/* Definitions of target machine for GNU compiler, for IBM RS/6000. Copyright (C) 1992-2022 Free Software Foundation, Inc. Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ /* Note that some other tm.h files include this one and then override many of the definitions. */ #ifndef RS6000_OPTS_H #include "config/rs6000/rs6000-opts.h" #endif /* 128-bit floating point precision values. */ #ifndef RS6000_MODES_H #include "config/rs6000/rs6000-modes.h" #endif /* Definitions for the object file format. These are set at compile-time. */ #define OBJECT_XCOFF 1 #define OBJECT_ELF 2 #define OBJECT_MACHO 4 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF) #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF) #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO) #ifndef TARGET_AIX #define TARGET_AIX 0 #endif #ifndef TARGET_AIX_OS #define TARGET_AIX_OS 0 #endif /* Turn off TOC support if pc-relative addressing is used. */ #define TARGET_TOC (TARGET_HAS_TOC && !TARGET_PCREL) /* On 32-bit systems without a TOC or pc-relative addressing, we need to use ADDIS/ADDI to load up the address of a symbol. */ #define TARGET_NO_TOC_OR_PCREL (!TARGET_HAS_TOC && !TARGET_PCREL) /* Control whether function entry points use a "dot" symbol when ABI_AIX. */ #define DOT_SYMBOLS 1 /* Default string to use for cpu if not specified. */ #ifndef TARGET_CPU_DEFAULT #define TARGET_CPU_DEFAULT ((char *)0) #endif /* If configured for PPC405, support PPC405CR Erratum77. */ #ifdef CONFIG_PPC405CR #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405) #else #define PPC405_ERRATUM77 0 #endif #ifndef SUBTARGET_DRIVER_SELF_SPECS # define SUBTARGET_DRIVER_SELF_SPECS "" #endif /* Only for use in the testsuite: -mdejagnu-cpu= filters out all -mcpu= as well as -mtune= options then simply adds -mcpu=, while -mdejagnu-tune= filters out all -mtune= options then simply adds -mtune=. With older versions of Dejagnu the command line arguments you set in RUNTESTFLAGS override those set in the testcases; with these options, the testcase will always win. */ #define DRIVER_SELF_SPECS \ "%{mdejagnu-cpu=*: % 64) #define TARGET_IEEEQUAD rs6000_ieeequad #define TARGET_ALTIVEC_ABI rs6000_altivec_abi #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL) /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only. Enable 32-bit fcfid's on any of the switches for newer ISA machines. */ #define TARGET_FCFID (TARGET_POWERPC64 \ || TARGET_PPC_GPOPT /* 970/power4 */ \ || TARGET_POPCNTB /* ISA 2.02 */ \ || TARGET_CMPB /* ISA 2.05 */ \ || TARGET_POPCNTD) /* ISA 2.06 */ #define TARGET_FCTIDZ TARGET_FCFID #define TARGET_STFIWX TARGET_PPC_GFXOPT #define TARGET_LFIWAX TARGET_CMPB #define TARGET_LFIWZX TARGET_POPCNTD #define TARGET_FCFIDS TARGET_POPCNTD #define TARGET_FCFIDU TARGET_POPCNTD #define TARGET_FCFIDUS TARGET_POPCNTD #define TARGET_FCTIDUZ TARGET_POPCNTD #define TARGET_FCTIWUZ TARGET_POPCNTD #define TARGET_CTZ TARGET_MODULO #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64) #define TARGET_MADDLD TARGET_MODULO #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR) #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR) #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64) #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \ && TARGET_POWERPC64) #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \ && TARGET_POWERPC64) /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */ #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT) /* This wants to be set for p8 and newer. On p7, overlapping unaligned loads are slow. */ #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present in power7, so conditionalize them on p8 features. TImode syncs need quad memory support. */ #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \ || TARGET_QUAD_MEMORY_ATOMIC \ || TARGET_DIRECT_MOVE) #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need to allocate the SDmode stack slot to get the value into the proper location in the register. */ #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP) /* ISA 3.0 has new min/max functions that don't need fast math that are being phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct answers if the arguments are not in the normal range. */ #define TARGET_MINMAX (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \ && (TARGET_P9_MINMAX || !flag_trapping_math)) /* In switching from using target_flags to using rs6000_isa_flags, the options machinery creates OPTION_MASK_ instead of MASK_. For now map OPTION_MASK_ back into MASK_. */ #define MASK_ALTIVEC OPTION_MASK_ALTIVEC #define MASK_CMPB OPTION_MASK_CMPB #define MASK_CRYPTO OPTION_MASK_CRYPTO #define MASK_DFP OPTION_MASK_DFP #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE #define MASK_DLMZB OPTION_MASK_DLMZB #define MASK_EABI OPTION_MASK_EABI #define MASK_FLOAT128_KEYWORD OPTION_MASK_FLOAT128_KEYWORD #define MASK_FLOAT128_HW OPTION_MASK_FLOAT128_HW #define MASK_FPRND OPTION_MASK_FPRND #define MASK_P8_FUSION OPTION_MASK_P8_FUSION #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT #define MASK_HTM OPTION_MASK_HTM #define MASK_ISEL OPTION_MASK_ISEL #define MASK_MFCRF OPTION_MASK_MFCRF #define MASK_MMA OPTION_MASK_MMA #define MASK_MULHW OPTION_MASK_MULHW #define MASK_MULTIPLE OPTION_MASK_MULTIPLE #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR #define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR #define MASK_P9_MISC OPTION_MASK_P9_MISC #define MASK_POPCNTB OPTION_MASK_POPCNTB #define MASK_POPCNTD OPTION_MASK_POPCNTD #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN #define MASK_UPDATE OPTION_MASK_UPDATE #define MASK_VSX OPTION_MASK_VSX #define MASK_POWER10 OPTION_MASK_POWER10 #define MASK_P10_FUSION OPTION_MASK_P10_FUSION #ifndef IN_LIBGCC2 #define MASK_POWERPC64 OPTION_MASK_POWERPC64 #endif #ifdef TARGET_64BIT #define MASK_64BIT OPTION_MASK_64BIT #endif #ifdef TARGET_LITTLE_ENDIAN #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN #endif #ifdef TARGET_REGNAMES #define MASK_REGNAMES OPTION_MASK_REGNAMES #endif #ifdef TARGET_PROTOTYPE #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE #endif #ifdef TARGET_MODULO #define RS6000_BTM_MODULO OPTION_MASK_MODULO #endif /* For power systems, we want to enable Altivec and VSX builtins even if the user did not use -maltivec or -mvsx to allow the builtins to be used inside of #pragma GCC target or the target attribute to change the code level for a given system. */ #define TARGET_EXTRA_BUILTINS (TARGET_POWERPC64 \ || TARGET_PPC_GPOPT /* 970/power4 */ \ || TARGET_POPCNTB /* ISA 2.02 */ \ || TARGET_CMPB /* ISA 2.05 */ \ || TARGET_POPCNTD /* ISA 2.06 */ \ || TARGET_ALTIVEC \ || TARGET_VSX \ || TARGET_HARD_FLOAT) /* E500 cores only support plain "sync", not lwsync. */ #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \ || rs6000_cpu == PROCESSOR_PPC8548) /* Which machine supports the various reciprocal estimate instructions. */ #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT) #define TARGET_FRE (TARGET_HARD_FLOAT \ && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode))) #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \ && TARGET_PPC_GFXOPT) #define TARGET_FRSQRTE (TARGET_HARD_FLOAT \ && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode))) /* Macro to say whether we can do optimizations where we need to do parts of the calculation in 64-bit GPRs and then is transfered to the vector registers. */ #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \ && TARGET_P8_VECTOR \ && TARGET_POWERPC64) /* Inlining allows targets to define the meanings of bits in target_info field of ipa_fn_summary by itself, the used bits for rs6000 are listed below. */ #define RS6000_FN_TARGET_INFO_HTM 1 /* Whether the various reciprocal divide/square root estimate instructions exist, and whether we should automatically generate code for the instruction by default. */ #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */ #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */ #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */ #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */ extern unsigned char rs6000_recip_bits[]; #define RS6000_RECIP_HAVE_RE_P(MODE) \ (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE) #define RS6000_RECIP_AUTO_RE_P(MODE) \ (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE) #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \ (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE) #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \ (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE) /* The default CPU for TARGET_OPTION_OVERRIDE. */ #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT /* Target pragma. */ #define REGISTER_TARGET_PRAGMAS() do { \ c_register_pragma (0, "longcall", rs6000_pragma_longcall); \ targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \ targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \ rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \ } while (0) /* Target #defines. */ #define TARGET_CPU_CPP_BUILTINS() \ rs6000_cpu_cpp_builtins (pfile) /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order we're compiling for. Some configurations may need to override it. */ #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \ do \ { \ if (BYTES_BIG_ENDIAN) \ { \ builtin_define ("__BIG_ENDIAN__"); \ builtin_define ("_BIG_ENDIAN"); \ builtin_assert ("machine=bigendian"); \ } \ else \ { \ builtin_define ("__LITTLE_ENDIAN__"); \ builtin_define ("_LITTLE_ENDIAN"); \ builtin_assert ("machine=littleendian"); \ } \ } \ while (0) /* Target machine storage layout. */ /* Define this if most significant bit is lowest numbered in instructions that operate on numbered bit-fields. */ /* That is true on RS/6000. */ #define BITS_BIG_ENDIAN 1 /* Define this if most significant byte of a word is the lowest numbered. */ /* That is true on RS/6000. */ #define BYTES_BIG_ENDIAN 1 /* Define this if most significant word of a multiword number is lowest numbered. For RS/6000 we can decide arbitrarily since there are no machine instructions for them. Might as well be consistent with bits and bytes. */ #define WORDS_BIG_ENDIAN 1 /* This says that for the IBM long double the larger magnitude double comes first. It's really a two element double array, and arrays don't index differently between little- and big-endian. */ #define LONG_DOUBLE_LARGE_FIRST 1 #define MAX_BITS_PER_WORD 64 /* Width of a word, in units (bytes). */ #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8) #ifdef IN_LIBGCC2 #define MIN_UNITS_PER_WORD UNITS_PER_WORD #else #define MIN_UNITS_PER_WORD 4 #endif #define UNITS_PER_FP_WORD 8 #define UNITS_PER_ALTIVEC_WORD 16 #define UNITS_PER_VSX_WORD 16 /* Type used for ptrdiff_t, as a string used in a declaration. */ #define PTRDIFF_TYPE "int" /* Type used for size_t, as a string used in a declaration. */ #define SIZE_TYPE "long unsigned int" /* Type used for wchar_t, as a string used in a declaration. */ #define WCHAR_TYPE "short unsigned int" /* Width of wchar_t in bits. */ #define WCHAR_TYPE_SIZE 16 /* A C expression for the size in bits of the type `short' on the target machine. If you don't define this, the default is half a word. (If this would be less than one storage unit, it is rounded up to one unit.) */ #define SHORT_TYPE_SIZE 16 /* A C expression for the size in bits of the type `int' on the target machine. If you don't define this, the default is one word. */ #define INT_TYPE_SIZE 32 /* A C expression for the size in bits of the type `long' on the target machine. If you don't define this, the default is one word. */ #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64) /* A C expression for the size in bits of the type `long long' on the target machine. If you don't define this, the default is two words. */ #define LONG_LONG_TYPE_SIZE 64 /* A C expression for the size in bits of the type `float' on the target machine. If you don't define this, the default is one word. */ #define FLOAT_TYPE_SIZE 32 /* A C expression for the size in bits of the type `double' on the target machine. If you don't define this, the default is two words. */ #define DOUBLE_TYPE_SIZE 64 /* A C expression for the size in bits of the type `long double' on the target machine. If you don't define this, the default is two words. */ #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size /* Work around rs6000_long_double_type_size dependency in ada/targtyps.cc. */ #define WIDEST_HARDWARE_FP_SIZE 64 /* Width in bits of a pointer. See also the macro `Pmode' defined below. */ extern unsigned rs6000_pointer_size; #define POINTER_SIZE rs6000_pointer_size /* Allocation boundary (in *bits*) for storing arguments in argument list. */ #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64) /* Boundary (in *bits*) on which stack pointer should be aligned. */ #define STACK_BOUNDARY \ ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \ ? 64 : 128) /* Allocation boundary (in *bits*) for the code of a function. */ #define FUNCTION_BOUNDARY 32 /* No data type is required to be aligned rounder than this. Warning, if BIGGEST_ALIGNMENT is changed, then this may be an ABI break. An example of where this can break an ABI is in GLIBC's struct _Unwind_Exception. */ #define BIGGEST_ALIGNMENT 128 /* Alignment of field after `int : 0' in a structure. */ #define EMPTY_FIELD_BOUNDARY 32 /* Every structure's size must be a multiple of this. */ #define STRUCTURE_SIZE_BOUNDARY 8 /* A bit-field declared as `int' forces `int' alignment for the struct. */ #define PCC_BITFIELD_TYPE_MATTERS 1 enum data_align { align_abi, align_opt, align_both }; /* A C expression to compute the alignment for a variables in the local store. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. */ #define LOCAL_ALIGNMENT(TYPE, ALIGN) \ rs6000_data_alignment (TYPE, ALIGN, align_both) /* Make arrays of chars word-aligned for the same reasons. */ #define DATA_ALIGNMENT(TYPE, ALIGN) \ rs6000_data_alignment (TYPE, ALIGN, align_opt) /* Align vectors to 128 bits. */ #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \ rs6000_data_alignment (TYPE, ALIGN, align_abi) /* Nonzero if move instructions will actually fail to work when given unaligned data. */ #define STRICT_ALIGNMENT 0 /* Standard register usage. */ /* Number of actual hardware registers. The hardware registers are assigned numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER. All registers that the compiler knows about must be given numbers, even those that are not normally considered general registers. RS/6000 has 32 fixed-point registers, 32 floating-point registers, a count register, a link register, and 8 condition register fields, which we view here as separate registers. AltiVec adds 32 vector registers and a VRsave register. In addition, the difference between the frame and argument pointers is a function of the number of registers saved, so we need to have a register for AP that will later be eliminated in favor of SP or FP. This is a normal register, but it is fixed. We also create a pseudo register for float/int conversions, that will really represent the memory location used. It is represented here as a register, in order to work around problems in allocating stack storage in inline functions. Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame pointer, which is eventually eliminated in favor of SP or FP. */ #define FIRST_PSEUDO_REGISTER 111 /* Use standard DWARF numbering for DWARF debugging information. */ #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0) /* Use gcc hard register numbering for eh_frame. */ #define DWARF_FRAME_REGNUM(REGNO) (REGNO) /* Map register numbers held in the call frame info that gcc has collected using DWARF_FRAME_REGNUM to those that should be output in .debug_frame and .eh_frame. */ #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \ rs6000_dbx_register_number ((REGNO), (FOR_EH) ? 2 : 1) /* 1 for registers that have pervasive standard uses and are not available for the register allocator. On RS/6000, r1 is used for the stack. On Darwin, r2 is available as a local register; for all other OS's r2 is the TOC pointer. On System V implementations, r13 is fixed and not available for use. */ #define FIXED_REGISTERS \ {/* GPRs */ \ 0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ /* FPRs */ \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ /* VRs */ \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ /* lr ctr ca ap */ \ 0, 0, 1, 1, \ /* cr0..cr7 */ \ 0, 0, 0, 0, 0, 0, 0, 0, \ /* vrsave vscr sfp */ \ 1, 1, 1 \ } /* Like `CALL_USED_REGISTERS' except this macro doesn't require that the entire set of `FIXED_REGISTERS' be included. (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS'). This macro is optional. If not specified, it defaults to the value of `CALL_USED_REGISTERS'. */ #define CALL_REALLY_USED_REGISTERS \ {/* GPRs */ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ /* FPRs */ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ /* VRs */ \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ /* lr ctr ca ap */ \ 1, 1, 1, 1, \ /* cr0..cr7 */ \ 1, 1, 0, 0, 0, 1, 1, 1, \ /* vrsave vscr sfp */ \ 0, 0, 0 \ } #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1) #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20) #define FIRST_SAVED_FP_REGNO (14+32) #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13) /* List the order in which to allocate registers. Each register must be listed once, even those in FIXED_REGISTERS. We allocate in the following order: fp0 (not saved or used for anything) fp13 - fp2 (not saved; incoming fp arg registers) fp1 (not saved; return value) fp31 - fp14 (saved; order given to save least number) cr7, cr5 (not saved or special) cr6 (not saved, but used for vector operations) cr1 (not saved, but used for FP operations) cr0 (not saved, but used for arithmetic operations) cr4, cr3, cr2 (saved) r9 (not saved; best for TImode) r10, r8-r4 (not saved; highest first for less conflict with params) r3 (not saved; return value register) r11 (not saved; later alloc to help shrink-wrap) r0 (not saved; cannot be base reg) r31 - r13 (saved; order given to save least number) r12 (not saved; if used for DImode or DFmode would use r13) ctr (not saved; when we have the choice ctr is better) lr (saved) r1, r2, ap, ca (fixed) v0 - v1 (not saved or used for anything) v13 - v3 (not saved; incoming vector arg registers) v2 (not saved; incoming vector arg reg; return value) v19 - v14 (not saved or used for anything) v31 - v20 (saved; order given to save least number) vrsave, vscr (fixed) sfp (fixed) */ #if FIXED_R2 == 1 #define MAYBE_R2_AVAILABLE #define MAYBE_R2_FIXED 2, #else #define MAYBE_R2_AVAILABLE 2, #define MAYBE_R2_FIXED #endif #if FIXED_R13 == 1 #define EARLY_R12 12, #define LATE_R12 #else #define EARLY_R12 #define LATE_R12 12, #endif #define REG_ALLOC_ORDER \ {32, \ /* move fr13 (ie 45) later, so if we need TFmode, it does */ \ /* not use fr14 which is a saved register. */ \ 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \ 33, \ 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ 50, 49, 48, 47, 46, \ 100, 107, 105, 106, 101, 104, 103, 102, \ MAYBE_R2_AVAILABLE \ 9, 10, 8, 7, 6, 5, 4, \ 3, EARLY_R12 11, 0, \ 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \ 18, 17, 16, 15, 14, 13, LATE_R12 \ 97, 96, \ 1, MAYBE_R2_FIXED 99, 98, \ /* AltiVec registers. */ \ 64, 65, \ 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, \ 66, \ 83, 82, 81, 80, 79, 78, \ 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, \ 108, 109, \ 110 \ } /* True if register is floating-point. */ #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63) /* True if register is a condition register. */ #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO) /* True if register is a condition register, but not cr0. */ #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO) /* True if register is an integer register. */ #define INT_REGNO_P(N) \ ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM) /* True if register is the CA register. */ #define CA_REGNO_P(N) ((N) == CA_REGNO) /* True if register is an AltiVec register. */ #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO) /* True if register is a VSX register. */ #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N)) /* Alternate name for any vector register supporting floating point, no matter which instruction set(s) are available. */ #define VFLOAT_REGNO_P(N) \ (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N))) /* Alternate name for any vector register supporting integer, no matter which instruction set(s) are available. */ #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N) /* Alternate name for any vector register supporting logical operations, no matter which instruction set(s) are available. Allow GPRs as well as the vector registers. */ #define VLOGICAL_REGNO_P(N) \ (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \ || (TARGET_VSX && FP_REGNO_P (N))) \ /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate enough space to account for vectors in FP regs. However, TFmode/TDmode should not use VSX instructions to do a caller save. */ #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \ ? (MODE) \ : TARGET_VSX \ && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \ && FP_REGNO_P (REGNO) \ ? V2DFmode \ : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \ ? DFmode \ : (MODE) == TDmode && FP_REGNO_P (REGNO) \ ? DImode \ : choose_hard_reg_mode ((REGNO), (NREGS), NULL)) #define VSX_VECTOR_MODE(MODE) \ ((MODE) == V4SFmode \ || (MODE) == V2DFmode) \ /* Modes that are not vectors, but require vector alignment. Treat these like vectors in terms of loads and stores. */ #define VECTOR_ALIGNMENT_P(MODE) \ (FLOAT128_VECTOR_P (MODE) || (MODE) == OOmode || (MODE) == XOmode) #define ALTIVEC_VECTOR_MODE(MODE) \ ((MODE) == V16QImode \ || (MODE) == V8HImode \ || (MODE) == V4SFmode \ || (MODE) == V4SImode \ || VECTOR_ALIGNMENT_P (MODE)) #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \ (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \ || (MODE) == V2DImode || (MODE) == V1TImode) /* Post-reload, we can't use any new AltiVec registers, as we already emitted the vrsave mask. */ #define HARD_REGNO_RENAME_OK(SRC, DST) \ (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST)) /* Specify the cost of a branch insn; roughly the number of extra insns that should be added to avoid a branch. Set this to 3 on the RS/6000 since that is roughly the average cost of an unscheduled conditional branch. */ #define BRANCH_COST(speed_p, predictable_p) 3 /* Override BRANCH_COST heuristic which empirically produces worse performance for removing short circuiting from the logical ops. */ #define LOGICAL_OP_NON_SHORT_CIRCUIT 0 /* Specify the registers used for certain standard purposes. The values of these macros are register numbers. */ /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */ /* #define PC_REGNUM */ /* Register to use for pushing function arguments. */ #define STACK_POINTER_REGNUM 1 /* Base register for access to local variables of the function. */ #define HARD_FRAME_POINTER_REGNUM 31 /* Base register for access to local variables of the function. */ #define FRAME_POINTER_REGNUM 110 /* Base register for access to arguments of the function. */ #define ARG_POINTER_REGNUM 99 /* Place to put static chain when calling a function that requires it. */ #define STATIC_CHAIN_REGNUM 11 /* Base register for access to thread local storage variables. */ #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2) /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. */ /* The RS/6000 has three types of registers, fixed-point, floating-point, and condition registers, plus three special registers, CTR, and the link register. AltiVec adds a vector register class. VSX registers overlap the FPR registers and the Altivec registers. However, r0 is special in that it cannot be used as a base register. So make a class for registers valid as base registers. Also, cr0 is the only condition code register that can be used in arithmetic insns, so make a separate class for it. */ enum reg_class { NO_REGS, BASE_REGS, GENERAL_REGS, FLOAT_REGS, ALTIVEC_REGS, VSX_REGS, VRSAVE_REGS, VSCR_REGS, GEN_OR_FLOAT_REGS, GEN_OR_VSX_REGS, LINK_REGS, CTR_REGS, LINK_OR_CTR_REGS, SPECIAL_REGS, SPEC_OR_GEN_REGS, CR0_REGS, CR_REGS, NON_FLOAT_REGS, CA_REGS, ALL_REGS, LIM_REG_CLASSES }; #define N_REG_CLASSES (int) LIM_REG_CLASSES /* Give names of register classes as strings for dump file. */ #define REG_CLASS_NAMES \ { \ "NO_REGS", \ "BASE_REGS", \ "GENERAL_REGS", \ "FLOAT_REGS", \ "ALTIVEC_REGS", \ "VSX_REGS", \ "VRSAVE_REGS", \ "VSCR_REGS", \ "GEN_OR_FLOAT_REGS", \ "GEN_OR_VSX_REGS", \ "LINK_REGS", \ "CTR_REGS", \ "LINK_OR_CTR_REGS", \ "SPECIAL_REGS", \ "SPEC_OR_GEN_REGS", \ "CR0_REGS", \ "CR_REGS", \ "NON_FLOAT_REGS", \ "CA_REGS", \ "ALL_REGS" \ } /* Define which registers fit in which classes. This is an initializer for a vector of HARD_REG_SET of length N_REG_CLASSES. */ #define REG_CLASS_CONTENTS \ { \ /* NO_REGS. */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \ /* BASE_REGS. */ \ { 0xfffffffe, 0x00000000, 0x00000000, 0x00004008 }, \ /* GENERAL_REGS. */ \ { 0xffffffff, 0x00000000, 0x00000000, 0x00004008 }, \ /* FLOAT_REGS. */ \ { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \ /* ALTIVEC_REGS. */ \ { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 }, \ /* VSX_REGS. */ \ { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \ /* VRSAVE_REGS. */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00001000 }, \ /* VSCR_REGS. */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \ /* GEN_OR_FLOAT_REGS. */ \ { 0xffffffff, 0xffffffff, 0x00000000, 0x00004008 }, \ /* GEN_OR_VSX_REGS. */ \ { 0xffffffff, 0xffffffff, 0xffffffff, 0x00004008 }, \ /* LINK_REGS. */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, \ /* CTR_REGS. */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00000002 }, \ /* LINK_OR_CTR_REGS. */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00000003 }, \ /* SPECIAL_REGS. */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00001003 }, \ /* SPEC_OR_GEN_REGS. */ \ { 0xffffffff, 0x00000000, 0x00000000, 0x0000500b }, \ /* CR0_REGS. */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, \ /* CR_REGS. */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00000ff0 }, \ /* NON_FLOAT_REGS. */ \ { 0xffffffff, 0x00000000, 0x00000000, 0x00004ffb }, \ /* CA_REGS. */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00000004 }, \ /* ALL_REGS. */ \ { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff } \ } /* The same information, inverted: Return the class number of the smallest class containing reg number REGNO. This could be a conditional expression or could index an array. */ extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER]; #define REGNO_REG_CLASS(REGNO) \ (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\ rs6000_regno_regclass[(REGNO)]) /* Register classes for various constraints that are based on the target switches. */ enum r6000_reg_class_enum { RS6000_CONSTRAINT_d, /* fpr registers for double values */ RS6000_CONSTRAINT_f, /* fpr registers for single values */ RS6000_CONSTRAINT_v, /* Altivec registers */ RS6000_CONSTRAINT_wa, /* Any VSX register */ RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */ RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */ RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */ RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */ RS6000_CONSTRAINT_MAX }; extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX]; /* The class value for index registers, and the one for base regs. */ #define INDEX_REG_CLASS GENERAL_REGS #define BASE_REG_CLASS BASE_REGS /* Return whether a given register class can hold VSX objects. */ #define VSX_REG_CLASS_P(CLASS) \ ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS) /* Return whether a given register class targets general purpose registers. */ #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS) /* Given an rtx X being reloaded into a reg required to be in class CLASS, return the class of reg to actually use. In general this is just CLASS; but on some machines in some cases it is preferable to use a more restrictive class. On the RS/6000, we have to return NO_REGS when we want to reload a floating-point CONST_DOUBLE to force it to be copied to memory. We also don't want to reload integer values into floating-point registers if we can at all help it. In fact, this can cause reload to die, if it tries to generate a reload of CTR into a FP register and discovers it doesn't have the memory location required. ??? Would it be a good idea to have reload do the converse, that is try to reload floating modes into FP registers if possible? */ #define PREFERRED_RELOAD_CLASS(X,CLASS) \ rs6000_preferred_reload_class_ptr (X, CLASS) /* Return the register class of a scratch register needed to copy IN into or out of a register in CLASS in MODE. If it can be done directly, NO_REGS is returned. */ #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \ rs6000_secondary_reload_class_ptr (CLASS, MODE, IN) /* Return the maximum number of consecutive registers needed to represent mode MODE in a register of class CLASS. On RS/6000, this is the size of MODE in words, except in the FP regs, where a single reg is enough for two words, unless we have VSX, where the FP registers can hold 128 bits. */ #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)] /* Stack layout; function entry, exit and calling. */ /* Define this if pushing a word on the stack makes the stack pointer a smaller address. */ #define STACK_GROWS_DOWNWARD 1 /* Offsets recorded in opcodes are a multiple of this alignment factor. */ #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8))) /* Define this to nonzero if the nominal address of the stack frame is at the high-address end of the local variables; that is, each additional local variable allocated goes at a more negative offset in the frame. On the RS/6000, we grow upwards, from the area after the outgoing arguments. */ #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \ || (flag_sanitize & SANITIZE_ADDRESS) != 0) /* Size of the fixed area on the stack */ #define RS6000_SAVE_AREA \ ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \ << (TARGET_64BIT ? 1 : 0)) /* Stack offset for toc save slot. */ #define RS6000_TOC_SAVE_SLOT \ ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0)) /* Align an address */ #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a)) /* Offset within stack frame to start allocating local variables at. If FRAME_GROWS_DOWNWARD, this is the offset to the END of the first local allocated. Otherwise, it is the offset to the BEGINNING of the first local allocated. On the RS/6000, the frame pointer is the same as the stack pointer, except for dynamic allocations. So we start after the fixed area and outgoing parameter area. If the function uses dynamic stack space (CALLS_ALLOCA is set), that space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the sizes of the fixed area and the parameter area must be a multiple of STACK_BOUNDARY. */ #define RS6000_STARTING_FRAME_OFFSET \ (cfun->calls_alloca \ ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \ (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \ : (RS6000_ALIGN (crtl->outgoing_args_size, \ (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \ + RS6000_SAVE_AREA)) /* Offset from the stack pointer register to an item dynamically allocated on the stack, e.g., by `alloca'. The default value for this macro is `STACK_POINTER_OFFSET' plus the length of the outgoing arguments. The default is correct for most machines. See `function.cc' for details. This value must be a multiple of STACK_BOUNDARY (hard coded in `emit-rtl.cc'). */ #define STACK_DYNAMIC_OFFSET(FUNDECL) \ RS6000_ALIGN (crtl->outgoing_args_size.to_constant () \ + STACK_POINTER_OFFSET, \ (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) /* If we generate an insn to push BYTES bytes, this says how many the stack pointer really advances by. On RS/6000, don't define this because there are no push insns. */ /* #define PUSH_ROUNDING(BYTES) */ /* Offset of first parameter from the argument pointer register value. On the RS/6000, we define the argument pointer to the start of the fixed area. */ #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA /* Offset from the argument pointer register value to the top of stack. This is different from FIRST_PARM_OFFSET because of the register save area. */ #define ARG_POINTER_CFA_OFFSET(FNDECL) 0 /* Define this if stack space is still allocated for a parameter passed in a register. The value is the number of bytes allocated to this area. */ #define REG_PARM_STACK_SPACE(FNDECL) \ rs6000_reg_parm_stack_space ((FNDECL), false) /* Define this macro if space guaranteed when compiling a function body is different to space required when making a call, a situation that can arise with K&R style function definitions. */ #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \ rs6000_reg_parm_stack_space ((FNDECL), true) /* Define this if the above stack space is to be considered part of the space allocated by the caller. */ #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1 /* This is the difference between the logical top of stack and the actual sp. For the RS/6000, sp points past the fixed area. */ #define STACK_POINTER_OFFSET RS6000_SAVE_AREA /* Define this if the maximum size of all the outgoing args is to be accumulated and pushed during the prologue. The amount can be found in the variable crtl->outgoing_args_size. */ #define ACCUMULATE_OUTGOING_ARGS 1 /* Define how to find the value returned by a library function assuming the value has mode MODE. */ #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE)) /* DRAFT_V4_STRUCT_RET defaults off. */ #define DRAFT_V4_STRUCT_RET 0 /* Let TARGET_RETURN_IN_MEMORY control what happens. */ #define DEFAULT_PCC_STRUCT_RETURN 0 /* Mode of stack savearea. FUNCTION is VOIDmode because calling convention maintains SP. BLOCK needs Pmode for SP. NONLOCAL needs twice Pmode to maintain both backchain and SP. */ #define STACK_SAVEAREA_MODE(LEVEL) \ (LEVEL == SAVE_FUNCTION ? VOIDmode \ : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode) /* Minimum and maximum general purpose registers used to hold arguments. */ #define GP_ARG_MIN_REG 3 #define GP_ARG_MAX_REG 10 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1) /* Minimum and maximum floating point registers used to hold arguments. */ #define FP_ARG_MIN_REG 33 #define FP_ARG_AIX_MAX_REG 45 #define FP_ARG_V4_MAX_REG 40 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \ ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG) #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1) /* Minimum and maximum AltiVec registers used to hold arguments. */ #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2) #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11) #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1) /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */ #define AGGR_ARG_NUM_REG 8 /* Return registers */ #define GP_ARG_RETURN GP_ARG_MIN_REG #define FP_ARG_RETURN FP_ARG_MIN_REG #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2) #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \ : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1)) #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \ ? (ALTIVEC_ARG_RETURN \ + (TARGET_FLOAT128_TYPE ? 1 : 0)) \ : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1)) /* Flags for the call/call_value rtl operations set up by function_arg */ #define CALL_NORMAL 0x00000000 /* no special processing */ /* Bits in 0x00000001 are unused. */ #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */ #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */ #define CALL_LONG 0x00000008 /* always call indirect */ #define CALL_LIBCALL 0x00000010 /* libcall */ /* Identify PLT sequence for rs6000_pltseq_template. */ enum rs6000_pltseq_enum { RS6000_PLTSEQ_TOCSAVE, RS6000_PLTSEQ_PLT16_HA, RS6000_PLTSEQ_PLT16_LO, RS6000_PLTSEQ_MTCTR, RS6000_PLTSEQ_PLT_PCREL34 }; #define IS_V4_FP_ARGS(OP) \ ((INTVAL (OP) & (CALL_V4_CLEAR_FP_ARGS | CALL_V4_SET_FP_ARGS)) != 0) /* We don't have prologue and epilogue functions to save/restore everything for most ABIs. */ #define WORLD_SAVE_P(INFO) 0 /* 1 if N is a possible register number for a function value as seen by the caller. On RS/6000, this is r3, fp1, and v2 (for AltiVec). */ #define FUNCTION_VALUE_REGNO_P(N) \ ((N) == GP_ARG_RETURN \ || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \ && TARGET_HARD_FLOAT) \ || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \ && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)) /* 1 if N is a possible register number for function argument passing. On RS/6000, these are r3-r10 and fp1-fp13. On AltiVec, v2 - v13 are used for passing vectors. */ #define FUNCTION_ARG_REGNO_P(N) \ (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \ || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \ && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \ || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \ && TARGET_HARD_FLOAT)) /* Define a data type for recording info about an argument list during the scan of that argument list. This data type should hold all necessary information about the function itself and about the args processed so far, enough to enable macros such as FUNCTION_ARG to determine where the next arg should go. On the RS/6000, this is a structure. The first element is the number of total argument words, the second is used to store the next floating-point register number, and the third says how many more args we have prototype types for. For ABI_V4, we treat these slightly differently -- `sysv_gregno' is the next available GP register, `fregno' is the next available FP register, and `words' is the number of words used on the stack. The varargs/stdarg support requires that this structure's size be a multiple of sizeof(int). */ typedef struct rs6000_args { int words; /* # words used for passing GP registers */ int fregno; /* next available FP register */ int vregno; /* next available AltiVec register */ int nargs_prototype; /* # args left in the current prototype */ int prototype; /* Whether a prototype was defined */ int stdarg; /* Whether function is a stdarg function. */ int call_cookie; /* Do special things for this call */ int sysv_gregno; /* next available GP register */ int intoffset; /* running offset in struct (darwin64) */ int use_stack; /* any part of struct on stack (darwin64) */ int floats_in_gpr; /* count of SFmode floats taking up GPR space (darwin64) */ int named; /* false for varargs params */ int escapes; /* if function visible outside tu */ int libcall; /* If this is a compiler generated call. */ } CUMULATIVE_ARGS; /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \ N_NAMED_ARGS, FNDECL, VOIDmode) /* Similar, but when scanning the definition of a procedure. We always set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */ #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \ init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \ 1000, current_function_decl, VOIDmode) /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */ #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \ init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \ 0, NULL_TREE, MODE) #define PAD_VARARGS_DOWN \ (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD) /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ #define FUNCTION_PROFILER(FILE, LABELNO) \ output_function_profiler ((FILE), (LABELNO)); /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, the stack pointer does not matter. No definition is equivalent to always zero. On the RS/6000, this is nonzero because we can restore the stack from its backpointer, which we maintain. */ #define EXIT_IGNORE_STACK 1 /* Define this macro as a C expression that is nonzero for registers that are used by the epilogue or the return' pattern. The stack and frame pointer registers are already be assumed to be used as needed. */ #define EPILOGUE_USES(REGNO) \ ((reload_completed && (REGNO) == LR_REGNO) \ || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \ || (crtl->calls_eh_return \ && TARGET_AIX \ && (REGNO) == 2)) /* Length in units of the trampoline for entering a nested function. */ #define TRAMPOLINE_SIZE rs6000_trampoline_size () /* Definitions for __builtin_return_address and __builtin_frame_address. __builtin_return_address (0) should give link register (LR_REGNO), enable this. */ /* This should be uncommented, so that the link register is used, but currently this would result in unmatched insns and spilling fixed registers so we'll leave it for another day. When these problems are taken care of one additional fetch will be necessary in RETURN_ADDR_RTX. (mrs) */ /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */ /* Number of bytes into the frame return addresses can be found. See rs6000_stack_info in rs6000.cc for more information on how the different abi's store the return address. */ #define RETURN_ADDRESS_OFFSET \ ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0)) /* The current return address is in the link register. The return address of anything farther back is accessed normally at an offset of 8 from the frame pointer. */ #define RETURN_ADDR_RTX(COUNT, FRAME) \ (rs6000_return_addr (COUNT, FRAME)) /* Definitions for register eliminations. We have two registers that can be eliminated on the RS/6000. First, the frame pointer register can often be eliminated in favor of the stack pointer register. Secondly, the argument pointer register can always be eliminated; it is replaced with either the stack or frame pointer. In addition, we use the elimination mechanism to see if r30 is needed Initially we assume that it isn't. If it is, we spill it. This is done by making it an eliminable register. We replace it with itself so that if it isn't needed, then existing uses won't be modified. */ /* This is an array of structures. Each structure initializes one pair of eliminable registers. The "from" register number is given first, followed by "to". Eliminations of the same "from" register are listed in order of preference. */ #define ELIMINABLE_REGS \ {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } } /* Define the offset between two registers, one to be eliminated, and the other its replacement, at the start of a routine. */ #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO)) /* Addressing modes, and classification of registers for them. */ #define HAVE_PRE_DECREMENT 1 #define HAVE_PRE_INCREMENT 1 #define HAVE_PRE_MODIFY_DISP 1 #define HAVE_PRE_MODIFY_REG 1 /* Macros to check register numbers against specific register classes. */ /* These assume that REGNO is a hard or pseudo reg number. They give nonzero only if REGNO is a hard reg of the suitable class or a pseudo reg currently allocated to a suitable hard reg. Since they use reg_renumber, they are safe only once reg_renumber has been allocated, which happens in reginfo.cc during register allocation. */ #define REGNO_OK_FOR_INDEX_P(REGNO) \ (HARD_REGISTER_NUM_P (REGNO) \ ? (REGNO) <= 31 \ || (REGNO) == ARG_POINTER_REGNUM \ || (REGNO) == FRAME_POINTER_REGNUM \ : (reg_renumber[REGNO] >= 0 \ && (reg_renumber[REGNO] <= 31 \ || reg_renumber[REGNO] == ARG_POINTER_REGNUM \ || reg_renumber[REGNO] == FRAME_POINTER_REGNUM))) #define REGNO_OK_FOR_BASE_P(REGNO) \ (HARD_REGISTER_NUM_P (REGNO) \ ? ((REGNO) > 0 && (REGNO) <= 31) \ || (REGNO) == ARG_POINTER_REGNUM \ || (REGNO) == FRAME_POINTER_REGNUM \ : (reg_renumber[REGNO] > 0 \ && (reg_renumber[REGNO] <= 31 \ || reg_renumber[REGNO] == ARG_POINTER_REGNUM \ || reg_renumber[REGNO] == FRAME_POINTER_REGNUM))) /* Nonzero if X is a hard reg that can be used as an index or if it is a pseudo reg in the non-strict case. */ #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \ ((!(STRICT) && !HARD_REGISTER_P (X)) \ || REGNO_OK_FOR_INDEX_P (REGNO (X))) /* Nonzero if X is a hard reg that can be used as a base reg or if it is a pseudo reg in the non-strict case. */ #define INT_REG_OK_FOR_BASE_P(X, STRICT) \ ((!(STRICT) && !HARD_REGISTER_P (X)) \ || REGNO_OK_FOR_BASE_P (REGNO (X))) /* Maximum number of registers that can appear in a valid memory address. */ #define MAX_REGS_PER_ADDRESS 2 /* Recognize any constant value that is a valid address. */ #define CONSTANT_ADDRESS_P(X) \ (GET_CODE (X) == LABEL_REF || SYMBOL_REF_P (X) \ || CONST_INT_P (X) || GET_CODE (X) == CONST \ || GET_CODE (X) == HIGH) #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15) #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \ && EASY_VECTOR_15((n) >> 1) \ && ((n) & 1) == 0) #define EASY_VECTOR_MSB(n,mode) \ ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \ ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1)) #define FIND_BASE_TERM rs6000_find_base_term /* The register number of the register used to address a table of static data addresses in memory. In some cases this register is defined by a processor's "application binary interface" (ABI). When this macro is defined, RTL is generated for this register once, as with the stack pointer and frame pointer registers. If this macro is not defined, it is up to the machine-dependent files to allocate such a register (if necessary). */ #define RS6000_PIC_OFFSET_TABLE_REGNUM 30 #define PIC_OFFSET_TABLE_REGNUM \ (TARGET_TOC ? TOC_REGISTER \ : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \ : INVALID_REGNUM) #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2) /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */ /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */ /* A C expression that is nonzero if X is a legitimate immediate operand on the target machine when generating position independent code. You can assume that X satisfies `CONSTANT_P', so you need not check this. You can also assume FLAG_PIC is true, so you need not check it either. You need not define this macro if all constants (including `SYMBOL_REF') can be immediate operands when generating position independent code. */ /* #define LEGITIMATE_PIC_OPERAND_P (X) */ /* Define as C expression which evaluates to nonzero if the tablejump instruction expects the table to contain offsets from the address of the table. Do not define this if the table should contain absolute addresses. */ #define CASE_VECTOR_PC_RELATIVE rs6000_relative_jumptables /* Specify the machine mode that this machine uses for the index in the tablejump instruction. */ #define CASE_VECTOR_MODE (rs6000_relative_jumptables ? SImode : Pmode) /* Define this as 1 if `char' should by default be signed; else as 0. */ #define DEFAULT_SIGNED_CHAR 0 /* An integer expression for the size in bits of the largest integer machine mode that should actually be used. */ /* Allow pairs of registers to be used, which is the intent of the default. */ #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode) /* Max number of bytes we can move from memory to memory in one reasonably fast instruction. */ #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8) #define MAX_MOVE_MAX 8 /* Nonzero if access to memory by bytes is no faster than for words. Also nonzero if doing byte operations (specifically shifts) in registers is undesirable. */ #define SLOW_BYTE_ACCESS 1 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD will either zero-extend or sign-extend. The value of this macro should be the code that says which one of the two operations is implicitly done, UNKNOWN if none. */ #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND /* Define if loading short immediate values into registers sign extends. */ #define SHORT_IMMEDIATES_SIGN_EXTEND 1 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */ #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ ((VALUE) = GET_MODE_BITSIZE (MODE), 2) /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of zero. The hardware instructions added in Power9 and the sequences using popcount return 32 or 64. */ #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ (TARGET_CTZ || TARGET_POPCNTD \ ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \ : ((VALUE) = -1, 2)) /* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */ extern scalar_int_mode rs6000_pmode; #define Pmode rs6000_pmode /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */ #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode) /* Mode of a function address in a call instruction (for indexing purposes). Doesn't matter on RS/6000. */ #define FUNCTION_MODE SImode /* Define this if addresses of constant functions shouldn't be put through pseudo regs where they can be cse'd. Desirable on machines where ordinary constants are expensive but a CALL with constant address is cheap. */ #define NO_FUNCTION_CSE 1 /* Define this to be nonzero if shift instructions ignore all but the low-order few bits. The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED have been dropped from the PowerPC architecture. */ #define SHIFT_COUNT_TRUNCATED 0 /* Adjust the length of an INSN. LENGTH is the currently-computed length and should be adjusted to reflect any required changes. This macro is used when there is some systematic length adjustment required that would be difficult to express in the length attribute. In the PowerPC, we use this to adjust the length of an instruction if one or more prefixed instructions are generated, using the attribute num_prefixed_insns. A prefixed instruction is 8 bytes instead of 4, but the hardware requires that a prefied instruciton does not cross a 64-byte boundary. This means the compiler has to assume the length of the first prefixed instruction is 12 bytes instead of 8 bytes. Since the length is already set for the non-prefixed instruction, we just need to udpate for the difference. */ #define ADJUST_INSN_LENGTH(INSN,LENGTH) \ (LENGTH) = rs6000_adjust_insn_length ((INSN), (LENGTH)) /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, return the mode to be used for the comparison. For floating-point, CCFPmode should be used. CCUNSmode should be used for unsigned comparisons. CCEQmode should be used when we are doing an inequality comparison on the result of a comparison. CCmode should be used in all other cases. */ #define SELECT_CC_MODE(OP,X,Y) \ (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \ : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \ : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \ ? CCEQmode : CCmode)) /* Can the condition code MODE be safely reversed? This is safe in all cases on this port, because at present it doesn't use the trapping FP comparisons (fcmpo). */ #define REVERSIBLE_CC_MODE(MODE) 1 /* Given a condition code and a mode, return the inverse condition. */ #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE) /* Target cpu costs. */ struct processor_costs { const int mulsi; /* cost of SImode multiplication. */ const int mulsi_const; /* cost of SImode multiplication by constant. */ const int mulsi_const9; /* cost of SImode mult by short constant. */ const int muldi; /* cost of DImode multiplication. */ const int divsi; /* cost of SImode division. */ const int divdi; /* cost of DImode division. */ const int fp; /* cost of simple SFmode and DFmode insns. */ const int dmul; /* cost of DFmode multiplication (and fmadd). */ const int sdiv; /* cost of SFmode division (fdivs). */ const int ddiv; /* cost of DFmode division (fdiv). */ const int cache_line_size; /* cache line size in bytes. */ const int l1_cache_size; /* size of l1 cache, in kilobytes. */ const int l2_cache_size; /* size of l2 cache, in kilobytes. */ const int simultaneous_prefetches; /* number of parallel prefetch operations. */ const int sfdf_convert; /* cost of SF->DF conversion. */ }; extern const struct processor_costs *rs6000_cost; /* Control the assembler format that we output. */ /* A C string constant describing how to begin a comment in the target assembler language. The compiler assumes that the comment will end at the end of the line. */ #define ASM_COMMENT_START " #" /* Flag to say the TOC is initialized */ extern int toc_initialized; /* Macro to output a special constant pool entry. Go to WIN if we output it. Otherwise, it is written the usual way. On the RS/6000, toc entries are handled this way. */ #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \ { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \ { \ output_toc (FILE, X, LABELNO, MODE); \ goto WIN; \ } \ } #ifdef HAVE_GAS_WEAK #define RS6000_WEAK 1 #else #define RS6000_WEAK 0 #endif #if RS6000_WEAK /* Used in lieu of ASM_WEAKEN_LABEL. */ #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \ rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL)) #endif #if HAVE_GAS_WEAKREF #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \ do \ { \ fputs ("\t.weakref\t", (FILE)); \ RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ fputs (", ", (FILE)); \ RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \ if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \ && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ { \ fputs ("\n\t.weakref\t.", (FILE)); \ RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ fputs (", .", (FILE)); \ RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \ } \ fputc ('\n', (FILE)); \ } while (0) #endif /* This implements the `alias' attribute. */ #undef ASM_OUTPUT_DEF_FROM_DECLS #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \ do \ { \ const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \ const char *name = IDENTIFIER_POINTER (TARGET); \ if (TREE_CODE (DECL) == FUNCTION_DECL \ && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ { \ if (TREE_PUBLIC (DECL)) \ { \ if (!RS6000_WEAK || !DECL_WEAK (DECL)) \ { \ fputs ("\t.globl\t.", FILE); \ RS6000_OUTPUT_BASENAME (FILE, alias); \ putc ('\n', FILE); \ } \ } \ else if (TARGET_XCOFF) \ { \ if (!RS6000_WEAK || !DECL_WEAK (DECL)) \ { \ fputs ("\t.lglobl\t.", FILE); \ RS6000_OUTPUT_BASENAME (FILE, alias); \ putc ('\n', FILE); \ fputs ("\t.lglobl\t", FILE); \ RS6000_OUTPUT_BASENAME (FILE, alias); \ putc ('\n', FILE); \ } \ } \ fputs ("\t.set\t.", FILE); \ RS6000_OUTPUT_BASENAME (FILE, alias); \ fputs (",.", FILE); \ RS6000_OUTPUT_BASENAME (FILE, name); \ fputc ('\n', FILE); \ } \ ASM_OUTPUT_DEF (FILE, alias, name); \ } \ while (0) #define TARGET_ASM_FILE_START rs6000_file_start /* Output to assembler file text saying following lines may contain character constants, extra white space, comments, etc. */ #define ASM_APP_ON "" /* Output to assembler file text saying following lines no longer contain unusual constructs. */ #define ASM_APP_OFF "" /* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */ extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */ #define REGISTER_NAMES \ { \ &rs6000_reg_names[ 0][0], /* r0 */ \ &rs6000_reg_names[ 1][0], /* r1 */ \ &rs6000_reg_names[ 2][0], /* r2 */ \ &rs6000_reg_names[ 3][0], /* r3 */ \ &rs6000_reg_names[ 4][0], /* r4 */ \ &rs6000_reg_names[ 5][0], /* r5 */ \ &rs6000_reg_names[ 6][0], /* r6 */ \ &rs6000_reg_names[ 7][0], /* r7 */ \ &rs6000_reg_names[ 8][0], /* r8 */ \ &rs6000_reg_names[ 9][0], /* r9 */ \ &rs6000_reg_names[10][0], /* r10 */ \ &rs6000_reg_names[11][0], /* r11 */ \ &rs6000_reg_names[12][0], /* r12 */ \ &rs6000_reg_names[13][0], /* r13 */ \ &rs6000_reg_names[14][0], /* r14 */ \ &rs6000_reg_names[15][0], /* r15 */ \ &rs6000_reg_names[16][0], /* r16 */ \ &rs6000_reg_names[17][0], /* r17 */ \ &rs6000_reg_names[18][0], /* r18 */ \ &rs6000_reg_names[19][0], /* r19 */ \ &rs6000_reg_names[20][0], /* r20 */ \ &rs6000_reg_names[21][0], /* r21 */ \ &rs6000_reg_names[22][0], /* r22 */ \ &rs6000_reg_names[23][0], /* r23 */ \ &rs6000_reg_names[24][0], /* r24 */ \ &rs6000_reg_names[25][0], /* r25 */ \ &rs6000_reg_names[26][0], /* r26 */ \ &rs6000_reg_names[27][0], /* r27 */ \ &rs6000_reg_names[28][0], /* r28 */ \ &rs6000_reg_names[29][0], /* r29 */ \ &rs6000_reg_names[30][0], /* r30 */ \ &rs6000_reg_names[31][0], /* r31 */ \ \ &rs6000_reg_names[32][0], /* fr0 */ \ &rs6000_reg_names[33][0], /* fr1 */ \ &rs6000_reg_names[34][0], /* fr2 */ \ &rs6000_reg_names[35][0], /* fr3 */ \ &rs6000_reg_names[36][0], /* fr4 */ \ &rs6000_reg_names[37][0], /* fr5 */ \ &rs6000_reg_names[38][0], /* fr6 */ \ &rs6000_reg_names[39][0], /* fr7 */ \ &rs6000_reg_names[40][0], /* fr8 */ \ &rs6000_reg_names[41][0], /* fr9 */ \ &rs6000_reg_names[42][0], /* fr10 */ \ &rs6000_reg_names[43][0], /* fr11 */ \ &rs6000_reg_names[44][0], /* fr12 */ \ &rs6000_reg_names[45][0], /* fr13 */ \ &rs6000_reg_names[46][0], /* fr14 */ \ &rs6000_reg_names[47][0], /* fr15 */ \ &rs6000_reg_names[48][0], /* fr16 */ \ &rs6000_reg_names[49][0], /* fr17 */ \ &rs6000_reg_names[50][0], /* fr18 */ \ &rs6000_reg_names[51][0], /* fr19 */ \ &rs6000_reg_names[52][0], /* fr20 */ \ &rs6000_reg_names[53][0], /* fr21 */ \ &rs6000_reg_names[54][0], /* fr22 */ \ &rs6000_reg_names[55][0], /* fr23 */ \ &rs6000_reg_names[56][0], /* fr24 */ \ &rs6000_reg_names[57][0], /* fr25 */ \ &rs6000_reg_names[58][0], /* fr26 */ \ &rs6000_reg_names[59][0], /* fr27 */ \ &rs6000_reg_names[60][0], /* fr28 */ \ &rs6000_reg_names[61][0], /* fr29 */ \ &rs6000_reg_names[62][0], /* fr30 */ \ &rs6000_reg_names[63][0], /* fr31 */ \ \ &rs6000_reg_names[64][0], /* vr0 */ \ &rs6000_reg_names[65][0], /* vr1 */ \ &rs6000_reg_names[66][0], /* vr2 */ \ &rs6000_reg_names[67][0], /* vr3 */ \ &rs6000_reg_names[68][0], /* vr4 */ \ &rs6000_reg_names[69][0], /* vr5 */ \ &rs6000_reg_names[70][0], /* vr6 */ \ &rs6000_reg_names[71][0], /* vr7 */ \ &rs6000_reg_names[72][0], /* vr8 */ \ &rs6000_reg_names[73][0], /* vr9 */ \ &rs6000_reg_names[74][0], /* vr10 */ \ &rs6000_reg_names[75][0], /* vr11 */ \ &rs6000_reg_names[76][0], /* vr12 */ \ &rs6000_reg_names[77][0], /* vr13 */ \ &rs6000_reg_names[78][0], /* vr14 */ \ &rs6000_reg_names[79][0], /* vr15 */ \ &rs6000_reg_names[80][0], /* vr16 */ \ &rs6000_reg_names[81][0], /* vr17 */ \ &rs6000_reg_names[82][0], /* vr18 */ \ &rs6000_reg_names[83][0], /* vr19 */ \ &rs6000_reg_names[84][0], /* vr20 */ \ &rs6000_reg_names[85][0], /* vr21 */ \ &rs6000_reg_names[86][0], /* vr22 */ \ &rs6000_reg_names[87][0], /* vr23 */ \ &rs6000_reg_names[88][0], /* vr24 */ \ &rs6000_reg_names[89][0], /* vr25 */ \ &rs6000_reg_names[90][0], /* vr26 */ \ &rs6000_reg_names[91][0], /* vr27 */ \ &rs6000_reg_names[92][0], /* vr28 */ \ &rs6000_reg_names[93][0], /* vr29 */ \ &rs6000_reg_names[94][0], /* vr30 */ \ &rs6000_reg_names[95][0], /* vr31 */ \ \ &rs6000_reg_names[96][0], /* lr */ \ &rs6000_reg_names[97][0], /* ctr */ \ &rs6000_reg_names[98][0], /* ca */ \ &rs6000_reg_names[99][0], /* ap */ \ \ &rs6000_reg_names[100][0], /* cr0 */ \ &rs6000_reg_names[101][0], /* cr1 */ \ &rs6000_reg_names[102][0], /* cr2 */ \ &rs6000_reg_names[103][0], /* cr3 */ \ &rs6000_reg_names[104][0], /* cr4 */ \ &rs6000_reg_names[105][0], /* cr5 */ \ &rs6000_reg_names[106][0], /* cr6 */ \ &rs6000_reg_names[107][0], /* cr7 */ \ \ &rs6000_reg_names[108][0], /* vrsave */ \ &rs6000_reg_names[109][0], /* vscr */ \ \ &rs6000_reg_names[110][0] /* sfp */ \ } /* Table of additional register names to use in user input. */ #define ADDITIONAL_REGISTER_NAMES \ {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \ {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \ {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \ {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \ {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \ {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \ {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \ {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \ {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \ {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \ {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \ {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \ {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \ {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \ {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \ {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \ {"v0", 64}, {"v1", 65}, {"v2", 66}, {"v3", 67}, \ {"v4", 68}, {"v5", 69}, {"v6", 70}, {"v7", 71}, \ {"v8", 72}, {"v9", 73}, {"v10", 74}, {"v11", 75}, \ {"v12", 76}, {"v13", 77}, {"v14", 78}, {"v15", 79}, \ {"v16", 80}, {"v17", 81}, {"v18", 82}, {"v19", 83}, \ {"v20", 84}, {"v21", 85}, {"v22", 86}, {"v23", 87}, \ {"v24", 88}, {"v25", 89}, {"v26", 90}, {"v27", 91}, \ {"v28", 92}, {"v29", 93}, {"v30", 94}, {"v31", 95}, \ {"vrsave", 108}, {"vscr", 109}, \ /* no additional names for: lr, ctr, ap */ \ {"cr0", 100},{"cr1", 101},{"cr2", 102},{"cr3", 103}, \ {"cr4", 104},{"cr5", 105},{"cr6", 106},{"cr7", 107}, \ {"cc", 100},{"sp", 1}, {"toc", 2}, \ /* CA is only part of XER, but we do not model the other parts (yet). */ \ {"xer", 98}, \ /* VSX registers overlaid on top of FR, Altivec registers */ \ {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \ {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \ {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \ {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \ {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \ {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \ {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \ {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \ {"vs32", 64}, {"vs33", 65}, {"vs34", 66}, {"vs35", 67}, \ {"vs36", 68}, {"vs37", 69}, {"vs38", 70}, {"vs39", 71}, \ {"vs40", 72}, {"vs41", 73}, {"vs42", 74}, {"vs43", 75}, \ {"vs44", 76}, {"vs45", 77}, {"vs46", 78}, {"vs47", 79}, \ {"vs48", 80}, {"vs49", 81}, {"vs50", 82}, {"vs51", 83}, \ {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87}, \ {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91}, \ {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95}, \ } /* This is how to output an element of a case-vector that is relative. */ #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ do { char buf[100]; \ fputs ("\t.long ", FILE); \ ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \ assemble_name (FILE, buf); \ putc ('-', FILE); \ ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \ assemble_name (FILE, buf); \ putc ('\n', FILE); \ } while (0) /* This is how to output an element of a case-vector that is non-relative. */ #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ rs6000_output_addr_vec_elt ((FILE), (VALUE)) /* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. */ #define ASM_OUTPUT_ALIGN(FILE,LOG) \ if ((LOG) != 0) \ fprintf (FILE, "\t.align %d\n", (LOG)) /* How to align the given loop. */ #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL) /* Alignment guaranteed by __builtin_malloc. */ /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT. However, specifying the stronger guarantee currently leads to a regression in SPEC CPU2006 437.leslie3d. The stronger guarantee should be implemented here once that's fixed. */ #define MALLOC_ABI_ALIGNMENT (64) /* Pick up the return address upon entry to a procedure. Used for dwarf2 unwind information. This also enables the table driven mechanism. */ #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO) #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO) /* Describe how we implement __builtin_eh_return. */ #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM) #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10) /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. */ #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) /* Define which CODE values are valid. */ #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&') /* Print a memory address as an operand to reference that memory location. */ #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) /* For switching between functions with different target attributes. */ #define SWITCHABLE_TARGET 1 /* uncomment for disabling the corresponding default options */ /* #define MACHINE_no_sched_interblock */ /* #define MACHINE_no_sched_speculative */ /* #define MACHINE_no_sched_speculative_load */ /* General flags. */ extern int frame_pointer_needed; /* Classification of the builtin functions as to which switches enable the builtin, and what attributes it should have. We used to use the target flags macros, but we've run out of bits, so we now map the options into new settings used here. */ /* Builtin operand count. */ #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */ #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */ #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */ #define RS6000_BTC_QUATERNARY 0x00000004 /* normal quaternary function. */ #define RS6000_BTC_QUINARY 0x00000005 /* normal quinary function. */ #define RS6000_BTC_SENARY 0x00000006 /* normal senary function. */ #define RS6000_BTC_OPND_MASK 0x00000007 /* Mask to isolate operands. */ /* Builtin attributes. */ #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */ #define RS6000_BTC_PREDICATE 0x00000008 /* predicate function. */ #define RS6000_BTC_ABS 0x00000010 /* Altivec/VSX ABS function. */ #define RS6000_BTC_DST 0x00000020 /* Altivec DST function. */ #define RS6000_BTC_TYPE_MASK 0x0000003f /* Mask to isolate types */ #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */ #define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor modifies global state. */ #define RS6000_BTC_PURE 0x00000200 /* reads global state/mem and does not modify global state. */ #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */ #define RS6000_BTC_QUAD 0x00000800 /* Uses a register quad. */ #define RS6000_BTC_PAIR 0x00001000 /* Uses a register pair. */ #define RS6000_BTC_QUADPAIR 0x00001800 /* Uses a quad and a pair. */ #define RS6000_BTC_ATTR_MASK 0x00001f00 /* Mask of the attributes. */ /* Miscellaneous information. */ #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */ #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */ #define RS6000_BTC_CR 0x04000000 /* function references a CR. */ #define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */ #define RS6000_BTC_GIMPLE 0x10000000 /* function should be expanded into gimple. */ #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */ /* Convenience macros to document the instruction type. */ #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */ #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */ /* Builtin targets. For now, we reuse the masks for those options that are in target flags, and pick a random bit for ldbl128, which isn't in target_flags. */ #define RS6000_BTM_ALWAYS 0 /* Always enabled. */ #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */ #define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */ #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */ #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */ #define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */ #define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */ #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */ #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */ #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */ #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */ #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */ #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */ #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */ #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */ #define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */ #define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */ #define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */ #define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */ #define RS6000_BTM_POWERPC64 MASK_POWERPC64 /* 64-bit registers. */ #define RS6000_BTM_FLOAT128 MASK_FLOAT128_KEYWORD /* IEEE 128-bit float. */ #define RS6000_BTM_FLOAT128_HW MASK_FLOAT128_HW /* IEEE 128-bit float h/w. */ #define RS6000_BTM_MMA MASK_MMA /* ISA 3.1 MMA. */ #define RS6000_BTM_P10 MASK_POWER10 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \ | RS6000_BTM_VSX \ | RS6000_BTM_P8_VECTOR \ | RS6000_BTM_P9_VECTOR \ | RS6000_BTM_P9_MISC \ | RS6000_BTM_MODULO \ | RS6000_BTM_CRYPTO \ | RS6000_BTM_FRE \ | RS6000_BTM_FRES \ | RS6000_BTM_FRSQRTE \ | RS6000_BTM_FRSQRTES \ | RS6000_BTM_HTM \ | RS6000_BTM_POPCNTD \ | RS6000_BTM_CELL \ | RS6000_BTM_DFP \ | RS6000_BTM_HARD_FLOAT \ | RS6000_BTM_LDBL128 \ | RS6000_BTM_POWERPC64 \ | RS6000_BTM_FLOAT128 \ | RS6000_BTM_FLOAT128_HW \ | RS6000_BTM_MMA \ | RS6000_BTM_P10) enum rs6000_builtin_type_index { RS6000_BTI_NOT_OPAQUE, RS6000_BTI_opaque_V4SI, RS6000_BTI_V16QI, /* __vector signed char */ RS6000_BTI_V1TI, RS6000_BTI_V2DI, RS6000_BTI_V2DF, RS6000_BTI_V4HI, RS6000_BTI_V4SI, RS6000_BTI_V4SF, RS6000_BTI_V8HI, RS6000_BTI_unsigned_V16QI, /* __vector unsigned char */ RS6000_BTI_unsigned_V1TI, RS6000_BTI_unsigned_V8HI, RS6000_BTI_unsigned_V4SI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_char, /* __bool char */ RS6000_BTI_bool_short, /* __bool short */ RS6000_BTI_bool_int, /* __bool int */ RS6000_BTI_bool_long_long, /* __bool long long */ RS6000_BTI_pixel, /* __pixel (16 bits arranged as 4 channels of 1, 5, 5, and 5 bits respectively as packed with the vpkpx insn. __pixel is only meaningful as a vector type. There is no corresponding scalar __pixel data type.) */ RS6000_BTI_bool_V16QI, /* __vector __bool char */ RS6000_BTI_bool_V8HI, /* __vector __bool short */ RS6000_BTI_bool_V4SI, /* __vector __bool int */ RS6000_BTI_bool_V2DI, /* __vector __bool long */ RS6000_BTI_bool_V1TI, /* __vector __bool 128-bit */ RS6000_BTI_pixel_V8HI, /* __vector __pixel */ RS6000_BTI_long, /* long_integer_type_node */ RS6000_BTI_unsigned_long, /* long_unsigned_type_node */ RS6000_BTI_long_long, /* long_long_integer_type_node */ RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */ RS6000_BTI_INTQI, /* (signed) intQI_type_node */ RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */ RS6000_BTI_INTHI, /* intHI_type_node */ RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */ RS6000_BTI_INTSI, /* intSI_type_node (signed) */ RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */ RS6000_BTI_INTDI, /* intDI_type_node */ RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */ RS6000_BTI_INTTI, /* intTI_type_node */ RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */ RS6000_BTI_float, /* float_type_node */ RS6000_BTI_double, /* double_type_node */ RS6000_BTI_long_double, /* long_double_type_node */ RS6000_BTI_dfloat64, /* dfloat64_type_node */ RS6000_BTI_dfloat128, /* dfloat128_type_node */ RS6000_BTI_void, /* void_type_node */ RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */ RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */ RS6000_BTI_const_str, /* pointer to const char * */ RS6000_BTI_vector_pair, /* unsigned 256-bit types (vector pair). */ RS6000_BTI_vector_quad, /* unsigned 512-bit types (vector quad). */ RS6000_BTI_const_ptr_void, /* const pointer to void */ RS6000_BTI_ptr_V16QI, RS6000_BTI_ptr_V1TI, RS6000_BTI_ptr_V2DI, RS6000_BTI_ptr_V2DF, RS6000_BTI_ptr_V4SI, RS6000_BTI_ptr_V4SF, RS6000_BTI_ptr_V8HI, RS6000_BTI_ptr_unsigned_V16QI, RS6000_BTI_ptr_unsigned_V1TI, RS6000_BTI_ptr_unsigned_V8HI, RS6000_BTI_ptr_unsigned_V4SI, RS6000_BTI_ptr_unsigned_V2DI, RS6000_BTI_ptr_bool_V16QI, RS6000_BTI_ptr_bool_V8HI, RS6000_BTI_ptr_bool_V4SI, RS6000_BTI_ptr_bool_V2DI, RS6000_BTI_ptr_bool_V1TI, RS6000_BTI_ptr_pixel_V8HI, RS6000_BTI_ptr_INTQI, RS6000_BTI_ptr_UINTQI, RS6000_BTI_ptr_INTHI, RS6000_BTI_ptr_UINTHI, RS6000_BTI_ptr_INTSI, RS6000_BTI_ptr_UINTSI, RS6000_BTI_ptr_INTDI, RS6000_BTI_ptr_UINTDI, RS6000_BTI_ptr_INTTI, RS6000_BTI_ptr_UINTTI, RS6000_BTI_ptr_long_integer, RS6000_BTI_ptr_long_unsigned, RS6000_BTI_ptr_float, RS6000_BTI_ptr_double, RS6000_BTI_ptr_long_double, RS6000_BTI_ptr_dfloat64, RS6000_BTI_ptr_dfloat128, RS6000_BTI_ptr_vector_pair, RS6000_BTI_ptr_vector_quad, RS6000_BTI_ptr_long_long, RS6000_BTI_ptr_long_long_unsigned, RS6000_BTI_MAX }; #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI]) #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI]) #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI]) #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI]) #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF]) #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI]) #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI]) #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF]) #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI]) #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI]) #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI]) #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI]) #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI]) #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI]) #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char]) #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short]) #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int]) #define bool_long_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long_long]) #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel]) #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI]) #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI]) #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI]) #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI]) #define bool_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V1TI]) #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI]) #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long]) #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long]) #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long]) #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long]) #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI]) #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI]) #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI]) #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI]) #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI]) #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI]) #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI]) #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI]) #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI]) #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI]) #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float]) #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double]) #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double]) #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64]) #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128]) #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void]) #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float]) #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float]) #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str]) #define vector_pair_type_node (rs6000_builtin_types[RS6000_BTI_vector_pair]) #define vector_quad_type_node (rs6000_builtin_types[RS6000_BTI_vector_quad]) #define pcvoid_type_node (rs6000_builtin_types[RS6000_BTI_const_ptr_void]) #define ptr_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V16QI]) #define ptr_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V1TI]) #define ptr_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V2DI]) #define ptr_V2DF_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V2DF]) #define ptr_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V4SI]) #define ptr_V4SF_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V4SF]) #define ptr_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V8HI]) #define ptr_unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V16QI]) #define ptr_unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V1TI]) #define ptr_unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V8HI]) #define ptr_unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V4SI]) #define ptr_unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V2DI]) #define ptr_bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V16QI]) #define ptr_bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V8HI]) #define ptr_bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V4SI]) #define ptr_bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V2DI]) #define ptr_bool_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V1TI]) #define ptr_pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_pixel_V8HI]) #define ptr_intQI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTQI]) #define ptr_uintQI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTQI]) #define ptr_intHI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTHI]) #define ptr_uintHI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTHI]) #define ptr_intSI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTSI]) #define ptr_uintSI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTSI]) #define ptr_intDI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTDI]) #define ptr_uintDI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTDI]) #define ptr_intTI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTTI]) #define ptr_uintTI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTTI]) #define ptr_long_integer_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_integer]) #define ptr_long_unsigned_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_unsigned]) #define ptr_float_type_node (rs6000_builtin_types[RS6000_BTI_ptr_float]) #define ptr_double_type_node (rs6000_builtin_types[RS6000_BTI_ptr_double]) #define ptr_long_double_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_double]) #define ptr_dfloat64_type_node (rs6000_builtin_types[RS6000_BTI_ptr_dfloat64]) #define ptr_dfloat128_type_node (rs6000_builtin_types[RS6000_BTI_ptr_dfloat128]) #define ptr_vector_pair_type_node (rs6000_builtin_types[RS6000_BTI_ptr_vector_pair]) #define ptr_vector_quad_type_node (rs6000_builtin_types[RS6000_BTI_ptr_vector_quad]) #define ptr_long_long_integer_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_long]) #define ptr_long_long_unsigned_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_long_unsigned]) extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX]; #ifndef USED_FOR_TARGET extern GTY(()) tree altivec_builtin_mask_for_load; extern GTY(()) section *toc_section; /* A C structure for machine-specific, per-function data. This is added to the cfun structure. */ typedef struct GTY(()) machine_function { /* Flags if __builtin_return_address (n) with n >= 1 was used. */ int ra_needs_full_frame; /* Flags if __builtin_return_address (0) was used. */ int ra_need_lr; /* Cache lr_save_p after expansion of builtin_eh_return. */ int lr_save_state; /* Whether we need to save the TOC to the reserved stack location in the function prologue. */ bool save_toc_in_prologue; /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4 varargs save area. */ HOST_WIDE_INT varargs_save_offset; /* Alternative internal arg pointer for -fsplit-stack. */ rtx split_stack_arg_pointer; bool split_stack_argp_used; /* Flag if r2 setup is needed with ELFv2 ABI. */ bool r2_setup_needed; /* The number of components we use for separate shrink-wrapping. */ int n_components; /* The components already handled by separate shrink-wrapping, which should not be considered by the prologue and epilogue. */ bool gpr_is_wrapped_separately[32]; bool fpr_is_wrapped_separately[32]; bool lr_is_wrapped_separately; bool toc_is_wrapped_separately; bool mma_return_type_error; } machine_function; #endif #define TARGET_SUPPORTS_WIDE_INT 1 #if (GCC_VERSION >= 3000) #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128 #endif /* Whether a given VALUE is a valid 16 or 34-bit signed integer. */ #define SIGNED_INTEGER_NBIT_P(VALUE, N) \ IN_RANGE ((VALUE), \ -(HOST_WIDE_INT_1 << ((N)-1)), \ (HOST_WIDE_INT_1 << ((N)-1)) - 1) #define SIGNED_INTEGER_16BIT_P(VALUE) SIGNED_INTEGER_NBIT_P (VALUE, 16) #define SIGNED_INTEGER_34BIT_P(VALUE) SIGNED_INTEGER_NBIT_P (VALUE, 34) /* Like SIGNED_INTEGER_16BIT_P and SIGNED_INTEGER_34BIT_P, but with an extra argument that gives a length to validate a range of addresses, to allow for splitting insns into several insns, each of which has an offsettable address. */ #define SIGNED_16BIT_OFFSET_EXTRA_P(VALUE, EXTRA) \ IN_RANGE ((VALUE), \ -(HOST_WIDE_INT_1 << 15), \ (HOST_WIDE_INT_1 << 15) - 1 - (EXTRA)) #define SIGNED_34BIT_OFFSET_EXTRA_P(VALUE, EXTRA) \ IN_RANGE ((VALUE), \ -(HOST_WIDE_INT_1 << 33), \ (HOST_WIDE_INT_1 << 33) - 1 - (EXTRA)) /* Define this if some processing needs to be done before outputting the assembler code. On the PowerPC, we remember if the current insn is a normal prefixed insn where we need to emit a 'p' before the insn. */ #define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS) \ do \ { \ if (TARGET_PREFIXED) \ rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS); \ } \ while (0) /* Do anything special before emitting an opcode. We use it to emit a 'p' for prefixed insns that is set in FINAL_PRESCAN_INSN. */ #define ASM_OUTPUT_OPCODE(STREAM, OPCODE) \ do \ { \ if (TARGET_PREFIXED) \ rs6000_asm_output_opcode (STREAM); \ } \ while (0)