BUILTIN_PURE (cmpgu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp), DIRECT_BUILTIN_PURE (cmpgu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp), DIRECT_BUILTIN_PURE (cmpgu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp), DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp), DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp), DIRECT_NO_TARGET_BUILTIN (cmp_le_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp), DIRECT_BUILTIN_PURE (pick_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp), DIRECT_BUILTIN_PURE (pick_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp), DIRECT_BUILTIN_PURE (packrl_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp), DIRECT_NO_TARGET_BUILTIN (wrdsp, MIPS_VOID_FTYPE_SI_SI, dsp), DIRECT_BUILTIN_PURE (rddsp, MIPS_SI_FTYPE_SI, dsp), DIRECT_BUILTIN (lbux, MIPS_SI_FTYPE_POINTER_SI, dsp), DIRECT_BUILTIN (lhx, MIPS_SI_FTYPE_POINTER_SI, dsp), DIRECT_BUILTIN (lwx, MIPS_SI_FTYPE_POINTER_SI, dsp), BPOSGE_BUILTIN (32, dsp), /* The following are for the MIPS DSP ASE REV 2 (32-bit and 64-bit). */ DIRECT_BUILTIN_PURE (absq_s_qb, MIPS_V4QI_FTYPE_V4QI, dspr2), DIRECT_BUILTIN_PURE (addu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2), DIRECT_BUILTIN_PURE (addu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2), DIRECT_BUILTIN_PURE (adduh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2), DIRECT_BUILTIN_PURE (adduh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2), DIRECT_BUILTIN_PURE (append, MIPS_SI_FTYPE_SI_SI_SI, dspr2), DIRECT_BUILTIN_PURE (balign, MIPS_SI_FTYPE_SI_SI_SI, dspr2), DIRECT_BUILTIN_PURE (cmpgdu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2), DIRECT_BUILTIN_PURE (cmpgdu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2), DIRECT_BUILTIN_PURE (cmpgdu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2), DIRECT_BUILTIN_PURE (mul_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2), DIRECT_BUILTIN_PURE (mul_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2), DIRECT_BUILTIN_PURE (mulq_rs_w, MIPS_SI_FTYPE_SI_SI, dspr2), DIRECT_BUILTIN_PURE (mulq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2), DIRECT_BUILTIN_PURE (mulq_s_w, MIPS_SI_FTYPE_SI_SI, dspr2), DIRECT_BUILTIN_PURE (precr_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dspr2), DIRECT_BUILTIN_PURE (precr_sra_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, dspr2), DIRECT_BUILTIN_PURE (precr_sra_r_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, dspr2), DIRECT_BUILTIN_PURE (prepend, MIPS_SI_FTYPE_SI_SI_SI, dspr2), DIRECT_BUILTIN_PURE (shra_qb, MIPS_V4QI_FTYPE_V4QI_SI, dspr2), DIRECT_BUILTIN_PURE (shra_r_qb, MIPS_V4QI_FTYPE_V4QI_SI, dspr2), DIRECT_BUILTIN_PURE (shrl_ph, MIPS_V2HI_FTYPE_V2HI_SI, dspr2), DIRECT_BUILTIN_PURE (subu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2), DIRECT_BUILTIN_PURE (subu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2), DIRECT_BUILTIN_PURE (subuh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2), DIRECT_BUILTIN_PURE (subuh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2), DIRECT_BUILTIN_PURE (addqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2), DIRECT_BUILTIN_PURE (addqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2), DIRECT_BUILTIN_PURE (addqh_w, MIPS_SI_FTYPE_SI_SI, dspr2), DIRECT_BUILTIN_PURE (addqh_r_w, MIPS_SI_FTYPE_SI_SI, dspr2), DIRECT_BUILTIN_PURE (subqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2), DIRECT_BUILTIN_PURE (subqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2), DIRECT_BUILTIN_PURE (subqh_w, MIPS_SI_FTYPE_SI_SI, dspr2), DIRECT_BUILTIN_PURE (subqh_r_w, MIPS_SI_FTYPE_SI_SI, dspr2), /* Built-in functions for the DSP ASE (32-bit only). */ DIRECT_BUILTIN_PURE (dpau_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32), DIRECT_BUILTIN_PURE (dpau_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32), DIRECT_BUILTIN_PURE (dpsu_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32), DIRECT_BUILTIN_PURE (dpsu_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32), DIRECT_BUILTIN_PURE (dpaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32), DIRECT_BUILTIN_PURE (dpsq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32), DIRECT_BUILTIN_PURE (mulsaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32), DIRECT_BUILTIN_PURE (dpaq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, dsp_32), DIRECT_BUILTIN_PURE (dpsq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, dsp_32), DIRECT_BUILTIN_PURE (maq_s_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32), DIRECT_BUILTIN_PURE (maq_s_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32), DIRECT_BUILTIN_PURE (maq_sa_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32), DIRECT_BUILTIN_PURE (maq_sa_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32), DIRECT_BUILTIN_PURE (extr_w, MIPS_SI_FTYPE_DI_SI, dsp_32), DIRECT_BUILTIN_PURE (extr_r_w, MIPS_SI_FTYPE_DI_SI, dsp_32), DIRECT_BUILTIN_PURE (extr_rs_w, MIPS_SI_FTYPE_DI_SI, dsp_32), DIRECT_BUILTIN_PURE (extr_s_h, MIPS_SI_FTYPE_DI_SI, dsp_32), DIRECT_BUILTIN_PURE (extp, MIPS_SI_FTYPE_DI_SI, dsp_32), DIRECT_BUILTIN_PURE (extpdp, MIPS_SI_FTYPE_DI_SI, dsp_32), DIRECT_BUILTIN_PURE (shilo, MIPS_DI_FTYPE_DI_SI, dsp_32), DIRECT_BUILTIN_PURE (mthlip, MIPS_DI_FTYPE_DI_SI, dsp_32), DIRECT_BUILTIN_PURE (madd, MIPS_DI_FTYPE_DI_SI_SI, dsp_32), DIRECT_BUILTIN_PURE (maddu, MIPS_DI_FTYPE_DI_USI_USI, dsp_32), DIRECT_BUILTIN_PURE (msub, MIPS_DI_FTYPE_DI_SI_SI, dsp_32), DIRECT_BUILTIN_PURE (msubu, MIPS_DI_FTYPE_DI_USI_USI, dsp_32), DIRECT_BUILTIN_PURE (mult, MIPS_DI_FTYPE_SI_SI, dsp_32), DIRECT_BUILTIN_PURE (multu, MIPS_DI_FTYPE_USI_USI, dsp_32), /* Built-in functions for the DSP ASE (64-bit only). */ DIRECT_BUILTIN (ldx, MIPS_DI_FTYPE_POINTER_SI, dsp_64), /* The following are for the MIPS DSP ASE REV 2 (32-bit only). */ DIRECT_BUILTIN_PURE (dpa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32), DIRECT_BUILTIN_PURE (dps_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32), DIRECT_BUILTIN_PURE (mulsa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32), DIRECT_BUILTIN_PURE (dpax_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32), DIRECT_BUILTIN_PURE (dpsx_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32), DIRECT_BUILTIN_PURE (dpaqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32), DIRECT_BUILTIN_PURE (dpaqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32), DIRECT_BUILTIN_PURE (dpsqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32), DIRECT_BUILTIN_PURE (dpsqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32), /* Builtin functions for ST Microelectronics Loongson-2E/2F cores. */ LOONGSON_BUILTIN (packsswh, MIPS_V4HI_FTYPE_V2SI_V2SI), LOONGSON_BUILTIN (packsshb, MIPS_V8QI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN (packushb, MIPS_UV8QI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN_SUFFIX (paddw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI), LOONGSON_BUILTIN_SUFFIX (paddh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN_SUFFIX (paddb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN_SUFFIX (paddw, s, MIPS_V2SI_FTYPE_V2SI_V2SI), LOONGSON_BUILTIN_SUFFIX (paddh, s, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN_SUFFIX (paddb, s, MIPS_V8QI_FTYPE_V8QI_V8QI), LOONGSON_BUILTIN_SUFFIX (paddd, u, MIPS_UDI_FTYPE_UDI_UDI), LOONGSON_BUILTIN_SUFFIX (paddd, s, MIPS_DI_FTYPE_DI_DI), LOONGSON_BUILTIN (paddsh, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN (paddsb, MIPS_V8QI_FTYPE_V8QI_V8QI), LOONGSON_BUILTIN (paddush, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN (paddusb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN_ALIAS (pandn_d, pandn_ud, MIPS_UDI_FTYPE_UDI_UDI), LOONGSON_BUILTIN_ALIAS (pandn_w, pandn_uw, MIPS_UV2SI_FTYPE_UV2SI_UV2SI), LOONGSON_BUILTIN_ALIAS (pandn_h, pandn_uh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN_ALIAS (pandn_b, pandn_ub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN_ALIAS (pandn_d, pandn_sd, MIPS_DI_FTYPE_DI_DI), LOONGSON_BUILTIN_ALIAS (pandn_w, pandn_sw, MIPS_V2SI_FTYPE_V2SI_V2SI), LOONGSON_BUILTIN_ALIAS (pandn_h, pandn_sh, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN_ALIAS (pandn_b, pandn_sb, MIPS_V8QI_FTYPE_V8QI_V8QI), LOONGSON_BUILTIN (pavgh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN (pavgb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN_SUFFIX (pcmpeqw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI), LOONGSON_BUILTIN_SUFFIX (pcmpeqh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN_SUFFIX (pcmpeqb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN_SUFFIX (pcmpeqw, s, MIPS_V2SI_FTYPE_V2SI_V2SI), LOONGSON_BUILTIN_SUFFIX (pcmpeqh, s, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN_SUFFIX (pcmpeqb, s, MIPS_V8QI_FTYPE_V8QI_V8QI), LOONGSON_BUILTIN_SUFFIX (pcmpgtw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI), LOONGSON_BUILTIN_SUFFIX (pcmpgth, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN_SUFFIX (pcmpgtb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN_SUFFIX (pcmpgtw, s, MIPS_V2SI_FTYPE_V2SI_V2SI), LOONGSON_BUILTIN_SUFFIX (pcmpgth, s, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN_SUFFIX (pcmpgtb, s, MIPS_V8QI_FTYPE_V8QI_V8QI), LOONGSON_BUILTIN_SUFFIX (pextrh, u, MIPS_UV4HI_FTYPE_UV4HI_USI), LOONGSON_BUILTIN_SUFFIX (pextrh, s, MIPS_V4HI_FTYPE_V4HI_USI), LOONGSON_BUILTIN_SUFFIX (pinsrh_0, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN_SUFFIX (pinsrh_1, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN_SUFFIX (pinsrh_2, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN_SUFFIX (pinsrh_3, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN_SUFFIX (pinsrh_0, s, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN_SUFFIX (pinsrh_1, s, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN_SUFFIX (pinsrh_2, s, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN_SUFFIX (pinsrh_3, s, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN (pmaddhw, MIPS_V2SI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN (pmaxsh, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN (pmaxub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN (pminsh, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN (pminub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN_SUFFIX (pmovmskb, u, MIPS_UV8QI_FTYPE_UV8QI), LOONGSON_BUILTIN_SUFFIX (pmovmskb, s, MIPS_V8QI_FTYPE_V8QI), LOONGSON_BUILTIN (pmulhuh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN (pmulhh, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN (pmullh, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN (pmuluw, MIPS_UDI_FTYPE_UV2SI_UV2SI), LOONGSON_BUILTIN (pasubub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN (biadd, MIPS_UV4HI_FTYPE_UV8QI), LOONGSON_BUILTIN (psadbh, MIPS_UV4HI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN_SUFFIX (pshufh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI), LOONGSON_BUILTIN_SUFFIX (pshufh, s, MIPS_V4HI_FTYPE_V4HI_UQI), LOONGSON_BUILTIN_SUFFIX (psllh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI), LOONGSON_BUILTIN_SUFFIX (psllh, s, MIPS_V4HI_FTYPE_V4HI_UQI), LOONGSON_BUILTIN_SUFFIX (psllw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI), LOONGSON_BUILTIN_SUFFIX (psllw, s, MIPS_V2SI_FTYPE_V2SI_UQI), LOONGSON_BUILTIN_SUFFIX (psrah, u, MIPS_UV4HI_FTYPE_UV4HI_UQI), LOONGSON_BUILTIN_SUFFIX (psrah, s, MIPS_V4HI_FTYPE_V4HI_UQI), LOONGSON_BUILTIN_SUFFIX (psraw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI), LOONGSON_BUILTIN_SUFFIX (psraw, s, MIPS_V2SI_FTYPE_V2SI_UQI), LOONGSON_BUILTIN_SUFFIX (psrlh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI), LOONGSON_BUILTIN_SUFFIX (psrlh, s, MIPS_V4HI_FTYPE_V4HI_UQI), LOONGSON_BUILTIN_SUFFIX (psrlw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI), LOONGSON_BUILTIN_SUFFIX (psrlw, s, MIPS_V2SI_FTYPE_V2SI_UQI), LOONGSON_BUILTIN_SUFFIX (psubw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI), LOONGSON_BUILTIN_SUFFIX (psubh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN_SUFFIX (psubb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN_SUFFIX (psubw, s, MIPS_V2SI_FTYPE_V2SI_V2SI), LOONGSON_BUILTIN_SUFFIX (psubh, s, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN_SUFFIX (psubb, s, MIPS_V8QI_FTYPE_V8QI_V8QI), LOONGSON_BUILTIN_SUFFIX (psubd, u, MIPS_UDI_FTYPE_UDI_UDI), LOONGSON_BUILTIN_SUFFIX (psubd, s, MIPS_DI_FTYPE_DI_DI), LOONGSON_BUILTIN (psubsh, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN (psubsb, MIPS_V8QI_FTYPE_V8QI_V8QI), LOONGSON_BUILTIN (psubush, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN (psubusb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN_SUFFIX (punpckhbh, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN_SUFFIX (punpckhhw, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN_SUFFIX (punpckhwd, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI), LOONGSON_BUILTIN_SUFFIX (punpckhbh, s, MIPS_V8QI_FTYPE_V8QI_V8QI), LOONGSON_BUILTIN_SUFFIX (punpckhhw, s, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN_SUFFIX (punpckhwd, s, MIPS_V2SI_FTYPE_V2SI_V2SI), LOONGSON_BUILTIN_SUFFIX (punpcklbh, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI), LOONGSON_BUILTIN_SUFFIX (punpcklhw, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI), LOONGSON_BUILTIN_SUFFIX (punpcklwd, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI), LOONGSON_BUILTIN_SUFFIX (punpcklbh, s, MIPS_V8QI_FTYPE_V8QI_V8QI), LOONGSON_BUILTIN_SUFFIX (punpcklhw, s, MIPS_V4HI_FTYPE_V4HI_V4HI), LOONGSON_BUILTIN_SUFFIX (punpcklwd, s, MIPS_V2SI_FTYPE_V2SI_V2SI), /* Sundry other built-in functions. */ DIRECT_NO_TARGET_BUILTIN (cache, MIPS_VOID_FTYPE_SI_CVPOINTER, cache), /* Built-in functions for MSA. */ MSA_BUILTIN_PURE (sll_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (sll_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (sll_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (sll_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (slli_b, MIPS_V16QI_FTYPE_V16QI_UQI), MSA_BUILTIN_PURE (slli_h, MIPS_V8HI_FTYPE_V8HI_UQI), MSA_BUILTIN_PURE (slli_w, MIPS_V4SI_FTYPE_V4SI_UQI), MSA_BUILTIN_PURE (slli_d, MIPS_V2DI_FTYPE_V2DI_UQI), MSA_BUILTIN_PURE (sra_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (sra_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (sra_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (sra_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (srai_b, MIPS_V16QI_FTYPE_V16QI_UQI), MSA_BUILTIN_PURE (srai_h, MIPS_V8HI_FTYPE_V8HI_UQI), MSA_BUILTIN_PURE (srai_w, MIPS_V4SI_FTYPE_V4SI_UQI), MSA_BUILTIN_PURE (srai_d, MIPS_V2DI_FTYPE_V2DI_UQI), MSA_BUILTIN_PURE (srar_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (srar_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (srar_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (srar_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (srari_b, MIPS_V16QI_FTYPE_V16QI_UQI), MSA_BUILTIN_PURE (srari_h, MIPS_V8HI_FTYPE_V8HI_UQI), MSA_BUILTIN_PURE (srari_w, MIPS_V4SI_FTYPE_V4SI_UQI), MSA_BUILTIN_PURE (srari_d, MIPS_V2DI_FTYPE_V2DI_UQI), MSA_BUILTIN_PURE (srl_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (srl_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (srl_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (srl_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (srli_b, MIPS_V16QI_FTYPE_V16QI_UQI), MSA_BUILTIN_PURE (srli_h, MIPS_V8HI_FTYPE_V8HI_UQI), MSA_BUILTIN_PURE (srli_w, MIPS_V4SI_FTYPE_V4SI_UQI), MSA_BUILTIN_PURE (srli_d, MIPS_V2DI_FTYPE_V2DI_UQI), MSA_BUILTIN_PURE (srlr_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (srlr_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (srlr_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (srlr_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (srlri_b, MIPS_V16QI_FTYPE_V16QI_UQI), MSA_BUILTIN_PURE (srlri_h, MIPS_V8HI_FTYPE_V8HI_UQI), MSA_BUILTIN_PURE (srlri_w, MIPS_V4SI_FTYPE_V4SI_UQI), MSA_BUILTIN_PURE (srlri_d, MIPS_V2DI_FTYPE_V2DI_UQI), MSA_BUILTIN_PURE (bclr_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (bclr_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (bclr_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (bclr_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (bclri_b, MIPS_UV16QI_FTYPE_UV16QI_UQI), MSA_BUILTIN_PURE (bclri_h, MIPS_UV8HI_FTYPE_UV8HI_UQI), MSA_BUILTIN_PURE (bclri_w, MIPS_UV4SI_FTYPE_UV4SI_UQI), MSA_BUILTIN_PURE (bclri_d, MIPS_UV2DI_FTYPE_UV2DI_UQI), MSA_BUILTIN_PURE (bset_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (bset_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (bset_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (bset_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (bseti_b, MIPS_UV16QI_FTYPE_UV16QI_UQI), MSA_BUILTIN_PURE (bseti_h, MIPS_UV8HI_FTYPE_UV8HI_UQI), MSA_BUILTIN_PURE (bseti_w, MIPS_UV4SI_FTYPE_UV4SI_UQI), MSA_BUILTIN_PURE (bseti_d, MIPS_UV2DI_FTYPE_UV2DI_UQI), MSA_BUILTIN_PURE (bneg_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (bneg_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (bneg_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (bneg_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (bnegi_b, MIPS_UV16QI_FTYPE_UV16QI_UQI), MSA_BUILTIN_PURE (bnegi_h, MIPS_UV8HI_FTYPE_UV8HI_UQI), MSA_BUILTIN_PURE (bnegi_w, MIPS_UV4SI_FTYPE_UV4SI_UQI), MSA_BUILTIN_PURE (bnegi_d, MIPS_UV2DI_FTYPE_UV2DI_UQI), MSA_BUILTIN_PURE (binsl_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI_UV16QI), MSA_BUILTIN_PURE (binsl_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI_UV8HI), MSA_BUILTIN_PURE (binsl_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI_UV4SI), MSA_BUILTIN_PURE (binsl_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI_UV2DI), MSA_BUILTIN_PURE (binsli_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI_UQI), MSA_BUILTIN_PURE (binsli_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI_UQI), MSA_BUILTIN_PURE (binsli_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI_UQI), MSA_BUILTIN_PURE (binsli_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI_UQI), MSA_BUILTIN_PURE (binsr_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI_UV16QI), MSA_BUILTIN_PURE (binsr_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI_UV8HI), MSA_BUILTIN_PURE (binsr_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI_UV4SI), MSA_BUILTIN_PURE (binsr_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI_UV2DI), MSA_BUILTIN_PURE (binsri_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI_UQI), MSA_BUILTIN_PURE (binsri_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI_UQI), MSA_BUILTIN_PURE (binsri_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI_UQI), MSA_BUILTIN_PURE (binsri_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI_UQI), MSA_BUILTIN_PURE (addv_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (addv_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (addv_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (addv_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (addvi_b, MIPS_V16QI_FTYPE_V16QI_UQI), MSA_BUILTIN_PURE (addvi_h, MIPS_V8HI_FTYPE_V8HI_UQI), MSA_BUILTIN_PURE (addvi_w, MIPS_V4SI_FTYPE_V4SI_UQI), MSA_BUILTIN_PURE (addvi_d, MIPS_V2DI_FTYPE_V2DI_UQI), MSA_BUILTIN_PURE (subv_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (subv_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (subv_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (subv_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (subvi_b, MIPS_V16QI_FTYPE_V16QI_UQI), MSA_BUILTIN_PURE (subvi_h, MIPS_V8HI_FTYPE_V8HI_UQI), MSA_BUILTIN_PURE (subvi_w, MIPS_V4SI_FTYPE_V4SI_UQI), MSA_BUILTIN_PURE (subvi_d, MIPS_V2DI_FTYPE_V2DI_UQI), MSA_BUILTIN_PURE (max_s_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (max_s_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (max_s_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (max_s_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (maxi_s_b, MIPS_V16QI_FTYPE_V16QI_QI), MSA_BUILTIN_PURE (maxi_s_h, MIPS_V8HI_FTYPE_V8HI_QI), MSA_BUILTIN_PURE (maxi_s_w, MIPS_V4SI_FTYPE_V4SI_QI), MSA_BUILTIN_PURE (maxi_s_d, MIPS_V2DI_FTYPE_V2DI_QI), MSA_BUILTIN_PURE (max_u_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (max_u_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (max_u_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (max_u_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (maxi_u_b, MIPS_UV16QI_FTYPE_UV16QI_UQI), MSA_BUILTIN_PURE (maxi_u_h, MIPS_UV8HI_FTYPE_UV8HI_UQI), MSA_BUILTIN_PURE (maxi_u_w, MIPS_UV4SI_FTYPE_UV4SI_UQI), MSA_BUILTIN_PURE (maxi_u_d, MIPS_UV2DI_FTYPE_UV2DI_UQI), MSA_BUILTIN_PURE (min_s_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (min_s_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (min_s_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (min_s_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (mini_s_b, MIPS_V16QI_FTYPE_V16QI_QI), MSA_BUILTIN_PURE (mini_s_h, MIPS_V8HI_FTYPE_V8HI_QI), MSA_BUILTIN_PURE (mini_s_w, MIPS_V4SI_FTYPE_V4SI_QI), MSA_BUILTIN_PURE (mini_s_d, MIPS_V2DI_FTYPE_V2DI_QI), MSA_BUILTIN_PURE (min_u_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (min_u_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (min_u_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (min_u_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (mini_u_b, MIPS_UV16QI_FTYPE_UV16QI_UQI), MSA_BUILTIN_PURE (mini_u_h, MIPS_UV8HI_FTYPE_UV8HI_UQI), MSA_BUILTIN_PURE (mini_u_w, MIPS_UV4SI_FTYPE_UV4SI_UQI), MSA_BUILTIN_PURE (mini_u_d, MIPS_UV2DI_FTYPE_UV2DI_UQI), MSA_BUILTIN_PURE (max_a_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (max_a_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (max_a_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (max_a_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (min_a_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (min_a_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (min_a_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (min_a_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN (ceq_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN (ceq_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN (ceq_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN (ceq_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN (ceqi_b, MIPS_V16QI_FTYPE_V16QI_QI), MSA_BUILTIN (ceqi_h, MIPS_V8HI_FTYPE_V8HI_QI), MSA_BUILTIN (ceqi_w, MIPS_V4SI_FTYPE_V4SI_QI), MSA_BUILTIN (ceqi_d, MIPS_V2DI_FTYPE_V2DI_QI), MSA_BUILTIN (clt_s_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN (clt_s_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN (clt_s_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN (clt_s_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN (clti_s_b, MIPS_V16QI_FTYPE_V16QI_QI), MSA_BUILTIN (clti_s_h, MIPS_V8HI_FTYPE_V8HI_QI), MSA_BUILTIN (clti_s_w, MIPS_V4SI_FTYPE_V4SI_QI), MSA_BUILTIN (clti_s_d, MIPS_V2DI_FTYPE_V2DI_QI), MSA_BUILTIN (clt_u_b, MIPS_V16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN (clt_u_h, MIPS_V8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN (clt_u_w, MIPS_V4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN (clt_u_d, MIPS_V2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN (clti_u_b, MIPS_V16QI_FTYPE_UV16QI_UQI), MSA_BUILTIN (clti_u_h, MIPS_V8HI_FTYPE_UV8HI_UQI), MSA_BUILTIN (clti_u_w, MIPS_V4SI_FTYPE_UV4SI_UQI), MSA_BUILTIN (clti_u_d, MIPS_V2DI_FTYPE_UV2DI_UQI), MSA_BUILTIN (cle_s_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN (cle_s_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN (cle_s_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN (cle_s_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN (clei_s_b, MIPS_V16QI_FTYPE_V16QI_QI), MSA_BUILTIN (clei_s_h, MIPS_V8HI_FTYPE_V8HI_QI), MSA_BUILTIN (clei_s_w, MIPS_V4SI_FTYPE_V4SI_QI), MSA_BUILTIN (clei_s_d, MIPS_V2DI_FTYPE_V2DI_QI), MSA_BUILTIN (cle_u_b, MIPS_V16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN (cle_u_h, MIPS_V8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN (cle_u_w, MIPS_V4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN (cle_u_d, MIPS_V2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN (clei_u_b, MIPS_V16QI_FTYPE_UV16QI_UQI), MSA_BUILTIN (clei_u_h, MIPS_V8HI_FTYPE_UV8HI_UQI), MSA_BUILTIN (clei_u_w, MIPS_V4SI_FTYPE_UV4SI_UQI), MSA_BUILTIN (clei_u_d, MIPS_V2DI_FTYPE_UV2DI_UQI), MSA_BUILTIN (ld_b, MIPS_V16QI_FTYPE_CVPOINTER_SI), MSA_BUILTIN (ld_h, MIPS_V8HI_FTYPE_CVPOINTER_SI), MSA_BUILTIN (ld_w, MIPS_V4SI_FTYPE_CVPOINTER_SI), MSA_BUILTIN (ld_d, MIPS_V2DI_FTYPE_CVPOINTER_SI), MSA_NO_TARGET_BUILTIN (st_b, MIPS_VOID_FTYPE_V16QI_CVPOINTER_SI), MSA_NO_TARGET_BUILTIN (st_h, MIPS_VOID_FTYPE_V8HI_CVPOINTER_SI), MSA_NO_TARGET_BUILTIN (st_w, MIPS_VOID_FTYPE_V4SI_CVPOINTER_SI), MSA_NO_TARGET_BUILTIN (st_d, MIPS_VOID_FTYPE_V2DI_CVPOINTER_SI), MSA_BUILTIN_PURE (sat_s_b, MIPS_V16QI_FTYPE_V16QI_UQI), MSA_BUILTIN_PURE (sat_s_h, MIPS_V8HI_FTYPE_V8HI_UQI), MSA_BUILTIN_PURE (sat_s_w, MIPS_V4SI_FTYPE_V4SI_UQI), MSA_BUILTIN_PURE (sat_s_d, MIPS_V2DI_FTYPE_V2DI_UQI), MSA_BUILTIN_PURE (sat_u_b, MIPS_UV16QI_FTYPE_UV16QI_UQI), MSA_BUILTIN_PURE (sat_u_h, MIPS_UV8HI_FTYPE_UV8HI_UQI), MSA_BUILTIN_PURE (sat_u_w, MIPS_UV4SI_FTYPE_UV4SI_UQI), MSA_BUILTIN_PURE (sat_u_d, MIPS_UV2DI_FTYPE_UV2DI_UQI), MSA_BUILTIN_PURE (add_a_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (add_a_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (add_a_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (add_a_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (adds_a_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (adds_a_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (adds_a_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (adds_a_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (adds_s_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (adds_s_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (adds_s_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (adds_s_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (adds_u_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (adds_u_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (adds_u_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (adds_u_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (ave_s_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (ave_s_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (ave_s_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (ave_s_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (ave_u_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (ave_u_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (ave_u_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (ave_u_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (aver_s_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (aver_s_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (aver_s_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (aver_s_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (aver_u_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (aver_u_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (aver_u_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (aver_u_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (subs_s_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (subs_s_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (subs_s_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (subs_s_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (subs_u_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (subs_u_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (subs_u_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (subs_u_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (subsuu_s_b, MIPS_V16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (subsuu_s_h, MIPS_V8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (subsuu_s_w, MIPS_V4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (subsuu_s_d, MIPS_V2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (subsus_u_b, MIPS_UV16QI_FTYPE_UV16QI_V16QI), MSA_BUILTIN_PURE (subsus_u_h, MIPS_UV8HI_FTYPE_UV8HI_V8HI), MSA_BUILTIN_PURE (subsus_u_w, MIPS_UV4SI_FTYPE_UV4SI_V4SI), MSA_BUILTIN_PURE (subsus_u_d, MIPS_UV2DI_FTYPE_UV2DI_V2DI), MSA_BUILTIN_PURE (asub_s_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (asub_s_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (asub_s_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (asub_s_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (asub_u_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (asub_u_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (asub_u_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (asub_u_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (mulv_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (mulv_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (mulv_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (mulv_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (maddv_b, MIPS_V16QI_FTYPE_V16QI_V16QI_V16QI), MSA_BUILTIN_PURE (maddv_h, MIPS_V8HI_FTYPE_V8HI_V8HI_V8HI), MSA_BUILTIN_PURE (maddv_w, MIPS_V4SI_FTYPE_V4SI_V4SI_V4SI), MSA_BUILTIN_PURE (maddv_d, MIPS_V2DI_FTYPE_V2DI_V2DI_V2DI), MSA_BUILTIN_PURE (msubv_b, MIPS_V16QI_FTYPE_V16QI_V16QI_V16QI), MSA_BUILTIN_PURE (msubv_h, MIPS_V8HI_FTYPE_V8HI_V8HI_V8HI), MSA_BUILTIN_PURE (msubv_w, MIPS_V4SI_FTYPE_V4SI_V4SI_V4SI), MSA_BUILTIN_PURE (msubv_d, MIPS_V2DI_FTYPE_V2DI_V2DI_V2DI), MSA_BUILTIN_PURE (div_s_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (div_s_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (div_s_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (div_s_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (div_u_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (div_u_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (div_u_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (div_u_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (hadd_s_h, MIPS_V8HI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (hadd_s_w, MIPS_V4SI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (hadd_s_d, MIPS_V2DI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (hadd_u_h, MIPS_UV8HI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (hadd_u_w, MIPS_UV4SI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (hadd_u_d, MIPS_UV2DI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (hsub_s_h, MIPS_V8HI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (hsub_s_w, MIPS_V4SI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (hsub_s_d, MIPS_V2DI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (hsub_u_h, MIPS_V8HI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (hsub_u_w, MIPS_V4SI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (hsub_u_d, MIPS_V2DI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (mod_s_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (mod_s_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (mod_s_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (mod_s_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (mod_u_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (mod_u_h, MIPS_UV8HI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (mod_u_w, MIPS_UV4SI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (mod_u_d, MIPS_UV2DI_FTYPE_UV2DI_UV2DI), MSA_BUILTIN_PURE (dotp_s_h, MIPS_V8HI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (dotp_s_w, MIPS_V4SI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (dotp_s_d, MIPS_V2DI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (dotp_u_h, MIPS_UV8HI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (dotp_u_w, MIPS_UV4SI_FTYPE_UV8HI_UV8HI), MSA_BUILTIN_PURE (dotp_u_d, MIPS_UV2DI_FTYPE_UV4SI_UV4SI), MSA_BUILTIN_PURE (dpadd_s_h, MIPS_V8HI_FTYPE_V8HI_V16QI_V16QI), MSA_BUILTIN_PURE (dpadd_s_w, MIPS_V4SI_FTYPE_V4SI_V8HI_V8HI), MSA_BUILTIN_PURE (dpadd_s_d, MIPS_V2DI_FTYPE_V2DI_V4SI_V4SI), MSA_BUILTIN_PURE (dpadd_u_h, MIPS_UV8HI_FTYPE_UV8HI_UV16QI_UV16QI), MSA_BUILTIN_PURE (dpadd_u_w, MIPS_UV4SI_FTYPE_UV4SI_UV8HI_UV8HI), MSA_BUILTIN_PURE (dpadd_u_d, MIPS_UV2DI_FTYPE_UV2DI_UV4SI_UV4SI), MSA_BUILTIN_PURE (dpsub_s_h, MIPS_V8HI_FTYPE_V8HI_V16QI_V16QI), MSA_BUILTIN_PURE (dpsub_s_w, MIPS_V4SI_FTYPE_V4SI_V8HI_V8HI), MSA_BUILTIN_PURE (dpsub_s_d, MIPS_V2DI_FTYPE_V2DI_V4SI_V4SI), MSA_BUILTIN_PURE (dpsub_u_h, MIPS_V8HI_FTYPE_V8HI_UV16QI_UV16QI), MSA_BUILTIN_PURE (dpsub_u_w, MIPS_V4SI_FTYPE_V4SI_UV8HI_UV8HI), MSA_BUILTIN_PURE (dpsub_u_d, MIPS_V2DI_FTYPE_V2DI_UV4SI_UV4SI), MSA_BUILTIN_PURE (sld_b, MIPS_V16QI_FTYPE_V16QI_V16QI_SI), MSA_BUILTIN_PURE (sld_h, MIPS_V8HI_FTYPE_V8HI_V8HI_SI), MSA_BUILTIN_PURE (sld_w, MIPS_V4SI_FTYPE_V4SI_V4SI_SI), MSA_BUILTIN_PURE (sld_d, MIPS_V2DI_FTYPE_V2DI_V2DI_SI), MSA_BUILTIN_PURE (sldi_b, MIPS_V16QI_FTYPE_V16QI_V16QI_UQI), MSA_BUILTIN_PURE (sldi_h, MIPS_V8HI_FTYPE_V8HI_V8HI_UQI), MSA_BUILTIN_PURE (sldi_w, MIPS_V4SI_FTYPE_V4SI_V4SI_UQI), MSA_BUILTIN_PURE (sldi_d, MIPS_V2DI_FTYPE_V2DI_V2DI_UQI), MSA_BUILTIN_PURE (splat_b, MIPS_V16QI_FTYPE_V16QI_SI), MSA_BUILTIN_PURE (splat_h, MIPS_V8HI_FTYPE_V8HI_SI), MSA_BUILTIN_PURE (splat_w, MIPS_V4SI_FTYPE_V4SI_SI), MSA_BUILTIN_PURE (splat_d, MIPS_V2DI_FTYPE_V2DI_SI), MSA_BUILTIN_PURE (splati_b, MIPS_V16QI_FTYPE_V16QI_UQI), MSA_BUILTIN_PURE (splati_h, MIPS_V8HI_FTYPE_V8HI_UQI), MSA_BUILTIN_PURE (splati_w, MIPS_V4SI_FTYPE_V4SI_UQI), MSA_BUILTIN_PURE (splati_d, MIPS_V2DI_FTYPE_V2DI_UQI), MSA_BUILTIN_PURE (pckev_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (pckev_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (pckev_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (pckev_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (pckod_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (pckod_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (pckod_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (pckod_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (ilvl_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (ilvl_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (ilvl_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (ilvl_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (ilvr_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (ilvr_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (ilvr_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (ilvr_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (ilvev_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (ilvev_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (ilvev_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (ilvev_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (ilvod_b, MIPS_V16QI_FTYPE_V16QI_V16QI), MSA_BUILTIN_PURE (ilvod_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (ilvod_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (ilvod_d, MIPS_V2DI_FTYPE_V2DI_V2DI), MSA_BUILTIN_PURE (vshf_b, MIPS_V16QI_FTYPE_V16QI_V16QI_V16QI), MSA_BUILTIN_PURE (vshf_h, MIPS_V8HI_FTYPE_V8HI_V8HI_V8HI), MSA_BUILTIN_PURE (vshf_w, MIPS_V4SI_FTYPE_V4SI_V4SI_V4SI), MSA_BUILTIN_PURE (vshf_d, MIPS_V2DI_FTYPE_V2DI_V2DI_V2DI), MSA_BUILTIN_PURE (and_v, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (andi_b, MIPS_UV16QI_FTYPE_UV16QI_UQI), MSA_BUILTIN_PURE (or_v, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (ori_b, MIPS_UV16QI_FTYPE_UV16QI_UQI), MSA_BUILTIN_PURE (nor_v, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (nori_b, MIPS_UV16QI_FTYPE_UV16QI_UQI), MSA_BUILTIN_PURE (xor_v, MIPS_UV16QI_FTYPE_UV16QI_UV16QI), MSA_BUILTIN_PURE (xori_b, MIPS_UV16QI_FTYPE_UV16QI_UQI), MSA_BUILTIN_PURE (bmnz_v, MIPS_UV16QI_FTYPE_UV16QI_UV16QI_UV16QI), MSA_BUILTIN_PURE (bmnzi_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI_UQI), MSA_BUILTIN_PURE (bmz_v, MIPS_UV16QI_FTYPE_UV16QI_UV16QI_UV16QI), MSA_BUILTIN_PURE (bmzi_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI_UQI), MSA_BUILTIN_PURE (bsel_v, MIPS_UV16QI_FTYPE_UV16QI_UV16QI_UV16QI), MSA_BUILTIN_PURE (bseli_b, MIPS_UV16QI_FTYPE_UV16QI_UV16QI_UQI), MSA_BUILTIN_PURE (shf_b, MIPS_V16QI_FTYPE_V16QI_UQI), MSA_BUILTIN_PURE (shf_h, MIPS_V8HI_FTYPE_V8HI_UQI), MSA_BUILTIN_PURE (shf_w, MIPS_V4SI_FTYPE_V4SI_UQI), MSA_BUILTIN_TEST_BRANCH (bnz_v, MIPS_SI_FTYPE_UV16QI), MSA_BUILTIN_TEST_BRANCH (bz_v, MIPS_SI_FTYPE_UV16QI), MSA_BUILTIN_PURE (fill_b, MIPS_V16QI_FTYPE_SI), MSA_BUILTIN_PURE (fill_h, MIPS_V8HI_FTYPE_SI), MSA_BUILTIN_PURE (fill_w, MIPS_V4SI_FTYPE_SI), MSA_BUILTIN_PURE (fill_d, MIPS_V2DI_FTYPE_DI), MSA_BUILTIN_PURE (pcnt_b, MIPS_V16QI_FTYPE_V16QI), MSA_BUILTIN_PURE (pcnt_h, MIPS_V8HI_FTYPE_V8HI), MSA_BUILTIN_PURE (pcnt_w, MIPS_V4SI_FTYPE_V4SI), MSA_BUILTIN_PURE (pcnt_d, MIPS_V2DI_FTYPE_V2DI), MSA_BUILTIN_PURE (nloc_b, MIPS_V16QI_FTYPE_V16QI), MSA_BUILTIN_PURE (nloc_h, MIPS_V8HI_FTYPE_V8HI), MSA_BUILTIN_PURE (nloc_w, MIPS_V4SI_FTYPE_V4SI), MSA_BUILTIN_PURE (nloc_d, MIPS_V2DI_FTYPE_V2DI), MSA_BUILTIN_PURE (nlzc_b, MIPS_V16QI_FTYPE_V16QI), MSA_BUILTIN_PURE (nlzc_h, MIPS_V8HI_FTYPE_V8HI), MSA_BUILTIN_PURE (nlzc_w, MIPS_V4SI_FTYPE_V4SI), MSA_BUILTIN_PURE (nlzc_d, MIPS_V2DI_FTYPE_V2DI), MSA_BUILTIN_PURE (copy_s_b, MIPS_SI_FTYPE_V16QI_UQI), MSA_BUILTIN_PURE (copy_s_h, MIPS_SI_FTYPE_V8HI_UQI), MSA_BUILTIN_PURE (copy_s_w, MIPS_SI_FTYPE_V4SI_UQI), MSA_BUILTIN_PURE (copy_s_d, MIPS_DI_FTYPE_V2DI_UQI), MSA_BUILTIN_PURE (copy_u_b, MIPS_USI_FTYPE_V16QI_UQI), MSA_BUILTIN_PURE (copy_u_h, MIPS_USI_FTYPE_V8HI_UQI), MSA_BUILTIN_REMAP (copy_u_w, copy_s_w, MIPS_USI_FTYPE_V4SI_UQI), MSA_BUILTIN_REMAP (copy_u_d, copy_s_d, MIPS_UDI_FTYPE_V2DI_UQI), MSA_BUILTIN_PURE (insert_b, MIPS_V16QI_FTYPE_V16QI_UQI_SI), MSA_BUILTIN_PURE (insert_h, MIPS_V8HI_FTYPE_V8HI_UQI_SI), MSA_BUILTIN_PURE (insert_w, MIPS_V4SI_FTYPE_V4SI_UQI_SI), MSA_BUILTIN_PURE (insert_d, MIPS_V2DI_FTYPE_V2DI_UQI_DI), MSA_BUILTIN_PURE (insve_b, MIPS_V16QI_FTYPE_V16QI_UQI_V16QI), MSA_BUILTIN_PURE (insve_h, MIPS_V8HI_FTYPE_V8HI_UQI_V8HI), MSA_BUILTIN_PURE (insve_w, MIPS_V4SI_FTYPE_V4SI_UQI_V4SI), MSA_BUILTIN_PURE (insve_d, MIPS_V2DI_FTYPE_V2DI_UQI_V2DI), MSA_BUILTIN_TEST_BRANCH (bnz_b, MIPS_SI_FTYPE_UV16QI), MSA_BUILTIN_TEST_BRANCH (bnz_h, MIPS_SI_FTYPE_UV8HI), MSA_BUILTIN_TEST_BRANCH (bnz_w, MIPS_SI_FTYPE_UV4SI), MSA_BUILTIN_TEST_BRANCH (bnz_d, MIPS_SI_FTYPE_UV2DI), MSA_BUILTIN_TEST_BRANCH (bz_b, MIPS_SI_FTYPE_UV16QI), MSA_BUILTIN_TEST_BRANCH (bz_h, MIPS_SI_FTYPE_UV8HI), MSA_BUILTIN_TEST_BRANCH (bz_w, MIPS_SI_FTYPE_UV4SI), MSA_BUILTIN_TEST_BRANCH (bz_d, MIPS_SI_FTYPE_UV2DI), MSA_BUILTIN_PURE (ldi_b, MIPS_V16QI_FTYPE_HI), MSA_BUILTIN_PURE (ldi_h, MIPS_V8HI_FTYPE_HI), MSA_BUILTIN_PURE (ldi_w, MIPS_V4SI_FTYPE_HI), MSA_BUILTIN_PURE (ldi_d, MIPS_V2DI_FTYPE_HI), MSA_BUILTIN_PURE (fcaf_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fcaf_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fcor_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fcor_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fcun_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fcun_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fcune_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fcune_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fcueq_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fcueq_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fceq_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fceq_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fcne_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fcne_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fclt_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fclt_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fcult_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fcult_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fcle_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fcle_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fcule_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fcule_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fsaf_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fsaf_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fsor_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fsor_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fsun_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fsun_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fsune_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fsune_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fsueq_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fsueq_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fseq_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fseq_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fsne_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fsne_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fslt_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fslt_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fsult_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fsult_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fsle_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fsle_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fsule_w, MIPS_V4SI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fsule_d, MIPS_V2DI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fadd_w, MIPS_V4SF_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fadd_d, MIPS_V2DF_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fsub_w, MIPS_V4SF_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fsub_d, MIPS_V2DF_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fmul_w, MIPS_V4SF_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fmul_d, MIPS_V2DF_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fdiv_w, MIPS_V4SF_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fdiv_d, MIPS_V2DF_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fmadd_w, MIPS_V4SF_FTYPE_V4SF_V4SF_V4SF), MSA_BUILTIN_PURE (fmadd_d, MIPS_V2DF_FTYPE_V2DF_V2DF_V2DF), MSA_BUILTIN_PURE (fmsub_w, MIPS_V4SF_FTYPE_V4SF_V4SF_V4SF), MSA_BUILTIN_PURE (fmsub_d, MIPS_V2DF_FTYPE_V2DF_V2DF_V2DF), MSA_BUILTIN_PURE (fexp2_w, MIPS_V4SF_FTYPE_V4SF_V4SI), MSA_BUILTIN_PURE (fexp2_d, MIPS_V2DF_FTYPE_V2DF_V2DI), MSA_BUILTIN_PURE (fexdo_h, MIPS_V8HI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fexdo_w, MIPS_V4SF_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (ftq_h, MIPS_V8HI_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (ftq_w, MIPS_V4SI_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fmin_w, MIPS_V4SF_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fmin_d, MIPS_V2DF_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fmin_a_w, MIPS_V4SF_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fmin_a_d, MIPS_V2DF_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fmax_w, MIPS_V4SF_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fmax_d, MIPS_V2DF_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (fmax_a_w, MIPS_V4SF_FTYPE_V4SF_V4SF), MSA_BUILTIN_PURE (fmax_a_d, MIPS_V2DF_FTYPE_V2DF_V2DF), MSA_BUILTIN_PURE (mul_q_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (mul_q_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (mulr_q_h, MIPS_V8HI_FTYPE_V8HI_V8HI), MSA_BUILTIN_PURE (mulr_q_w, MIPS_V4SI_FTYPE_V4SI_V4SI), MSA_BUILTIN_PURE (madd_q_h, MIPS_V8HI_FTYPE_V8HI_V8HI_V8HI), MSA_BUILTIN_PURE (madd_q_w, MIPS_V4SI_FTYPE_V4SI_V4SI_V4SI), MSA_BUILTIN_PURE (maddr_q_h, MIPS_V8HI_FTYPE_V8HI_V8HI_V8HI), MSA_BUILTIN_PURE (maddr_q_w, MIPS_V4SI_FTYPE_V4SI_V4SI_V4SI), MSA_BUILTIN_PURE (msub_q_h, MIPS_V8HI_FTYPE_V8HI_V8HI_V8HI), MSA_BUILTIN_PURE (msub_q_w, MIPS_V4SI_FTYPE_V4SI_V4SI_V4SI), MSA_BUILTIN_PURE (msubr_q_h, MIPS_V8HI_FTYPE_V8HI_V8HI_V8HI), MSA_BUILTIN_PURE (msubr_q_w, MIPS_V4SI_FTYPE_V4SI_V4SI_V4SI), MSA_BUILTIN_PURE (fclass_w, MIPS_V4SI_FTYPE_V4SF), MSA_BUILTIN_PURE (fclass_d, MIPS_V2DI_FTYPE_V2DF), MSA_BUILTIN_PURE (fsqrt_w, MIPS_V4SF_FTYPE_V4SF), MSA_BUILTIN_PURE (fsqrt_d, MIPS_V2DF_FTYPE_V2DF), MSA_BUILTIN_PURE (frcp_w, MIPS_V4SF_FTYPE_V4SF), MSA_BUILTIN_PURE (frcp_d, MIPS_V2DF_FTYPE_V2DF), MSA_BUILTIN_PURE (frint_w, MIPS_V4SF_FTYPE_V4SF), MSA_BUILTIN_PURE (frint_d, MIPS_V2DF_FTYPE_V2DF), MSA_BUILTIN_PURE (frsqrt_w, MIPS_V4SF_FTYPE_V4SF), MSA_BUILTIN_PURE (frsqrt_d, MIPS_V2DF_FTYPE_V2DF), MSA_BUILTIN_PURE (flog2_w, MIPS_V4SF_FTYPE_V4SF), MSA_BUILTIN_PURE (flog2_d, MIPS_V2DF_FTYPE_V2DF), MSA_BUILTIN_PURE (fexupl_w, MIPS_V4SF_FTYPE_V8HI), MSA_BUILTIN_PURE (fexupl_d, MIPS_V2DF_FTYPE_V4SF), MSA_BUILTIN_PURE (fexupr_w, MIPS_V4SF_FTYPE_V8HI), MSA_BUILTIN_PURE (fexupr_d, MIPS_V2DF_FTYPE_V4SF), MSA_BUILTIN_PURE (ffql_w, MIPS_V4SF_FTYPE_V8HI), MSA_BUILTIN_PURE (ffql_d, MIPS_V2DF_FTYPE_V4SI), MSA_BUILTIN_PURE (ffqr_w, MIPS_V4SF_FTYPE_V8HI), MSA_BUILTIN_PURE (ffqr_d, MIPS_V2DF_FTYPE_V4SI), MSA_BUILTIN_PURE (ftint_s_w, MIPS_V4SI_FTYPE_V4SF), MSA_BUILTIN_PURE (ftint_s_d, MIPS_V2DI_FTYPE_V2DF), MSA_BUILTIN_PURE (ftint_u_w, MIPS_UV4SI_FTYPE_V4SF), MSA_BUILTIN_PURE (ftint_u_d, MIPS_UV2DI_FTYPE_V2DF), MSA_BUILTIN_PURE (ftrunc_s_w, MIPS_V4SI_FTYPE_V4SF), MSA_BUILTIN_PURE (ftrunc_s_d, MIPS_V2DI_FTYPE_V2DF), MSA_BUILTIN_PURE (ftrunc_u_w, MIPS_UV4SI_FTYPE_V4SF), MSA_BUILTIN_PURE (ftrunc_u_d, MIPS_UV2DI_FTYPE_V2DF), MSA_BUILTIN_PURE (ffint_s_w, MIPS_V4SF_FTYPE_V4SI), MSA_BUILTIN_PURE (ffint_s_d, MIPS_V2DF_FTYPE_V2DI), MSA_BUILTIN_PURE (ffint_u_w, MIPS_V4SF_FTYPE_UV4SI), MSA_BUILTIN_PURE (ffint_u_d, MIPS_V2DF_FTYPE_UV2DI), MSA_NO_TARGET_BUILTIN (ctcmsa, MIPS_VOID_FTYPE_UQI_SI), MSA_BUILTIN_PURE (cfcmsa, MIPS_SI_FTYPE_UQI), MSA_BUILTIN_PURE (move_v, MIPS_V16QI_FTYPE_V16QI), }; /* Index I is the function declaration for mips_builtins[I], or null if the function isn't defined on this target. */ static GTY(()) tree mips_builtin_decls[ARRAY_SIZE (mips_builtins)]; /* Get the index I of the function declaration for mips_builtin_decls[I] using the instruction code or return null if not defined for the target. */ static GTY(()) int mips_get_builtin_decl_index[NUM_INSN_CODES]; /* MODE is a vector mode whose elements have type TYPE. Return the type of the vector itself. */ static tree mips_builtin_vector_type (tree type, machine_mode mode) { static tree types[2 * (int) MAX_MACHINE_MODE]; int mode_index; mode_index = (int) mode; if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)) mode_index += MAX_MACHINE_MODE; if (types[mode_index] == NULL_TREE) types[mode_index] = build_vector_type_for_mode (type, mode); return types[mode_index]; } /* Return a type for 'const volatile void *'. */ static tree mips_build_cvpointer_type (void) { static tree cache; if (cache == NULL_TREE) cache = build_pointer_type (build_qualified_type (void_type_node, TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)); return cache; } /* Source-level argument types. */ #define MIPS_ATYPE_VOID void_type_node #define MIPS_ATYPE_INT integer_type_node #define MIPS_ATYPE_POINTER ptr_type_node #define MIPS_ATYPE_CVPOINTER mips_build_cvpointer_type () /* Standard mode-based argument types. */ #define MIPS_ATYPE_QI intQI_type_node #define MIPS_ATYPE_UQI unsigned_intQI_type_node #define MIPS_ATYPE_HI intHI_type_node #define MIPS_ATYPE_SI intSI_type_node #define MIPS_ATYPE_USI unsigned_intSI_type_node #define MIPS_ATYPE_DI intDI_type_node #define MIPS_ATYPE_UDI unsigned_intDI_type_node #define MIPS_ATYPE_SF float_type_node #define MIPS_ATYPE_DF double_type_node /* Vector argument types. */ #define MIPS_ATYPE_V2SF mips_builtin_vector_type (float_type_node, V2SFmode) #define MIPS_ATYPE_V2HI mips_builtin_vector_type (intHI_type_node, V2HImode) #define MIPS_ATYPE_V2SI mips_builtin_vector_type (intSI_type_node, V2SImode) #define MIPS_ATYPE_V4QI mips_builtin_vector_type (intQI_type_node, V4QImode) #define MIPS_ATYPE_V4HI mips_builtin_vector_type (intHI_type_node, V4HImode) #define MIPS_ATYPE_V8QI mips_builtin_vector_type (intQI_type_node, V8QImode) #define MIPS_ATYPE_V2DI \ mips_builtin_vector_type (long_long_integer_type_node, V2DImode) #define MIPS_ATYPE_V4SI mips_builtin_vector_type (intSI_type_node, V4SImode) #define MIPS_ATYPE_V8HI mips_builtin_vector_type (intHI_type_node, V8HImode) #define MIPS_ATYPE_V16QI mips_builtin_vector_type (intQI_type_node, V16QImode) #define MIPS_ATYPE_V2DF mips_builtin_vector_type (double_type_node, V2DFmode) #define MIPS_ATYPE_V4SF mips_builtin_vector_type (float_type_node, V4SFmode) #define MIPS_ATYPE_UV2DI \ mips_builtin_vector_type (long_long_unsigned_type_node, V2DImode) #define MIPS_ATYPE_UV4SI \ mips_builtin_vector_type (unsigned_intSI_type_node, V4SImode) #define MIPS_ATYPE_UV8HI \ mips_builtin_vector_type (unsigned_intHI_type_node, V8HImode) #define MIPS_ATYPE_UV16QI \ mips_builtin_vector_type (unsigned_intQI_type_node, V16QImode) #define MIPS_ATYPE_UV2SI \ mips_builtin_vector_type (unsigned_intSI_type_node, V2SImode) #define MIPS_ATYPE_UV4HI \ mips_builtin_vector_type (unsigned_intHI_type_node, V4HImode) #define MIPS_ATYPE_UV8QI \ mips_builtin_vector_type (unsigned_intQI_type_node, V8QImode) /* MIPS_FTYPE_ATYPESN takes N MIPS_FTYPES-like type codes and lists their associated MIPS_ATYPEs. */ #define MIPS_FTYPE_ATYPES1(A, B) \ MIPS_ATYPE_##A, MIPS_ATYPE_##B #define MIPS_FTYPE_ATYPES2(A, B, C) \ MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C #define MIPS_FTYPE_ATYPES3(A, B, C, D) \ MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D #define MIPS_FTYPE_ATYPES4(A, B, C, D, E) \ MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D, \ MIPS_ATYPE_##E /* Return the function type associated with function prototype TYPE. */ static tree mips_build_function_type (enum mips_function_type type) { static tree types[(int) MIPS_MAX_FTYPE_MAX]; if (types[(int) type] == NULL_TREE) switch (type) { #define DEF_MIPS_FTYPE(NUM, ARGS) \ case MIPS_FTYPE_NAME##NUM ARGS: \ types[(int) type] \ = build_function_type_list (MIPS_FTYPE_ATYPES##NUM ARGS, \ NULL_TREE); \ break; #include "config/mips/mips-ftypes.def" #undef DEF_MIPS_FTYPE default: gcc_unreachable (); } return types[(int) type]; } /* Implement TARGET_INIT_BUILTINS. */ static void mips_init_builtins (void) { const struct mips_builtin_description *d; unsigned int i; /* Iterate through all of the bdesc arrays, initializing all of the builtin functions. */ for (i = 0; i < ARRAY_SIZE (mips_builtins); i++) { d = &mips_builtins[i]; if (d->avail ()) { mips_builtin_decls[i] = add_builtin_function (d->name, mips_build_function_type (d->function_type), i, BUILT_IN_MD, NULL, NULL); if (mips_builtin_decls[i] && d->is_pure) DECL_PURE_P (mips_builtin_decls[i]) = 1; mips_get_builtin_decl_index[d->icode] = i; } } } /* Implement TARGET_BUILTIN_DECL. */ static tree mips_builtin_decl (unsigned int code, bool initialize_p ATTRIBUTE_UNUSED) { if (code >= ARRAY_SIZE (mips_builtins)) return error_mark_node; return mips_builtin_decls[code]; } /* Implement TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION. */ static tree mips_builtin_vectorized_function (unsigned int fn, tree type_out, tree type_in) { machine_mode in_mode, out_mode; int in_n, out_n; if (TREE_CODE (type_out) != VECTOR_TYPE || TREE_CODE (type_in) != VECTOR_TYPE || !ISA_HAS_MSA) return NULL_TREE; out_mode = TYPE_MODE (TREE_TYPE (type_out)); out_n = TYPE_VECTOR_SUBPARTS (type_out); in_mode = TYPE_MODE (TREE_TYPE (type_in)); in_n = TYPE_VECTOR_SUBPARTS (type_in); /* INSN is the name of the associated instruction pattern, without the leading CODE_FOR_. */ #define MIPS_GET_BUILTIN(INSN) \ mips_builtin_decls[mips_get_builtin_decl_index[CODE_FOR_##INSN]] switch (fn) { case BUILT_IN_SQRT: if (out_mode == DFmode && out_n == 2 && in_mode == DFmode && in_n == 2) return MIPS_GET_BUILTIN (msa_fsqrt_d); break; case BUILT_IN_SQRTF: if (out_mode == SFmode && out_n == 4 && in_mode == SFmode && in_n == 4) return MIPS_GET_BUILTIN (msa_fsqrt_w); break; default: break; } return NULL_TREE; } /* Take argument ARGNO from EXP's argument list and convert it into an expand operand. Store the operand in *OP. */ static void mips_prepare_builtin_arg (struct expand_operand *op, tree exp, unsigned int argno) { tree arg; rtx value; arg = CALL_EXPR_ARG (exp, argno); value = expand_normal (arg); create_input_operand (op, value, TYPE_MODE (TREE_TYPE (arg))); } /* Expand instruction ICODE as part of a built-in function sequence. Use the first NOPS elements of OPS as the instruction's operands. HAS_TARGET_P is true if operand 0 is a target; it is false if the instruction has no target. Return the target rtx if HAS_TARGET_P, otherwise return const0_rtx. */ static rtx mips_expand_builtin_insn (enum insn_code icode, unsigned int nops, struct expand_operand *ops, bool has_target_p) { machine_mode imode; int rangelo = 0, rangehi = 0, error_opno = 0; rtx sireg; switch (icode) { /* The third operand of these instructions is in SImode, so we need to bring the corresponding builtin argument from QImode into SImode. */ case CODE_FOR_loongson_pshufh: case CODE_FOR_loongson_psllh: case CODE_FOR_loongson_psllw: case CODE_FOR_loongson_psrah: case CODE_FOR_loongson_psraw: case CODE_FOR_loongson_psrlh: case CODE_FOR_loongson_psrlw: gcc_assert (has_target_p && nops == 3 && ops[2].mode == QImode); sireg = gen_reg_rtx (SImode); emit_insn (gen_zero_extendqisi2 (sireg, force_reg (QImode, ops[2].value))); ops[2].value = sireg; ops[2].mode = SImode; break; case CODE_FOR_msa_addvi_b: case CODE_FOR_msa_addvi_h: case CODE_FOR_msa_addvi_w: case CODE_FOR_msa_addvi_d: case CODE_FOR_msa_clti_u_b: case CODE_FOR_msa_clti_u_h: case CODE_FOR_msa_clti_u_w: case CODE_FOR_msa_clti_u_d: case CODE_FOR_msa_clei_u_b: case CODE_FOR_msa_clei_u_h: case CODE_FOR_msa_clei_u_w: case CODE_FOR_msa_clei_u_d: case CODE_FOR_msa_maxi_u_b: case CODE_FOR_msa_maxi_u_h: case CODE_FOR_msa_maxi_u_w: case CODE_FOR_msa_maxi_u_d: case CODE_FOR_msa_mini_u_b: case CODE_FOR_msa_mini_u_h: case CODE_FOR_msa_mini_u_w: case CODE_FOR_msa_mini_u_d: case CODE_FOR_msa_subvi_b: case CODE_FOR_msa_subvi_h: case CODE_FOR_msa_subvi_w: case CODE_FOR_msa_subvi_d: gcc_assert (has_target_p && nops == 3); /* We only generate a vector of constants iff the second argument is an immediate. We also validate the range of the immediate. */ if (CONST_INT_P (ops[2].value)) { rangelo = 0; rangehi = 31; if (IN_RANGE (INTVAL (ops[2].value), rangelo, rangehi)) { ops[2].mode = ops[0].mode; ops[2].value = mips_gen_const_int_vector (ops[2].mode, INTVAL (ops[2].value)); } else error_opno = 2; } break; case CODE_FOR_msa_ceqi_b: case CODE_FOR_msa_ceqi_h: case CODE_FOR_msa_ceqi_w: case CODE_FOR_msa_ceqi_d: case CODE_FOR_msa_clti_s_b: case CODE_FOR_msa_clti_s_h: case CODE_FOR_msa_clti_s_w: case CODE_FOR_msa_clti_s_d: case CODE_FOR_msa_clei_s_b: case CODE_FOR_msa_clei_s_h: case CODE_FOR_msa_clei_s_w: case CODE_FOR_msa_clei_s_d: case CODE_FOR_msa_maxi_s_b: case CODE_FOR_msa_maxi_s_h: case CODE_FOR_msa_maxi_s_w: case CODE_FOR_msa_maxi_s_d: case CODE_FOR_msa_mini_s_b: case CODE_FOR_msa_mini_s_h: case CODE_FOR_msa_mini_s_w: case CODE_FOR_msa_mini_s_d: gcc_assert (has_target_p && nops == 3); /* We only generate a vector of constants iff the second argument is an immediate. We also validate the range of the immediate. */ if (CONST_INT_P (ops[2].value)) { rangelo = -16; rangehi = 15; if (IN_RANGE (INTVAL (ops[2].value), rangelo, rangehi)) { ops[2].mode = ops[0].mode; ops[2].value = mips_gen_const_int_vector (ops[2].mode, INTVAL (ops[2].value)); } else error_opno = 2; } break; case CODE_FOR_msa_andi_b: case CODE_FOR_msa_ori_b: case CODE_FOR_msa_nori_b: case CODE_FOR_msa_xori_b: gcc_assert (has_target_p && nops == 3); if (!CONST_INT_P (ops[2].value)) break; ops[2].mode = ops[0].mode; ops[2].value = mips_gen_const_int_vector (ops[2].mode, INTVAL (ops[2].value)); break; case CODE_FOR_msa_bmzi_b: case CODE_FOR_msa_bmnzi_b: case CODE_FOR_msa_bseli_b: gcc_assert (has_target_p && nops == 4); if (!CONST_INT_P (ops[3].value)) break; ops[3].mode = ops[0].mode; ops[3].value = mips_gen_const_int_vector (ops[3].mode, INTVAL (ops[3].value)); break; case CODE_FOR_msa_fill_b: case CODE_FOR_msa_fill_h: case CODE_FOR_msa_fill_w: case CODE_FOR_msa_fill_d: /* Map the built-ins to vector fill operations. We need fix up the mode for the element being inserted. */ gcc_assert (has_target_p && nops == 2); imode = GET_MODE_INNER (ops[0].mode); ops[1].value = lowpart_subreg (imode, ops[1].value, ops[1].mode); ops[1].mode = imode; break; case CODE_FOR_msa_ilvl_b: case CODE_FOR_msa_ilvl_h: case CODE_FOR_msa_ilvl_w: case CODE_FOR_msa_ilvl_d: case CODE_FOR_msa_ilvr_b: case CODE_FOR_msa_ilvr_h: case CODE_FOR_msa_ilvr_w: case CODE_FOR_msa_ilvr_d: case CODE_FOR_msa_ilvev_b: case CODE_FOR_msa_ilvev_h: case CODE_FOR_msa_ilvev_w: case CODE_FOR_msa_ilvod_b: case CODE_FOR_msa_ilvod_h: case CODE_FOR_msa_ilvod_w: case CODE_FOR_msa_pckev_b: case CODE_FOR_msa_pckev_h: case CODE_FOR_msa_pckev_w: case CODE_FOR_msa_pckod_b: case CODE_FOR_msa_pckod_h: case CODE_FOR_msa_pckod_w: /* Swap the operands 1 and 2 for interleave operations. Built-ins follow convention of ISA, which have op1 as higher component and op2 as lower component. However, the VEC_PERM op in tree and vec_concat in RTL expects first operand to be lower component, because of which this swap is needed for builtins. */ gcc_assert (has_target_p && nops == 3); std::swap (ops[1], ops[2]); break; case CODE_FOR_msa_maddv_b: case CODE_FOR_msa_maddv_h: case CODE_FOR_msa_maddv_w: case CODE_FOR_msa_maddv_d: case CODE_FOR_msa_fmadd_w: case CODE_FOR_msa_fmadd_d: case CODE_FOR_msa_fmsub_w: case CODE_FOR_msa_fmsub_d: /* fma(a, b, c) results into (a * b + c), however builtin_msa_fmadd expects it to be (a + b * c). Swap the 1st and 3rd operands. */ std::swap (ops[1], ops[3]); break; case CODE_FOR_msa_slli_b: case CODE_FOR_msa_slli_h: case CODE_FOR_msa_slli_w: case CODE_FOR_msa_slli_d: case CODE_FOR_msa_srai_b: case CODE_FOR_msa_srai_h: case CODE_FOR_msa_srai_w: case CODE_FOR_msa_srai_d: case CODE_FOR_msa_srli_b: case CODE_FOR_msa_srli_h: case CODE_FOR_msa_srli_w: case CODE_FOR_msa_srli_d: gcc_assert (has_target_p && nops == 3); if (CONST_INT_P (ops[2].value)) { rangelo = 0; rangehi = GET_MODE_UNIT_BITSIZE (ops[0].mode) - 1; if (IN_RANGE (INTVAL (ops[2].value), rangelo, rangehi)) { ops[2].mode = ops[0].mode; ops[2].value = mips_gen_const_int_vector (ops[2].mode, INTVAL (ops[2].value)); } else error_opno = 2; } break; case CODE_FOR_msa_insert_b: case CODE_FOR_msa_insert_h: case CODE_FOR_msa_insert_w: case CODE_FOR_msa_insert_d: /* Map the built-ins to insert operations. We need to swap operands, fix up the mode for the element being inserted, and generate a bit mask for vec_merge. */ gcc_assert (has_target_p && nops == 4); std::swap (ops[1], ops[2]); std::swap (ops[1], ops[3]); imode = GET_MODE_INNER (ops[0].mode); ops[1].value = lowpart_subreg (imode, ops[1].value, ops[1].mode); ops[1].mode = imode; rangelo = 0; rangehi = GET_MODE_NUNITS (ops[0].mode) - 1; if (CONST_INT_P (ops[3].value) && IN_RANGE (INTVAL (ops[3].value), rangelo, rangehi)) ops[3].value = GEN_INT (1 << INTVAL (ops[3].value)); else error_opno = 2; break; case CODE_FOR_msa_insve_b: case CODE_FOR_msa_insve_h: case CODE_FOR_msa_insve_w: case CODE_FOR_msa_insve_d: /* Map the built-ins to element insert operations. We need to swap operands and generate a bit mask. */ gcc_assert (has_target_p && nops == 4); std::swap (ops[1], ops[2]); std::swap (ops[1], ops[3]); rangelo = 0; rangehi = GET_MODE_NUNITS (ops[0].mode) - 1; if (CONST_INT_P (ops[3].value) && IN_RANGE (INTVAL (ops[3].value), rangelo, rangehi)) ops[3].value = GEN_INT (1 << INTVAL (ops[3].value)); else error_opno = 2; break; case CODE_FOR_msa_shf_b: case CODE_FOR_msa_shf_h: case CODE_FOR_msa_shf_w: case CODE_FOR_msa_shf_w_f: gcc_assert (has_target_p && nops == 3); ops[2].value = mips_gen_const_int_vector_shuffle (ops[0].mode, INTVAL (ops[2].value)); break; case CODE_FOR_msa_vshf_b: case CODE_FOR_msa_vshf_h: case CODE_FOR_msa_vshf_w: case CODE_FOR_msa_vshf_d: gcc_assert (has_target_p && nops == 4); std::swap (ops[1], ops[3]); break; case CODE_FOR_msa_dpadd_s_w: case CODE_FOR_msa_dpadd_s_h: case CODE_FOR_msa_dpadd_s_d: case CODE_FOR_msa_dpadd_u_w: case CODE_FOR_msa_dpadd_u_h: case CODE_FOR_msa_dpadd_u_d: case CODE_FOR_msa_dpsub_s_w: case CODE_FOR_msa_dpsub_s_h: case CODE_FOR_msa_dpsub_s_d: case CODE_FOR_msa_dpsub_u_w: case CODE_FOR_msa_dpsub_u_h: case CODE_FOR_msa_dpsub_u_d: /* Force the operands which correspond to the same in-out register to have the same pseudo assigned to them. If the input operand is not REG, create one for it. */ if (!REG_P (ops[1].value)) ops[1].value = copy_to_mode_reg (ops[1].mode, ops[1].value); create_output_operand (&ops[0], ops[1].value, ops[1].mode); break; default: break; } if (error_opno != 0) { error ("argument %d to the built-in must be a constant" " in range %d to %d", error_opno, rangelo, rangehi); return has_target_p ? gen_reg_rtx (ops[0].mode) : const0_rtx; } else if (!maybe_expand_insn (icode, nops, ops)) { error ("invalid argument to built-in function"); return has_target_p ? gen_reg_rtx (ops[0].mode) : const0_rtx; } return has_target_p ? ops[0].value : const0_rtx; } /* Expand a floating-point comparison for built-in function call EXP. The first NARGS arguments are the values to be compared. ICODE is the .md pattern that does the comparison and COND is the condition that is being tested. Return an rtx for the result. */ static rtx mips_expand_builtin_compare_1 (enum insn_code icode, enum mips_fp_condition cond, tree exp, int nargs) { struct expand_operand ops[MAX_RECOG_OPERANDS]; rtx output; int opno, argno; /* The instruction should have a target operand, an operand for each argument, and an operand for COND. */ gcc_assert (nargs + 2 == insn_data[(int) icode].n_generator_args); output = mips_allocate_fcc (insn_data[(int) icode].operand[0].mode); opno = 0; create_fixed_operand (&ops[opno++], output); for (argno = 0; argno < nargs; argno++) mips_prepare_builtin_arg (&ops[opno++], exp, argno); create_integer_operand (&ops[opno++], (int) cond); return mips_expand_builtin_insn (icode, opno, ops, true); } /* Expand a MIPS_BUILTIN_DIRECT or MIPS_BUILTIN_DIRECT_NO_TARGET function; HAS_TARGET_P says which. EXP is the CALL_EXPR that calls the function and ICODE is the code of the associated .md pattern. TARGET, if nonnull, suggests a good place to put the result. */ static rtx mips_expand_builtin_direct (enum insn_code icode, rtx target, tree exp, bool has_target_p) { struct expand_operand ops[MAX_RECOG_OPERANDS]; int opno, argno; /* Map any target to operand 0. */ opno = 0; if (has_target_p) create_output_operand (&ops[opno++], target, TYPE_MODE (TREE_TYPE (exp))); /* Map the arguments to the other operands. */ gcc_assert (opno + call_expr_nargs (exp) == insn_data[icode].n_generator_args); for (argno = 0; argno < call_expr_nargs (exp); argno++) mips_prepare_builtin_arg (&ops[opno++], exp, argno); return mips_expand_builtin_insn (icode, opno, ops, has_target_p); } /* Expand a __builtin_mips_movt_*_ps or __builtin_mips_movf_*_ps function; TYPE says which. EXP is the CALL_EXPR that calls the function, ICODE is the instruction that should be used to compare the first two arguments, and COND is the condition it should test. TARGET, if nonnull, suggests a good place to put the result. */ static rtx mips_expand_builtin_movtf (enum mips_builtin_type type, enum insn_code icode, enum mips_fp_condition cond, rtx target, tree exp) { struct expand_operand ops[4]; rtx cmp_result; cmp_result = mips_expand_builtin_compare_1 (icode, cond, exp, 2); create_output_operand (&ops[0], target, TYPE_MODE (TREE_TYPE (exp))); if (type == MIPS_BUILTIN_MOVT) { mips_prepare_builtin_arg (&ops[2], exp, 2); mips_prepare_builtin_arg (&ops[1], exp, 3); } else { mips_prepare_builtin_arg (&ops[1], exp, 2); mips_prepare_builtin_arg (&ops[2], exp, 3); } create_fixed_operand (&ops[3], cmp_result); return mips_expand_builtin_insn (CODE_FOR_mips_cond_move_tf_ps, 4, ops, true); } /* Expand an MSA built-in for a compare and branch instruction specified by ICODE, set a general-purpose register to 1 if the branch was taken, 0 otherwise. */ static rtx mips_expand_builtin_msa_test_branch (enum insn_code icode, tree exp) { struct expand_operand ops[3]; rtx_insn *cbranch; rtx_code_label *true_label, *done_label; rtx cmp_result; true_label = gen_label_rtx (); done_label = gen_label_rtx (); create_input_operand (&ops[0], true_label, TYPE_MODE (TREE_TYPE (exp))); mips_prepare_builtin_arg (&ops[1], exp, 0); create_fixed_operand (&ops[2], const0_rtx); /* Make sure that the operand 1 is a REG. */ if (GET_CODE (ops[1].value) != REG) ops[1].value = force_reg (ops[1].mode, ops[1].value); if ((cbranch = maybe_gen_insn (icode, 3, ops)) == NULL_RTX) error ("failed to expand built-in function"); cmp_result = gen_reg_rtx (SImode); /* First assume that CMP_RESULT is false. */ mips_emit_move (cmp_result, const0_rtx); /* Branch to TRUE_LABEL if CBRANCH is taken and DONE_LABEL otherwise. */ emit_jump_insn (cbranch); emit_jump_insn (gen_jump (done_label)); emit_barrier (); /* Set CMP_RESULT to true if the branch was taken. */ emit_label (true_label); mips_emit_move (cmp_result, const1_rtx); emit_label (done_label); return cmp_result; } /* Move VALUE_IF_TRUE into TARGET if CONDITION is true; move VALUE_IF_FALSE into TARGET otherwise. Return TARGET. */ static rtx mips_builtin_branch_and_move (rtx condition, rtx target, rtx value_if_true, rtx value_if_false) { rtx_code_label *true_label, *done_label; true_label = gen_label_rtx (); done_label = gen_label_rtx (); /* First assume that CONDITION is false. */ mips_emit_move (target, value_if_false); /* Branch to TRUE_LABEL if CONDITION is true and DONE_LABEL otherwise. */ emit_jump_insn (gen_condjump (condition, true_label)); emit_jump_insn (gen_jump (done_label)); emit_barrier (); /* Fix TARGET if CONDITION is true. */ emit_label (true_label); mips_emit_move (target, value_if_true); emit_label (done_label); return target; } /* Expand a comparison built-in function of type BUILTIN_TYPE. EXP is the CALL_EXPR that calls the function, ICODE is the code of the comparison instruction, and COND is the condition it should test. TARGET, if nonnull, suggests a good place to put the boolean result. */ static rtx mips_expand_builtin_compare (enum mips_builtin_type builtin_type, enum insn_code icode, enum mips_fp_condition cond, rtx target, tree exp) { rtx offset, condition, cmp_result; if (target == 0 || GET_MODE (target) != SImode) target = gen_reg_rtx (SImode); cmp_result = mips_expand_builtin_compare_1 (icode, cond, exp, call_expr_nargs (exp)); /* If the comparison sets more than one register, we define the result to be 0 if all registers are false and -1 if all registers are true. The value of the complete result is indeterminate otherwise. */ switch (builtin_type) { case MIPS_BUILTIN_CMP_ALL: condition = gen_rtx_NE (VOIDmode, cmp_result, constm1_rtx); return mips_builtin_branch_and_move (condition, target, const0_rtx, const1_rtx); case MIPS_BUILTIN_CMP_UPPER: case MIPS_BUILTIN_CMP_LOWER: offset = GEN_INT (builtin_type == MIPS_BUILTIN_CMP_UPPER); condition = gen_single_cc (cmp_result, offset); return mips_builtin_branch_and_move (condition, target, const1_rtx, const0_rtx); default: condition = gen_rtx_NE (VOIDmode, cmp_result, const0_rtx); return mips_builtin_branch_and_move (condition, target, const1_rtx, const0_rtx); } } /* Expand a bposge built-in function of type BUILTIN_TYPE. TARGET, if nonnull, suggests a good place to put the boolean result. */ static rtx mips_expand_builtin_bposge (enum mips_builtin_type builtin_type, rtx target) { rtx condition, cmp_result; int cmp_value; if (target == 0 || GET_MODE (target) != SImode) target = gen_reg_rtx (SImode); cmp_result = gen_rtx_REG (CCDSPmode, CCDSP_PO_REGNUM); if (builtin_type == MIPS_BUILTIN_BPOSGE32) cmp_value = 32; else gcc_assert (0); condition = gen_rtx_GE (VOIDmode, cmp_result, GEN_INT (cmp_value)); return mips_builtin_branch_and_move (condition, target, const1_rtx, const0_rtx); } /* Implement TARGET_EXPAND_BUILTIN. */ static rtx mips_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, machine_mode mode, int ignore) { tree fndecl; unsigned int fcode, avail; const struct mips_builtin_description *d; fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); fcode = DECL_MD_FUNCTION_CODE (fndecl); gcc_assert (fcode < ARRAY_SIZE (mips_builtins)); d = &mips_builtins[fcode]; avail = d->avail (); gcc_assert (avail != 0); if (TARGET_MIPS16 && !(avail & BUILTIN_AVAIL_MIPS16)) { error ("built-in function %qE not supported for MIPS16", DECL_NAME (fndecl)); return ignore ? const0_rtx : CONST0_RTX (mode); } switch (d->builtin_type) { case MIPS_BUILTIN_DIRECT: return mips_expand_builtin_direct (d->icode, target, exp, true); case MIPS_BUILTIN_DIRECT_NO_TARGET: return mips_expand_builtin_direct (d->icode, target, exp, false); case MIPS_BUILTIN_MOVT: case MIPS_BUILTIN_MOVF: return mips_expand_builtin_movtf (d->builtin_type, d->icode, d->cond, target, exp); case MIPS_BUILTIN_CMP_ANY: case MIPS_BUILTIN_CMP_ALL: case MIPS_BUILTIN_CMP_UPPER: case MIPS_BUILTIN_CMP_LOWER: case MIPS_BUILTIN_CMP_SINGLE: return mips_expand_builtin_compare (d->builtin_type, d->icode, d->cond, target, exp); case MIPS_BUILTIN_MSA_TEST_BRANCH: return mips_expand_builtin_msa_test_branch (d->icode, exp); case MIPS_BUILTIN_BPOSGE32: return mips_expand_builtin_bposge (d->builtin_type, target); } gcc_unreachable (); } /* An entry in the MIPS16 constant pool. VALUE is the pool constant, MODE is its mode, and LABEL is the CODE_LABEL associated with it. */ struct mips16_constant { struct mips16_constant *next; rtx value; rtx_code_label *label; machine_mode mode; }; /* Information about an incomplete MIPS16 constant pool. FIRST is the first constant, HIGHEST_ADDRESS is the highest address that the first byte of the pool can have, and INSN_ADDRESS is the current instruction address. */ struct mips16_constant_pool { struct mips16_constant *first; int highest_address; int insn_address; }; /* Add constant VALUE to POOL and return its label. MODE is the value's mode (used for CONST_INTs, etc.). */ static rtx_code_label * mips16_add_constant (struct mips16_constant_pool *pool, rtx value, machine_mode mode) { struct mips16_constant **p, *c; bool first_of_size_p; /* See whether the constant is already in the pool. If so, return the existing label, otherwise leave P pointing to the place where the constant should be added. Keep the pool sorted in increasing order of mode size so that we can reduce the number of alignments needed. */ first_of_size_p = true; for (p = &pool->first; *p != 0; p = &(*p)->next) { if (mode == (*p)->mode && rtx_equal_p (value, (*p)->value)) return (*p)->label; if (GET_MODE_SIZE (mode) < GET_MODE_SIZE ((*p)->mode)) break; if (GET_MODE_SIZE (mode) == GET_MODE_SIZE ((*p)->mode)) first_of_size_p = false; } /* In the worst case, the constant needed by the earliest instruction will end up at the end of the pool. The entire pool must then be accessible from that instruction. When adding the first constant, set the pool's highest address to the address of the first out-of-range byte. Adjust this address downwards each time a new constant is added. */ if (pool->first == 0) /* For LWPC, ADDIUPC and DADDIUPC, the base PC value is the address of the instruction with the lowest two bits clear. The base PC value for LDPC has the lowest three bits clear. Assume the worst case here; namely that the PC-relative instruction occupies the last 2 bytes in an aligned word. */ pool->highest_address = pool->insn_address - (UNITS_PER_WORD - 2) + 0x8000; pool->highest_address -= GET_MODE_SIZE (mode); if (first_of_size_p) /* Take into account the worst possible padding due to alignment. */ pool->highest_address -= GET_MODE_SIZE (mode) - 1; /* Create a new entry. */ c = XNEW (struct mips16_constant); c->value = value; c->mode = mode; c->label = gen_label_rtx (); c->next = *p; *p = c; return c->label; } /* Output constant VALUE after instruction INSN and return the last instruction emitted. MODE is the mode of the constant. */ static rtx_insn * mips16_emit_constants_1 (machine_mode mode, rtx value, rtx_insn *insn) { if (SCALAR_INT_MODE_P (mode) || ALL_SCALAR_FIXED_POINT_MODE_P (mode)) { rtx size = GEN_INT (GET_MODE_SIZE (mode)); return emit_insn_after (gen_consttable_int (value, size), insn); } if (SCALAR_FLOAT_MODE_P (mode)) return emit_insn_after (gen_consttable_float (value), insn); if (VECTOR_MODE_P (mode)) { int i; for (i = 0; i < CONST_VECTOR_NUNITS (value); i++) insn = mips16_emit_constants_1 (GET_MODE_INNER (mode), CONST_VECTOR_ELT (value, i), insn); return insn; } gcc_unreachable (); } /* Dump out the constants in CONSTANTS after INSN. Record the initial label number in the `consttable' and `consttable_end' insns emitted at the beginning and the end of the constant pool respectively, so that individual pools can be uniquely marked as data for the purpose of disassembly. */ static void mips16_emit_constants (struct mips16_constant *constants, rtx_insn *insn) { int label_num = constants ? CODE_LABEL_NUMBER (constants->label) : 0; struct mips16_constant *c, *next; int align; align = 0; if (constants) insn = emit_insn_after (gen_consttable (GEN_INT (label_num)), insn); for (c = constants; c != NULL; c = next) { /* If necessary, increase the alignment of PC. */ if (align < GET_MODE_SIZE (c->mode)) { int align_log = floor_log2 (GET_MODE_SIZE (c->mode)); insn = emit_insn_after (gen_align (GEN_INT (align_log)), insn); } align = GET_MODE_SIZE (c->mode); insn = emit_label_after (c->label, insn); insn = mips16_emit_constants_1 (c->mode, c->value, insn); next = c->next; free (c); } if (constants) insn = emit_insn_after (gen_consttable_end (GEN_INT (label_num)), insn); emit_barrier_after (insn); } /* Return the length of instruction INSN. */ static int mips16_insn_length (rtx_insn *insn) { if (JUMP_TABLE_DATA_P (insn)) { rtx body = PATTERN (insn); if (GET_CODE (body) == ADDR_VEC) return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 0); else if (GET_CODE (body) == ADDR_DIFF_VEC) return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 1); else gcc_unreachable (); } return get_attr_length (insn); } /* If *X is a symbolic constant that refers to the constant pool, add the constant to POOL and rewrite *X to use the constant's label. */ static void mips16_rewrite_pool_constant (struct mips16_constant_pool *pool, rtx *x) { rtx base, offset; rtx_code_label *label; split_const (*x, &base, &offset); if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base)) { label = mips16_add_constant (pool, copy_rtx (get_pool_constant (base)), get_pool_mode (base)); base = gen_rtx_LABEL_REF (Pmode, label); *x = mips_unspec_address_offset (base, offset, SYMBOL_PC_RELATIVE); } } /* Rewrite INSN so that constant pool references refer to the constant's label instead. */ static void mips16_rewrite_pool_refs (rtx_insn *insn, struct mips16_constant_pool *pool) { subrtx_ptr_iterator::array_type array; FOR_EACH_SUBRTX_PTR (iter, array, &PATTERN (insn), ALL) { rtx *loc = *iter; if (force_to_mem_operand (*loc, Pmode)) { rtx mem = force_const_mem (GET_MODE (*loc), *loc); validate_change (insn, loc, mem, false); } if (MEM_P (*loc)) { mips16_rewrite_pool_constant (pool, &XEXP (*loc, 0)); iter.skip_subrtxes (); } else { if (TARGET_MIPS16_TEXT_LOADS) mips16_rewrite_pool_constant (pool, loc); if (GET_CODE (*loc) == CONST /* Don't rewrite the __mips16_rdwr symbol. */ || (GET_CODE (*loc) == UNSPEC && XINT (*loc, 1) == UNSPEC_TLS_GET_TP)) iter.skip_subrtxes (); } } } /* Return whether CFG is used in mips_reorg. */ static bool mips_cfg_in_reorg (void) { return (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE || TARGET_RELAX_PIC_CALLS); } /* Build MIPS16 constant pools. Split the instructions if SPLIT_P, otherwise assume that they are already split. */ static void mips16_lay_out_constants (bool split_p) { struct mips16_constant_pool pool; rtx_insn *insn, *barrier; if (!TARGET_MIPS16_PCREL_LOADS) return; if (split_p) { if (mips_cfg_in_reorg ()) split_all_insns (); else split_all_insns_noflow (); } barrier = 0; memset (&pool, 0, sizeof (pool)); for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { /* Rewrite constant pool references in INSN. */ if (USEFUL_INSN_P (insn)) mips16_rewrite_pool_refs (insn, &pool); pool.insn_address += mips16_insn_length (insn); if (pool.first != NULL) { /* If there are no natural barriers between the first user of the pool and the highest acceptable address, we'll need to create a new instruction to jump around the constant pool. In the worst case, this instruction will be 4 bytes long. If it's too late to do this transformation after INSN, do it immediately before INSN. */ if (barrier == 0 && pool.insn_address + 4 > pool.highest_address) { rtx_code_label *label; rtx_insn *jump; label = gen_label_rtx (); jump = emit_jump_insn_before (gen_jump (label), insn); JUMP_LABEL (jump) = label; LABEL_NUSES (label) = 1; barrier = emit_barrier_after (jump); emit_label_after (label, barrier); pool.insn_address += 4; } /* See whether the constant pool is now out of range of the first user. If so, output the constants after the previous barrier. Note that any instructions between BARRIER and INSN (inclusive) will use negative offsets to refer to the pool. */ if (pool.insn_address > pool.highest_address) { mips16_emit_constants (pool.first, barrier); pool.first = NULL; barrier = 0; } else if (BARRIER_P (insn)) barrier = insn; } } mips16_emit_constants (pool.first, get_last_insn ()); } /* Return true if it is worth r10k_simplify_address's while replacing an address with X. We are looking for constants, and for addresses at a known offset from the incoming stack pointer. */ static bool r10k_simplified_address_p (rtx x) { if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))) x = XEXP (x, 0); return x == virtual_incoming_args_rtx || CONSTANT_P (x); } /* X is an expression that appears in INSN. Try to use the UD chains to simplify it, returning the simplified form on success and the original form otherwise. Replace the incoming value of $sp with virtual_incoming_args_rtx (which should never occur in X otherwise). */ static rtx r10k_simplify_address (rtx x, rtx_insn *insn) { rtx newx, op0, op1, set, note; rtx_insn *def_insn; df_ref use, def; struct df_link *defs; newx = NULL_RTX; if (UNARY_P (x)) { op0 = r10k_simplify_address (XEXP (x, 0), insn); if (op0 != XEXP (x, 0)) newx = simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0, GET_MODE (XEXP (x, 0))); } else if (BINARY_P (x)) { op0 = r10k_simplify_address (XEXP (x, 0), insn); op1 = r10k_simplify_address (XEXP (x, 1), insn); if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1)) newx = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1); } else if (GET_CODE (x) == LO_SUM) { /* LO_SUMs can be offset from HIGHs, if we know they won't overflow. See mips_classify_address for the rationale behind the lax check. */ op0 = r10k_simplify_address (XEXP (x, 0), insn); if (GET_CODE (op0) == HIGH) newx = XEXP (x, 1); } else if (REG_P (x)) { /* Uses are recorded by regno_reg_rtx, not X itself. */ use = df_find_use (insn, regno_reg_rtx[REGNO (x)]); gcc_assert (use); defs = DF_REF_CHAIN (use); /* Require a single definition. */ if (defs && defs->next == NULL) { def = defs->ref; if (DF_REF_IS_ARTIFICIAL (def)) { /* Replace the incoming value of $sp with virtual_incoming_args_rtx. */ if (x == stack_pointer_rtx && DF_REF_BB (def) == ENTRY_BLOCK_PTR_FOR_FN (cfun)) newx = virtual_incoming_args_rtx; } else if (dominated_by_p (CDI_DOMINATORS, DF_REF_BB (use), DF_REF_BB (def))) { /* Make sure that DEF_INSN is a single set of REG. */ def_insn = DF_REF_INSN (def); if (NONJUMP_INSN_P (def_insn)) { set = single_set (def_insn); if (set && rtx_equal_p (SET_DEST (set), x)) { /* Prefer to use notes, since the def-use chains are often shorter. */ note = find_reg_equal_equiv_note (def_insn); if (note) newx = XEXP (note, 0); else newx = SET_SRC (set); newx = r10k_simplify_address (newx, def_insn); } } } } } if (newx && r10k_simplified_address_p (newx)) return newx; return x; } /* Return true if ADDRESS is known to be an uncached address on R10K systems. */ static bool r10k_uncached_address_p (unsigned HOST_WIDE_INT address) { unsigned HOST_WIDE_INT upper; /* Check for KSEG1. */ if (address + 0x60000000 < 0x20000000) return true; /* Check for uncached XKPHYS addresses. */ if (Pmode == DImode) { upper = (address >> 40) & 0xf9ffff; if (upper == 0x900000 || upper == 0xb80000) return true; } return false; } /* Return true if we can prove that an access to address X in instruction INSN would be safe from R10K speculation. This X is a general expression; it might not be a legitimate address. */ static bool r10k_safe_address_p (rtx x, rtx_insn *insn) { rtx base, offset; HOST_WIDE_INT offset_val; x = r10k_simplify_address (x, insn); /* Check for references to the stack frame. It doesn't really matter how much of the frame has been allocated at INSN; -mr10k-cache-barrier allows us to assume that accesses to any part of the eventual frame is safe from speculation at any point in the function. */ mips_split_plus (x, &base, &offset_val); if (base == virtual_incoming_args_rtx && offset_val >= -cfun->machine->frame.total_size && offset_val < cfun->machine->frame.args_size) return true; /* Check for uncached addresses. */ if (CONST_INT_P (x)) return r10k_uncached_address_p (INTVAL (x)); /* Check for accesses to a static object. */ split_const (x, &base, &offset); return offset_within_block_p (base, INTVAL (offset)); } /* Return true if a MEM with MEM_EXPR EXPR and MEM_OFFSET OFFSET is an in-range access to an automatic variable, or to an object with a link-time-constant address. */ static bool r10k_safe_mem_expr_p (tree expr, unsigned HOST_WIDE_INT offset) { poly_int64 bitoffset, bitsize; tree inner, var_offset; machine_mode mode; int unsigned_p, reverse_p, volatile_p; inner = get_inner_reference (expr, &bitsize, &bitoffset, &var_offset, &mode, &unsigned_p, &reverse_p, &volatile_p); if (!DECL_P (inner) || !DECL_SIZE_UNIT (inner) || var_offset) return false; offset += bitoffset / BITS_PER_UNIT; return offset < tree_to_uhwi (DECL_SIZE_UNIT (inner)); } /* Return true if X contains a MEM that is not safe from R10K speculation. INSN is the instruction that contains X. */ static bool r10k_needs_protection_p_1 (rtx x, rtx_insn *insn) { subrtx_var_iterator::array_type array; FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST) { rtx mem = *iter; if (MEM_P (mem)) { if ((MEM_EXPR (mem) && MEM_OFFSET_KNOWN_P (mem) && r10k_safe_mem_expr_p (MEM_EXPR (mem), MEM_OFFSET (mem))) || r10k_safe_address_p (XEXP (mem, 0), insn)) iter.skip_subrtxes (); else return true; } } return false; } /* A note_stores callback for which DATA points to an instruction pointer. If *DATA is nonnull, make it null if it X contains a MEM that is not safe from R10K speculation. */ static void r10k_needs_protection_p_store (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) { rtx_insn **insn_ptr; insn_ptr = (rtx_insn **) data; if (*insn_ptr && r10k_needs_protection_p_1 (x, *insn_ptr)) *insn_ptr = NULL; } /* X is the pattern of a call instruction. Return true if the call is not to a declared function. */ static bool r10k_needs_protection_p_call (const_rtx x) { subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, NONCONST) { const_rtx mem = *iter; if (MEM_P (mem)) { const_rtx addr = XEXP (mem, 0); if (GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_DECL (addr)) iter.skip_subrtxes (); else return true; } } return false; } /* Return true if instruction INSN needs to be protected by an R10K cache barrier. */ static bool r10k_needs_protection_p (rtx_insn *insn) { if (CALL_P (insn)) return r10k_needs_protection_p_call (PATTERN (insn)); if (mips_r10k_cache_barrier == R10K_CACHE_BARRIER_STORE) { note_stores (insn, r10k_needs_protection_p_store, &insn); return insn == NULL_RTX; } return r10k_needs_protection_p_1 (PATTERN (insn), insn); } /* Return true if BB is only reached by blocks in PROTECTED_BBS and if every edge is unconditional. */ static bool r10k_protected_bb_p (basic_block bb, sbitmap protected_bbs) { edge_iterator ei; edge e; FOR_EACH_EDGE (e, ei, bb->preds) if (!single_succ_p (e->src) || !bitmap_bit_p (protected_bbs, e->src->index) || (e->flags & EDGE_COMPLEX) != 0) return false; return true; } /* Implement -mr10k-cache-barrier= for the current function. */ static void r10k_insert_cache_barriers (void) { int *rev_post_order; unsigned int i, n; basic_block bb; sbitmap protected_bbs; rtx_insn *insn, *end; rtx unprotected_region; if (TARGET_MIPS16) { sorry ("%qs does not support MIPS16 code", "-mr10k-cache-barrier"); return; } /* Calculate dominators. */ calculate_dominance_info (CDI_DOMINATORS); /* Bit X of PROTECTED_BBS is set if the last operation in basic block X is protected by a cache barrier. */ protected_bbs = sbitmap_alloc (last_basic_block_for_fn (cfun)); bitmap_clear (protected_bbs); /* Iterate over the basic blocks in reverse post-order. */ rev_post_order = XNEWVEC (int, last_basic_block_for_fn (cfun)); n = pre_and_rev_post_order_compute (NULL, rev_post_order, false); for (i = 0; i < n; i++) { bb = BASIC_BLOCK_FOR_FN (cfun, rev_post_order[i]); /* If this block is only reached by unconditional edges, and if the source of every edge is protected, the beginning of the block is also protected. */ if (r10k_protected_bb_p (bb, protected_bbs)) unprotected_region = NULL_RTX; else unprotected_region = pc_rtx; end = NEXT_INSN (BB_END (bb)); /* UNPROTECTED_REGION is: - null if we are processing a protected region, - pc_rtx if we are processing an unprotected region but have not yet found the first instruction in it - the first instruction in an unprotected region otherwise. */ for (insn = BB_HEAD (bb); insn != end; insn = NEXT_INSN (insn)) { if (unprotected_region && USEFUL_INSN_P (insn)) { if (recog_memoized (insn) == CODE_FOR_mips_cache) /* This CACHE instruction protects the following code. */ unprotected_region = NULL_RTX; else { /* See if INSN is the first instruction in this unprotected region. */ if (unprotected_region == pc_rtx) unprotected_region = insn; /* See if INSN needs to be protected. If so, we must insert a cache barrier somewhere between PREV_INSN (UNPROTECTED_REGION) and INSN. It isn't clear which position is better performance-wise, but as a tie-breaker, we assume that it is better to allow delay slots to be back-filled where possible, and that it is better not to insert barriers in the middle of already-scheduled code. We therefore insert the barrier at the beginning of the region. */ if (r10k_needs_protection_p (insn)) { emit_insn_before (gen_r10k_cache_barrier (), as_a (unprotected_region)); unprotected_region = NULL_RTX; } } } if (CALL_P (insn)) /* The called function is not required to protect the exit path. The code that follows a call is therefore unprotected. */ unprotected_region = pc_rtx; } /* Record whether the end of this block is protected. */ if (unprotected_region == NULL_RTX) bitmap_set_bit (protected_bbs, bb->index); } XDELETEVEC (rev_post_order); sbitmap_free (protected_bbs); free_dominance_info (CDI_DOMINATORS); } /* If INSN is a call, return the underlying CALL expr. Return NULL_RTX otherwise. If INSN has two call rtx, then store the second one in SECOND_CALL. */ static rtx mips_call_expr_from_insn (rtx_insn *insn, rtx *second_call) { rtx x; rtx x2; if (!CALL_P (insn)) return NULL_RTX; x = PATTERN (insn); if (GET_CODE (x) == PARALLEL) { /* Calls returning complex values have two CALL rtx. Look for the second one here, and return it via the SECOND_CALL arg. */ x2 = XVECEXP (x, 0, 1); if (GET_CODE (x2) == SET) x2 = XEXP (x2, 1); if (GET_CODE (x2) == CALL) *second_call = x2; x = XVECEXP (x, 0, 0); } if (GET_CODE (x) == SET) x = XEXP (x, 1); gcc_assert (GET_CODE (x) == CALL); return x; } /* REG is set in DEF. See if the definition is one of the ways we load a register with a symbol address for a mips_use_pic_fn_addr_reg_p call. If it is, return the symbol reference of the function, otherwise return NULL_RTX. If RECURSE_P is true, use mips_find_pic_call_symbol to interpret the values of source registers, otherwise treat such registers as having an unknown value. */ static rtx mips_pic_call_symbol_from_set (df_ref def, rtx reg, bool recurse_p) { rtx_insn *def_insn; rtx set; if (DF_REF_IS_ARTIFICIAL (def)) return NULL_RTX; def_insn = DF_REF_INSN (def); set = single_set (def_insn); if (set && rtx_equal_p (SET_DEST (set), reg)) { rtx note, src, symbol; /* First see whether the source is a plain symbol. This is used when calling symbols that are not lazily bound. */ src = SET_SRC (set); if (GET_CODE (src) == SYMBOL_REF) return src; /* Handle %call16 references. */ symbol = mips_strip_unspec_call (src); if (symbol) { gcc_assert (GET_CODE (symbol) == SYMBOL_REF); return symbol; } /* If we have something more complicated, look for a REG_EQUAL or REG_EQUIV note. */ note = find_reg_equal_equiv_note (def_insn); if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF) return XEXP (note, 0); /* Follow at most one simple register copy. Such copies are interesting in cases like: for (...) { locally_binding_fn (...); } and: locally_binding_fn (...); ... locally_binding_fn (...); where the load of locally_binding_fn can legitimately be hoisted or shared. However, we do not expect to see complex chains of copies, so a full worklist solution to the problem would probably be overkill. */ if (recurse_p && REG_P (src)) return mips_find_pic_call_symbol (def_insn, src, false); } return NULL_RTX; } /* Find the definition of the use of REG in INSN. See if the definition is one of the ways we load a register with a symbol address for a mips_use_pic_fn_addr_reg_p call. If it is return the symbol reference of the function, otherwise return NULL_RTX. RECURSE_P is as for mips_pic_call_symbol_from_set. */ static rtx mips_find_pic_call_symbol (rtx_insn *insn, rtx reg, bool recurse_p) { df_ref use; struct df_link *defs; rtx symbol; use = df_find_use (insn, regno_reg_rtx[REGNO (reg)]); if (!use) return NULL_RTX; defs = DF_REF_CHAIN (use); if (!defs) return NULL_RTX; symbol = mips_pic_call_symbol_from_set (defs->ref, reg, recurse_p); if (!symbol) return NULL_RTX; /* If we have more than one definition, they need to be identical. */ for (defs = defs->next; defs; defs = defs->next) { rtx other; other = mips_pic_call_symbol_from_set (defs->ref, reg, recurse_p); if (!rtx_equal_p (symbol, other)) return NULL_RTX; } return symbol; } /* Replace the args_size operand of the call expression CALL with the call-attribute UNSPEC and fill in SYMBOL as the function symbol. */ static void mips_annotate_pic_call_expr (rtx call, rtx symbol) { rtx args_size; args_size = XEXP (call, 1); XEXP (call, 1) = gen_rtx_UNSPEC (GET_MODE (args_size), gen_rtvec (2, args_size, symbol), UNSPEC_CALL_ATTR); } /* OPERANDS[ARGS_SIZE_OPNO] is the arg_size operand of a CALL expression. See if instead of the arg_size argument it contains the call attributes. If yes return true along with setting OPERANDS[ARGS_SIZE_OPNO] to the function symbol from the call attributes. Also return false if ARGS_SIZE_OPNO is -1. */ bool mips_get_pic_call_symbol (rtx *operands, int args_size_opno) { rtx args_size, symbol; if (!TARGET_RELAX_PIC_CALLS || args_size_opno == -1) return false; args_size = operands[args_size_opno]; if (GET_CODE (args_size) != UNSPEC) return false; gcc_assert (XINT (args_size, 1) == UNSPEC_CALL_ATTR); symbol = XVECEXP (args_size, 0, 1); gcc_assert (GET_CODE (symbol) == SYMBOL_REF); operands[args_size_opno] = symbol; return true; } /* Use DF to annotate PIC indirect calls with the function symbol they dispatch to. */ static void mips_annotate_pic_calls (void) { basic_block bb; rtx_insn *insn; FOR_EACH_BB_FN (bb, cfun) FOR_BB_INSNS (bb, insn) { rtx call, reg, symbol, second_call; second_call = 0; call = mips_call_expr_from_insn (insn, &second_call); if (!call) continue; gcc_assert (MEM_P (XEXP (call, 0))); reg = XEXP (XEXP (call, 0), 0); if (!REG_P (reg)) continue; symbol = mips_find_pic_call_symbol (insn, reg, true); if (symbol) { mips_annotate_pic_call_expr (call, symbol); if (second_call) mips_annotate_pic_call_expr (second_call, symbol); } } } /* A temporary variable used by note_uses callbacks, etc. */ static rtx_insn *mips_sim_insn; /* A structure representing the state of the processor pipeline. Used by the mips_sim_* family of functions. */ struct mips_sim { /* The maximum number of instructions that can be issued in a cycle. (Caches mips_issue_rate.) */ unsigned int issue_rate; /* The current simulation time. */ unsigned int time; /* How many more instructions can be issued in the current cycle. */ unsigned int insns_left; /* LAST_SET[X].INSN is the last instruction to set register X. LAST_SET[X].TIME is the time at which that instruction was issued. INSN is null if no instruction has yet set register X. */ struct { rtx_insn *insn; unsigned int time; } last_set[FIRST_PSEUDO_REGISTER]; /* The pipeline's current DFA state. */ state_t dfa_state; }; /* Reset STATE to the initial simulation state. */ static void mips_sim_reset (struct mips_sim *state) { curr_state = state->dfa_state; state->time = 0; state->insns_left = state->issue_rate; memset (&state->last_set, 0, sizeof (state->last_set)); state_reset (curr_state); targetm.sched.init (0, false, 0); advance_state (curr_state); } /* Initialize STATE before its first use. DFA_STATE points to an allocated but uninitialized DFA state. */ static void mips_sim_init (struct mips_sim *state, state_t dfa_state) { if (targetm.sched.init_dfa_pre_cycle_insn) targetm.sched.init_dfa_pre_cycle_insn (); if (targetm.sched.init_dfa_post_cycle_insn) targetm.sched.init_dfa_post_cycle_insn (); state->issue_rate = mips_issue_rate (); state->dfa_state = dfa_state; mips_sim_reset (state); } /* Advance STATE by one clock cycle. */ static void mips_sim_next_cycle (struct mips_sim *state) { curr_state = state->dfa_state; state->time++; state->insns_left = state->issue_rate; advance_state (curr_state); } /* Advance simulation state STATE until instruction INSN can read register REG. */ static void mips_sim_wait_reg (struct mips_sim *state, rtx_insn *insn, rtx reg) { unsigned int regno, end_regno; end_regno = END_REGNO (reg); for (regno = REGNO (reg); regno < end_regno; regno++) if (state->last_set[regno].insn != 0) { unsigned int t; t = (state->last_set[regno].time + insn_latency (state->last_set[regno].insn, insn)); while (state->time < t) mips_sim_next_cycle (state); } } /* A note_uses callback. For each register in *X, advance simulation state DATA until mips_sim_insn can read the register's value. */ static void mips_sim_wait_regs_1 (rtx *x, void *data) { subrtx_var_iterator::array_type array; FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST) if (REG_P (*iter)) mips_sim_wait_reg ((struct mips_sim *) data, mips_sim_insn, *iter); } /* Advance simulation state STATE until all of INSN's register dependencies are satisfied. */ static void mips_sim_wait_regs (struct mips_sim *state, rtx_insn *insn) { mips_sim_insn = insn; note_uses (&PATTERN (insn), mips_sim_wait_regs_1, state); } /* Advance simulation state STATE until the units required by instruction INSN are available. */ static void mips_sim_wait_units (struct mips_sim *state, rtx_insn *insn) { state_t tmp_state; tmp_state = alloca (state_size ()); while (state->insns_left == 0 || (memcpy (tmp_state, state->dfa_state, state_size ()), state_transition (tmp_state, insn) >= 0)) mips_sim_next_cycle (state); } /* Advance simulation state STATE until INSN is ready to issue. */ static void mips_sim_wait_insn (struct mips_sim *state, rtx_insn *insn) { mips_sim_wait_regs (state, insn); mips_sim_wait_units (state, insn); } /* mips_sim_insn has just set X. Update the LAST_SET array in simulation state DATA. */ static void mips_sim_record_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) { struct mips_sim *state; state = (struct mips_sim *) data; if (REG_P (x)) { unsigned int regno, end_regno; end_regno = END_REGNO (x); for (regno = REGNO (x); regno < end_regno; regno++) { state->last_set[regno].insn = mips_sim_insn; state->last_set[regno].time = state->time; } } } /* Issue instruction INSN in scheduler state STATE. Assume that INSN can issue immediately (i.e., that mips_sim_wait_insn has already been called). */ static void mips_sim_issue_insn (struct mips_sim *state, rtx_insn *insn) { curr_state = state->dfa_state; state_transition (curr_state, insn); state->insns_left = targetm.sched.variable_issue (0, false, insn, state->insns_left); mips_sim_insn = insn; note_stores (insn, mips_sim_record_set, state); } /* Simulate issuing a NOP in state STATE. */ static void mips_sim_issue_nop (struct mips_sim *state) { if (state->insns_left == 0) mips_sim_next_cycle (state); state->insns_left--; } /* Update simulation state STATE so that it's ready to accept the instruction after INSN. INSN should be part of the main rtl chain, not a member of a SEQUENCE. */ static void mips_sim_finish_insn (struct mips_sim *state, rtx_insn *insn) { /* If INSN is a jump with an implicit delay slot, simulate a nop. */ if (JUMP_P (insn)) mips_sim_issue_nop (state); switch (GET_CODE (SEQ_BEGIN (insn))) { case CODE_LABEL: case CALL_INSN: /* We can't predict the processor state after a call or label. */ mips_sim_reset (state); break; case JUMP_INSN: /* The delay slots of branch likely instructions are only executed when the branch is taken. Therefore, if the caller has simulated the delay slot instruction, STATE does not really reflect the state of the pipeline for the instruction after the delay slot. Also, branch likely instructions tend to incur a penalty when not taken, so there will probably be an extra delay between the branch and the instruction after the delay slot. */ if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn))) mips_sim_reset (state); break; default: break; } } /* Use simulator state STATE to calculate the execution time of instruction sequence SEQ. */ static unsigned int mips_seq_time (struct mips_sim *state, rtx_insn *seq) { mips_sim_reset (state); for (rtx_insn *insn = seq; insn; insn = NEXT_INSN (insn)) { mips_sim_wait_insn (state, insn); mips_sim_issue_insn (state, insn); } return state->time; } /* Return the execution-time cost of mips_tuning_info.fast_mult_zero_zero_p setting SETTING, using STATE to simulate instruction sequences. */ static unsigned int mips_mult_zero_zero_cost (struct mips_sim *state, bool setting) { mips_tuning_info.fast_mult_zero_zero_p = setting; start_sequence (); machine_mode dword_mode = TARGET_64BIT ? TImode : DImode; rtx hilo = gen_rtx_REG (dword_mode, MD_REG_FIRST); mips_emit_move_or_split (hilo, const0_rtx, SPLIT_FOR_SPEED); /* If the target provides mulsidi3_32bit then that's the most likely consumer of the result. Test for bypasses. */ if (dword_mode == DImode && HAVE_maddsidi4) { rtx gpr = gen_rtx_REG (SImode, GP_REG_FIRST + 4); emit_insn (gen_maddsidi4 (hilo, gpr, gpr, hilo)); } unsigned int time = mips_seq_time (state, get_insns ()); end_sequence (); return time; } /* Check the relative speeds of "MULT $0,$0" and "MTLO $0; MTHI $0" and set up mips_tuning_info.fast_mult_zero_zero_p accordingly. Prefer MULT -- which is shorter -- in the event of a tie. */ static void mips_set_fast_mult_zero_zero_p (struct mips_sim *state) { if (TARGET_MIPS16 || !ISA_HAS_HILO) /* No MTLO or MTHI available for MIPS16. Also, when there are no HI or LO registers then there is no reason to zero them, arbitrarily choose to say that "MULT $0,$0" would be faster. */ mips_tuning_info.fast_mult_zero_zero_p = true; else { unsigned int true_time = mips_mult_zero_zero_cost (state, true); unsigned int false_time = mips_mult_zero_zero_cost (state, false); mips_tuning_info.fast_mult_zero_zero_p = (true_time <= false_time); } } /* Set up costs based on the current architecture and tuning settings. */ static void mips_set_tuning_info (void) { if (mips_tuning_info.initialized_p && mips_tuning_info.arch == mips_arch && mips_tuning_info.tune == mips_tune && mips_tuning_info.mips16_p == TARGET_MIPS16) return; mips_tuning_info.arch = mips_arch; mips_tuning_info.tune = mips_tune; mips_tuning_info.mips16_p = TARGET_MIPS16; mips_tuning_info.initialized_p = true; dfa_start (); struct mips_sim state; mips_sim_init (&state, alloca (state_size ())); mips_set_fast_mult_zero_zero_p (&state); dfa_finish (); } /* Implement TARGET_EXPAND_TO_RTL_HOOK. */ static void mips_expand_to_rtl_hook (void) { /* We need to call this at a point where we can safely create sequences of instructions, so TARGET_OVERRIDE_OPTIONS is too early. We also need to call it at a point where the DFA infrastructure is not already in use, so we can't just call it lazily on demand. At present, mips_tuning_info is only needed during post-expand RTL passes such as split_insns, so this hook should be early enough. We may need to move the call elsewhere if mips_tuning_info starts to be used for other things (such as rtx_costs, or expanders that could be called during gimple optimization). */ mips_set_tuning_info (); } /* The VR4130 pipeline issues aligned pairs of instructions together, but it stalls the second instruction if it depends on the first. In order to cut down the amount of logic required, this dependence check is not based on a full instruction decode. Instead, any non-SPECIAL instruction is assumed to modify the register specified by bits 20-16 (which is usually the "rt" field). In BEQ, BEQL, BNE and BNEL instructions, the rt field is actually an input, so we can end up with a false dependence between the branch and its delay slot. If this situation occurs in instruction INSN, try to avoid it by swapping rs and rt. */ static void vr4130_avoid_branch_rt_conflict (rtx_insn *insn) { rtx_insn *first, *second; first = SEQ_BEGIN (insn); second = SEQ_END (insn); if (JUMP_P (first) && NONJUMP_INSN_P (second) && GET_CODE (PATTERN (first)) == SET && GET_CODE (SET_DEST (PATTERN (first))) == PC && GET_CODE (SET_SRC (PATTERN (first))) == IF_THEN_ELSE) { /* Check for the right kind of condition. */ rtx cond = XEXP (SET_SRC (PATTERN (first)), 0); if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE) && REG_P (XEXP (cond, 0)) && REG_P (XEXP (cond, 1)) && reg_referenced_p (XEXP (cond, 1), PATTERN (second)) && !reg_referenced_p (XEXP (cond, 0), PATTERN (second))) { /* SECOND mentions the rt register but not the rs register. */ rtx tmp = XEXP (cond, 0); XEXP (cond, 0) = XEXP (cond, 1); XEXP (cond, 1) = tmp; } } } /* Implement -mvr4130-align. Go through each basic block and simulate the processor pipeline. If we find that a pair of instructions could execute in parallel, and the first of those instructions is not 8-byte aligned, insert a nop to make it aligned. */ static void vr4130_align_insns (void) { struct mips_sim state; rtx_insn *insn, *subinsn, *last, *last2, *next; bool aligned_p; dfa_start (); /* LAST is the last instruction before INSN to have a nonzero length. LAST2 is the last such instruction before LAST. */ last = 0; last2 = 0; /* ALIGNED_P is true if INSN is known to be at an aligned address. */ aligned_p = true; mips_sim_init (&state, alloca (state_size ())); for (insn = get_insns (); insn != 0; insn = next) { unsigned int length; next = NEXT_INSN (insn); /* See the comment above vr4130_avoid_branch_rt_conflict for details. This isn't really related to the alignment pass, but we do it on the fly to avoid a separate instruction walk. */ vr4130_avoid_branch_rt_conflict (insn); length = get_attr_length (insn); if (length > 0 && USEFUL_INSN_P (insn)) FOR_EACH_SUBINSN (subinsn, insn) { mips_sim_wait_insn (&state, subinsn); /* If we want this instruction to issue in parallel with the previous one, make sure that the previous instruction is aligned. There are several reasons why this isn't worthwhile when the second instruction is a call: - Calls are less likely to be performance critical, - There's a good chance that the delay slot can execute in parallel with the call. - The return address would then be unaligned. In general, if we're going to insert a nop between instructions X and Y, it's better to insert it immediately after X. That way, if the nop makes Y aligned, it will also align any labels between X and Y. */ if (state.insns_left != state.issue_rate && !CALL_P (subinsn)) { if (subinsn == SEQ_BEGIN (insn) && aligned_p) { /* SUBINSN is the first instruction in INSN and INSN is aligned. We want to align the previous instruction instead, so insert a nop between LAST2 and LAST. Note that LAST could be either a single instruction or a branch with a delay slot. In the latter case, LAST, like INSN, is already aligned, but the delay slot must have some extra delay that stops it from issuing at the same time as the branch. We therefore insert a nop before the branch in order to align its delay slot. */ gcc_assert (last2); emit_insn_after (gen_nop (), last2); aligned_p = false; } else if (subinsn != SEQ_BEGIN (insn) && !aligned_p) { /* SUBINSN is the delay slot of INSN, but INSN is currently unaligned. Insert a nop between LAST and INSN to align it. */ gcc_assert (last); emit_insn_after (gen_nop (), last); aligned_p = true; } } mips_sim_issue_insn (&state, subinsn); } mips_sim_finish_insn (&state, insn); /* Update LAST, LAST2 and ALIGNED_P for the next instruction. */ length = get_attr_length (insn); if (length > 0) { /* If the instruction is an asm statement or multi-instruction mips.md pattern, the length is only an estimate. Insert an 8 byte alignment after it so that the following instructions can be handled correctly. */ if (NONJUMP_INSN_P (SEQ_BEGIN (insn)) && (recog_memoized (insn) < 0 || length >= 8)) { next = emit_insn_after (gen_align (GEN_INT (3)), insn); next = NEXT_INSN (next); mips_sim_next_cycle (&state); aligned_p = true; } else if (length & 4) aligned_p = !aligned_p; last2 = last; last = insn; } /* See whether INSN is an aligned label. */ if (LABEL_P (insn) && label_to_alignment (insn).levels[0].log >= 3) aligned_p = true; } dfa_finish (); } /* This structure records that the current function has a LO_SUM involving SYMBOL_REF or LABEL_REF BASE and that MAX_OFFSET is the largest offset applied to BASE by all such LO_SUMs. */ struct mips_lo_sum_offset { rtx base; HOST_WIDE_INT offset; }; /* Return a hash value for SYMBOL_REF or LABEL_REF BASE. */ static hashval_t mips_hash_base (rtx base) { int do_not_record_p; return hash_rtx (base, GET_MODE (base), &do_not_record_p, NULL, false); } /* Hashtable helpers. */ struct mips_lo_sum_offset_hasher : free_ptr_hash { typedef rtx_def *compare_type; static inline hashval_t hash (const mips_lo_sum_offset *); static inline bool equal (const mips_lo_sum_offset *, const rtx_def *); }; /* Hash-table callbacks for mips_lo_sum_offsets. */ inline hashval_t mips_lo_sum_offset_hasher::hash (const mips_lo_sum_offset *entry) { return mips_hash_base (entry->base); } inline bool mips_lo_sum_offset_hasher::equal (const mips_lo_sum_offset *entry, const rtx_def *value) { return rtx_equal_p (entry->base, value); } typedef hash_table mips_offset_table; /* Look up symbolic constant X in HTAB, which is a hash table of mips_lo_sum_offsets. If OPTION is NO_INSERT, return true if X can be paired with a recorded LO_SUM, otherwise record X in the table. */ static bool mips_lo_sum_offset_lookup (mips_offset_table *htab, rtx x, enum insert_option option) { rtx base, offset; mips_lo_sum_offset **slot; struct mips_lo_sum_offset *entry; /* Split X into a base and offset. */ split_const (x, &base, &offset); if (UNSPEC_ADDRESS_P (base)) base = UNSPEC_ADDRESS (base); /* Look up the base in the hash table. */ slot = htab->find_slot_with_hash (base, mips_hash_base (base), option); if (slot == NULL) return false; entry = (struct mips_lo_sum_offset *) *slot; if (option == INSERT) { if (entry == NULL) { entry = XNEW (struct mips_lo_sum_offset); entry->base = base; entry->offset = INTVAL (offset); *slot = entry; } else { if (INTVAL (offset) > entry->offset) entry->offset = INTVAL (offset); } } return INTVAL (offset) <= entry->offset; } /* Search X for LO_SUMs and record them in HTAB. */ static void mips_record_lo_sums (const_rtx x, mips_offset_table *htab) { subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, NONCONST) if (GET_CODE (*iter) == LO_SUM) mips_lo_sum_offset_lookup (htab, XEXP (*iter, 1), INSERT); } /* Return true if INSN is a SET of an orphaned high-part relocation. HTAB is a hash table of mips_lo_sum_offsets that describes all the LO_SUMs in the current function. */ static bool mips_orphaned_high_part_p (mips_offset_table *htab, rtx_insn *insn) { enum mips_symbol_type type; rtx x, set; set = single_set (insn); if (set) { /* Check for %his. */ x = SET_SRC (set); if (GET_CODE (x) == HIGH && absolute_symbolic_operand (XEXP (x, 0), VOIDmode)) return !mips_lo_sum_offset_lookup (htab, XEXP (x, 0), NO_INSERT); /* Check for local %gots (and %got_pages, which is redundant but OK). */ if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_LOAD_GOT && mips_symbolic_constant_p (XVECEXP (x, 0, 1), SYMBOL_CONTEXT_LEA, &type) && type == SYMBOL_GOTOFF_PAGE) return !mips_lo_sum_offset_lookup (htab, XVECEXP (x, 0, 1), NO_INSERT); } return false; } /* Subroutine of mips_avoid_hazard. We classify unconditional branches of interest for the P6600 for performance reasons. We're interested in differentiating BALC from JIC, JIALC and BC. */ static enum mips_ucbranch_type mips_classify_branch_p6600 (rtx_insn *insn) { /* We ignore sequences here as they represent a filled delay slot. */ if (!insn || !USEFUL_INSN_P (insn) || GET_CODE (PATTERN (insn)) == SEQUENCE) return UC_UNDEFINED; if (get_attr_jal (insn) == JAL_INDIRECT /* JIC and JIALC. */ || get_attr_type (insn) == TYPE_JUMP) /* BC. */ return UC_OTHER; if (CALL_P (insn) && get_attr_jal (insn) == JAL_DIRECT) return UC_BALC; return UC_UNDEFINED; } /* Subroutine of mips_reorg_process_insns. If there is a hazard between INSN and a previous instruction, avoid it by inserting nops after instruction AFTER. *DELAYED_REG and *HILO_DELAY describe the hazards that apply at this point. If *DELAYED_REG is non-null, INSN must wait a cycle before using the value of that register. *HILO_DELAY counts the number of instructions since the last hilo hazard (that is, the number of instructions since the last MFLO or MFHI). After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY for the next instruction. LO_REG is an rtx for the LO register, used in dependence checking. */ static void mips_avoid_hazard (rtx_insn *after, rtx_insn *insn, int *hilo_delay, rtx *delayed_reg, rtx lo_reg, bool *fs_delay) { rtx pattern, set; int nops, ninsns; pattern = PATTERN (insn); /* Do not put the whole function in .set noreorder if it contains an asm statement. We don't know whether there will be hazards between the asm statement and the gcc-generated code. */ if (GET_CODE (pattern) == ASM_INPUT || asm_noperands (pattern) >= 0) cfun->machine->all_noreorder_p = false; /* Ignore zero-length instructions (barriers and the like). */ ninsns = get_attr_length (insn) / 4; if (ninsns == 0) return; /* Work out how many nops are needed. Note that we only care about registers that are explicitly mentioned in the instruction's pattern. It doesn't matter that calls use the argument registers or that they clobber hi and lo. */ if (*hilo_delay < 2 && reg_set_p (lo_reg, pattern)) nops = 2 - *hilo_delay; else if (*delayed_reg != 0 && reg_referenced_p (*delayed_reg, pattern)) nops = 1; /* If processing a forbidden slot hazard then a NOP is required if the branch instruction was not in a sequence (as the sequence would imply it is not actually a compact branch anyway) and the current insn is not an inline asm, and can't go in a delay slot. */ else if (*fs_delay && get_attr_can_delay (insn) == CAN_DELAY_NO && GET_CODE (PATTERN (after)) != SEQUENCE && GET_CODE (pattern) != ASM_INPUT && asm_noperands (pattern) < 0) nops = 1; /* The P6600's branch predictor can handle static sequences of back-to-back branches in the following cases: (1) BALC followed by any conditional compact branch (2) BALC followed by BALC Any other combinations of compact branches will incur performance penalty. Inserting a no-op only costs space as the dispatch unit will disregard the nop. */ else if (TUNE_P6600 && TARGET_CB_MAYBE && !optimize_size && ((mips_classify_branch_p6600 (after) == UC_BALC && mips_classify_branch_p6600 (insn) == UC_OTHER) || (mips_classify_branch_p6600 (insn) == UC_BALC && mips_classify_branch_p6600 (after) == UC_OTHER))) nops = 1; else nops = 0; /* Insert the nops between this instruction and the previous one. Each new nop takes us further from the last hilo hazard. */ *hilo_delay += nops; /* Move to the next real instruction if we are inserting a NOP and this instruction is a call with debug information. The reason being that we can't separate the call from the debug info. */ rtx_insn *real_after = after; if (real_after && nops && CALL_P (real_after)) while (real_after && (NOTE_P (NEXT_INSN (real_after)) || BARRIER_P (NEXT_INSN (real_after)))) real_after = NEXT_INSN (real_after); while (nops-- > 0) emit_insn_after (gen_hazard_nop (), real_after); /* Set up the state for the next instruction. */ *hilo_delay += ninsns; *delayed_reg = 0; *fs_delay = false; if (INSN_CODE (insn) >= 0) switch (get_attr_hazard (insn)) { case HAZARD_NONE: /* For the P6600, flag some unconditional branches as having a pseudo-forbidden slot. This will cause additional nop insertion or SEQUENCE breaking as required. This is for performance reasons not correctness. */ if (TUNE_P6600 && !optimize_size && TARGET_CB_MAYBE && mips_classify_branch_p6600 (insn) == UC_OTHER) *fs_delay = true; break; case HAZARD_FORBIDDEN_SLOT: if (TARGET_CB_MAYBE) *fs_delay = true; break; case HAZARD_HILO: *hilo_delay = 0; break; case HAZARD_DELAY: set = single_set (insn); gcc_assert (set); *delayed_reg = SET_DEST (set); break; } } /* A SEQUENCE is breakable iff the branch inside it has a compact form and the target has compact branches. */ static bool mips_breakable_sequence_p (rtx_insn *insn) { return (insn && GET_CODE (PATTERN (insn)) == SEQUENCE && TARGET_CB_MAYBE && get_attr_compact_form (SEQ_BEGIN (insn)) != COMPACT_FORM_NEVER); } /* Remove a SEQUENCE and replace it with the delay slot instruction followed by the branch and return the instruction in the delay slot. Return the first of the two new instructions. Subroutine of mips_reorg_process_insns. */ static rtx_insn * mips_break_sequence (rtx_insn *insn) { rtx_insn *before = PREV_INSN (insn); rtx_insn *branch = SEQ_BEGIN (insn); rtx_insn *ds = SEQ_END (insn); remove_insn (insn); add_insn_after (ds, before, NULL); add_insn_after (branch, ds, NULL); return ds; } /* Go through the instruction stream and insert nops where necessary. Also delete any high-part relocations whose partnering low parts are now all dead. See if the whole function can then be put into .set noreorder and .set nomacro. */ static void mips_reorg_process_insns (void) { rtx_insn *insn, *last_insn, *subinsn, *next_insn; rtx lo_reg, delayed_reg; int hilo_delay; bool fs_delay; /* Force all instructions to be split into their final form. */ split_all_insns_noflow (); /* Recalculate instruction lengths without taking nops into account. */ cfun->machine->ignore_hazard_length_p = true; shorten_branches (get_insns ()); cfun->machine->all_noreorder_p = true; /* We don't track MIPS16 PC-relative offsets closely enough to make a good job of "set .noreorder" code in MIPS16 mode. */ if (TARGET_MIPS16) cfun->machine->all_noreorder_p = false; /* Code that doesn't use explicit relocs can't be ".set nomacro". */ if (!TARGET_EXPLICIT_RELOCS) cfun->machine->all_noreorder_p = false; /* Profiled functions can't be all noreorder because the profiler support uses assembler macros. */ if (crtl->profile) cfun->machine->all_noreorder_p = false; /* Code compiled with -mfix-vr4120, -mfix-r5900, -mfix-rm7000 or -mfix-24k can't be all noreorder because we rely on the assembler to work around some errata. The R5900 target has several bugs. */ if (TARGET_FIX_VR4120 || TARGET_FIX_RM7000 || TARGET_FIX_24K || TARGET_FIX_R5900) cfun->machine->all_noreorder_p = false; /* The same is true for -mfix-vr4130 if we might generate MFLO or MFHI instructions. Note that we avoid using MFLO and MFHI if the VR4130 MACC and DMACC instructions are available instead; see the *mfhilo_{si,di}_macc patterns. */ if (TARGET_FIX_VR4130 && !ISA_HAS_MACCHI) cfun->machine->all_noreorder_p = false; mips_offset_table htab (37); /* Make a first pass over the instructions, recording all the LO_SUMs. */ for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn)) FOR_EACH_SUBINSN (subinsn, insn) if (USEFUL_INSN_P (subinsn)) { rtx body = PATTERN (insn); int noperands = asm_noperands (body); if (noperands >= 0) { rtx *ops = XALLOCAVEC (rtx, noperands); bool *used = XALLOCAVEC (bool, noperands); const char *string = decode_asm_operands (body, ops, NULL, NULL, NULL, NULL); get_referenced_operands (string, used, noperands); for (int i = 0; i < noperands; ++i) if (used[i]) mips_record_lo_sums (ops[i], &htab); } else mips_record_lo_sums (PATTERN (subinsn), &htab); } last_insn = 0; hilo_delay = 2; delayed_reg = 0; lo_reg = gen_rtx_REG (SImode, LO_REGNUM); fs_delay = false; /* Make a second pass over the instructions. Delete orphaned high-part relocations or turn them into NOPs. Avoid hazards by inserting NOPs. */ for (insn = get_insns (); insn != 0; insn = next_insn) { next_insn = NEXT_INSN (insn); if (USEFUL_INSN_P (insn)) { if (GET_CODE (PATTERN (insn)) == SEQUENCE) { rtx_insn *next_active = next_active_insn (insn); /* Undo delay slots to avoid bubbles if the next instruction can be placed in a forbidden slot or the cost of adding an explicit NOP in a forbidden slot is OK and if the SEQUENCE is safely breakable. */ if (TARGET_CB_MAYBE && mips_breakable_sequence_p (insn) && INSN_P (SEQ_BEGIN (insn)) && INSN_P (SEQ_END (insn)) && ((next_active && INSN_P (next_active) && GET_CODE (PATTERN (next_active)) != SEQUENCE && get_attr_can_delay (next_active) == CAN_DELAY_YES) || !optimize_size)) { /* To hide a potential pipeline bubble, if we scan backwards from the current SEQUENCE and find that there is a load of a value that is used in the CTI and there are no dependencies between the CTI and instruction in the delay slot, break the sequence so the load delay is hidden. */ HARD_REG_SET uses; CLEAR_HARD_REG_SET (uses); note_uses (&PATTERN (SEQ_BEGIN (insn)), record_hard_reg_uses, &uses); HARD_REG_SET delay_sets; CLEAR_HARD_REG_SET (delay_sets); note_stores (SEQ_END (insn), record_hard_reg_sets, &delay_sets); rtx_insn *prev = prev_active_insn (insn); if (prev && GET_CODE (PATTERN (prev)) == SET && MEM_P (SET_SRC (PATTERN (prev)))) { HARD_REG_SET sets; CLEAR_HARD_REG_SET (sets); note_stores (prev, record_hard_reg_sets, &sets); /* Re-order if safe. */ if (!hard_reg_set_intersect_p (delay_sets, uses) && hard_reg_set_intersect_p (uses, sets)) { next_insn = mips_break_sequence (insn); /* Need to process the hazards of the newly introduced instructions. */ continue; } } /* If we find an orphaned high-part relocation in a delay slot then we can convert to a compact branch and get the orphaned high part deleted. */ if (mips_orphaned_high_part_p (&htab, SEQ_END (insn))) { next_insn = mips_break_sequence (insn); /* Need to process the hazards of the newly introduced instructions. */ continue; } } /* If we find an orphaned high-part relocation in a delay slot, it's easier to turn that instruction into a NOP than to delete it. The delay slot will be a NOP either way. */ FOR_EACH_SUBINSN (subinsn, insn) if (INSN_P (subinsn)) { if (mips_orphaned_high_part_p (&htab, subinsn)) { PATTERN (subinsn) = gen_nop (); INSN_CODE (subinsn) = CODE_FOR_nop; } mips_avoid_hazard (last_insn, subinsn, &hilo_delay, &delayed_reg, lo_reg, &fs_delay); } last_insn = insn; } else { /* INSN is a single instruction. Delete it if it's an orphaned high-part relocation. */ if (mips_orphaned_high_part_p (&htab, insn)) delete_insn (insn); /* Also delete cache barriers if the last instruction was an annulled branch. INSN will not be speculatively executed. */ else if (recog_memoized (insn) == CODE_FOR_r10k_cache_barrier && last_insn && JUMP_P (SEQ_BEGIN (last_insn)) && INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (last_insn))) delete_insn (insn); else { mips_avoid_hazard (last_insn, insn, &hilo_delay, &delayed_reg, lo_reg, &fs_delay); /* When a compact branch introduces a forbidden slot hazard and the next useful instruction is a SEQUENCE of a jump and a non-nop instruction in the delay slot, remove the sequence and replace it with the delay slot instruction then the jump to clear the forbidden slot hazard. For the P6600, this optimisation solves the performance penalty associated with BALC followed by a delay slot branch. We do not set fs_delay as we do not want the full logic of a forbidden slot; the penalty exists only against branches not the full class of forbidden slot instructions. */ if (fs_delay || (TUNE_P6600 && TARGET_CB_MAYBE && mips_classify_branch_p6600 (insn) == UC_BALC)) { /* Search onwards from the current position looking for a SEQUENCE. We are looking for pipeline hazards here and do not need to worry about labels or barriers as the optimization only undoes delay slot filling which only affects the order of the branch and its delay slot. */ rtx_insn *next = next_active_insn (insn); if (next && USEFUL_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE && mips_breakable_sequence_p (next)) { last_insn = insn; next_insn = mips_break_sequence (next); /* Need to process the hazards of the newly introduced instructions. */ continue; } } last_insn = insn; } } } } } /* Return true if the function has a long branch instruction. */ static bool mips_has_long_branch_p (void) { rtx_insn *insn, *subinsn; int normal_length; /* We need up-to-date instruction lengths. */ shorten_branches (get_insns ()); /* Look for a branch that is longer than normal. The normal length for non-MIPS16 branches is 8, because the length includes the delay slot. It is 4 for MIPS16, because MIPS16 branches are extended instructions, but they have no delay slot. */ normal_length = (TARGET_MIPS16 ? 4 : 8); for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) FOR_EACH_SUBINSN (subinsn, insn) if (JUMP_P (subinsn) && get_attr_length (subinsn) > normal_length && (any_condjump_p (subinsn) || any_uncondjump_p (subinsn))) return true; return false; } /* If we are using a GOT, but have not decided to use a global pointer yet, see whether we need one to implement long branches. Convert the ghost global-pointer instructions into real ones if so. */ static bool mips_expand_ghost_gp_insns (void) { /* Quick exit if we already know that we will or won't need a global pointer. */ if (!TARGET_USE_GOT || cfun->machine->global_pointer == INVALID_REGNUM || mips_must_initialize_gp_p ()) return false; /* Run a full check for long branches. */ if (!mips_has_long_branch_p ()) return false; /* We've now established that we need $gp. */ cfun->machine->must_initialize_gp_p = true; split_all_insns_noflow (); return true; } /* Subroutine of mips_reorg to manage passes that require DF. */ static void mips_df_reorg (void) { /* Create def-use chains. */ df_set_flags (DF_EQ_NOTES); df_chain_add_problem (DF_UD_CHAIN); df_analyze (); if (TARGET_RELAX_PIC_CALLS) mips_annotate_pic_calls (); if (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE) r10k_insert_cache_barriers (); df_finish_pass (false); } /* Emit code to load LABEL_REF SRC into MIPS16 register DEST. This is called very late in mips_reorg, but the caller is required to run mips16_lay_out_constants on the result. */ static void mips16_load_branch_target (rtx dest, rtx src) { if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS) { rtx page, low; if (mips_cfun_has_cprestore_slot_p ()) mips_emit_move (dest, mips_cprestore_slot (dest, true)); else mips_emit_move (dest, pic_offset_table_rtx); page = mips_unspec_address (src, SYMBOL_GOTOFF_PAGE); low = mips_unspec_address (src, SYMBOL_GOT_PAGE_OFST); emit_insn (gen_rtx_SET (dest, PMODE_INSN (gen_unspec_got, (dest, page)))); emit_insn (gen_rtx_SET (dest, gen_rtx_LO_SUM (Pmode, dest, low))); } else { src = mips_unspec_address (src, SYMBOL_ABSOLUTE); mips_emit_move (dest, src); } } /* If we're compiling a MIPS16 function, look for and split any long branches. This must be called after all other instruction modifications in mips_reorg. */ static void mips16_split_long_branches (void) { bool something_changed; if (!TARGET_MIPS16) return; /* Loop until the alignments for all targets are sufficient. */ do { rtx_insn *insn; rtx_jump_insn *jump_insn; shorten_branches (get_insns ()); something_changed = false; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if ((jump_insn = dyn_cast (insn)) && get_attr_length (jump_insn) > 4 && (any_condjump_p (jump_insn) || any_uncondjump_p (jump_insn))) { rtx old_label, temp, saved_temp; rtx_code_label *new_label; rtx target; rtx_insn *jump, *jump_sequence; start_sequence (); /* Free up a MIPS16 register by saving it in $1. */ saved_temp = gen_rtx_REG (Pmode, AT_REGNUM); temp = gen_rtx_REG (Pmode, GP_REG_FIRST + 2); emit_move_insn (saved_temp, temp); /* Load the branch target into TEMP. */ old_label = JUMP_LABEL (jump_insn); target = gen_rtx_LABEL_REF (Pmode, old_label); mips16_load_branch_target (temp, target); /* Jump to the target and restore the register's original value. */ jump = emit_jump_insn (PMODE_INSN (gen_indirect_jump_and_restore, (temp, temp, saved_temp))); JUMP_LABEL (jump) = old_label; LABEL_NUSES (old_label)++; /* Rewrite any symbolic references that are supposed to use a PC-relative constant pool. */ mips16_lay_out_constants (false); if (simplejump_p (jump_insn)) /* We're going to replace INSN with a longer form. */ new_label = NULL; else { /* Create a branch-around label for the original instruction. */ new_label = gen_label_rtx (); emit_label (new_label); } jump_sequence = get_insns (); end_sequence (); emit_insn_after (jump_sequence, jump_insn); if (new_label) invert_jump (jump_insn, new_label, false); else delete_insn (jump_insn); something_changed = true; } } while (something_changed); } /* Insert a `.insn' assembly pseudo-op after any labels followed by a MIPS16 constant pool or no insn at all. This is needed so that targets that have been optimized away are still marked as code and therefore branches that remained and point to them are known to retain the ISA mode and as such can be successfully assembled. */ static void mips_insert_insn_pseudos (void) { bool insn_pseudo_needed = TRUE; rtx_insn *insn; for (insn = get_last_insn (); insn != NULL_RTX; insn = PREV_INSN (insn)) switch (GET_CODE (insn)) { case INSN: if (GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE && XINT (PATTERN (insn), 1) == UNSPEC_CONSTTABLE) { insn_pseudo_needed = TRUE; break; } /* Fall through. */ case JUMP_INSN: case CALL_INSN: case JUMP_TABLE_DATA: insn_pseudo_needed = FALSE; break; case CODE_LABEL: if (insn_pseudo_needed) { emit_insn_after (gen_insn_pseudo (), insn); insn_pseudo_needed = FALSE; } break; default: break; } } /* Implement TARGET_MACHINE_DEPENDENT_REORG. */ static void mips_reorg (void) { /* Restore the BLOCK_FOR_INSN pointers, which are needed by DF. Also during insn splitting in mips16_lay_out_constants, DF insn info is only kept up to date if the CFG is available. */ if (mips_cfg_in_reorg ()) compute_bb_for_insn (); mips16_lay_out_constants (true); if (mips_cfg_in_reorg ()) { mips_df_reorg (); free_bb_for_insn (); } } /* We use a machine specific pass to do a second machine dependent reorg pass after delay branch scheduling. */ static unsigned int mips_machine_reorg2 (void) { mips_reorg_process_insns (); if (!TARGET_MIPS16 && TARGET_EXPLICIT_RELOCS && TUNE_MIPS4130 && TARGET_VR4130_ALIGN) vr4130_align_insns (); if (mips_expand_ghost_gp_insns ()) /* The expansion could invalidate some of the VR4130 alignment optimizations, but this should be an extremely rare case anyhow. */ mips_reorg_process_insns (); mips16_split_long_branches (); mips_insert_insn_pseudos (); return 0; } namespace { const pass_data pass_data_mips_machine_reorg2 = { RTL_PASS, /* type */ "mach2", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_MACH_DEP, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_mips_machine_reorg2 : public rtl_opt_pass { public: pass_mips_machine_reorg2(gcc::context *ctxt) : rtl_opt_pass(pass_data_mips_machine_reorg2, ctxt) {} /* opt_pass methods: */ virtual unsigned int execute (function *) { return mips_machine_reorg2 (); } }; // class pass_mips_machine_reorg2 } // anon namespace rtl_opt_pass * make_pass_mips_machine_reorg2 (gcc::context *ctxt) { return new pass_mips_machine_reorg2 (ctxt); } /* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text in order to avoid duplicating too much logic from elsewhere. */ static void mips_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function) { const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk_fndecl)); rtx this_rtx, temp1, temp2, fnaddr; rtx_insn *insn; bool use_sibcall_p; /* Pretend to be a post-reload pass while generating rtl. */ reload_completed = 1; /* Mark the end of the (empty) prologue. */ emit_note (NOTE_INSN_PROLOGUE_END); /* Determine if we can use a sibcall to call FUNCTION directly. */ fnaddr = XEXP (DECL_RTL (function), 0); use_sibcall_p = (mips_function_ok_for_sibcall (function, NULL) && const_call_insn_operand (fnaddr, Pmode)); /* Determine if we need to load FNADDR from the GOT. */ if (!use_sibcall_p && (mips_got_symbol_type_p (mips_classify_symbol (fnaddr, SYMBOL_CONTEXT_LEA)))) { /* Pick a global pointer. Use a call-clobbered register if TARGET_CALL_SAVED_GP. */ cfun->machine->global_pointer = TARGET_CALL_SAVED_GP ? 15 : GLOBAL_POINTER_REGNUM; cfun->machine->must_initialize_gp_p = true; SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer); /* Set up the global pointer for n32 or n64 abicalls. */ mips_emit_loadgp (); } /* We need two temporary registers in some cases. */ temp1 = gen_rtx_REG (Pmode, 2); temp2 = gen_rtx_REG (Pmode, 3); /* Find out which register contains the "this" pointer. */ if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)) this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1); else this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST); /* Add DELTA to THIS_RTX. */ if (delta != 0) { rtx offset = GEN_INT (delta); if (!SMALL_OPERAND (delta)) { mips_emit_move (temp1, offset); offset = temp1; } emit_insn (gen_add3_insn (this_rtx, this_rtx, offset)); } /* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */ if (vcall_offset != 0) { rtx addr; /* Set TEMP1 to *THIS_RTX. */ mips_emit_move (temp1, gen_rtx_MEM (Pmode, this_rtx)); /* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */ addr = mips_add_offset (temp2, temp1, vcall_offset); /* Load the offset and add it to THIS_RTX. */ mips_emit_move (temp1, gen_rtx_MEM (Pmode, addr)); emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1)); } /* Jump to the target function. Use a sibcall if direct jumps are allowed, otherwise load the address into a register first. */ if (use_sibcall_p) { insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx)); SIBLING_CALL_P (insn) = 1; } else { /* This is messy. GAS treats "la $25,foo" as part of a call sequence and may allow a global "foo" to be lazily bound. The general move patterns therefore reject this combination. In this context, lazy binding would actually be OK for TARGET_CALL_CLOBBERED_GP, but it's still wrong for TARGET_CALL_SAVED_GP; see mips_load_call_address. We must therefore load the address via a temporary register if mips_dangerous_for_la25_p. If we jump to the temporary register rather than $25, the assembler can use the move insn to fill the jump's delay slot. We can use the same technique for MIPS16 code, where $25 is not a valid JR register. */ if (TARGET_USE_PIC_FN_ADDR_REG && !TARGET_MIPS16 && !mips_dangerous_for_la25_p (fnaddr)) temp1 = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM); mips_load_call_address (MIPS_CALL_SIBCALL, temp1, fnaddr); if (TARGET_USE_PIC_FN_ADDR_REG && REGNO (temp1) != PIC_FUNCTION_ADDR_REGNUM) mips_emit_move (gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM), temp1); emit_jump_insn (gen_indirect_jump (temp1)); } /* Run just enough of rest_of_compilation. This sequence was "borrowed" from alpha.cc. */ insn = get_insns (); split_all_insns_noflow (); mips16_lay_out_constants (true); shorten_branches (insn); assemble_start_function (thunk_fndecl, fnname); final_start_function (insn, file, 1); final (insn, file, 1); final_end_function (); assemble_end_function (thunk_fndecl, fnname); /* Clean up the vars set above. Note that final_end_function resets the global pointer for us. */ reload_completed = 0; } /* The last argument passed to mips_set_compression_mode, or negative if the function hasn't been called yet. */ static unsigned int old_compression_mode = -1; /* Set up the target-dependent global state for ISA mode COMPRESSION_MODE, which is either MASK_MIPS16 or MASK_MICROMIPS. */ static void mips_set_compression_mode (unsigned int compression_mode) { if (compression_mode == old_compression_mode) return; /* Restore base settings of various flags. */ target_flags = mips_base_target_flags; flag_schedule_insns = mips_base_schedule_insns; flag_reorder_blocks_and_partition = mips_base_reorder_blocks_and_partition; flag_move_loop_invariants = mips_base_move_loop_invariants; str_align_loops = mips_base_align_loops; str_align_jumps = mips_base_align_jumps; str_align_functions = mips_base_align_functions; target_flags &= ~(MASK_MIPS16 | MASK_MICROMIPS); target_flags |= compression_mode; if (compression_mode & MASK_MIPS16) { /* Switch to MIPS16 mode. */ target_flags |= MASK_MIPS16; /* Turn off SYNCI if it was on, MIPS16 doesn't support it. */ target_flags &= ~MASK_SYNCI; /* Don't run the scheduler before reload, since it tends to increase register pressure. */ flag_schedule_insns = 0; /* Don't do hot/cold partitioning. mips16_lay_out_constants expects the whole function to be in a single section. */ flag_reorder_blocks_and_partition = 0; /* Don't move loop invariants, because it tends to increase register pressure. It also introduces an extra move in cases where the constant is the first operand in a two-operand binary instruction, or when it forms a register argument to a functon call. */ flag_move_loop_invariants = 0; target_flags |= MASK_EXPLICIT_RELOCS; /* Experiments suggest we get the best overall section-anchor results from using the range of an unextended LW or SW. Code that makes heavy use of byte or short accesses can do better with ranges of 0...31 and 0...63 respectively, but most code is sensitive to the range of LW and SW instead. */ targetm.min_anchor_offset = 0; targetm.max_anchor_offset = 127; targetm.const_anchor = 0; /* MIPS16 has no BAL instruction. */ target_flags &= ~MASK_RELAX_PIC_CALLS; /* The R4000 errata don't apply to any known MIPS16 cores. It's simpler to make the R4000 fixes and MIPS16 mode mutually exclusive. */ target_flags &= ~MASK_FIX_R4000; if (flag_pic && !TARGET_OLDABI) sorry ("MIPS16 PIC for ABIs other than o32 and o64"); if (TARGET_XGOT) sorry ("MIPS16 %<-mxgot%> code"); if (TARGET_HARD_FLOAT_ABI && !TARGET_OLDABI) sorry ("% MIPS16 code for ABIs other than o32 and o64"); if (TARGET_MSA) sorry ("MSA MIPS16 code"); } else { /* Switch to microMIPS or the standard encoding. */ if (TARGET_MICROMIPS) /* Avoid branch likely. */ target_flags &= ~MASK_BRANCHLIKELY; /* Provide default values for align_* for 64-bit targets. */ if (TARGET_64BIT) { if (flag_align_loops && !str_align_loops) str_align_loops = "8"; if (flag_align_jumps && !str_align_jumps) str_align_jumps = "8"; if (flag_align_functions && !str_align_functions) str_align_functions = "8"; } targetm.min_anchor_offset = -32768; targetm.max_anchor_offset = 32767; targetm.const_anchor = 0x8000; } /* (Re)initialize MIPS target internals for new ISA. */ mips_init_relocs (); if (compression_mode & MASK_MIPS16) { if (!mips16_globals) mips16_globals = save_target_globals_default_opts (); else restore_target_globals (mips16_globals); } else if (compression_mode & MASK_MICROMIPS) { if (!micromips_globals) micromips_globals = save_target_globals_default_opts (); else restore_target_globals (micromips_globals); } else restore_target_globals (&default_target_globals); old_compression_mode = compression_mode; } /* Implement TARGET_SET_CURRENT_FUNCTION. Decide whether the current function should use the MIPS16 or microMIPS ISA and switch modes accordingly. */ static void mips_set_current_function (tree fndecl) { mips_set_compression_mode (mips_get_compress_mode (fndecl)); } /* Allocate a chunk of memory for per-function machine-dependent data. */ static struct machine_function * mips_init_machine_status (void) { return ggc_cleared_alloc (); } /* Return the processor associated with the given ISA level, or null if the ISA isn't valid. */ static const struct mips_cpu_info * mips_cpu_info_from_isa (int isa) { unsigned int i; for (i = 0; i < ARRAY_SIZE (mips_cpu_info_table); i++) if (mips_cpu_info_table[i].isa == isa) return mips_cpu_info_table + i; return NULL; } /* Return a mips_cpu_info entry determined by an option valued OPT. */ static const struct mips_cpu_info * mips_cpu_info_from_opt (int opt) { switch (opt) { case MIPS_ARCH_OPTION_FROM_ABI: /* 'from-abi' selects the most compatible architecture for the given ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the EABIs, we have to decide whether we're using the 32-bit or 64-bit version. */ return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS ? 1 : ABI_NEEDS_64BIT_REGS ? 3 : (TARGET_64BIT ? 3 : 1)); case MIPS_ARCH_OPTION_NATIVE: gcc_unreachable (); default: return &mips_cpu_info_table[opt]; } } /* Return a default mips_cpu_info entry, given that no -march= option was explicitly specified. */ static const struct mips_cpu_info * mips_default_arch (void) { #if defined (MIPS_CPU_STRING_DEFAULT) unsigned int i; for (i = 0; i < ARRAY_SIZE (mips_cpu_info_table); i++) if (strcmp (mips_cpu_info_table[i].name, MIPS_CPU_STRING_DEFAULT) == 0) return mips_cpu_info_table + i; gcc_unreachable (); #elif defined (MIPS_ISA_DEFAULT) return mips_cpu_info_from_isa (MIPS_ISA_DEFAULT); #else /* 'from-abi' makes a good default: you get whatever the ABI requires. */ return mips_cpu_info_from_opt (MIPS_ARCH_OPTION_FROM_ABI); #endif } /* Set up globals to generate code for the ISA or processor described by INFO. */ static void mips_set_architecture (const struct mips_cpu_info *info) { if (info != 0) { mips_arch_info = info; mips_arch = info->cpu; mips_isa = info->isa; if (mips_isa < MIPS_ISA_MIPS32) mips_isa_rev = 0; else /* we can do this is due to the * enum of MIPS32rN is from 32 to 37 * enum of MIPS64rN is from 64 to 69 */ mips_isa_rev = (mips_isa & 31) + 1; } } /* Likewise for tuning. */ static void mips_set_tune (const struct mips_cpu_info *info) { if (info != 0) { mips_tune_info = info; mips_tune = info->cpu; } } /* Implement TARGET_OPTION_OVERRIDE. */ static void mips_option_override (void) { int i, start, regno, mode; if (OPTION_SET_P (mips_isa_option)) mips_isa_option_info = &mips_cpu_info_table[mips_isa_option]; #ifdef SUBTARGET_OVERRIDE_OPTIONS SUBTARGET_OVERRIDE_OPTIONS; #endif /* MIPS16 and microMIPS cannot coexist. */ if (TARGET_MICROMIPS && TARGET_MIPS16) error ("unsupported combination: %s", "-mips16 -mmicromips"); /* Prohibit Paired-Single and MSA combination. This is software restriction rather than architectural. */ if (ISA_HAS_MSA && TARGET_PAIRED_SINGLE_FLOAT) error ("unsupported combination: %s", "-mmsa -mpaired-single"); /* Save the base compression state and process flags as though we were generating uncompressed code. */ mips_base_compression_flags = TARGET_COMPRESSION; target_flags &= ~TARGET_COMPRESSION; /* -mno-float overrides -mhard-float and -msoft-float. */ if (TARGET_NO_FLOAT) { target_flags |= MASK_SOFT_FLOAT_ABI; target_flags_explicit |= MASK_SOFT_FLOAT_ABI; } if (TARGET_FLIP_MIPS16) TARGET_INTERLINK_COMPRESSED = 1; /* Set the small data limit. */ mips_small_data_threshold = (OPTION_SET_P (g_switch_value) ? g_switch_value : MIPS_DEFAULT_GVALUE); /* The following code determines the architecture and register size. Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()). The GAS and GCC code should be kept in sync as much as possible. */ if (OPTION_SET_P (mips_arch_option)) mips_set_architecture (mips_cpu_info_from_opt (mips_arch_option)); if (mips_isa_option_info != 0) { if (mips_arch_info == 0) mips_set_architecture (mips_isa_option_info); else if (mips_arch_info->isa != mips_isa_option_info->isa) error ("%<-%s%> conflicts with the other architecture options, " "which specify a %s processor", mips_isa_option_info->name, mips_cpu_info_from_isa (mips_arch_info->isa)->name); } if (mips_arch_info == 0) mips_set_architecture (mips_default_arch ()); if (ABI_NEEDS_64BIT_REGS && !ISA_HAS_64BIT_REGS) error ("%<-march=%s%> is not compatible with the selected ABI", mips_arch_info->name); /* Optimize for mips_arch, unless -mtune selects a different processor. */ if (OPTION_SET_P (mips_tune_option)) mips_set_tune (mips_cpu_info_from_opt (mips_tune_option)); if (mips_tune_info == 0) mips_set_tune (mips_arch_info); if ((target_flags_explicit & MASK_64BIT) != 0) { /* The user specified the size of the integer registers. Make sure it agrees with the ABI and ISA. */ if (TARGET_64BIT && !ISA_HAS_64BIT_REGS) error ("%<-mgp64%> used with a 32-bit processor"); else if (!TARGET_64BIT && ABI_NEEDS_64BIT_REGS) error ("%<-mgp32%> used with a 64-bit ABI"); else if (TARGET_64BIT && ABI_NEEDS_32BIT_REGS) error ("%<-mgp64%> used with a 32-bit ABI"); } else { /* Infer the integer register size from the ABI and processor. Restrict ourselves to 32-bit registers if that's all the processor has, or if the ABI cannot handle 64-bit registers. */ if (ABI_NEEDS_32BIT_REGS || !ISA_HAS_64BIT_REGS) target_flags &= ~MASK_64BIT; else target_flags |= MASK_64BIT; } /* -fsanitize=address needs to turn on -fasynchronous-unwind-tables in order for tracebacks to be complete but not if any -fasynchronous-unwind-table were already specified. */ if (flag_sanitize & SANITIZE_USER_ADDRESS && !global_options_set.x_flag_asynchronous_unwind_tables) flag_asynchronous_unwind_tables = 1; if ((target_flags_explicit & MASK_FLOAT64) != 0) { if (mips_isa_rev >= 6 && !TARGET_FLOAT64) error ("the %qs architecture does not support %<-mfp32%>", mips_arch_info->name); else if (TARGET_SINGLE_FLOAT && TARGET_FLOAT64) error ("unsupported combination: %s", "-mfp64 -msingle-float"); else if (TARGET_64BIT && TARGET_DOUBLE_FLOAT && !TARGET_FLOAT64) error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float"); else if (!TARGET_64BIT && TARGET_FLOAT64) { if (!ISA_HAS_MXHC1) error ("%<-mgp32%> and %<-mfp64%> can only be combined if" " the target supports the mfhc1 and mthc1 instructions"); else if (mips_abi != ABI_32) error ("%<-mgp32%> and %<-mfp64%> can only be combined when using" " the o32 ABI"); } } else { /* -msingle-float selects 32-bit float registers. On r6 and later, -mdouble-float selects 64-bit float registers, since the old paired register model is not supported. In other cases the float registers should be the same size as the integer ones. */ if (mips_isa_rev >= 6 && TARGET_DOUBLE_FLOAT && !TARGET_FLOATXX) target_flags |= MASK_FLOAT64; else if (TARGET_64BIT && TARGET_DOUBLE_FLOAT) target_flags |= MASK_FLOAT64; else if (mips_abi == ABI_32 && ISA_HAS_MSA && !TARGET_FLOATXX) target_flags |= MASK_FLOAT64; else target_flags &= ~MASK_FLOAT64; } if (mips_abi != ABI_32 && TARGET_FLOATXX) error ("%<-mfpxx%> can only be used with the o32 ABI"); else if (TARGET_FLOAT64 && TARGET_FLOATXX) error ("unsupported combination: %s", "-mfp64 -mfpxx"); else if (ISA_MIPS1 && !TARGET_FLOAT32) error ("%<-march=%s%> requires %<-mfp32%>", mips_arch_info->name); else if (TARGET_FLOATXX && !mips_lra_flag) error ("%<-mfpxx%> requires %<-mlra%>"); /* End of code shared with GAS. */ /* The R5900 FPU only supports single precision. */ if (TARGET_MIPS5900 && TARGET_HARD_FLOAT_ABI && TARGET_DOUBLE_FLOAT) error ("unsupported combination: %s", "-march=r5900 -mhard-float -mdouble-float"); /* If a -mlong* option was given, check that it matches the ABI, otherwise infer the -mlong* setting from the other options. */ if ((target_flags_explicit & MASK_LONG64) != 0) { if (TARGET_LONG64) { if (mips_abi == ABI_N32) error ("%qs is incompatible with %qs", "-mabi=n32", "-mlong64"); else if (mips_abi == ABI_32) error ("%qs is incompatible with %qs", "-mabi=32", "-mlong64"); else if (mips_abi == ABI_O64 && TARGET_ABICALLS) /* We have traditionally allowed non-abicalls code to use an LP64 form of o64. However, it would take a bit more effort to support the combination of 32-bit GOT entries and 64-bit pointers, so we treat the abicalls case as an error. */ error ("the combination of %qs and %qs is incompatible with %qs", "-mabi=o64", "-mabicalls", "-mlong64"); } else { if (mips_abi == ABI_64) error ("%qs is incompatible with %qs", "-mabi=64", "-mlong32"); } } else { if ((mips_abi == ABI_EABI && TARGET_64BIT) || mips_abi == ABI_64) target_flags |= MASK_LONG64; else target_flags &= ~MASK_LONG64; } if (!TARGET_OLDABI) flag_pcc_struct_return = 0; /* Decide which rtx_costs structure to use. */ if (0 && optimize_size) mips_cost = &mips_rtx_cost_optimize_size; else mips_cost = &mips_rtx_cost_data[mips_tune]; /* If the user hasn't specified a branch cost, use the processor's default. */ if (mips_branch_cost == 0) mips_branch_cost = mips_cost->branch_cost; /* If neither -mbranch-likely nor -mno-branch-likely was given on the command line, set MASK_BRANCHLIKELY based on the target architecture and tuning flags. Annulled delay slots are a size win, so we only consider the processor-specific tuning for !optimize_size. */ if ((target_flags_explicit & MASK_BRANCHLIKELY) == 0) { if (ISA_HAS_BRANCHLIKELY && ((optimize_size && (mips_tune_info->tune_flags & PTF_AVOID_BRANCHLIKELY_SIZE) == 0) || (!optimize_size && optimize > 0 && (mips_tune_info->tune_flags & PTF_AVOID_BRANCHLIKELY_SPEED) == 0) || (mips_tune_info->tune_flags & PTF_AVOID_BRANCHLIKELY_ALWAYS) == 0)) target_flags |= MASK_BRANCHLIKELY; else target_flags &= ~MASK_BRANCHLIKELY; } else if (TARGET_BRANCHLIKELY && !ISA_HAS_BRANCHLIKELY) warning (0, "the %qs architecture does not support branch-likely" " instructions", mips_arch_info->name); /* If the user hasn't specified -mimadd or -mno-imadd set MASK_IMADD based on the target architecture and tuning flags. */ if ((target_flags_explicit & MASK_IMADD) == 0) { if (ISA_HAS_MADD_MSUB && (mips_tune_info->tune_flags & PTF_AVOID_IMADD) == 0) target_flags |= MASK_IMADD; else target_flags &= ~MASK_IMADD; } else if (TARGET_IMADD && !ISA_HAS_MADD_MSUB) warning (0, "the %qs architecture does not support madd or msub" " instructions", mips_arch_info->name); /* If neither -modd-spreg nor -mno-odd-spreg was given on the command line, set MASK_ODD_SPREG based on the ISA and ABI. */ if ((target_flags_explicit & MASK_ODD_SPREG) == 0) { /* Disable TARGET_ODD_SPREG when using the o32 FPXX ABI. */ if (!ISA_HAS_ODD_SPREG || TARGET_FLOATXX) target_flags &= ~MASK_ODD_SPREG; else target_flags |= MASK_ODD_SPREG; } else if (TARGET_ODD_SPREG && !ISA_HAS_ODD_SPREG) warning (0, "the %qs architecture does not support odd single-precision" " registers", mips_arch_info->name); if (!TARGET_ODD_SPREG && TARGET_64BIT) { error ("unsupported combination: %s", "-mgp64 -mno-odd-spreg"); /* Allow compilation to continue further even though invalid output will be produced. */ target_flags |= MASK_ODD_SPREG; } if (!ISA_HAS_COMPACT_BRANCHES && mips_cb == MIPS_CB_ALWAYS) { error ("unsupported combination: %qs%s %s", mips_arch_info->name, TARGET_MICROMIPS ? " -mmicromips" : "", "-mcompact-branches=always"); } else if (!ISA_HAS_DELAY_SLOTS && mips_cb == MIPS_CB_NEVER) { error ("unsupported combination: %qs%s %s", mips_arch_info->name, TARGET_MICROMIPS ? " -mmicromips" : "", "-mcompact-branches=never"); } /* Require explicit relocs for MIPS R6 onwards. This enables simplification of the compact branch and jump support through the backend. */ if (!TARGET_EXPLICIT_RELOCS && mips_isa_rev >= 6) { error ("unsupported combination: %qs %s", mips_arch_info->name, "-mno-explicit-relocs"); } /* The effect of -mabicalls isn't defined for the EABI. */ if (mips_abi == ABI_EABI && TARGET_ABICALLS) { error ("unsupported combination: %s", "-mabicalls -mabi=eabi"); target_flags &= ~MASK_ABICALLS; } /* PIC requires -mabicalls. */ if (flag_pic) { if (mips_abi == ABI_EABI) error ("cannot generate position-independent code for %qs", "-mabi=eabi"); else if (!TARGET_ABICALLS) error ("position-independent code requires %qs", "-mabicalls"); } if (TARGET_ABICALLS_PIC2) /* We need to set flag_pic for executables as well as DSOs because we may reference symbols that are not defined in the final executable. (MIPS does not use things like copy relocs, for example.) There is a body of code that uses __PIC__ to distinguish between -mabicalls and -mno-abicalls code. The non-__PIC__ variant is usually appropriate for TARGET_ABICALLS_PIC0, as long as any indirect jumps use $25. */ flag_pic = 1; /* -mvr4130-align is a "speed over size" optimization: it usually produces faster code, but at the expense of more nops. Enable it at -O3 and above. */ if (optimize > 2 && (target_flags_explicit & MASK_VR4130_ALIGN) == 0) target_flags |= MASK_VR4130_ALIGN; /* Prefer a call to memcpy over inline code when optimizing for size, though see MOVE_RATIO in mips.h. */ if (optimize_size && (target_flags_explicit & MASK_MEMCPY) == 0) target_flags |= MASK_MEMCPY; /* If we have a nonzero small-data limit, check that the -mgpopt setting is consistent with the other target flags. */ if (mips_small_data_threshold > 0) { if (!TARGET_GPOPT) { if (!TARGET_EXPLICIT_RELOCS) error ("%<-mno-gpopt%> needs %<-mexplicit-relocs%>"); TARGET_LOCAL_SDATA = false; TARGET_EXTERN_SDATA = false; } else { if (TARGET_VXWORKS_RTP) warning (0, "cannot use small-data accesses for %qs", "-mrtp"); if (TARGET_ABICALLS) warning (0, "cannot use small-data accesses for %qs", "-mabicalls"); } } /* Set NaN and ABS defaults. */ if (mips_nan == MIPS_IEEE_754_DEFAULT && !ISA_HAS_IEEE_754_LEGACY) mips_nan = MIPS_IEEE_754_2008; if (mips_abs == MIPS_IEEE_754_DEFAULT && !ISA_HAS_IEEE_754_LEGACY) mips_abs = MIPS_IEEE_754_2008; /* Check for IEEE 754 legacy/2008 support. */ if ((mips_nan == MIPS_IEEE_754_LEGACY || mips_abs == MIPS_IEEE_754_LEGACY) && !ISA_HAS_IEEE_754_LEGACY) warning (0, "the %qs architecture does not support %<-m%s=legacy%>", mips_arch_info->name, mips_nan == MIPS_IEEE_754_LEGACY ? "nan" : "abs"); if ((mips_nan == MIPS_IEEE_754_2008 || mips_abs == MIPS_IEEE_754_2008) && !ISA_HAS_IEEE_754_2008) warning (0, "the %qs architecture does not support %<-m%s=2008%>", mips_arch_info->name, mips_nan == MIPS_IEEE_754_2008 ? "nan" : "abs"); /* Pre-IEEE 754-2008 MIPS hardware has a quirky almost-IEEE format for all its floating point. */ if (mips_nan != MIPS_IEEE_754_2008) { REAL_MODE_FORMAT (SFmode) = &mips_single_format; REAL_MODE_FORMAT (DFmode) = &mips_double_format; REAL_MODE_FORMAT (TFmode) = &mips_quad_format; } /* Make sure that the user didn't turn off paired single support when MIPS-3D support is requested. */ if (TARGET_MIPS3D && (target_flags_explicit & MASK_PAIRED_SINGLE_FLOAT) && !TARGET_PAIRED_SINGLE_FLOAT) error ("%<-mips3d%> requires %<-mpaired-single%>"); /* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT. */ if (TARGET_MIPS3D) target_flags |= MASK_PAIRED_SINGLE_FLOAT; /* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64 and TARGET_HARD_FLOAT_ABI are both true. */ if (TARGET_PAIRED_SINGLE_FLOAT && !(TARGET_FLOAT64 && TARGET_HARD_FLOAT_ABI)) { error ("%qs must be used with %qs", TARGET_MIPS3D ? "-mips3d" : "-mpaired-single", TARGET_HARD_FLOAT_ABI ? "-mfp64" : "-mhard-float"); target_flags &= ~MASK_PAIRED_SINGLE_FLOAT; TARGET_MIPS3D = 0; } /* Make sure that when ISA_HAS_MSA is true, TARGET_FLOAT64 and TARGET_HARD_FLOAT_ABI and both true. */ if (ISA_HAS_MSA && !(TARGET_FLOAT64 && TARGET_HARD_FLOAT_ABI)) error ("%<-mmsa%> must be used with %<-mfp64%> and %<-mhard-float%>"); /* Make sure that -mpaired-single is only used on ISAs that support it. We must disable it otherwise since it relies on other ISA properties like ISA_HAS_8CC having their normal values. */ if (TARGET_PAIRED_SINGLE_FLOAT && !ISA_HAS_PAIRED_SINGLE) { error ("the %qs architecture does not support paired-single" " instructions", mips_arch_info->name); target_flags &= ~MASK_PAIRED_SINGLE_FLOAT; TARGET_MIPS3D = 0; } if (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE && !TARGET_CACHE_BUILTIN) { error ("%qs requires a target that provides the %qs instruction", "-mr10k-cache-barrier", "cache"); mips_r10k_cache_barrier = R10K_CACHE_BARRIER_NONE; } /* If TARGET_DSPR2, enable TARGET_DSP. */ if (TARGET_DSPR2) TARGET_DSP = true; if (TARGET_DSP && mips_isa_rev >= 6) { error ("the %qs architecture does not support DSP instructions", mips_arch_info->name); TARGET_DSP = false; TARGET_DSPR2 = false; } /* Make sure that when TARGET_LOONGSON_MMI is true, TARGET_HARD_FLOAT_ABI is true. In o32 pairs of floating-point registers provide 64-bit values. */ if (TARGET_LOONGSON_MMI && !TARGET_HARD_FLOAT_ABI) error ("%<-mloongson-mmi%> must be used with %<-mhard-float%>"); /* If TARGET_LOONGSON_EXT2, enable TARGET_LOONGSON_EXT. */ if (TARGET_LOONGSON_EXT2) { /* Make sure that when TARGET_LOONGSON_EXT2 is true, TARGET_LOONGSON_EXT is true. If a user explicitly says -mloongson-ext2 -mno-loongson-ext then that is an error. */ if (!TARGET_LOONGSON_EXT && (target_flags_explicit & MASK_LOONGSON_EXT) != 0) error ("%<-mloongson-ext2%> must be used with %<-mloongson-ext%>"); target_flags |= MASK_LOONGSON_EXT; } /* .eh_frame addresses should be the same width as a C pointer. Most MIPS ABIs support only one pointer size, so the assembler will usually know exactly how big an .eh_frame address is. Unfortunately, this is not true of the 64-bit EABI. The ABI was originally defined to use 64-bit pointers (i.e. it is LP64), and this is still the default mode. However, we also support an n32-like ILP32 mode, which is selected by -mlong32. The problem is that the assembler has traditionally not had an -mlong option, so it has traditionally not known whether we're using the ILP32 or LP64 form. As it happens, gas versions up to and including 2.19 use _32-bit_ addresses for EABI64 .cfi_* directives. This is wrong for the default LP64 mode, so we can't use the directives by default. Moreover, since gas's current behavior is at odds with gcc's default behavior, it seems unwise to rely on future versions of gas behaving the same way. We therefore avoid using .cfi directives for -mlong32 as well. */ if (mips_abi == ABI_EABI && TARGET_64BIT) flag_dwarf2_cfi_asm = 0; /* .cfi_* directives generate a read-only section, so fall back on manual .eh_frame creation if we need the section to be writable. */ if (TARGET_WRITABLE_EH_FRAME) flag_dwarf2_cfi_asm = 0; mips_init_print_operand_punct (); /* Set up array to map GCC register number to debug register number. Ignore the special purpose register numbers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { mips_dbx_regno[i] = IGNORED_DWARF_REGNUM; if (GP_REG_P (i) || FP_REG_P (i) || ALL_COP_REG_P (i)) mips_dwarf_regno[i] = i; else mips_dwarf_regno[i] = INVALID_REGNUM; } start = GP_DBX_FIRST - GP_REG_FIRST; for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++) mips_dbx_regno[i] = i + start; start = FP_DBX_FIRST - FP_REG_FIRST; for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++) mips_dbx_regno[i] = i + start; /* Accumulator debug registers use big-endian ordering. */ mips_dbx_regno[HI_REGNUM] = MD_DBX_FIRST + 0; mips_dbx_regno[LO_REGNUM] = MD_DBX_FIRST + 1; mips_dwarf_regno[HI_REGNUM] = MD_REG_FIRST + 0; mips_dwarf_regno[LO_REGNUM] = MD_REG_FIRST + 1; for (i = DSP_ACC_REG_FIRST; i <= DSP_ACC_REG_LAST; i += 2) { mips_dwarf_regno[i + TARGET_LITTLE_ENDIAN] = i; mips_dwarf_regno[i + TARGET_BIG_ENDIAN] = i + 1; } /* Set up mips_hard_regno_mode_ok. */ for (mode = 0; mode < MAX_MACHINE_MODE; mode++) for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) mips_hard_regno_mode_ok_p[mode][regno] = mips_hard_regno_mode_ok_uncached (regno, (machine_mode) mode); /* Function to allocate machine-dependent function status. */ init_machine_status = &mips_init_machine_status; /* Default to working around R4000 errata only if the processor was selected explicitly. */ if ((target_flags_explicit & MASK_FIX_R4000) == 0 && strcmp (mips_arch_info->name, "r4000") == 0) target_flags |= MASK_FIX_R4000; /* Default to working around R4400 errata only if the processor was selected explicitly. */ if ((target_flags_explicit & MASK_FIX_R4400) == 0 && strcmp (mips_arch_info->name, "r4400") == 0) target_flags |= MASK_FIX_R4400; /* Default to working around R5900 errata only if the processor was selected explicitly. */ if ((target_flags_explicit & MASK_FIX_R5900) == 0 && strcmp (mips_arch_info->name, "r5900") == 0) target_flags |= MASK_FIX_R5900; /* Default to working around R10000 errata only if the processor was selected explicitly. */ if ((target_flags_explicit & MASK_FIX_R10000) == 0 && strcmp (mips_arch_info->name, "r10000") == 0) target_flags |= MASK_FIX_R10000; /* Make sure that branch-likely instructions available when using -mfix-r10000. The instructions are not available if either: 1. -mno-branch-likely was passed. 2. The selected ISA does not support branch-likely and the command line does not include -mbranch-likely. */ if (TARGET_FIX_R10000 && ((target_flags_explicit & MASK_BRANCHLIKELY) == 0 ? !ISA_HAS_BRANCHLIKELY : !TARGET_BRANCHLIKELY)) sorry ("%qs requires branch-likely instructions", "-mfix-r10000"); if (TARGET_SYNCI && !ISA_HAS_SYNCI) { warning (0, "the %qs architecture does not support the synci " "instruction", mips_arch_info->name); target_flags &= ~MASK_SYNCI; } /* Only optimize PIC indirect calls if they are actually required. */ if (!TARGET_USE_GOT || !TARGET_EXPLICIT_RELOCS) target_flags &= ~MASK_RELAX_PIC_CALLS; /* Save base state of options. */ mips_base_target_flags = target_flags; mips_base_schedule_insns = flag_schedule_insns; mips_base_reorder_blocks_and_partition = flag_reorder_blocks_and_partition; mips_base_move_loop_invariants = flag_move_loop_invariants; mips_base_align_loops = str_align_loops; mips_base_align_jumps = str_align_jumps; mips_base_align_functions = str_align_functions; /* Now select the ISA mode. Do all CPP-sensitive stuff in uncompressed mode; we'll switch modes later if required. */ mips_set_compression_mode (0); /* We register a second machine specific reorg pass after delay slot filling. Registering the pass must be done at start up. It's convenient to do it here. */ opt_pass *new_pass = make_pass_mips_machine_reorg2 (g); struct register_pass_info insert_pass_mips_machine_reorg2 = { new_pass, /* pass */ "dbr", /* reference_pass_name */ 1, /* ref_pass_instance_number */ PASS_POS_INSERT_AFTER /* po_op */ }; register_pass (&insert_pass_mips_machine_reorg2); if (TARGET_HARD_FLOAT_ABI && TARGET_MIPS5900) REAL_MODE_FORMAT (SFmode) = &spu_single_format; mips_register_frame_header_opt (); } /* Swap the register information for registers I and I + 1, which currently have the wrong endianness. Note that the registers' fixedness and call-clobberedness might have been set on the command line. */ static void mips_swap_registers (unsigned int i) { int tmpi; const char *tmps; #define SWAP_INT(X, Y) (tmpi = (X), (X) = (Y), (Y) = tmpi) #define SWAP_STRING(X, Y) (tmps = (X), (X) = (Y), (Y) = tmps) SWAP_INT (fixed_regs[i], fixed_regs[i + 1]); SWAP_INT (call_used_regs[i], call_used_regs[i + 1]); SWAP_STRING (reg_names[i], reg_names[i + 1]); #undef SWAP_STRING #undef SWAP_INT } /* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */ static void mips_conditional_register_usage (void) { if (ISA_HAS_DSP) { /* These DSP control register fields are global. */ global_regs[CCDSP_PO_REGNUM] = 1; global_regs[CCDSP_SC_REGNUM] = 1; } else accessible_reg_set &= ~reg_class_contents[DSP_ACC_REGS]; if (!ISA_HAS_HILO) accessible_reg_set &= ~reg_class_contents[MD_REGS]; if (!TARGET_HARD_FLOAT) accessible_reg_set &= ~(reg_class_contents[FP_REGS] | reg_class_contents[ST_REGS]); else if (!ISA_HAS_8CC) { /* We only have a single condition-code register. We implement this by fixing all the condition-code registers and generating RTL that refers directly to ST_REG_FIRST. */ accessible_reg_set &= ~reg_class_contents[ST_REGS]; if (!ISA_HAS_CCF) SET_HARD_REG_BIT (accessible_reg_set, FPSW_REGNUM); fixed_regs[FPSW_REGNUM] = 1; } if (TARGET_MIPS16) { /* In MIPS16 mode, we prohibit the unused $s registers, since they are call-saved, and saving them via a MIPS16 register would probably waste more time than just reloading the value. We permit the $t temporary registers when optimizing for speed but not when optimizing for space because using them results in code that is larger (but faster) then not using them. We do allow $24 (t8) because it is used in CMP and CMPI instructions and $25 (t9) because it is used as the function call address in SVR4 PIC code. */ fixed_regs[18] = 1; fixed_regs[19] = 1; fixed_regs[20] = 1; fixed_regs[21] = 1; fixed_regs[22] = 1; fixed_regs[23] = 1; fixed_regs[26] = 1; fixed_regs[27] = 1; fixed_regs[30] = 1; if (optimize_size) { fixed_regs[8] = 1; fixed_regs[9] = 1; fixed_regs[10] = 1; fixed_regs[11] = 1; fixed_regs[12] = 1; fixed_regs[13] = 1; fixed_regs[14] = 1; fixed_regs[15] = 1; } /* Do not allow HI and LO to be treated as register operands. There are no MTHI or MTLO instructions (or any real need for them) and one-way registers cannot easily be reloaded. */ operand_reg_set &= ~reg_class_contents[MD_REGS]; } /* $f20-$f23 are call-clobbered for n64. */ if (mips_abi == ABI_64) { int regno; for (regno = FP_REG_FIRST + 20; regno < FP_REG_FIRST + 24; regno++) call_used_regs[regno] = 1; } /* Odd registers in the range $f21-$f31 (inclusive) are call-clobbered for n32 and o32 FP64. */ if (mips_abi == ABI_N32 || (mips_abi == ABI_32 && TARGET_FLOAT64)) { int regno; for (regno = FP_REG_FIRST + 21; regno <= FP_REG_FIRST + 31; regno+=2) call_used_regs[regno] = 1; } /* Make sure that double-register accumulator values are correctly ordered for the current endianness. */ if (TARGET_LITTLE_ENDIAN) { unsigned int regno; mips_swap_registers (MD_REG_FIRST); for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno += 2) mips_swap_registers (regno); } } /* Implement EH_USES. */ bool mips_eh_uses (unsigned int regno) { if (reload_completed && !TARGET_ABSOLUTE_JUMPS) { /* We need to force certain registers to be live in order to handle PIC long branches correctly. See mips_must_initialize_gp_p for details. */ if (mips_cfun_has_cprestore_slot_p ()) { if (regno == CPRESTORE_SLOT_REGNUM) return true; } else { if (cfun->machine->global_pointer == regno) return true; } } return false; } /* Implement EPILOGUE_USES. */ bool mips_epilogue_uses (unsigned int regno) { /* Say that the epilogue uses the return address register. Note that in the case of sibcalls, the values "used by the epilogue" are considered live at the start of the called function. */ if (regno == RETURN_ADDR_REGNUM) return true; /* If using a GOT, say that the epilogue also uses GOT_VERSION_REGNUM. See the comment above load_call for details. */ if (TARGET_USE_GOT && (regno) == GOT_VERSION_REGNUM) return true; /* An interrupt handler must preserve some registers that are ordinarily call-clobbered. */ if (cfun->machine->interrupt_handler_p && mips_interrupt_extra_call_saved_reg_p (regno)) return true; return false; } /* Return true if INSN needs to be wrapped in ".set noat". INSN has NOPERANDS operands, stored in OPVEC. */ static bool mips_need_noat_wrapper_p (rtx_insn *insn, rtx *opvec, int noperands) { if (recog_memoized (insn) >= 0) { subrtx_iterator::array_type array; for (int i = 0; i < noperands; i++) FOR_EACH_SUBRTX (iter, array, opvec[i], NONCONST) if (REG_P (*iter) && REGNO (*iter) == AT_REGNUM) return true; } return false; } /* Implement FINAL_PRESCAN_INSN. Mark MIPS16 inline constant pools as data for the purpose of disassembly. For simplicity embed the pool's initial label number in the local symbol produced so that multiple pools within a single function end up marked with unique symbols. The label number is carried by the `consttable' insn emitted at the beginning of each pool. */ void mips_final_prescan_insn (rtx_insn *insn, rtx *opvec, int noperands) { if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE && XINT (PATTERN (insn), 1) == UNSPEC_CONSTTABLE) mips_set_text_contents_type (asm_out_file, "__pool_", INTVAL (XVECEXP (PATTERN (insn), 0, 0)), FALSE); if (mips_need_noat_wrapper_p (insn, opvec, noperands)) mips_push_asm_switch (&mips_noat); } /* Implement TARGET_ASM_FINAL_POSTSCAN_INSN. Reset text marking to code after a MIPS16 inline constant pool. Like with the beginning of a pool table use the pool's initial label number to keep symbols unique. The label number is carried by the `consttable_end' insn emitted at the end of each pool. */ static void mips_final_postscan_insn (FILE *file ATTRIBUTE_UNUSED, rtx_insn *insn, rtx *opvec, int noperands) { if (mips_need_noat_wrapper_p (insn, opvec, noperands)) mips_pop_asm_switch (&mips_noat); if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE && XINT (PATTERN (insn), 1) == UNSPEC_CONSTTABLE_END) { rtx_insn *next_insn = next_real_nondebug_insn (insn); bool code_p = (next_insn != NULL && INSN_P (next_insn) && (GET_CODE (PATTERN (next_insn)) != UNSPEC_VOLATILE || XINT (PATTERN (next_insn), 1) != UNSPEC_CONSTTABLE)); /* Switch content type depending on whether there is code beyond the constant pool. */ mips_set_text_contents_type (asm_out_file, "__pend_", INTVAL (XVECEXP (PATTERN (insn), 0, 0)), code_p); } } /* Return the function that is used to expand the mulsidi3 pattern. EXT_CODE is the code of the extension used. Return NULL if widening multiplication shouldn't be used. */ mulsidi3_gen_fn mips_mulsidi3_gen_fn (enum rtx_code ext_code) { bool signed_p; signed_p = ext_code == SIGN_EXTEND; if (TARGET_64BIT) { /* Don't use widening multiplication with MULT when we have DMUL. Even with the extension of its input operands DMUL is faster. Note that the extension is not needed for signed multiplication. In order to ensure that we always remove the redundant sign-extension in this case we still expand mulsidi3 for DMUL. */ if (ISA_HAS_R6DMUL) return signed_p ? gen_mulsidi3_64bit_r6dmul : NULL; if (ISA_HAS_DMUL3) return signed_p ? gen_mulsidi3_64bit_dmul : NULL; if (TARGET_MIPS16) return (signed_p ? gen_mulsidi3_64bit_mips16 : gen_umulsidi3_64bit_mips16); if (TARGET_FIX_R4000) return NULL; return signed_p ? gen_mulsidi3_64bit : gen_umulsidi3_64bit; } else { if (ISA_HAS_R6MUL) return (signed_p ? gen_mulsidi3_32bit_r6 : gen_umulsidi3_32bit_r6); if (TARGET_MIPS16) return (signed_p ? gen_mulsidi3_32bit_mips16 : gen_umulsidi3_32bit_mips16); if (TARGET_FIX_R4000 && !ISA_HAS_DSP) return signed_p ? gen_mulsidi3_32bit_r4000 : gen_umulsidi3_32bit_r4000; return signed_p ? gen_mulsidi3_32bit : gen_umulsidi3_32bit; } } /* Return true if PATTERN matches the kind of instruction generated by umips_build_save_restore. SAVE_P is true for store. */ bool umips_save_restore_pattern_p (bool save_p, rtx pattern) { int n; unsigned int i; HOST_WIDE_INT first_offset = 0; rtx first_base = 0; unsigned int regmask = 0; for (n = 0; n < XVECLEN (pattern, 0); n++) { rtx set, reg, mem, this_base; HOST_WIDE_INT this_offset; /* Check that we have a SET. */ set = XVECEXP (pattern, 0, n); if (GET_CODE (set) != SET) return false; /* Check that the SET is a load (if restoring) or a store (if saving). */ mem = save_p ? SET_DEST (set) : SET_SRC (set); if (!MEM_P (mem) || MEM_VOLATILE_P (mem)) return false; /* Check that the address is the sum of base and a possibly-zero constant offset. Determine if the offset is in range. */ mips_split_plus (XEXP (mem, 0), &this_base, &this_offset); if (!REG_P (this_base)) return false; if (n == 0) { if (!UMIPS_12BIT_OFFSET_P (this_offset)) return false; first_base = this_base; first_offset = this_offset; } else { /* Check that the save slots are consecutive. */ if (REGNO (this_base) != REGNO (first_base) || this_offset != first_offset + UNITS_PER_WORD * n) return false; } /* Check that SET's other operand is a register. */ reg = save_p ? SET_SRC (set) : SET_DEST (set); if (!REG_P (reg)) return false; regmask |= 1 << REGNO (reg); } for (i = 0; i < ARRAY_SIZE (umips_swm_mask); i++) if (regmask == umips_swm_mask[i]) return true; return false; } /* Return the assembly instruction for microMIPS LWM or SWM. SAVE_P and PATTERN are as for umips_save_restore_pattern_p. */ const char * umips_output_save_restore (bool save_p, rtx pattern) { static char buffer[300]; char *s; int n; HOST_WIDE_INT offset; rtx base, mem, set, last_set, last_reg; /* Parse the pattern. */ gcc_assert (umips_save_restore_pattern_p (save_p, pattern)); s = strcpy (buffer, save_p ? "swm\t" : "lwm\t"); s += strlen (s); n = XVECLEN (pattern, 0); set = XVECEXP (pattern, 0, 0); mem = save_p ? SET_DEST (set) : SET_SRC (set); mips_split_plus (XEXP (mem, 0), &base, &offset); last_set = XVECEXP (pattern, 0, n - 1); last_reg = save_p ? SET_SRC (last_set) : SET_DEST (last_set); if (REGNO (last_reg) == 31) n--; gcc_assert (n <= 9); if (n == 0) ; else if (n == 1) s += sprintf (s, "%s,", reg_names[16]); else if (n < 9) s += sprintf (s, "%s-%s,", reg_names[16], reg_names[15 + n]); else if (n == 9) s += sprintf (s, "%s-%s,%s,", reg_names[16], reg_names[23], reg_names[30]); if (REGNO (last_reg) == 31) s += sprintf (s, "%s,", reg_names[31]); s += sprintf (s, "%d(%s)", (int)offset, reg_names[REGNO (base)]); return buffer; } /* Return true if MEM1 and MEM2 use the same base register, and the offset of MEM2 equals the offset of MEM1 plus 4. FIRST_REG is the register into (from) which the contents of MEM1 will be loaded (stored), depending on the value of LOAD_P. SWAP_P is true when the 1st and 2nd instructions are swapped. */ static bool umips_load_store_pair_p_1 (bool load_p, bool swap_p, rtx first_reg, rtx mem1, rtx mem2) { rtx base1, base2; HOST_WIDE_INT offset1, offset2; if (!MEM_P (mem1) || !MEM_P (mem2)) return false; mips_split_plus (XEXP (mem1, 0), &base1, &offset1); mips_split_plus (XEXP (mem2, 0), &base2, &offset2); if (!REG_P (base1) || !rtx_equal_p (base1, base2)) return false; /* Avoid invalid load pair instructions. */ if (load_p && REGNO (first_reg) == REGNO (base1)) return false; /* We must avoid this case for anti-dependence. Ex: lw $3, 4($3) lw $2, 0($3) first_reg is $2, but the base is $3. */ if (load_p && swap_p && REGNO (first_reg) + 1 == REGNO (base1)) return false; if (offset2 != offset1 + 4) return false; if (!UMIPS_12BIT_OFFSET_P (offset1)) return false; return true; } bool mips_load_store_bonding_p (rtx *operands, machine_mode mode, bool load_p) { rtx reg1, reg2, mem1, mem2, base1, base2; enum reg_class rc1, rc2; HOST_WIDE_INT offset1, offset2; if (load_p) { reg1 = operands[0]; reg2 = operands[2]; mem1 = operands[1]; mem2 = operands[3]; } else { reg1 = operands[1]; reg2 = operands[3]; mem1 = operands[0]; mem2 = operands[2]; } if (mips_address_insns (XEXP (mem1, 0), mode, false) == 0 || mips_address_insns (XEXP (mem2, 0), mode, false) == 0) return false; mips_split_plus (XEXP (mem1, 0), &base1, &offset1); mips_split_plus (XEXP (mem2, 0), &base2, &offset2); /* Base regs do not match. */ if (!REG_P (base1) || !rtx_equal_p (base1, base2)) return false; /* Either of the loads is clobbering base register. It is legitimate to bond loads if second load clobbers base register. However, hardware does not support such bonding. */ if (load_p && (REGNO (reg1) == REGNO (base1) || (REGNO (reg2) == REGNO (base1)))) return false; /* Loading in same registers. */ if (load_p && REGNO (reg1) == REGNO (reg2)) return false; /* The loads/stores are not of same type. */ rc1 = REGNO_REG_CLASS (REGNO (reg1)); rc2 = REGNO_REG_CLASS (REGNO (reg2)); if (rc1 != rc2 && !reg_class_subset_p (rc1, rc2) && !reg_class_subset_p (rc2, rc1)) return false; if (abs (offset1 - offset2) != GET_MODE_SIZE (mode)) return false; return true; } /* OPERANDS describes the operands to a pair of SETs, in the order dest1, src1, dest2, src2. Return true if the operands can be used in an LWP or SWP instruction; LOAD_P says which. */ bool umips_load_store_pair_p (bool load_p, rtx *operands) { rtx reg1, reg2, mem1, mem2; if (load_p) { reg1 = operands[0]; reg2 = operands[2]; mem1 = operands[1]; mem2 = operands[3]; } else { reg1 = operands[1]; reg2 = operands[3]; mem1 = operands[0]; mem2 = operands[2]; } if (REGNO (reg2) == REGNO (reg1) + 1) return umips_load_store_pair_p_1 (load_p, false, reg1, mem1, mem2); if (REGNO (reg1) == REGNO (reg2) + 1) return umips_load_store_pair_p_1 (load_p, true, reg2, mem2, mem1); return false; } /* Return the assembly instruction for a microMIPS LWP or SWP in which the first register is REG and the first memory slot is MEM. LOAD_P is true for LWP. */ static void umips_output_load_store_pair_1 (bool load_p, rtx reg, rtx mem) { rtx ops[] = {reg, mem}; if (load_p) output_asm_insn ("lwp\t%0,%1", ops); else output_asm_insn ("swp\t%0,%1", ops); } /* Output the assembly instruction for a microMIPS LWP or SWP instruction. LOAD_P and OPERANDS are as for umips_load_store_pair_p. */ void umips_output_load_store_pair (bool load_p, rtx *operands) { rtx reg1, reg2, mem1, mem2; if (load_p) { reg1 = operands[0]; reg2 = operands[2]; mem1 = operands[1]; mem2 = operands[3]; } else { reg1 = operands[1]; reg2 = operands[3]; mem1 = operands[0]; mem2 = operands[2]; } if (REGNO (reg2) == REGNO (reg1) + 1) { umips_output_load_store_pair_1 (load_p, reg1, mem1); return; } gcc_assert (REGNO (reg1) == REGNO (reg2) + 1); umips_output_load_store_pair_1 (load_p, reg2, mem2); } /* Return true if REG1 and REG2 match the criteria for a movep insn. */ bool umips_movep_target_p (rtx reg1, rtx reg2) { int regno1, regno2, pair; unsigned int i; static const int match[8] = { 0x00000060, /* 5, 6 */ 0x000000a0, /* 5, 7 */ 0x000000c0, /* 6, 7 */ 0x00200010, /* 4, 21 */ 0x00400010, /* 4, 22 */ 0x00000030, /* 4, 5 */ 0x00000050, /* 4, 6 */ 0x00000090 /* 4, 7 */ }; if (!REG_P (reg1) || !REG_P (reg2)) return false; regno1 = REGNO (reg1); regno2 = REGNO (reg2); if (!GP_REG_P (regno1) || !GP_REG_P (regno2)) return false; pair = (1 << regno1) | (1 << regno2); for (i = 0; i < ARRAY_SIZE (match); i++) if (pair == match[i]) return true; return false; } /* Return the size in bytes of the trampoline code, padded to TRAMPOLINE_ALIGNMENT bits. The static chain pointer and target function address immediately follow. */ int mips_trampoline_code_size (void) { if (TARGET_USE_PIC_FN_ADDR_REG) return 4 * 4; else if (ptr_mode == DImode) return 8 * 4; else if (ISA_HAS_LOAD_DELAY) return 6 * 4; else return 4 * 4; } /* Implement TARGET_TRAMPOLINE_INIT. */ static void mips_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) { rtx addr, end_addr, high, low, opcode, mem; rtx trampoline[8]; unsigned int i, j; HOST_WIDE_INT end_addr_offset, static_chain_offset, target_function_offset; /* Work out the offsets of the pointers from the start of the trampoline code. */ end_addr_offset = mips_trampoline_code_size (); static_chain_offset = end_addr_offset; target_function_offset = static_chain_offset + GET_MODE_SIZE (ptr_mode); /* Get pointers to the beginning and end of the code block. */ addr = force_reg (Pmode, XEXP (m_tramp, 0)); end_addr = mips_force_binary (Pmode, PLUS, addr, GEN_INT (end_addr_offset)); #define OP(X) gen_int_mode (X, SImode) /* Build up the code in TRAMPOLINE. */ i = 0; if (TARGET_USE_PIC_FN_ADDR_REG) { /* $25 contains the address of the trampoline. Emit code of the form: l[wd] $1, target_function_offset($25) l[wd] $static_chain, static_chain_offset($25) jr $1 move $25,$1. */ trampoline[i++] = OP (MIPS_LOAD_PTR (AT_REGNUM, target_function_offset, PIC_FUNCTION_ADDR_REGNUM)); trampoline[i++] = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM, static_chain_offset, PIC_FUNCTION_ADDR_REGNUM)); trampoline[i++] = OP (MIPS_JR (AT_REGNUM)); trampoline[i++] = OP (MIPS_MOVE (PIC_FUNCTION_ADDR_REGNUM, AT_REGNUM)); } else if (ptr_mode == DImode) { /* It's too cumbersome to create the full 64-bit address, so let's instead use: move $1, $31 bal 1f nop 1: l[wd] $25, target_function_offset - 12($31) l[wd] $static_chain, static_chain_offset - 12($31) jr $25 move $31, $1 where 12 is the offset of "1:" from the start of the code block. */ trampoline[i++] = OP (MIPS_MOVE (AT_REGNUM, RETURN_ADDR_REGNUM)); trampoline[i++] = OP (MIPS_BAL (1)); trampoline[i++] = OP (MIPS_NOP); trampoline[i++] = OP (MIPS_LOAD_PTR (PIC_FUNCTION_ADDR_REGNUM, target_function_offset - 12, RETURN_ADDR_REGNUM)); trampoline[i++] = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM, static_chain_offset - 12, RETURN_ADDR_REGNUM)); trampoline[i++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM)); trampoline[i++] = OP (MIPS_MOVE (RETURN_ADDR_REGNUM, AT_REGNUM)); } else { /* If the target has load delays, emit: lui $1, %hi(end_addr) lw $25, %lo(end_addr + ...)($1) lw $static_chain, %lo(end_addr + ...)($1) jr $25 nop Otherwise emit: lui $1, %hi(end_addr) lw $25, %lo(end_addr + ...)($1) jr $25 lw $static_chain, %lo(end_addr + ...)($1). */ /* Split END_ADDR into %hi and %lo values. Trampolines are aligned to 64 bits, so the %lo value will have the bottom 3 bits clear. */ high = expand_simple_binop (SImode, PLUS, end_addr, GEN_INT (0x8000), NULL, false, OPTAB_WIDEN); high = expand_simple_binop (SImode, LSHIFTRT, high, GEN_INT (16), NULL, false, OPTAB_WIDEN); low = convert_to_mode (SImode, gen_lowpart (HImode, end_addr), true); /* Emit the LUI. */ opcode = OP (MIPS_LUI (AT_REGNUM, 0)); trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, high, NULL, false, OPTAB_WIDEN); /* Emit the load of the target function. */ opcode = OP (MIPS_LOAD_PTR (PIC_FUNCTION_ADDR_REGNUM, target_function_offset - end_addr_offset, AT_REGNUM)); trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, low, NULL, false, OPTAB_WIDEN); /* Emit the JR here, if we can. */ if (!ISA_HAS_LOAD_DELAY) trampoline[i++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM)); /* Emit the load of the static chain register. */ opcode = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM, static_chain_offset - end_addr_offset, AT_REGNUM)); trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, low, NULL, false, OPTAB_WIDEN); /* Emit the JR, if we couldn't above. */ if (ISA_HAS_LOAD_DELAY) { trampoline[i++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM)); trampoline[i++] = OP (MIPS_NOP); } } #undef OP /* If we are using compact branches we don't have delay slots so place the instruction that was in the delay slot before the JRC instruction. */ if (TARGET_CB_ALWAYS) { rtx temp; temp = trampoline[i-2]; trampoline[i-2] = trampoline[i-1]; trampoline[i-1] = temp; } /* Copy the trampoline code. Leave any padding uninitialized. */ for (j = 0; j < i; j++) { mem = adjust_address (m_tramp, SImode, j * GET_MODE_SIZE (SImode)); mips_emit_move (mem, trampoline[j]); } /* Set up the static chain pointer field. */ mem = adjust_address (m_tramp, ptr_mode, static_chain_offset); mips_emit_move (mem, chain_value); /* Set up the target function field. */ mem = adjust_address (m_tramp, ptr_mode, target_function_offset); mips_emit_move (mem, XEXP (DECL_RTL (fndecl), 0)); /* Flush the code part of the trampoline. */ emit_insn (gen_add3_insn (end_addr, addr, GEN_INT (TRAMPOLINE_SIZE))); emit_insn (gen_clear_cache (addr, end_addr)); } /* Implement FUNCTION_PROFILER. */ void mips_function_profiler (FILE *file) { if (TARGET_MIPS16) sorry ("mips16 function profiling"); if (TARGET_LONG_CALLS) { /* For TARGET_LONG_CALLS use $3 for the address of _mcount. */ if (Pmode == DImode) fprintf (file, "\tdla\t%s,_mcount\n", reg_names[3]); else fprintf (file, "\tla\t%s,_mcount\n", reg_names[3]); } mips_push_asm_switch (&mips_noat); fprintf (file, "\tmove\t%s,%s\t\t# save current return address\n", reg_names[AT_REGNUM], reg_names[RETURN_ADDR_REGNUM]); /* _mcount treats $2 as the static chain register. */ if (cfun->static_chain_decl != NULL) fprintf (file, "\tmove\t%s,%s\n", reg_names[2], reg_names[STATIC_CHAIN_REGNUM]); if (TARGET_MCOUNT_RA_ADDRESS) { /* If TARGET_MCOUNT_RA_ADDRESS load $12 with the address of the ra save location. */ if (cfun->machine->frame.ra_fp_offset == 0) /* ra not saved, pass zero. */ fprintf (file, "\tmove\t%s,%s\n", reg_names[12], reg_names[0]); else fprintf (file, "\t%s\t%s," HOST_WIDE_INT_PRINT_DEC "(%s)\n", Pmode == DImode ? "dla" : "la", reg_names[12], cfun->machine->frame.ra_fp_offset, reg_names[STACK_POINTER_REGNUM]); } if (!TARGET_NEWABI) fprintf (file, "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", TARGET_64BIT ? "dsubu" : "subu", reg_names[STACK_POINTER_REGNUM], reg_names[STACK_POINTER_REGNUM], Pmode == DImode ? 16 : 8); if (TARGET_LONG_CALLS) fprintf (file, "\tjalr\t%s\n", reg_names[3]); else fprintf (file, "\tjal\t_mcount\n"); mips_pop_asm_switch (&mips_noat); /* _mcount treats $2 as the static chain register. */ if (cfun->static_chain_decl != NULL) fprintf (file, "\tmove\t%s,%s\n", reg_names[STATIC_CHAIN_REGNUM], reg_names[2]); } /* Implement TARGET_SHIFT_TRUNCATION_MASK. We want to keep the default behavior of TARGET_SHIFT_TRUNCATION_MASK for non-vector modes even when TARGET_LOONGSON_MMI is true. */ static unsigned HOST_WIDE_INT mips_shift_truncation_mask (machine_mode mode) { if (TARGET_LOONGSON_MMI && VECTOR_MODE_P (mode)) return 0; return GET_MODE_BITSIZE (mode) - 1; } /* Implement TARGET_PREPARE_PCH_SAVE. */ static void mips_prepare_pch_save (void) { /* We are called in a context where the current compression vs. non-compression setting should be irrelevant. The question then is: which setting makes most sense at load time? The PCH is loaded before the first token is read. We should never have switched into a compression mode by that point, and thus should not have populated mips16_globals or micromips_globals. Nor can we load the entire contents of mips16_globals or micromips_globals from the PCH file, because they contain a combination of GGC and non-GGC data. There is therefore no point in trying save the GGC part of mips16_globals/micromips_globals to the PCH file, or to preserve a compression setting across the PCH save and load. The loading compiler would not have access to the non-GGC parts of mips16_globals or micromips_globals (either from the PCH file, or from a copy that the loading compiler generated itself) and would have to call target_reinit anyway. It therefore seems best to switch back to non-MIPS16 mode and non-microMIPS mode to save time, and to ensure that mips16_globals and micromips_globals remain null after a PCH load. */ mips_set_compression_mode (0); mips16_globals = 0; micromips_globals = 0; } /* Generate or test for an insn that supports a constant permutation. */ #define MAX_VECT_LEN 16 struct expand_vec_perm_d { rtx target, op0, op1; unsigned char perm[MAX_VECT_LEN]; machine_mode vmode; unsigned char nelt; bool one_vector_p; bool testing_p; }; /* Construct (set target (vec_select op0 (parallel perm))) and return true if that's a valid instruction in the active ISA. */ static bool mips_expand_vselect (rtx target, rtx op0, const unsigned char *perm, unsigned nelt) { rtx rperm[MAX_VECT_LEN], x; rtx_insn *insn; unsigned i; for (i = 0; i < nelt; ++i) rperm[i] = GEN_INT (perm[i]); x = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelt, rperm)); x = gen_rtx_VEC_SELECT (GET_MODE (target), op0, x); x = gen_rtx_SET (target, x); insn = emit_insn (x); if (recog_memoized (insn) < 0) { remove_insn (insn); return false; } return true; } /* Similar, but generate a vec_concat from op0 and op1 as well. */ static bool mips_expand_vselect_vconcat (rtx target, rtx op0, rtx op1, const unsigned char *perm, unsigned nelt) { machine_mode v2mode; rtx x; if (!GET_MODE_2XWIDER_MODE (GET_MODE (op0)).exists (&v2mode)) return false; x = gen_rtx_VEC_CONCAT (v2mode, op0, op1); return mips_expand_vselect (target, x, perm, nelt); } /* Recognize patterns for even-odd extraction. */ static bool mips_expand_vpc_loongson_even_odd (struct expand_vec_perm_d *d) { unsigned i, odd, nelt = d->nelt; rtx t0, t1, t2, t3; if (!(TARGET_HARD_FLOAT && TARGET_LOONGSON_MMI)) return false; /* Even-odd for V2SI/V2SFmode is matched by interleave directly. */ if (nelt < 4) return false; odd = d->perm[0]; if (odd > 1) return false; for (i = 1; i < nelt; ++i) if (d->perm[i] != i * 2 + odd) return false; if (d->testing_p) return true; /* We need 2*log2(N)-1 operations to achieve odd/even with interleave. */ t0 = gen_reg_rtx (d->vmode); t1 = gen_reg_rtx (d->vmode); switch (d->vmode) { case E_V4HImode: emit_insn (gen_loongson_punpckhhw (t0, d->op0, d->op1)); emit_insn (gen_loongson_punpcklhw (t1, d->op0, d->op1)); if (odd) emit_insn (gen_loongson_punpckhhw (d->target, t1, t0)); else emit_insn (gen_loongson_punpcklhw (d->target, t1, t0)); break; case E_V8QImode: t2 = gen_reg_rtx (d->vmode); t3 = gen_reg_rtx (d->vmode); emit_insn (gen_loongson_punpckhbh (t0, d->op0, d->op1)); emit_insn (gen_loongson_punpcklbh (t1, d->op0, d->op1)); emit_insn (gen_loongson_punpckhbh (t2, t1, t0)); emit_insn (gen_loongson_punpcklbh (t3, t1, t0)); if (odd) emit_insn (gen_loongson_punpckhbh (d->target, t3, t2)); else emit_insn (gen_loongson_punpcklbh (d->target, t3, t2)); break; default: gcc_unreachable (); } return true; } /* Recognize patterns for the Loongson PSHUFH instruction. */ static bool mips_expand_vpc_loongson_pshufh (struct expand_vec_perm_d *d) { unsigned i, mask; rtx rmask; if (!(TARGET_HARD_FLOAT && TARGET_LOONGSON_MMI)) return false; if (d->vmode != V4HImode) return false; if (d->testing_p) return true; /* Convert the selector into the packed 8-bit form for pshufh. */ /* Recall that loongson is little-endian only. No big-endian adjustment required. */ for (i = mask = 0; i < 4; i++) mask |= (d->perm[i] & 3) << (i * 2); rmask = force_reg (SImode, GEN_INT (mask)); if (d->one_vector_p) emit_insn (gen_loongson_pshufh (d->target, d->op0, rmask)); else { rtx t0, t1, x, merge, rmerge[4]; t0 = gen_reg_rtx (V4HImode); t1 = gen_reg_rtx (V4HImode); emit_insn (gen_loongson_pshufh (t1, d->op1, rmask)); emit_insn (gen_loongson_pshufh (t0, d->op0, rmask)); for (i = 0; i < 4; ++i) rmerge[i] = (d->perm[i] & 4 ? constm1_rtx : const0_rtx); merge = gen_rtx_CONST_VECTOR (V4HImode, gen_rtvec_v (4, rmerge)); merge = force_reg (V4HImode, merge); x = gen_rtx_AND (V4HImode, merge, t1); emit_insn (gen_rtx_SET (t1, x)); x = gen_rtx_NOT (V4HImode, merge); x = gen_rtx_AND (V4HImode, x, t0); emit_insn (gen_rtx_SET (t0, x)); x = gen_rtx_IOR (V4HImode, t0, t1); emit_insn (gen_rtx_SET (d->target, x)); } return true; } /* Recognize broadcast patterns for the Loongson. */ static bool mips_expand_vpc_loongson_bcast (struct expand_vec_perm_d *d) { unsigned i, elt; rtx t0, t1; if (!(TARGET_HARD_FLOAT && TARGET_LOONGSON_MMI)) return false; /* Note that we've already matched V2SI via punpck and V4HI via pshufh. */ if (d->vmode != V8QImode) return false; if (!d->one_vector_p) return false; elt = d->perm[0]; for (i = 1; i < 8; ++i) if (d->perm[i] != elt) return false; if (d->testing_p) return true; /* With one interleave we put two of the desired element adjacent. */ t0 = gen_reg_rtx (V8QImode); if (elt < 4) emit_insn (gen_loongson_punpcklbh (t0, d->op0, d->op0)); else emit_insn (gen_loongson_punpckhbh (t0, d->op0, d->op0)); /* Shuffle that one HImode element into all locations. */ elt &= 3; elt *= 0x55; t1 = gen_reg_rtx (V4HImode); emit_insn (gen_loongson_pshufh (t1, gen_lowpart (V4HImode, t0), force_reg (SImode, GEN_INT (elt)))); emit_move_insn (d->target, gen_lowpart (V8QImode, t1)); return true; } /* Construct (set target (vec_select op0 (parallel selector))) and return true if that's a valid instruction in the active ISA. */ static bool mips_expand_msa_shuffle (struct expand_vec_perm_d *d) { rtx x, elts[MAX_VECT_LEN]; rtvec v; rtx_insn *insn; unsigned i; if (!ISA_HAS_MSA) return false; for (i = 0; i < d->nelt; i++) elts[i] = GEN_INT (d->perm[i]); v = gen_rtvec_v (d->nelt, elts); x = gen_rtx_PARALLEL (VOIDmode, v); if (!mips_const_vector_shuffle_set_p (x, d->vmode)) return false; x = gen_rtx_VEC_SELECT (d->vmode, d->op0, x); x = gen_rtx_SET (d->target, x); insn = emit_insn (x); if (recog_memoized (insn) < 0) { remove_insn (insn); return false; } return true; } static bool mips_expand_vec_perm_const_1 (struct expand_vec_perm_d *d) { unsigned int i, nelt = d->nelt; unsigned char perm2[MAX_VECT_LEN]; if (d->one_vector_p) { /* Try interleave with alternating operands. */ memcpy (perm2, d->perm, sizeof(perm2)); for (i = 1; i < nelt; i += 2) perm2[i] += nelt; if (mips_expand_vselect_vconcat (d->target, d->op0, d->op1, perm2, nelt)) return true; } else { if (mips_expand_vselect_vconcat (d->target, d->op0, d->op1, d->perm, nelt)) return true; /* Try again with swapped operands. */ for (i = 0; i < nelt; ++i) perm2[i] = (d->perm[i] + nelt) & (2 * nelt - 1); if (mips_expand_vselect_vconcat (d->target, d->op1, d->op0, perm2, nelt)) return true; } if (mips_expand_vpc_loongson_even_odd (d)) return true; if (mips_expand_vpc_loongson_pshufh (d)) return true; if (mips_expand_vpc_loongson_bcast (d)) return true; if (mips_expand_msa_shuffle (d)) return true; return false; } /* Implement TARGET_VECTORIZE_VEC_PERM_CONST. */ static bool mips_vectorize_vec_perm_const (machine_mode vmode, rtx target, rtx op0, rtx op1, const vec_perm_indices &sel) { struct expand_vec_perm_d d; int i, nelt, which; unsigned char orig_perm[MAX_VECT_LEN]; bool ok; d.target = target; if (op0) { rtx nop0 = force_reg (vmode, op0); if (op0 == op1) op1 = nop0; op0 = nop0; } if (op1) op1 = force_reg (vmode, op1); d.op0 = op0; d.op1 = op1; d.vmode = vmode; gcc_assert (VECTOR_MODE_P (vmode)); d.nelt = nelt = GET_MODE_NUNITS (vmode); d.testing_p = !target; /* This is overly conservative, but ensures we don't get an uninitialized warning on ORIG_PERM. */ memset (orig_perm, 0, MAX_VECT_LEN); for (i = which = 0; i < nelt; ++i) { int ei = sel[i] & (2 * nelt - 1); which |= (ei < nelt ? 1 : 2); orig_perm[i] = ei; } memcpy (d.perm, orig_perm, MAX_VECT_LEN); switch (which) { default: gcc_unreachable(); case 3: d.one_vector_p = false; if (d.testing_p || !rtx_equal_p (d.op0, d.op1)) break; /* FALLTHRU */ case 2: for (i = 0; i < nelt; ++i) d.perm[i] &= nelt - 1; d.op0 = d.op1; d.one_vector_p = true; break; case 1: d.op1 = d.op0; d.one_vector_p = true; break; } if (d.testing_p) { d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1); d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2); if (!d.one_vector_p) d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3); start_sequence (); ok = mips_expand_vec_perm_const_1 (&d); end_sequence (); return ok; } ok = mips_expand_vec_perm_const_1 (&d); /* If we were given a two-vector permutation which just happened to have both input vectors equal, we folded this into a one-vector permutation. There are several loongson patterns that are matched via direct vec_select+vec_concat expansion, but we do not have support in mips_expand_vec_perm_const_1 to guess the adjustment that should be made for a single operand. Just try again with the original permutation. */ if (!ok && which == 3) { d.op0 = op0; d.op1 = op1; d.one_vector_p = false; memcpy (d.perm, orig_perm, MAX_VECT_LEN); ok = mips_expand_vec_perm_const_1 (&d); } return ok; } /* Implement TARGET_SCHED_REASSOCIATION_WIDTH. */ static int mips_sched_reassociation_width (unsigned int opc ATTRIBUTE_UNUSED, machine_mode mode) { if (MSA_SUPPORTED_MODE_P (mode)) return 2; return 1; } /* Expand an integral vector unpack operation. */ void mips_expand_vec_unpack (rtx operands[2], bool unsigned_p, bool high_p) { machine_mode imode = GET_MODE (operands[1]); rtx (*unpack) (rtx, rtx, rtx); rtx (*cmpFunc) (rtx, rtx, rtx); rtx tmp, dest, zero; if (MSA_SUPPORTED_MODE_P (imode)) { switch (imode) { case E_V4SImode: if (BYTES_BIG_ENDIAN != high_p) unpack = gen_msa_ilvl_w; else unpack = gen_msa_ilvr_w; cmpFunc = gen_msa_clt_s_w; break; case E_V8HImode: if (BYTES_BIG_ENDIAN != high_p) unpack = gen_msa_ilvl_h; else unpack = gen_msa_ilvr_h; cmpFunc = gen_msa_clt_s_h; break; case E_V16QImode: if (BYTES_BIG_ENDIAN != high_p) unpack = gen_msa_ilvl_b; else unpack = gen_msa_ilvr_b; cmpFunc = gen_msa_clt_s_b; break; default: gcc_unreachable (); break; } if (!unsigned_p) { /* Extract sign extention for each element comparing each element with immediate zero. */ tmp = gen_reg_rtx (imode); emit_insn (cmpFunc (tmp, operands[1], CONST0_RTX (imode))); } else tmp = force_reg (imode, CONST0_RTX (imode)); dest = gen_reg_rtx (imode); emit_insn (unpack (dest, operands[1], tmp)); emit_move_insn (operands[0], gen_lowpart (GET_MODE (operands[0]), dest)); return; } switch (imode) { case E_V8QImode: if (high_p) unpack = gen_loongson_punpckhbh; else unpack = gen_loongson_punpcklbh; cmpFunc = gen_loongson_pcmpgtb; break; case E_V4HImode: if (high_p) unpack = gen_loongson_punpckhhw; else unpack = gen_loongson_punpcklhw; cmpFunc = gen_loongson_pcmpgth; break; default: gcc_unreachable (); } zero = force_reg (imode, CONST0_RTX (imode)); if (unsigned_p) tmp = zero; else { tmp = gen_reg_rtx (imode); emit_insn (cmpFunc (tmp, zero, operands[1])); } dest = gen_reg_rtx (imode); emit_insn (unpack (dest, operands[1], tmp)); emit_move_insn (operands[0], gen_lowpart (GET_MODE (operands[0]), dest)); } /* Construct and return PARALLEL RTX with CONST_INTs for HIGH (high_p == TRUE) or LOW (high_p == FALSE) half of a vector for mode MODE. */ rtx mips_msa_vec_parallel_const_half (machine_mode mode, bool high_p) { int nunits = GET_MODE_NUNITS (mode); rtvec v = rtvec_alloc (nunits / 2); int base; int i; if (BYTES_BIG_ENDIAN) base = high_p ? 0 : nunits / 2; else base = high_p ? nunits / 2 : 0; for (i = 0; i < nunits / 2; i++) RTVEC_ELT (v, i) = GEN_INT (base + i); return gen_rtx_PARALLEL (VOIDmode, v); } /* A subroutine of mips_expand_vec_init, match constant vector elements. */ static inline bool mips_constant_elt_p (rtx x) { return CONST_INT_P (x) || GET_CODE (x) == CONST_DOUBLE; } /* A subroutine of mips_expand_vec_init, expand via broadcast. */ static void mips_expand_vi_broadcast (machine_mode vmode, rtx target, rtx elt) { struct expand_vec_perm_d d; rtx t1; bool ok; if (elt != const0_rtx) elt = force_reg (GET_MODE_INNER (vmode), elt); if (REG_P (elt)) elt = gen_lowpart (DImode, elt); t1 = gen_reg_rtx (vmode); switch (vmode) { case E_V8QImode: emit_insn (gen_loongson_vec_init1_v8qi (t1, elt)); break; case E_V4HImode: emit_insn (gen_loongson_vec_init1_v4hi (t1, elt)); break; default: gcc_unreachable (); } memset (&d, 0, sizeof (d)); d.target = target; d.op0 = t1; d.op1 = t1; d.vmode = vmode; d.nelt = GET_MODE_NUNITS (vmode); d.one_vector_p = true; ok = mips_expand_vec_perm_const_1 (&d); gcc_assert (ok); } /* Return a const_int vector of VAL with mode MODE. */ rtx mips_gen_const_int_vector (machine_mode mode, HOST_WIDE_INT val) { rtx c = gen_int_mode (val, GET_MODE_INNER (mode)); return gen_const_vec_duplicate (mode, c); } /* Return a vector of repeated 4-element sets generated from immediate VAL in mode MODE. */ static rtx mips_gen_const_int_vector_shuffle (machine_mode mode, int val) { int nunits = GET_MODE_NUNITS (mode); int nsets = nunits / 4; rtx elts[MAX_VECT_LEN]; int set = 0; int i, j; /* Generate a const_int vector replicating the same 4-element set from an immediate. */ for (j = 0; j < nsets; j++, set = 4 * j) for (i = 0; i < 4; i++) elts[set + i] = GEN_INT (set + ((val >> (2 * i)) & 0x3)); return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nunits, elts)); } /* A subroutine of mips_expand_vec_init, replacing all of the non-constant elements of VALS with zeros, copy the constant vector to TARGET. */ static void mips_expand_vi_constant (machine_mode vmode, unsigned nelt, rtx target, rtx vals) { rtvec vec = shallow_copy_rtvec (XVEC (vals, 0)); unsigned i; for (i = 0; i < nelt; ++i) { rtx elem = RTVEC_ELT (vec, i); if (!mips_constant_elt_p (elem)) RTVEC_ELT (vec, i) = CONST0_RTX (GET_MODE (elem)); } emit_move_insn (target, gen_rtx_CONST_VECTOR (vmode, vec)); } /* A subroutine of mips_expand_vec_init, expand via pinsrh. */ static void mips_expand_vi_loongson_one_pinsrh (rtx target, rtx vals, unsigned one_var) { mips_expand_vi_constant (V4HImode, 4, target, vals); emit_insn (gen_vec_setv4hi (target, target, XVECEXP (vals, 0, one_var), GEN_INT (one_var))); } /* A subroutine of mips_expand_vec_init, expand anything via memory. */ static void mips_expand_vi_general (machine_mode vmode, machine_mode imode, unsigned nelt, unsigned nvar, rtx target, rtx vals) { rtx mem = assign_stack_temp (vmode, GET_MODE_SIZE (vmode)); unsigned int i, isize = GET_MODE_SIZE (imode); if (nvar < nelt) mips_expand_vi_constant (vmode, nelt, mem, vals); for (i = 0; i < nelt; ++i) { rtx x = XVECEXP (vals, 0, i); if (!mips_constant_elt_p (x)) emit_move_insn (adjust_address (mem, imode, i * isize), x); } emit_move_insn (target, mem); } /* Expand a vector initialization. */ void mips_expand_vector_init (rtx target, rtx vals) { machine_mode vmode = GET_MODE (target); machine_mode imode = GET_MODE_INNER (vmode); unsigned i, nelt = GET_MODE_NUNITS (vmode); unsigned nvar = 0, one_var = -1u; bool all_same = true; rtx x; for (i = 0; i < nelt; ++i) { x = XVECEXP (vals, 0, i); if (!mips_constant_elt_p (x)) nvar++, one_var = i; if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0))) all_same = false; } if (MSA_SUPPORTED_MODE_P (vmode)) { if (all_same) { rtx same = XVECEXP (vals, 0, 0); rtx temp, temp2; if (CONST_INT_P (same) && nvar == 0 && mips_signed_immediate_p (INTVAL (same), 10, 0)) { switch (vmode) { case E_V16QImode: case E_V8HImode: case E_V4SImode: case E_V2DImode: temp = gen_rtx_CONST_VECTOR (vmode, XVEC (vals, 0)); emit_move_insn (target, temp); return; default: gcc_unreachable (); } } temp = gen_reg_rtx (imode); if (imode == GET_MODE (same)) temp2 = same; else if (GET_MODE_SIZE (imode) >= UNITS_PER_WORD) temp2 = simplify_gen_subreg (imode, same, GET_MODE (same), 0); else temp2 = lowpart_subreg (imode, same, GET_MODE (same)); emit_move_insn (temp, temp2); switch (vmode) { case E_V16QImode: case E_V8HImode: case E_V4SImode: case E_V2DImode: mips_emit_move (target, gen_rtx_VEC_DUPLICATE (vmode, temp)); break; case E_V4SFmode: emit_insn (gen_msa_splati_w_f_scalar (target, temp)); break; case E_V2DFmode: emit_insn (gen_msa_splati_d_f_scalar (target, temp)); break; default: gcc_unreachable (); } } else { emit_move_insn (target, CONST0_RTX (vmode)); for (i = 0; i < nelt; ++i) { rtx temp = gen_reg_rtx (imode); emit_move_insn (temp, XVECEXP (vals, 0, i)); switch (vmode) { case E_V16QImode: emit_insn (gen_vec_setv16qi (target, temp, GEN_INT (i))); break; case E_V8HImode: emit_insn (gen_vec_setv8hi (target, temp, GEN_INT (i))); break; case E_V4SImode: emit_insn (gen_vec_setv4si (target, temp, GEN_INT (i))); break; case E_V2DImode: emit_insn (gen_vec_setv2di (target, temp, GEN_INT (i))); break; case E_V4SFmode: emit_insn (gen_vec_setv4sf (target, temp, GEN_INT (i))); break; case E_V2DFmode: emit_insn (gen_vec_setv2df (target, temp, GEN_INT (i))); break; default: gcc_unreachable (); } } } return; } /* Load constants from the pool, or whatever's handy. */ if (nvar == 0) { emit_move_insn (target, gen_rtx_CONST_VECTOR (vmode, XVEC (vals, 0))); return; } /* For two-part initialization, always use CONCAT. */ if (nelt == 2) { rtx op0 = force_reg (imode, XVECEXP (vals, 0, 0)); rtx op1 = force_reg (imode, XVECEXP (vals, 0, 1)); x = gen_rtx_VEC_CONCAT (vmode, op0, op1); emit_insn (gen_rtx_SET (target, x)); return; } /* Loongson is the only cpu with vectors with more elements. */ gcc_assert (TARGET_HARD_FLOAT && TARGET_LOONGSON_MMI); /* If all values are identical, broadcast the value. */ if (all_same) { mips_expand_vi_broadcast (vmode, target, XVECEXP (vals, 0, 0)); return; } /* If we've only got one non-variable V4HImode, use PINSRH. */ if (nvar == 1 && vmode == V4HImode) { mips_expand_vi_loongson_one_pinsrh (target, vals, one_var); return; } mips_expand_vi_general (vmode, imode, nelt, nvar, target, vals); } /* Expand a vector reduction. */ void mips_expand_vec_reduc (rtx target, rtx in, rtx (*gen)(rtx, rtx, rtx)) { machine_mode vmode = GET_MODE (in); unsigned char perm2[2]; rtx last, next, fold, x; bool ok; last = in; fold = gen_reg_rtx (vmode); switch (vmode) { case E_V2SFmode: /* Use PUL/PLU to produce { L, H } op { H, L }. By reversing the pair order, rather than a pure interleave high, we avoid erroneous exceptional conditions that we might otherwise produce from the computation of H op H. */ perm2[0] = 1; perm2[1] = 2; ok = mips_expand_vselect_vconcat (fold, last, last, perm2, 2); gcc_assert (ok); break; case E_V2SImode: /* Use interleave to produce { H, L } op { H, H }. */ emit_insn (gen_loongson_punpckhwd (fold, last, last)); break; case E_V4HImode: /* Perform the first reduction with interleave, and subsequent reductions with shifts. */ emit_insn (gen_loongson_punpckhwd_hi (fold, last, last)); next = gen_reg_rtx (vmode); emit_insn (gen (next, last, fold)); last = next; fold = gen_reg_rtx (vmode); x = force_reg (SImode, GEN_INT (16)); emit_insn (gen_vec_shr_v4hi (fold, last, x)); break; case E_V8QImode: emit_insn (gen_loongson_punpckhwd_qi (fold, last, last)); next = gen_reg_rtx (vmode); emit_insn (gen (next, last, fold)); last = next; fold = gen_reg_rtx (vmode); x = force_reg (SImode, GEN_INT (16)); emit_insn (gen_vec_shr_v8qi (fold, last, x)); next = gen_reg_rtx (vmode); emit_insn (gen (next, last, fold)); last = next; fold = gen_reg_rtx (vmode); x = force_reg (SImode, GEN_INT (8)); emit_insn (gen_vec_shr_v8qi (fold, last, x)); break; default: gcc_unreachable (); } emit_insn (gen (target, last, fold)); } /* Expand a vector minimum/maximum. */ void mips_expand_vec_minmax (rtx target, rtx op0, rtx op1, rtx (*cmp) (rtx, rtx, rtx), bool min_p) { machine_mode vmode = GET_MODE (target); rtx tc, t0, t1, x; tc = gen_reg_rtx (vmode); t0 = gen_reg_rtx (vmode); t1 = gen_reg_rtx (vmode); /* op0 > op1 */ emit_insn (cmp (tc, op0, op1)); x = gen_rtx_AND (vmode, tc, (min_p ? op1 : op0)); emit_insn (gen_rtx_SET (t0, x)); x = gen_rtx_NOT (vmode, tc); x = gen_rtx_AND (vmode, x, (min_p ? op0 : op1)); emit_insn (gen_rtx_SET (t1, x)); x = gen_rtx_IOR (vmode, t0, t1); emit_insn (gen_rtx_SET (target, x)); } /* Implement HARD_REGNO_CALLER_SAVE_MODE. */ machine_mode mips_hard_regno_caller_save_mode (unsigned int regno, unsigned int nregs, machine_mode mode) { /* For performance, avoid saving/restoring upper parts of a register by returning MODE as save mode when the mode is known. */ if (mode == VOIDmode) return choose_hard_reg_mode (regno, nregs, NULL); else return mode; } /* Generate RTL for comparing CMP_OP0 and CMP_OP1 using condition COND and store the result -1 or 0 in DEST. */ static void mips_expand_msa_cmp (rtx dest, enum rtx_code cond, rtx op0, rtx op1) { machine_mode cmp_mode = GET_MODE (op0); int unspec = -1; bool negate = false; switch (cmp_mode) { case E_V16QImode: case E_V8HImode: case E_V4SImode: case E_V2DImode: switch (cond) { case NE: cond = reverse_condition (cond); negate = true; break; case EQ: case LT: case LE: case LTU: case LEU: break; case GE: case GT: case GEU: case GTU: std::swap (op0, op1); cond = swap_condition (cond); break; default: gcc_unreachable (); } mips_emit_binary (cond, dest, op0, op1); if (negate) emit_move_insn (dest, gen_rtx_NOT (GET_MODE (dest), dest)); break; case E_V4SFmode: case E_V2DFmode: switch (cond) { case UNORDERED: case ORDERED: case EQ: case NE: case UNEQ: case UNLE: case UNLT: break; case LTGT: cond = NE; break; case UNGE: cond = UNLE; std::swap (op0, op1); break; case UNGT: cond = UNLT; std::swap (op0, op1); break; case LE: unspec = UNSPEC_MSA_FSLE; break; case LT: unspec = UNSPEC_MSA_FSLT; break; case GE: unspec = UNSPEC_MSA_FSLE; std::swap (op0, op1); break; case GT: unspec = UNSPEC_MSA_FSLT; std::swap (op0, op1); break; default: gcc_unreachable (); } if (unspec < 0) mips_emit_binary (cond, dest, op0, op1); else { rtx x = gen_rtx_UNSPEC (GET_MODE (dest), gen_rtvec (2, op0, op1), unspec); emit_insn (gen_rtx_SET (dest, x)); } break; default: gcc_unreachable (); break; } } void mips_expand_vec_cmp_expr (rtx *operands) { rtx cond = operands[1]; rtx op0 = operands[2]; rtx op1 = operands[3]; rtx res = operands[0]; mips_expand_msa_cmp (res, GET_CODE (cond), op0, op1); } /* Expand VEC_COND_EXPR, where: MODE is mode of the result VIMODE equivalent integer mode OPERANDS operands of VEC_COND_EXPR. */ void mips_expand_vec_cond_expr (machine_mode mode, machine_mode vimode, rtx *operands) { rtx cond = operands[3]; rtx cmp_op0 = operands[4]; rtx cmp_op1 = operands[5]; rtx cmp_res = gen_reg_rtx (vimode); mips_expand_msa_cmp (cmp_res, GET_CODE (cond), cmp_op0, cmp_op1); /* We handle the following cases: 1) r = a CMP b ? -1 : 0 2) r = a CMP b ? -1 : v 3) r = a CMP b ? v : 0 4) r = a CMP b ? v1 : v2 */ /* Case (1) above. We only move the results. */ if (operands[1] == CONSTM1_RTX (vimode) && operands[2] == CONST0_RTX (vimode)) emit_move_insn (operands[0], cmp_res); else { rtx src1 = gen_reg_rtx (vimode); rtx src2 = gen_reg_rtx (vimode); rtx mask = gen_reg_rtx (vimode); rtx bsel; /* Move the vector result to use it as a mask. */ emit_move_insn (mask, cmp_res); if (register_operand (operands[1], mode)) { rtx xop1 = operands[1]; if (mode != vimode) { xop1 = gen_reg_rtx (vimode); emit_move_insn (xop1, gen_lowpart (vimode, operands[1])); } emit_move_insn (src1, xop1); } else { gcc_assert (operands[1] == CONSTM1_RTX (vimode)); /* Case (2) if the below doesn't move the mask to src2. */ emit_move_insn (src1, mask); } if (register_operand (operands[2], mode)) { rtx xop2 = operands[2]; if (mode != vimode) { xop2 = gen_reg_rtx (vimode); emit_move_insn (xop2, gen_lowpart (vimode, operands[2])); } emit_move_insn (src2, xop2); } else { gcc_assert (operands[2] == CONST0_RTX (mode)); /* Case (3) if the above didn't move the mask to src1. */ emit_move_insn (src2, mask); } /* We deal with case (4) if the mask wasn't moved to either src1 or src2. In any case, we eventually do vector mask-based copy. */ bsel = gen_rtx_IOR (vimode, gen_rtx_AND (vimode, gen_rtx_NOT (vimode, mask), src2), gen_rtx_AND (vimode, mask, src1)); /* The result is placed back to a register with the mask. */ emit_insn (gen_rtx_SET (mask, bsel)); emit_move_insn (operands[0], gen_rtx_SUBREG (mode, mask, 0)); } } /* Implement TARGET_CASE_VALUES_THRESHOLD. */ unsigned int mips_case_values_threshold (void) { /* In MIPS16 mode using a larger case threshold generates smaller code. */ if (TARGET_MIPS16 && optimize_size) return 10; else return default_case_values_threshold (); } /* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV. */ static void mips_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update) { if (!TARGET_HARD_FLOAT_ABI) return; tree exceptions_var = create_tmp_var_raw (MIPS_ATYPE_USI); tree fcsr_orig_var = create_tmp_var_raw (MIPS_ATYPE_USI); tree fcsr_mod_var = create_tmp_var_raw (MIPS_ATYPE_USI); tree get_fcsr = mips_builtin_decls[MIPS_GET_FCSR]; tree set_fcsr = mips_builtin_decls[MIPS_SET_FCSR]; tree get_fcsr_hold_call = build_call_expr (get_fcsr, 0); tree hold_assign_orig = build4 (TARGET_EXPR, MIPS_ATYPE_USI, fcsr_orig_var, get_fcsr_hold_call, NULL, NULL); tree hold_mod_val = build2 (BIT_AND_EXPR, MIPS_ATYPE_USI, fcsr_orig_var, build_int_cst (MIPS_ATYPE_USI, 0xfffff003)); tree hold_assign_mod = build4 (TARGET_EXPR, MIPS_ATYPE_USI, fcsr_mod_var, hold_mod_val, NULL, NULL); tree set_fcsr_hold_call = build_call_expr (set_fcsr, 1, fcsr_mod_var); tree hold_all = build2 (COMPOUND_EXPR, MIPS_ATYPE_USI, hold_assign_orig, hold_assign_mod); *hold = build2 (COMPOUND_EXPR, void_type_node, hold_all, set_fcsr_hold_call); *clear = build_call_expr (set_fcsr, 1, fcsr_mod_var); tree get_fcsr_update_call = build_call_expr (get_fcsr, 0); *update = build4 (TARGET_EXPR, MIPS_ATYPE_USI, exceptions_var, get_fcsr_update_call, NULL, NULL); tree set_fcsr_update_call = build_call_expr (set_fcsr, 1, fcsr_orig_var); *update = build2 (COMPOUND_EXPR, void_type_node, *update, set_fcsr_update_call); tree atomic_feraiseexcept = builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT); tree int_exceptions_var = fold_convert (integer_type_node, exceptions_var); tree atomic_feraiseexcept_call = build_call_expr (atomic_feraiseexcept, 1, int_exceptions_var); *update = build2 (COMPOUND_EXPR, void_type_node, *update, atomic_feraiseexcept_call); } /* Implement TARGET_SPILL_CLASS. */ static reg_class_t mips_spill_class (reg_class_t rclass ATTRIBUTE_UNUSED, machine_mode mode ATTRIBUTE_UNUSED) { if (TARGET_MIPS16) return SPILL_REGS; return NO_REGS; } /* Implement TARGET_LRA_P. */ static bool mips_lra_p (void) { return mips_lra_flag; } /* Implement TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS. */ static reg_class_t mips_ira_change_pseudo_allocno_class (int regno, reg_class_t allocno_class, reg_class_t best_class ATTRIBUTE_UNUSED) { /* LRA will allocate an FPR for an integer mode pseudo instead of spilling to memory if an FPR is present in the allocno class. It is rare that we actually need to place an integer mode value in an FPR so where possible limit the allocation to GR_REGS. This will slightly pessimize code that involves integer to/from float conversions as these will have to reload into FPRs in LRA. Such reloads are sometimes eliminated and sometimes only partially eliminated. We choose to take this penalty in order to eliminate usage of FPRs in code that does not use floating point data. This change has a similar effect to increasing the cost of FPR->GPR register moves for integer modes so that they are higher than the cost of memory but changing the allocno class is more reliable. This is also similar to forbidding integer mode values in FPRs entirely but this would lead to an inconsistency in the integer to/from float instructions that say integer mode values must be placed in FPRs. */ if (INTEGRAL_MODE_P (PSEUDO_REGNO_MODE (regno)) && allocno_class == ALL_REGS) return GR_REGS; return allocno_class; } /* Implement TARGET_PROMOTE_FUNCTION_MODE */ /* This function is equivalent to default_promote_function_mode_always_promote except that it returns a promoted mode even if type is NULL_TREE. This is needed by libcalls which have no type (only a mode) such as fixed conversion routines that take a signed or unsigned char/short argument and convert it to a fixed type. */ static machine_mode mips_promote_function_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode, int *punsignedp ATTRIBUTE_UNUSED, const_tree fntype ATTRIBUTE_UNUSED, int for_return ATTRIBUTE_UNUSED) { int unsignedp; if (type != NULL_TREE) return promote_mode (type, mode, punsignedp); unsignedp = *punsignedp; PROMOTE_MODE (mode, unsignedp, type); *punsignedp = unsignedp; return mode; } /* Implement TARGET_TRULY_NOOP_TRUNCATION. */ static bool mips_truly_noop_truncation (poly_uint64 outprec, poly_uint64 inprec) { return !TARGET_64BIT || inprec <= 32 || outprec > 32; } /* Implement TARGET_CONSTANT_ALIGNMENT. */ static HOST_WIDE_INT mips_constant_alignment (const_tree exp, HOST_WIDE_INT align) { if (TREE_CODE (exp) == STRING_CST || TREE_CODE (exp) == CONSTRUCTOR) return MAX (align, BITS_PER_WORD); return align; } /* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */ static unsigned HOST_WIDE_INT mips_asan_shadow_offset (void) { return SUBTARGET_SHADOW_OFFSET; } /* Implement TARGET_STARTING_FRAME_OFFSET. See mips_compute_frame_info for details about the frame layout. */ static HOST_WIDE_INT mips_starting_frame_offset (void) { if (FRAME_GROWS_DOWNWARD) return 0; return crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE; } static void mips_asm_file_end (void) { if (NEED_INDICATE_EXEC_STACK) file_end_indicate_exec_stack (); } /* Initialize the GCC target structure. */ #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t" #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t" #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t" #undef TARGET_OPTION_OVERRIDE #define TARGET_OPTION_OVERRIDE mips_option_override #undef TARGET_LEGITIMIZE_ADDRESS #define TARGET_LEGITIMIZE_ADDRESS mips_legitimize_address #undef TARGET_ASM_FUNCTION_PROLOGUE #define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue #undef TARGET_ASM_SELECT_RTX_SECTION #define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section #undef TARGET_SCHED_INIT #define TARGET_SCHED_INIT mips_sched_init #undef TARGET_SCHED_REORDER #define TARGET_SCHED_REORDER mips_sched_reorder #undef TARGET_SCHED_REORDER2 #define TARGET_SCHED_REORDER2 mips_sched_reorder2 #undef TARGET_SCHED_VARIABLE_ISSUE #define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST mips_adjust_cost #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE mips_issue_rate #undef TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN #define TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN mips_init_dfa_post_cycle_insn #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE mips_dfa_post_advance_cycle #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \ mips_multipass_dfa_lookahead #undef TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \ mips_small_register_classes_for_mode_p #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall #undef TARGET_INSERT_ATTRIBUTES #define TARGET_INSERT_ATTRIBUTES mips_insert_attributes #undef TARGET_MERGE_DECL_ATTRIBUTES #define TARGET_MERGE_DECL_ATTRIBUTES mips_merge_decl_attributes #undef TARGET_CAN_INLINE_P #define TARGET_CAN_INLINE_P mips_can_inline_p #undef TARGET_SET_CURRENT_FUNCTION #define TARGET_SET_CURRENT_FUNCTION mips_set_current_function #undef TARGET_VALID_POINTER_MODE #define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode #undef TARGET_REGISTER_MOVE_COST #define TARGET_REGISTER_MOVE_COST mips_register_move_cost #undef TARGET_REGISTER_PRIORITY #define TARGET_REGISTER_PRIORITY mips_register_priority #undef TARGET_MEMORY_MOVE_COST #define TARGET_MEMORY_MOVE_COST mips_memory_move_cost #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS mips_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST mips_address_cost #undef TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P #define TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P mips_no_speculation_in_delay_slots_p #undef TARGET_IN_SMALL_DATA_P #define TARGET_IN_SMALL_DATA_P mips_in_small_data_p #undef TARGET_MACHINE_DEPENDENT_REORG #define TARGET_MACHINE_DEPENDENT_REORG mips_reorg #undef TARGET_PREFERRED_RELOAD_CLASS #define TARGET_PREFERRED_RELOAD_CLASS mips_preferred_reload_class #undef TARGET_EXPAND_TO_RTL_HOOK #define TARGET_EXPAND_TO_RTL_HOOK mips_expand_to_rtl_hook #undef TARGET_ASM_FILE_START #define TARGET_ASM_FILE_START mips_file_start #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true #undef TARGET_ASM_CODE_END #define TARGET_ASM_CODE_END mips_code_end #undef TARGET_INIT_LIBFUNCS #define TARGET_INIT_LIBFUNCS mips_init_libfuncs #undef TARGET_BUILD_BUILTIN_VA_LIST #define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list #undef TARGET_EXPAND_BUILTIN_VA_START #define TARGET_EXPAND_BUILTIN_VA_START mips_va_start #undef TARGET_GIMPLIFY_VA_ARG_EXPR #define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr #undef TARGET_PROMOTE_FUNCTION_MODE #define TARGET_PROMOTE_FUNCTION_MODE mips_promote_function_mode #undef TARGET_FUNCTION_VALUE #define TARGET_FUNCTION_VALUE mips_function_value #undef TARGET_LIBCALL_VALUE #define TARGET_LIBCALL_VALUE mips_libcall_value #undef TARGET_FUNCTION_VALUE_REGNO_P #define TARGET_FUNCTION_VALUE_REGNO_P mips_function_value_regno_p #undef TARGET_RETURN_IN_MEMORY #define TARGET_RETURN_IN_MEMORY mips_return_in_memory #undef TARGET_RETURN_IN_MSB #define TARGET_RETURN_IN_MSB mips_return_in_msb #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true #undef TARGET_PRINT_OPERAND #define TARGET_PRINT_OPERAND mips_print_operand #undef TARGET_PRINT_OPERAND_ADDRESS #define TARGET_PRINT_OPERAND_ADDRESS mips_print_operand_address #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P #define TARGET_PRINT_OPERAND_PUNCT_VALID_P mips_print_operand_punct_valid_p #undef TARGET_SETUP_INCOMING_VARARGS #define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs #undef TARGET_STRICT_ARGUMENT_NAMING #define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming #undef TARGET_MUST_PASS_IN_STACK #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE mips_pass_by_reference #undef TARGET_CALLEE_COPIES #define TARGET_CALLEE_COPIES mips_callee_copies #undef TARGET_ARG_PARTIAL_BYTES #define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes #undef TARGET_FUNCTION_ARG #define TARGET_FUNCTION_ARG mips_function_arg #undef TARGET_FUNCTION_ARG_ADVANCE #define TARGET_FUNCTION_ARG_ADVANCE mips_function_arg_advance #undef TARGET_FUNCTION_ARG_PADDING #define TARGET_FUNCTION_ARG_PADDING mips_function_arg_padding #undef TARGET_FUNCTION_ARG_BOUNDARY #define TARGET_FUNCTION_ARG_BOUNDARY mips_function_arg_boundary #undef TARGET_GET_RAW_RESULT_MODE #define TARGET_GET_RAW_RESULT_MODE mips_get_reg_raw_mode #undef TARGET_GET_RAW_ARG_MODE #define TARGET_GET_RAW_ARG_MODE mips_get_reg_raw_mode #undef TARGET_MODE_REP_EXTENDED #define TARGET_MODE_REP_EXTENDED mips_mode_rep_extended #undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION #define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \ mips_builtin_vectorized_function #undef TARGET_VECTOR_MODE_SUPPORTED_P #define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p #undef TARGET_SCALAR_MODE_SUPPORTED_P #define TARGET_SCALAR_MODE_SUPPORTED_P mips_scalar_mode_supported_p #undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE mips_preferred_simd_mode #undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES #define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES \ mips_autovectorize_vector_modes #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS mips_init_builtins #undef TARGET_BUILTIN_DECL #define TARGET_BUILTIN_DECL mips_builtin_decl #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN mips_expand_builtin #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS HAVE_AS_TLS #undef TARGET_CANNOT_FORCE_CONST_MEM #define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem #undef TARGET_LEGITIMATE_CONSTANT_P #define TARGET_LEGITIMATE_CONSTANT_P mips_legitimate_constant_p #undef TARGET_ENCODE_SECTION_INFO #define TARGET_ENCODE_SECTION_INFO mips_encode_section_info #undef TARGET_ATTRIBUTE_TABLE #define TARGET_ATTRIBUTE_TABLE mips_attribute_table /* All our function attributes are related to how out-of-line copies should be compiled or called. They don't in themselves prevent inlining. */ #undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P #define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true #undef TARGET_EXTRA_LIVE_ON_ENTRY #define TARGET_EXTRA_LIVE_ON_ENTRY mips_extra_live_on_entry #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P #define TARGET_USE_BLOCKS_FOR_CONSTANT_P mips_use_blocks_for_constant_p #undef TARGET_USE_ANCHORS_FOR_SYMBOL_P #define TARGET_USE_ANCHORS_FOR_SYMBOL_P mips_use_anchors_for_symbol_p #undef TARGET_COMP_TYPE_ATTRIBUTES #define TARGET_COMP_TYPE_ATTRIBUTES mips_comp_type_attributes #ifdef HAVE_AS_DTPRELWORD #undef TARGET_ASM_OUTPUT_DWARF_DTPREL #define TARGET_ASM_OUTPUT_DWARF_DTPREL mips_output_dwarf_dtprel #endif #undef TARGET_DWARF_REGISTER_SPAN #define TARGET_DWARF_REGISTER_SPAN mips_dwarf_register_span #undef TARGET_DWARF_FRAME_REG_MODE #define TARGET_DWARF_FRAME_REG_MODE mips_dwarf_frame_reg_mode #undef TARGET_ASM_FINAL_POSTSCAN_INSN #define TARGET_ASM_FINAL_POSTSCAN_INSN mips_final_postscan_insn #undef TARGET_LEGITIMATE_ADDRESS_P #define TARGET_LEGITIMATE_ADDRESS_P mips_legitimate_address_p #undef TARGET_FRAME_POINTER_REQUIRED #define TARGET_FRAME_POINTER_REQUIRED mips_frame_pointer_required #undef TARGET_CAN_ELIMINATE #define TARGET_CAN_ELIMINATE mips_can_eliminate #undef TARGET_CONDITIONAL_REGISTER_USAGE #define TARGET_CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage #undef TARGET_TRAMPOLINE_INIT #define TARGET_TRAMPOLINE_INIT mips_trampoline_init #undef TARGET_ASM_OUTPUT_SOURCE_FILENAME #define TARGET_ASM_OUTPUT_SOURCE_FILENAME mips_output_filename #undef TARGET_SHIFT_TRUNCATION_MASK #define TARGET_SHIFT_TRUNCATION_MASK mips_shift_truncation_mask #undef TARGET_PREPARE_PCH_SAVE #define TARGET_PREPARE_PCH_SAVE mips_prepare_pch_save #undef TARGET_VECTORIZE_VEC_PERM_CONST #define TARGET_VECTORIZE_VEC_PERM_CONST mips_vectorize_vec_perm_const #undef TARGET_SCHED_REASSOCIATION_WIDTH #define TARGET_SCHED_REASSOCIATION_WIDTH mips_sched_reassociation_width #undef TARGET_CASE_VALUES_THRESHOLD #define TARGET_CASE_VALUES_THRESHOLD mips_case_values_threshold #undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV #define TARGET_ATOMIC_ASSIGN_EXPAND_FENV mips_atomic_assign_expand_fenv #undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS #define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true #undef TARGET_USE_BY_PIECES_INFRASTRUCTURE_P #define TARGET_USE_BY_PIECES_INFRASTRUCTURE_P \ mips_use_by_pieces_infrastructure_p #undef TARGET_SPILL_CLASS #define TARGET_SPILL_CLASS mips_spill_class #undef TARGET_LRA_P #define TARGET_LRA_P mips_lra_p #undef TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS #define TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS mips_ira_change_pseudo_allocno_class #undef TARGET_HARD_REGNO_SCRATCH_OK #define TARGET_HARD_REGNO_SCRATCH_OK mips_hard_regno_scratch_ok #undef TARGET_HARD_REGNO_NREGS #define TARGET_HARD_REGNO_NREGS mips_hard_regno_nregs #undef TARGET_HARD_REGNO_MODE_OK #define TARGET_HARD_REGNO_MODE_OK mips_hard_regno_mode_ok #undef TARGET_MODES_TIEABLE_P #define TARGET_MODES_TIEABLE_P mips_modes_tieable_p #undef TARGET_HARD_REGNO_CALL_PART_CLOBBERED #define TARGET_HARD_REGNO_CALL_PART_CLOBBERED \ mips_hard_regno_call_part_clobbered /* The architecture reserves bit 0 for MIPS16 so use bit 1 for descriptors. */ #undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS #define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 2 #undef TARGET_SECONDARY_MEMORY_NEEDED #define TARGET_SECONDARY_MEMORY_NEEDED mips_secondary_memory_needed #undef TARGET_CAN_CHANGE_MODE_CLASS #define TARGET_CAN_CHANGE_MODE_CLASS mips_can_change_mode_class #undef TARGET_TRULY_NOOP_TRUNCATION #define TARGET_TRULY_NOOP_TRUNCATION mips_truly_noop_truncation #undef TARGET_CONSTANT_ALIGNMENT #define TARGET_CONSTANT_ALIGNMENT mips_constant_alignment #undef TARGET_ASAN_SHADOW_OFFSET #define TARGET_ASAN_SHADOW_OFFSET mips_asan_shadow_offset #undef TARGET_STARTING_FRAME_OFFSET #define TARGET_STARTING_FRAME_OFFSET mips_starting_frame_offset #undef TARGET_ASM_FILE_END #define TARGET_ASM_FILE_END mips_asm_file_end struct gcc_target targetm = TARGET_INITIALIZER; #include "gt-mips.h"