/* Definition of RISC-V target for GNU compiler. Copyright (C) 2011-2022 Free Software Foundation, Inc. Contributed by Andrew Waterman (andrew@sifive.com). Based on MIPS target for GNU compiler. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_RISCV_H #define GCC_RISCV_H #include "config/riscv/riscv-opts.h" /* Target CPU builtins. */ #define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile) #ifdef TARGET_BIG_ENDIAN_DEFAULT #define DEFAULT_ENDIAN_SPEC "b" #else #define DEFAULT_ENDIAN_SPEC "l" #endif /* Default target_flags if no switches are specified */ #ifndef TARGET_DEFAULT #define TARGET_DEFAULT 0 #endif #ifndef RISCV_TUNE_STRING_DEFAULT #define RISCV_TUNE_STRING_DEFAULT "rocket" #endif extern const char *riscv_expand_arch (int argc, const char **argv); extern const char *riscv_expand_arch_from_cpu (int argc, const char **argv); extern const char *riscv_default_mtune (int argc, const char **argv); # define EXTRA_SPEC_FUNCTIONS \ { "riscv_expand_arch", riscv_expand_arch }, \ { "riscv_expand_arch_from_cpu", riscv_expand_arch_from_cpu }, \ { "riscv_default_mtune", riscv_default_mtune }, /* Support for a compile-time default CPU, et cetera. The rules are: --with-arch is ignored if -march or -mcpu is specified. --with-abi is ignored if -mabi is specified. --with-tune is ignored if -mtune or -mcpu is specified. --with-isa-spec is ignored if -misa-spec is specified. But using default -march/-mtune value if -mcpu don't have valid option. */ #define OPTION_DEFAULT_SPECS \ {"tune", "%{!mtune=*:" \ " %{!mcpu=*:-mtune=%(VALUE)}" \ " %{mcpu=*:-mtune=%:riscv_default_mtune(%* %(VALUE))}}" }, \ {"arch", "%{!march=*:" \ " %{!mcpu=*:-march=%(VALUE)}" \ " %{mcpu=*:%:riscv_expand_arch_from_cpu(%* %(VALUE))}}" }, \ {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \ {"isa_spec", "%{!misa-spec=*:-misa-spec=%(VALUE)}" }, \ #ifdef IN_LIBGCC2 #undef TARGET_64BIT /* Make this compile time constant for libgcc2 */ #define TARGET_64BIT (__riscv_xlen == 64) #endif /* IN_LIBGCC2 */ #ifdef HAVE_AS_MISA_SPEC #define ASM_MISA_SPEC "%{misa-spec=*}" #else #define ASM_MISA_SPEC "" #endif /* Reference: https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html#Stringizing */ #define STRINGIZING(s) __STRINGIZING(s) #define __STRINGIZING(s) #s #define MULTILIB_DEFAULTS \ {"march=" STRINGIZING (TARGET_RISCV_DEFAULT_ARCH), \ "mabi=" STRINGIZING (TARGET_RISCV_DEFAULT_ABI) } #undef ASM_SPEC #define ASM_SPEC "\ %(subtarget_asm_debugging_spec) \ %{" FPIE_OR_FPIC_SPEC ":-fpic} \ %{march=*} \ %{mabi=*} \ %{mno-relax} \ %{mbig-endian} \ %{mlittle-endian} \ %(subtarget_asm_spec)" \ ASM_MISA_SPEC #undef DRIVER_SELF_SPECS #define DRIVER_SELF_SPECS \ "%{march=*:%:riscv_expand_arch(%*)} " \ "%{!march=*:%{mcpu=*:%:riscv_expand_arch_from_cpu(%*)}} " #define TARGET_DEFAULT_CMODEL CM_MEDLOW #define LOCAL_LABEL_PREFIX "." #define USER_LABEL_PREFIX "" /* Offsets recorded in opcodes are a multiple of this alignment factor. The default for this in 64-bit mode is 8, which causes problems with SFmode register saves. */ #define DWARF_CIE_DATA_ALIGNMENT -4 /* The mapping from gcc register number to DWARF 2 CFA column number. */ #define DWARF_FRAME_REGNUM(REGNO) \ (GP_REG_P (REGNO) || FP_REG_P (REGNO) ? REGNO : INVALID_REGNUM) /* The DWARF 2 CFA column which tracks the return address. */ #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM) /* Describe how we implement __builtin_eh_return. */ #define EH_RETURN_DATA_REGNO(N) \ ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM) #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4) /* Target machine storage layout */ #define BITS_BIG_ENDIAN 0 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0) #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN) #define MAX_BITS_PER_WORD 64 /* Width of a word, in units (bytes). */ #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) #ifndef IN_LIBGCC2 #define MIN_UNITS_PER_WORD 4 #endif /* Allows SImode op in builtin overflow pattern, see internal-fn.cc. */ #undef TARGET_MIN_ARITHMETIC_PRECISION #define TARGET_MIN_ARITHMETIC_PRECISION riscv_min_arithmetic_precision /* The `Q' extension is not yet supported. */ #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4) /* The largest type that can be passed in floating-point registers. */ #define UNITS_PER_FP_ARG \ ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \ || riscv_abi == ABI_LP64) \ ? 0 \ : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8)) /* Set the sizes of the core types. */ #define SHORT_TYPE_SIZE 16 #define INT_TYPE_SIZE 32 #define LONG_LONG_TYPE_SIZE 64 #define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32) #define LONG_TYPE_SIZE POINTER_SIZE #define FLOAT_TYPE_SIZE 32 #define DOUBLE_TYPE_SIZE 64 #define LONG_DOUBLE_TYPE_SIZE 128 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ #define PARM_BOUNDARY BITS_PER_WORD /* Allocation boundary (in *bits*) for the code of a function. */ #define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32) /* The smallest supported stack boundary the calling convention supports. */ #define STACK_BOUNDARY \ (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 2 * BITS_PER_WORD) /* The ABI stack alignment. */ #define ABI_STACK_BOUNDARY (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 128) /* There is no point aligning anything to a rounder boundary than this. */ #define BIGGEST_ALIGNMENT 128 /* The user-level ISA permits unaligned accesses, but they are not required of the privileged architecture. */ #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN /* Define this if you wish to imitate the way many other C compilers handle alignment of bitfields and the structures that contain them. The behavior is that the type written for a bit-field (`int', `short', or other integer type) imposes an alignment for the entire structure, as if the structure really did contain an ordinary field of that type. In addition, the bit-field is placed within the structure so that it would fit within such a field, not crossing a boundary for it. Thus, on most machines, a bit-field whose type is written as `int' would not cross a four-byte boundary, and would force four-byte alignment for the whole structure. (The alignment used may not be four bytes; it is controlled by the other alignment parameters.) If the macro is defined, its definition should be a C expression; a nonzero value for the expression enables this behavior. */ #define PCC_BITFIELD_TYPE_MATTERS 1 /* An integer expression for the size in bits of the largest integer machine mode that should actually be used. We allow pairs of registers. */ #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode) /* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */ #define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \ (((COND) && ((ALIGN) < BITS_PER_WORD) \ && (TREE_CODE (TYPE) == ARRAY_TYPE \ || TREE_CODE (TYPE) == UNION_TYPE \ || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN)) /* If defined, a C expression to compute the alignment for a static variable. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object. If this macro is not defined, then ALIGN is used. One use of this macro is to increase alignment of medium-size data to make it all fit in fewer cache lines. Another is to cause character arrays to be word-aligned so that `strcpy' calls that copy constants to character arrays can be done inline. */ #define DATA_ALIGNMENT(TYPE, ALIGN) \ RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \ TYPE, ALIGN) /* We need this for the same reason as DATA_ALIGNMENT, namely to cause character arrays to be word-aligned so that `strcpy' calls that copy constants to character arrays can be done inline, and 'strcmp' can be optimised to use word loads. */ #define LOCAL_ALIGNMENT(TYPE, ALIGN) \ RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN) /* Define if operations between registers always perform the operation on the full register even if a narrower mode is specified. */ #define WORD_REGISTER_OPERATIONS 1 /* When in 64-bit mode, move insns will sign extend SImode and CCmode moves. All other references are zero extended. */ #define LOAD_EXTEND_OP(MODE) \ (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND) /* Define this macro if it is advisable to hold scalars in registers in a wider mode than that declared by the program. In such cases, the value is constrained to be within the bounds of the declared type, but kept valid in the wider mode. The signedness of the extension may differ from that of the type. */ #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ if (GET_MODE_CLASS (MODE) == MODE_INT \ && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ { \ if ((MODE) == SImode) \ (UNSIGNEDP) = 0; \ (MODE) = word_mode; \ } /* Pmode is always the same as ptr_mode, but not always the same as word_mode. Extensions of pointers to word_mode must be signed. */ #define POINTERS_EXTEND_UNSIGNED false /* Define if loading short immediate values into registers sign extends. */ #define SHORT_IMMEDIATES_SIGN_EXTEND 1 /* Standard register usage. */ /* Number of hardware registers. We have: - 32 integer registers - 32 floating point registers - 2 fake registers: - ARG_POINTER_REGNUM - FRAME_POINTER_REGNUM */ #define FIRST_PSEUDO_REGISTER 66 /* x0, sp, gp, and tp are fixed. */ #define FIXED_REGISTERS \ { /* General registers. */ \ 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ /* Floating-point registers. */ \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ /* Others. */ \ 1, 1 \ } /* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls. The call RTLs themselves clobber ra. */ #define CALL_USED_REGISTERS \ { /* General registers. */ \ 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \ /* Floating-point registers. */ \ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \ /* Others. */ \ 1, 1 \ } /* Select a register mode required for caller save of hard regno REGNO. Contrary to what is documented, the default is not the smallest suitable mode but the largest suitable mode for the given (REGNO, NREGS) pair and it quickly creates paradoxical subregs that can be problematic. */ #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE)) /* Internal macros to classify an ISA register's type. */ #define GP_REG_FIRST 0 #define GP_REG_LAST (TARGET_RVE ? 15 : 31) #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1) #define FP_REG_FIRST 32 #define FP_REG_LAST 63 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1) /* The DWARF 2 CFA column which tracks the return address from a signal handler context. This means that to maintain backwards compatibility, no hard register can be assigned this column if it would need to be handled by the DWARF unwinder. */ #define DWARF_ALT_FRAME_RETURN_COLUMN 64 #define GP_REG_P(REGNO) \ ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM) #define FP_REG_P(REGNO) \ ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM) /* True when REGNO is in SIBCALL_REGS set. */ #define SIBCALL_REG_P(REGNO) \ TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO) #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X))) /* Use s0 as the frame pointer if it is so requested. */ #define HARD_FRAME_POINTER_REGNUM 8 #define STACK_POINTER_REGNUM 2 #define THREAD_POINTER_REGNUM 4 /* These two registers don't really exist: they get eliminated to either the stack or hard frame pointer. */ #define ARG_POINTER_REGNUM 64 #define FRAME_POINTER_REGNUM 65 /* Register in which static-chain is passed to a function. */ #define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2) /* Registers used as temporaries in prologue/epilogue code. The prologue registers mustn't conflict with any incoming arguments, the static chain pointer, or the frame pointer. The epilogue temporary mustn't conflict with the return registers, the frame pointer, the EH stack adjustment, or the EH data registers. */ #define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST) #define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM) #define RISCV_CALL_ADDRESS_TEMP_REGNUM (GP_TEMP_FIRST + 1) #define RISCV_CALL_ADDRESS_TEMP(MODE) \ gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_TEMP_REGNUM) #define MCOUNT_NAME "_mcount" #define NO_PROFILE_COUNTERS 1 /* Emit rtl for profiling. Output assembler code to FILE to call "_mcount" for profiling a function entry. */ #define PROFILE_HOOK(LABEL) \ { \ rtx fun, ra; \ ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \ fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \ emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \ } /* All the work done in PROFILE_HOOK, but still required. */ #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0) /* Define this macro if it is as good or better to call a constant function address than to call an address kept in a register. */ #define NO_FUNCTION_CSE 1 /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. */ enum reg_class { NO_REGS, /* no registers in set */ SIBCALL_REGS, /* registers used by indirect sibcalls */ JALR_REGS, /* registers used by indirect calls */ GR_REGS, /* integer registers */ FP_REGS, /* floating-point registers */ FRAME_REGS, /* arg pointer and frame pointer */ ALL_REGS, /* all registers */ LIM_REG_CLASSES /* max value + 1 */ }; #define N_REG_CLASSES (int) LIM_REG_CLASSES #define GENERAL_REGS GR_REGS /* An initializer containing the names of the register classes as C string constants. These names are used in writing some of the debugging dumps. */ #define REG_CLASS_NAMES \ { \ "NO_REGS", \ "SIBCALL_REGS", \ "JALR_REGS", \ "GR_REGS", \ "FP_REGS", \ "FRAME_REGS", \ "ALL_REGS" \ } /* An initializer containing the contents of the register classes, as integers which are bit masks. The Nth integer specifies the contents of class N. The way the integer MASK is interpreted is that register R is in the class if `MASK & (1 << R)' is 1. When the machine has more than 32 registers, an integer does not suffice. Then the integers are replaced by sub-initializers, braced groupings containing several integers. Each sub-initializer must be suitable as an initializer for the type `HARD_REG_SET' which is defined in `hard-reg-set.h'. */ #define REG_CLASS_CONTENTS \ { \ { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \ { 0xf003fcc0, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \ { 0xffffffc0, 0x00000000, 0x00000000 }, /* JALR_REGS */ \ { 0xffffffff, 0x00000000, 0x00000000 }, /* GR_REGS */ \ { 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \ { 0x00000000, 0x00000000, 0x00000003 }, /* FRAME_REGS */ \ { 0xffffffff, 0xffffffff, 0x00000003 } /* ALL_REGS */ \ } /* A C expression whose value is a register class containing hard register REGNO. In general there is more that one such class; choose a class which is "minimal", meaning that no smaller class also contains the register. */ #define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ] /* A macro whose definition is the name of the class to which a valid base register must belong. A base register is one used in an address which is the register value plus a displacement. */ #define BASE_REG_CLASS GR_REGS /* A macro whose definition is the name of the class to which a valid index register must belong. An index register is one used in an address where its value is either multiplied by a scale factor or added to another register (as well as added to a displacement). */ #define INDEX_REG_CLASS NO_REGS /* We generally want to put call-clobbered registers ahead of call-saved ones. (IRA expects this.) */ #define REG_ALLOC_ORDER \ { \ /* Call-clobbered GPRs. */ \ 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \ /* Call-saved GPRs. */ \ 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \ /* GPRs that can never be exposed to the register allocator. */ \ 0, 2, 3, 4, \ /* Call-clobbered FPRs. */ \ 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \ 60, 61, 62, 63, \ /* Call-saved FPRs. */ \ 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \ /* None of the remaining classes have defined call-saved \ registers. */ \ 64, 65 \ } /* True if VALUE is a signed 12-bit number. */ #define SMALL_OPERAND(VALUE) \ ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH) /* True if VALUE can be loaded into a register using LUI. */ #define LUI_OPERAND(VALUE) \ (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \ || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0) /* If this is a single bit mask, then we can load it with bseti. Special handling of SImode 0x80000000 on RV64 is done in riscv_build_integer_1. */ #define SINGLE_BIT_MASK_OPERAND(VALUE) \ (pow2p_hwi (VALUE)) /* Stack layout; function entry, exit and calling. */ #define STACK_GROWS_DOWNWARD 1 #define FRAME_GROWS_DOWNWARD 1 #define RETURN_ADDR_RTX riscv_return_addr #define ELIMINABLE_REGS \ {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \ #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ (OFFSET) = riscv_initial_elimination_offset (FROM, TO) /* Allocate stack space for arguments at the beginning of each function. */ #define ACCUMULATE_OUTGOING_ARGS 1 /* The argument pointer always points to the first argument. */ #define FIRST_PARM_OFFSET(FNDECL) 0 #define REG_PARM_STACK_SPACE(FNDECL) 0 /* Define this if it is the responsibility of the caller to allocate the area reserved for arguments passed in registers. If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect of this macro is to determine whether the space is included in `crtl->outgoing_args_size'. */ #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1 #define PREFERRED_STACK_BOUNDARY riscv_stack_boundary /* Symbolic macros for the registers used to return integer and floating point values. */ #define GP_RETURN GP_ARG_FIRST #define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST) #define MAX_ARGS_IN_REGISTERS (riscv_abi == ABI_ILP32E ? 6 : 8) /* Symbolic macros for the first/last argument registers. */ #define GP_ARG_FIRST (GP_REG_FIRST + 10) #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1) #define GP_TEMP_FIRST (GP_REG_FIRST + 5) #define FP_ARG_FIRST (FP_REG_FIRST + 10) #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1) #define CALLEE_SAVED_REG_NUMBER(REGNO) \ ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \ (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1) #define LIBCALL_VALUE(MODE) \ riscv_function_value (NULL_TREE, NULL_TREE, MODE) #define FUNCTION_VALUE(VALTYPE, FUNC) \ riscv_function_value (VALTYPE, FUNC, VOIDmode) #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN) /* 1 if N is a possible register number for function argument passing. We have no FP argument registers when soft-float. */ /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */ #define FUNCTION_ARG_REGNO_P(N) \ (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \ || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST))) typedef struct { /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */ unsigned int num_gprs; /* Number of floating-point registers used so far, likewise. */ unsigned int num_fprs; } CUMULATIVE_ARGS; /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \ memset (&(CUM), 0, sizeof (CUM)) #define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO) /* Align based on stack boundary, which might have been set by the user. */ #define RISCV_STACK_ALIGN(LOC) \ (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8)) /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, the stack pointer does not matter. The value is tested only in functions that have frame pointers. No definition is equivalent to always zero. */ #define EXIT_IGNORE_STACK 1 /* Trampolines are a block of code followed by two pointers. */ #define TRAMPOLINE_CODE_SIZE 16 #define TRAMPOLINE_SIZE \ ((Pmode == SImode) \ ? TRAMPOLINE_CODE_SIZE \ : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2)) #define TRAMPOLINE_ALIGNMENT POINTER_SIZE /* Addressing modes, and classification of registers for them. */ #define REGNO_OK_FOR_INDEX_P(REGNO) 0 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \ riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1) /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its validity for a certain class. We have two alternate definitions for each of them. The usual definition accepts all pseudo regs; the other rejects them all. The symbol REG_OK_STRICT causes the latter definition to be used. Most source files want to accept pseudo regs in the hope that they will get allocated to the class that the insn wants them to be in. Some source files that are used after register allocation need to be strict. */ #ifndef REG_OK_STRICT #define REG_MODE_OK_FOR_BASE_P(X, MODE) \ riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0) #else #define REG_MODE_OK_FOR_BASE_P(X, MODE) \ riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1) #endif #define REG_OK_FOR_INDEX_P(X) 0 /* Maximum number of registers that can appear in a valid memory address. */ #define MAX_REGS_PER_ADDRESS 1 #define CONSTANT_ADDRESS_P(X) \ (CONSTANT_P (X) && memory_address_p (SImode, X)) /* This handles the magic '..CURRENT_FUNCTION' symbol, which means 'the start of the function that this code is output in'. */ #define ASM_OUTPUT_LABELREF(FILE,NAME) \ do { \ if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \ asm_fprintf ((FILE), "%U%s", \ XSTR (XEXP (DECL_RTL (current_function_decl), \ 0), 0)); \ else \ asm_fprintf ((FILE), "%U%s", (NAME)); \ } while (0) #define JUMP_TABLES_IN_TEXT_SECTION 0 #define CASE_VECTOR_MODE SImode #define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW) /* The load-address macro is used for PC-relative addressing of symbols that bind locally. Don't use it for symbols that should be addressed via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing currently results in more opportunities for linker relaxation. */ #define USE_LOAD_ADDRESS_MACRO(sym) \ (!TARGET_EXPLICIT_RELOCS && \ ((flag_pic \ && ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \ || ((GET_CODE (sym) == CONST) \ && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \ && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))) \ || riscv_cmodel == CM_MEDANY)) /* Define this as 1 if `char' should by default be signed; else as 0. */ #define DEFAULT_SIGNED_CHAR 0 #define MOVE_MAX UNITS_PER_WORD #define MAX_MOVE_MAX 8 /* The SPARC port says: Nonzero if access to memory by bytes is slow and undesirable. For RISC chips, it means that access to memory by bytes is no better than access by words when possible, so grab a whole word and maybe make use of that. */ #define SLOW_BYTE_ACCESS 1 /* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns in the md file instead. */ #define SHIFT_COUNT_TRUNCATED 0 /* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */ #define Pmode word_mode /* Give call MEMs SImode since it is the "most permissive" mode for both 32-bit and 64-bit targets. */ #define FUNCTION_MODE SImode /* A C expression for the cost of a branch instruction. A value of 2 seems to minimize code size. */ #define BRANCH_COST(speed_p, predictable_p) \ ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost) /* True if the target optimizes short forward branches around integer arithmetic instructions into predicated operations, e.g., for conditional-move operations. The macro assumes that all branch instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ) support this feature. The macro further assumes that any integer arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I], SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed counterparts, including C.MV and C.LI) can be in the branch shadow. */ #define TARGET_SFB_ALU (riscv_microarchitecture == sifive_7) #define LOGICAL_OP_NON_SHORT_CIRCUIT 0 /* Control the assembler format that we output. */ /* Output to assembler file text saying following lines may contain character constants, extra white space, comments, etc. */ #ifndef ASM_APP_ON #define ASM_APP_ON " #APP\n" #endif /* Output to assembler file text saying following lines no longer contain unusual constructs. */ #ifndef ASM_APP_OFF #define ASM_APP_OFF " #NO_APP\n" #endif #define REGISTER_NAMES \ { "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \ "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \ "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \ "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \ "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \ "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \ "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \ "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \ "arg", "frame", } #define ADDITIONAL_REGISTER_NAMES \ { \ { "x0", 0 + GP_REG_FIRST }, \ { "x1", 1 + GP_REG_FIRST }, \ { "x2", 2 + GP_REG_FIRST }, \ { "x3", 3 + GP_REG_FIRST }, \ { "x4", 4 + GP_REG_FIRST }, \ { "x5", 5 + GP_REG_FIRST }, \ { "x6", 6 + GP_REG_FIRST }, \ { "x7", 7 + GP_REG_FIRST }, \ { "x8", 8 + GP_REG_FIRST }, \ { "x9", 9 + GP_REG_FIRST }, \ { "x10", 10 + GP_REG_FIRST }, \ { "x11", 11 + GP_REG_FIRST }, \ { "x12", 12 + GP_REG_FIRST }, \ { "x13", 13 + GP_REG_FIRST }, \ { "x14", 14 + GP_REG_FIRST }, \ { "x15", 15 + GP_REG_FIRST }, \ { "x16", 16 + GP_REG_FIRST }, \ { "x17", 17 + GP_REG_FIRST }, \ { "x18", 18 + GP_REG_FIRST }, \ { "x19", 19 + GP_REG_FIRST }, \ { "x20", 20 + GP_REG_FIRST }, \ { "x21", 21 + GP_REG_FIRST }, \ { "x22", 22 + GP_REG_FIRST }, \ { "x23", 23 + GP_REG_FIRST }, \ { "x24", 24 + GP_REG_FIRST }, \ { "x25", 25 + GP_REG_FIRST }, \ { "x26", 26 + GP_REG_FIRST }, \ { "x27", 27 + GP_REG_FIRST }, \ { "x28", 28 + GP_REG_FIRST }, \ { "x29", 29 + GP_REG_FIRST }, \ { "x30", 30 + GP_REG_FIRST }, \ { "x31", 31 + GP_REG_FIRST }, \ { "f0", 0 + FP_REG_FIRST }, \ { "f1", 1 + FP_REG_FIRST }, \ { "f2", 2 + FP_REG_FIRST }, \ { "f3", 3 + FP_REG_FIRST }, \ { "f4", 4 + FP_REG_FIRST }, \ { "f5", 5 + FP_REG_FIRST }, \ { "f6", 6 + FP_REG_FIRST }, \ { "f7", 7 + FP_REG_FIRST }, \ { "f8", 8 + FP_REG_FIRST }, \ { "f9", 9 + FP_REG_FIRST }, \ { "f10", 10 + FP_REG_FIRST }, \ { "f11", 11 + FP_REG_FIRST }, \ { "f12", 12 + FP_REG_FIRST }, \ { "f13", 13 + FP_REG_FIRST }, \ { "f14", 14 + FP_REG_FIRST }, \ { "f15", 15 + FP_REG_FIRST }, \ { "f16", 16 + FP_REG_FIRST }, \ { "f17", 17 + FP_REG_FIRST }, \ { "f18", 18 + FP_REG_FIRST }, \ { "f19", 19 + FP_REG_FIRST }, \ { "f20", 20 + FP_REG_FIRST }, \ { "f21", 21 + FP_REG_FIRST }, \ { "f22", 22 + FP_REG_FIRST }, \ { "f23", 23 + FP_REG_FIRST }, \ { "f24", 24 + FP_REG_FIRST }, \ { "f25", 25 + FP_REG_FIRST }, \ { "f26", 26 + FP_REG_FIRST }, \ { "f27", 27 + FP_REG_FIRST }, \ { "f28", 28 + FP_REG_FIRST }, \ { "f29", 29 + FP_REG_FIRST }, \ { "f30", 30 + FP_REG_FIRST }, \ { "f31", 31 + FP_REG_FIRST }, \ } /* Globalizing directive for a label. */ #define GLOBAL_ASM_OP "\t.globl\t" /* This is how to store into the string LABEL the symbol_ref name of an internal numbered label where PREFIX is the class of label and NUM is the number within the class. This is suitable for output with `assemble_name'. */ #undef ASM_GENERATE_INTERNAL_LABEL #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM)) /* This is how to output an element of a case-vector that is absolute. */ #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \ fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE) /* This is how to output an element of a PIC case-vector. */ #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \ fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \ LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL) /* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. */ #define ASM_OUTPUT_ALIGN(STREAM,LOG) \ fprintf (STREAM, "\t.align\t%d\n", (LOG)) /* Define the strings to put out for each section in the object file. */ #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */ #define DATA_SECTION_ASM_OP "\t.data" /* large data */ #define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata" #define BSS_SECTION_ASM_OP "\t.bss" #define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits" #define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits" #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \ do \ { \ fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \ reg_names[STACK_POINTER_REGNUM], \ reg_names[STACK_POINTER_REGNUM], \ TARGET_64BIT ? "sd" : "sw", \ reg_names[REGNO], \ reg_names[STACK_POINTER_REGNUM]); \ } \ while (0) #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \ do \ { \ fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \ TARGET_64BIT ? "ld" : "lw", \ reg_names[REGNO], \ reg_names[STACK_POINTER_REGNUM], \ reg_names[STACK_POINTER_REGNUM], \ reg_names[STACK_POINTER_REGNUM]); \ } \ while (0) #define ASM_COMMENT_START "#" #undef SIZE_TYPE #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int") #undef PTRDIFF_TYPE #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int") /* The maximum number of bytes copied by one iteration of a cpymemsi loop. */ #define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4) /* The maximum number of bytes that can be copied by a straight-line cpymemsi implementation. */ #define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3) /* If a memory-to-memory move would take MOVE_RATIO or more simple move-instruction pairs, we will do a cpymem or libcall instead. Do not use move_by_pieces at all when strict alignment is not in effect but the target has slow unaligned accesses; in this case, cpymem or libcall is more efficient. */ #define MOVE_RATIO(speed) \ (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \ (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \ CLEAR_RATIO (speed) / 2) /* For CLEAR_RATIO, when optimizing for size, give a better estimate of the length of a memset call, but use the default otherwise. */ #define CLEAR_RATIO(speed) ((speed) ? 16 : 6) /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when optimizing for size adjust the ratio to account for the overhead of loading the constant and replicating it across the word. */ #define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2)) #ifndef USED_FOR_TARGET extern const enum reg_class riscv_regno_to_class[]; extern bool riscv_slow_unaligned_access_p; extern unsigned riscv_stack_boundary; #endif #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \ (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4) #define XLEN_SPEC \ "%{march=rv32*:32}" \ "%{march=rv64*:64}" \ #define ABI_SPEC \ "%{mabi=ilp32:ilp32}" \ "%{mabi=ilp32e:ilp32e}" \ "%{mabi=ilp32f:ilp32f}" \ "%{mabi=ilp32d:ilp32d}" \ "%{mabi=lp64:lp64}" \ "%{mabi=lp64f:lp64f}" \ "%{mabi=lp64d:lp64d}" \ /* ISA constants needed for code generation. */ #define OPCODE_LW 0x2003 #define OPCODE_LD 0x3003 #define OPCODE_AUIPC 0x17 #define OPCODE_JALR 0x67 #define OPCODE_LUI 0x37 #define OPCODE_ADDI 0x13 #define SHIFT_RD 7 #define SHIFT_RS1 15 #define SHIFT_IMM 20 #define IMM_BITS 12 #define C_S_BITS 5 #define C_SxSP_BITS 6 #define IMM_REACH (1LL << IMM_BITS) #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1)) #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE)) #define SWSP_REACH (4LL << C_SxSP_BITS) #define SDSP_REACH (8LL << C_SxSP_BITS) /* This is the maximum value that can be represented in a compressed load/store offset (an unsigned 5-bit value scaled by 4). */ #define CSW_MAX_OFFSET (((4LL << C_S_BITS) - 1) & ~3) /* Called from RISCV_REORG, this is defined in riscv-sr.cc. */ extern void riscv_remove_unneeded_save_restore_calls (void); #define HARD_REGNO_RENAME_OK(FROM, TO) riscv_hard_regno_rename_ok (FROM, TO) #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2) #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2) #endif /* ! GCC_RISCV_H */