// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1993 Linus Torvalds * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian , May 2000 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 * Numa awareness, Christoph Lameter, SGI, June 2005 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "pgalloc-track.h" #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; static int __init set_nohugeiomap(char *str) { ioremap_max_page_shift = PAGE_SHIFT; return 0; } early_param("nohugeiomap", set_nohugeiomap); #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC static bool __ro_after_init vmap_allow_huge = true; static int __init set_nohugevmalloc(char *str) { vmap_allow_huge = false; return 0; } early_param("nohugevmalloc", set_nohugevmalloc); #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ static const bool vmap_allow_huge = false; #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ bool is_vmalloc_addr(const void *x) { unsigned long addr = (unsigned long)x; return addr >= VMALLOC_START && addr < VMALLOC_END; } EXPORT_SYMBOL(is_vmalloc_addr); struct vfree_deferred { struct llist_head list; struct work_struct wq; }; static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); static void __vunmap(const void *, int); static void free_work(struct work_struct *w) { struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); struct llist_node *t, *llnode; llist_for_each_safe(llnode, t, llist_del_all(&p->list)) __vunmap((void *)llnode, 1); } /*** Page table manipulation functions ***/ static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift, pgtbl_mod_mask *mask) { pte_t *pte; u64 pfn; unsigned long size = PAGE_SIZE; pfn = phys_addr >> PAGE_SHIFT; pte = pte_alloc_kernel_track(pmd, addr, mask); if (!pte) return -ENOMEM; do { BUG_ON(!pte_none(*pte)); #ifdef CONFIG_HUGETLB_PAGE size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); if (size != PAGE_SIZE) { pte_t entry = pfn_pte(pfn, prot); entry = pte_mkhuge(entry); entry = arch_make_huge_pte(entry, ilog2(size), 0); set_huge_pte_at(&init_mm, addr, pte, entry); pfn += PFN_DOWN(size); continue; } #endif set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); pfn++; } while (pte += PFN_DOWN(size), addr += size, addr != end); *mask |= PGTBL_PTE_MODIFIED; return 0; } static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift) { if (max_page_shift < PMD_SHIFT) return 0; if (!arch_vmap_pmd_supported(prot)) return 0; if ((end - addr) != PMD_SIZE) return 0; if (!IS_ALIGNED(addr, PMD_SIZE)) return 0; if (!IS_ALIGNED(phys_addr, PMD_SIZE)) return 0; if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) return 0; return pmd_set_huge(pmd, phys_addr, prot); } static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; pmd = pmd_alloc_track(&init_mm, pud, addr, mask); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, max_page_shift)) { *mask |= PGTBL_PMD_MODIFIED; continue; } if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) return -ENOMEM; } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); return 0; } static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift) { if (max_page_shift < PUD_SHIFT) return 0; if (!arch_vmap_pud_supported(prot)) return 0; if ((end - addr) != PUD_SIZE) return 0; if (!IS_ALIGNED(addr, PUD_SIZE)) return 0; if (!IS_ALIGNED(phys_addr, PUD_SIZE)) return 0; if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) return 0; return pud_set_huge(pud, phys_addr, prot); } static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; pud = pud_alloc_track(&init_mm, p4d, addr, mask); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, max_page_shift)) { *mask |= PGTBL_PUD_MODIFIED; continue; } if (vmap_pmd_range(pud, addr, next, phys_addr, prot, max_page_shift, mask)) return -ENOMEM; } while (pud++, phys_addr += (next - addr), addr = next, addr != end); return 0; } static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift) { if (max_page_shift < P4D_SHIFT) return 0; if (!arch_vmap_p4d_supported(prot)) return 0; if ((end - addr) != P4D_SIZE) return 0; if (!IS_ALIGNED(addr, P4D_SIZE)) return 0; if (!IS_ALIGNED(phys_addr, P4D_SIZE)) return 0; if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) return 0; return p4d_set_huge(p4d, phys_addr, prot); } static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, max_page_shift)) { *mask |= PGTBL_P4D_MODIFIED; continue; } if (vmap_pud_range(p4d, addr, next, phys_addr, prot, max_page_shift, mask)) return -ENOMEM; } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); return 0; } static int vmap_range_noflush(unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift) { pgd_t *pgd; unsigned long start; unsigned long next; int err; pgtbl_mod_mask mask = 0; might_sleep(); BUG_ON(addr >= end); start = addr; pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, max_page_shift, &mask); if (err) break; } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, end); return err; } int ioremap_page_range(unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot) { int err; err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), ioremap_max_page_shift); flush_cache_vmap(addr, end); return err; } static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { pte_t *pte; pte = pte_offset_kernel(pmd, addr); do { pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); WARN_ON(!pte_none(ptent) && !pte_present(ptent)); } while (pte++, addr += PAGE_SIZE, addr != end); *mask |= PGTBL_PTE_MODIFIED; } static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; int cleared; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); cleared = pmd_clear_huge(pmd); if (cleared || pmd_bad(*pmd)) *mask |= PGTBL_PMD_MODIFIED; if (cleared) continue; if (pmd_none_or_clear_bad(pmd)) continue; vunmap_pte_range(pmd, addr, next, mask); cond_resched(); } while (pmd++, addr = next, addr != end); } static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; int cleared; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); cleared = pud_clear_huge(pud); if (cleared || pud_bad(*pud)) *mask |= PGTBL_PUD_MODIFIED; if (cleared) continue; if (pud_none_or_clear_bad(pud)) continue; vunmap_pmd_range(pud, addr, next, mask); } while (pud++, addr = next, addr != end); } static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; int cleared; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); cleared = p4d_clear_huge(p4d); if (cleared || p4d_bad(*p4d)) *mask |= PGTBL_P4D_MODIFIED; if (cleared) continue; if (p4d_none_or_clear_bad(p4d)) continue; vunmap_pud_range(p4d, addr, next, mask); } while (p4d++, addr = next, addr != end); } /* * vunmap_range_noflush is similar to vunmap_range, but does not * flush caches or TLBs. * * The caller is responsible for calling flush_cache_vmap() before calling * this function, and flush_tlb_kernel_range after it has returned * successfully (and before the addresses are expected to cause a page fault * or be re-mapped for something else, if TLB flushes are being delayed or * coalesced). * * This is an internal function only. Do not use outside mm/. */ void vunmap_range_noflush(unsigned long start, unsigned long end) { unsigned long next; pgd_t *pgd; unsigned long addr = start; pgtbl_mod_mask mask = 0; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); if (pgd_bad(*pgd)) mask |= PGTBL_PGD_MODIFIED; if (pgd_none_or_clear_bad(pgd)) continue; vunmap_p4d_range(pgd, addr, next, &mask); } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, end); } /** * vunmap_range - unmap kernel virtual addresses * @addr: start of the VM area to unmap * @end: end of the VM area to unmap (non-inclusive) * * Clears any present PTEs in the virtual address range, flushes TLBs and * caches. Any subsequent access to the address before it has been re-mapped * is a kernel bug. */ void vunmap_range(unsigned long addr, unsigned long end) { flush_cache_vunmap(addr, end); vunmap_range_noflush(addr, end); flush_tlb_kernel_range(addr, end); } static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { pte_t *pte; /* * nr is a running index into the array which helps higher level * callers keep track of where we're up to. */ pte = pte_alloc_kernel_track(pmd, addr, mask); if (!pte) return -ENOMEM; do { struct page *page = pages[*nr]; if (WARN_ON(!pte_none(*pte))) return -EBUSY; if (WARN_ON(!page)) return -ENOMEM; set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); (*nr)++; } while (pte++, addr += PAGE_SIZE, addr != end); *mask |= PGTBL_PTE_MODIFIED; return 0; } static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; pmd = pmd_alloc_track(&init_mm, pud, addr, mask); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (pmd++, addr = next, addr != end); return 0; } static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; pud = pud_alloc_track(&init_mm, p4d, addr, mask); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (pud++, addr = next, addr != end); return 0; } static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (p4d++, addr = next, addr != end); return 0; } static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages) { unsigned long start = addr; pgd_t *pgd; unsigned long next; int err = 0; int nr = 0; pgtbl_mod_mask mask = 0; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); if (pgd_bad(*pgd)) mask |= PGTBL_PGD_MODIFIED; err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); if (err) return err; } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, end); return 0; } /* * vmap_pages_range_noflush is similar to vmap_pages_range, but does not * flush caches. * * The caller is responsible for calling flush_cache_vmap() after this * function returns successfully and before the addresses are accessed. * * This is an internal function only. Do not use outside mm/. */ int vmap_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift) { unsigned int i, nr = (end - addr) >> PAGE_SHIFT; WARN_ON(page_shift < PAGE_SHIFT); if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || page_shift == PAGE_SHIFT) return vmap_small_pages_range_noflush(addr, end, prot, pages); for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { int err; err = vmap_range_noflush(addr, addr + (1UL << page_shift), __pa(page_address(pages[i])), prot, page_shift); if (err) return err; addr += 1UL << page_shift; } return 0; } /** * vmap_pages_range - map pages to a kernel virtual address * @addr: start of the VM area to map * @end: end of the VM area to map (non-inclusive) * @prot: page protection flags to use * @pages: pages to map (always PAGE_SIZE pages) * @page_shift: maximum shift that the pages may be mapped with, @pages must * be aligned and contiguous up to at least this shift. * * RETURNS: * 0 on success, -errno on failure. */ static int vmap_pages_range(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift) { int err; err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); flush_cache_vmap(addr, end); return err; } int is_vmalloc_or_module_addr(const void *x) { /* * ARM, x86-64 and sparc64 put modules in a special place, * and fall back on vmalloc() if that fails. Others * just put it in the vmalloc space. */ #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) unsigned long addr = (unsigned long)x; if (addr >= MODULES_VADDR && addr < MODULES_END) return 1; #endif return is_vmalloc_addr(x); } /* * Walk a vmap address to the struct page it maps. Huge vmap mappings will * return the tail page that corresponds to the base page address, which * matches small vmap mappings. */ struct page *vmalloc_to_page(const void *vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; struct page *page = NULL; pgd_t *pgd = pgd_offset_k(addr); p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *ptep, pte; /* * XXX we might need to change this if we add VIRTUAL_BUG_ON for * architectures that do not vmalloc module space */ VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); if (pgd_none(*pgd)) return NULL; if (WARN_ON_ONCE(pgd_leaf(*pgd))) return NULL; /* XXX: no allowance for huge pgd */ if (WARN_ON_ONCE(pgd_bad(*pgd))) return NULL; p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) return NULL; if (p4d_leaf(*p4d)) return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); if (WARN_ON_ONCE(p4d_bad(*p4d))) return NULL; pud = pud_offset(p4d, addr); if (pud_none(*pud)) return NULL; if (pud_leaf(*pud)) return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); if (WARN_ON_ONCE(pud_bad(*pud))) return NULL; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return NULL; if (pmd_leaf(*pmd)) return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); if (WARN_ON_ONCE(pmd_bad(*pmd))) return NULL; ptep = pte_offset_map(pmd, addr); pte = *ptep; if (pte_present(pte)) page = pte_page(pte); pte_unmap(ptep); return page; } EXPORT_SYMBOL(vmalloc_to_page); /* * Map a vmalloc()-space virtual address to the physical page frame number. */ unsigned long vmalloc_to_pfn(const void *vmalloc_addr) { return page_to_pfn(vmalloc_to_page(vmalloc_addr)); } EXPORT_SYMBOL(vmalloc_to_pfn); /*** Global kva allocator ***/ #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 static DEFINE_SPINLOCK(vmap_area_lock); static DEFINE_SPINLOCK(free_vmap_area_lock); /* Export for kexec only */ LIST_HEAD(vmap_area_list); static struct rb_root vmap_area_root = RB_ROOT; static bool vmap_initialized __read_mostly; static struct rb_root purge_vmap_area_root = RB_ROOT; static LIST_HEAD(purge_vmap_area_list); static DEFINE_SPINLOCK(purge_vmap_area_lock); /* * This kmem_cache is used for vmap_area objects. Instead of * allocating from slab we reuse an object from this cache to * make things faster. Especially in "no edge" splitting of * free block. */ static struct kmem_cache *vmap_area_cachep; /* * This linked list is used in pair with free_vmap_area_root. * It gives O(1) access to prev/next to perform fast coalescing. */ static LIST_HEAD(free_vmap_area_list); /* * This augment red-black tree represents the free vmap space. * All vmap_area objects in this tree are sorted by va->va_start * address. It is used for allocation and merging when a vmap * object is released. * * Each vmap_area node contains a maximum available free block * of its sub-tree, right or left. Therefore it is possible to * find a lowest match of free area. */ static struct rb_root free_vmap_area_root = RB_ROOT; /* * Preload a CPU with one object for "no edge" split case. The * aim is to get rid of allocations from the atomic context, thus * to use more permissive allocation masks. */ static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); static __always_inline unsigned long va_size(struct vmap_area *va) { return (va->va_end - va->va_start); } static __always_inline unsigned long get_subtree_max_size(struct rb_node *node) { struct vmap_area *va; va = rb_entry_safe(node, struct vmap_area, rb_node); return va ? va->subtree_max_size : 0; } /* * Gets called when remove the node and rotate. */ static __always_inline unsigned long compute_subtree_max_size(struct vmap_area *va) { return max3(va_size(va), get_subtree_max_size(va->rb_node.rb_left), get_subtree_max_size(va->rb_node.rb_right)); } RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) static void purge_vmap_area_lazy(void); static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); static unsigned long lazy_max_pages(void); static atomic_long_t nr_vmalloc_pages; unsigned long vmalloc_nr_pages(void) { return atomic_long_read(&nr_vmalloc_pages); } static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) { struct vmap_area *va = NULL; struct rb_node *n = vmap_area_root.rb_node; while (n) { struct vmap_area *tmp; tmp = rb_entry(n, struct vmap_area, rb_node); if (tmp->va_end > addr) { va = tmp; if (tmp->va_start <= addr) break; n = n->rb_left; } else n = n->rb_right; } return va; } static struct vmap_area *__find_vmap_area(unsigned long addr) { struct rb_node *n = vmap_area_root.rb_node; while (n) { struct vmap_area *va; va = rb_entry(n, struct vmap_area, rb_node); if (addr < va->va_start) n = n->rb_left; else if (addr >= va->va_end) n = n->rb_right; else return va; } return NULL; } /* * This function returns back addresses of parent node * and its left or right link for further processing. * * Otherwise NULL is returned. In that case all further * steps regarding inserting of conflicting overlap range * have to be declined and actually considered as a bug. */ static __always_inline struct rb_node ** find_va_links(struct vmap_area *va, struct rb_root *root, struct rb_node *from, struct rb_node **parent) { struct vmap_area *tmp_va; struct rb_node **link; if (root) { link = &root->rb_node; if (unlikely(!*link)) { *parent = NULL; return link; } } else { link = &from; } /* * Go to the bottom of the tree. When we hit the last point * we end up with parent rb_node and correct direction, i name * it link, where the new va->rb_node will be attached to. */ do { tmp_va = rb_entry(*link, struct vmap_area, rb_node); /* * During the traversal we also do some sanity check. * Trigger the BUG() if there are sides(left/right) * or full overlaps. */ if (va->va_start < tmp_va->va_end && va->va_end <= tmp_va->va_start) link = &(*link)->rb_left; else if (va->va_end > tmp_va->va_start && va->va_start >= tmp_va->va_end) link = &(*link)->rb_right; else { WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); return NULL; } } while (*link); *parent = &tmp_va->rb_node; return link; } static __always_inline struct list_head * get_va_next_sibling(struct rb_node *parent, struct rb_node **link) { struct list_head *list; if (unlikely(!parent)) /* * The red-black tree where we try to find VA neighbors * before merging or inserting is empty, i.e. it means * there is no free vmap space. Normally it does not * happen but we handle this case anyway. */ return NULL; list = &rb_entry(parent, struct vmap_area, rb_node)->list; return (&parent->rb_right == link ? list->next : list); } static __always_inline void link_va(struct vmap_area *va, struct rb_root *root, struct rb_node *parent, struct rb_node **link, struct list_head *head) { /* * VA is still not in the list, but we can * identify its future previous list_head node. */ if (likely(parent)) { head = &rb_entry(parent, struct vmap_area, rb_node)->list; if (&parent->rb_right != link) head = head->prev; } /* Insert to the rb-tree */ rb_link_node(&va->rb_node, parent, link); if (root == &free_vmap_area_root) { /* * Some explanation here. Just perform simple insertion * to the tree. We do not set va->subtree_max_size to * its current size before calling rb_insert_augmented(). * It is because of we populate the tree from the bottom * to parent levels when the node _is_ in the tree. * * Therefore we set subtree_max_size to zero after insertion, * to let __augment_tree_propagate_from() puts everything to * the correct order later on. */ rb_insert_augmented(&va->rb_node, root, &free_vmap_area_rb_augment_cb); va->subtree_max_size = 0; } else { rb_insert_color(&va->rb_node, root); } /* Address-sort this list */ list_add(&va->list, head); } static __always_inline void unlink_va(struct vmap_area *va, struct rb_root *root) { if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) return; if (root == &free_vmap_area_root) rb_erase_augmented(&va->rb_node, root, &free_vmap_area_rb_augment_cb); else rb_erase(&va->rb_node, root); list_del(&va->list); RB_CLEAR_NODE(&va->rb_node); } #if DEBUG_AUGMENT_PROPAGATE_CHECK static void augment_tree_propagate_check(void) { struct vmap_area *va; unsigned long computed_size; list_for_each_entry(va, &free_vmap_area_list, list) { computed_size = compute_subtree_max_size(va); if (computed_size != va->subtree_max_size) pr_emerg("tree is corrupted: %lu, %lu\n", va_size(va), va->subtree_max_size); } } #endif /* * This function populates subtree_max_size from bottom to upper * levels starting from VA point. The propagation must be done * when VA size is modified by changing its va_start/va_end. Or * in case of newly inserting of VA to the tree. * * It means that __augment_tree_propagate_from() must be called: * - After VA has been inserted to the tree(free path); * - After VA has been shrunk(allocation path); * - After VA has been increased(merging path). * * Please note that, it does not mean that upper parent nodes * and their subtree_max_size are recalculated all the time up * to the root node. * * 4--8 * /\ * / \ * / \ * 2--2 8--8 * * For example if we modify the node 4, shrinking it to 2, then * no any modification is required. If we shrink the node 2 to 1 * its subtree_max_size is updated only, and set to 1. If we shrink * the node 8 to 6, then its subtree_max_size is set to 6 and parent * node becomes 4--6. */ static __always_inline void augment_tree_propagate_from(struct vmap_area *va) { /* * Populate the tree from bottom towards the root until * the calculated maximum available size of checked node * is equal to its current one. */ free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); #if DEBUG_AUGMENT_PROPAGATE_CHECK augment_tree_propagate_check(); #endif } static void insert_vmap_area(struct vmap_area *va, struct rb_root *root, struct list_head *head) { struct rb_node **link; struct rb_node *parent; link = find_va_links(va, root, NULL, &parent); if (link) link_va(va, root, parent, link, head); } static void insert_vmap_area_augment(struct vmap_area *va, struct rb_node *from, struct rb_root *root, struct list_head *head) { struct rb_node **link; struct rb_node *parent; if (from) link = find_va_links(va, NULL, from, &parent); else link = find_va_links(va, root, NULL, &parent); if (link) { link_va(va, root, parent, link, head); augment_tree_propagate_from(va); } } /* * Merge de-allocated chunk of VA memory with previous * and next free blocks. If coalesce is not done a new * free area is inserted. If VA has been merged, it is * freed. * * Please note, it can return NULL in case of overlap * ranges, followed by WARN() report. Despite it is a * buggy behaviour, a system can be alive and keep * ongoing. */ static __always_inline struct vmap_area * merge_or_add_vmap_area(struct vmap_area *va, struct rb_root *root, struct list_head *head) { struct vmap_area *sibling; struct list_head *next; struct rb_node **link; struct rb_node *parent; bool merged = false; /* * Find a place in the tree where VA potentially will be * inserted, unless it is merged with its sibling/siblings. */ link = find_va_links(va, root, NULL, &parent); if (!link) return NULL; /* * Get next node of VA to check if merging can be done. */ next = get_va_next_sibling(parent, link); if (unlikely(next == NULL)) goto insert; /* * start end * | | * |<------VA------>|<-----Next----->| * | | * start end */ if (next != head) { sibling = list_entry(next, struct vmap_area, list); if (sibling->va_start == va->va_end) { sibling->va_start = va->va_start; /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); /* Point to the new merged area. */ va = sibling; merged = true; } } /* * start end * | | * |<-----Prev----->|<------VA------>| * | | * start end */ if (next->prev != head) { sibling = list_entry(next->prev, struct vmap_area, list); if (sibling->va_end == va->va_start) { /* * If both neighbors are coalesced, it is important * to unlink the "next" node first, followed by merging * with "previous" one. Otherwise the tree might not be * fully populated if a sibling's augmented value is * "normalized" because of rotation operations. */ if (merged) unlink_va(va, root); sibling->va_end = va->va_end; /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); /* Point to the new merged area. */ va = sibling; merged = true; } } insert: if (!merged) link_va(va, root, parent, link, head); return va; } static __always_inline struct vmap_area * merge_or_add_vmap_area_augment(struct vmap_area *va, struct rb_root *root, struct list_head *head) { va = merge_or_add_vmap_area(va, root, head); if (va) augment_tree_propagate_from(va); return va; } static __always_inline bool is_within_this_va(struct vmap_area *va, unsigned long size, unsigned long align, unsigned long vstart) { unsigned long nva_start_addr; if (va->va_start > vstart) nva_start_addr = ALIGN(va->va_start, align); else nva_start_addr = ALIGN(vstart, align); /* Can be overflowed due to big size or alignment. */ if (nva_start_addr + size < nva_start_addr || nva_start_addr < vstart) return false; return (nva_start_addr + size <= va->va_end); } /* * Find the first free block(lowest start address) in the tree, * that will accomplish the request corresponding to passing * parameters. */ static __always_inline struct vmap_area * find_vmap_lowest_match(unsigned long size, unsigned long align, unsigned long vstart) { struct vmap_area *va; struct rb_node *node; unsigned long length; /* Start from the root. */ node = free_vmap_area_root.rb_node; /* Adjust the search size for alignment overhead. */ length = size + align - 1; while (node) { va = rb_entry(node, struct vmap_area, rb_node); if (get_subtree_max_size(node->rb_left) >= length && vstart < va->va_start) { node = node->rb_left; } else { if (is_within_this_va(va, size, align, vstart)) return va; /* * Does not make sense to go deeper towards the right * sub-tree if it does not have a free block that is * equal or bigger to the requested search length. */ if (get_subtree_max_size(node->rb_right) >= length) { node = node->rb_right; continue; } /* * OK. We roll back and find the first right sub-tree, * that will satisfy the search criteria. It can happen * only once due to "vstart" restriction. */ while ((node = rb_parent(node))) { va = rb_entry(node, struct vmap_area, rb_node); if (is_within_this_va(va, size, align, vstart)) return va; if (get_subtree_max_size(node->rb_right) >= length && vstart <= va->va_start) { node = node->rb_right; break; } } } } return NULL; } #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK #include static struct vmap_area * find_vmap_lowest_linear_match(unsigned long size, unsigned long align, unsigned long vstart) { struct vmap_area *va; list_for_each_entry(va, &free_vmap_area_list, list) { if (!is_within_this_va(va, size, align, vstart)) continue; return va; } return NULL; } static void find_vmap_lowest_match_check(unsigned long size) { struct vmap_area *va_1, *va_2; unsigned long vstart; unsigned int rnd; get_random_bytes(&rnd, sizeof(rnd)); vstart = VMALLOC_START + rnd; va_1 = find_vmap_lowest_match(size, 1, vstart); va_2 = find_vmap_lowest_linear_match(size, 1, vstart); if (va_1 != va_2) pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", va_1, va_2, vstart); } #endif enum fit_type { NOTHING_FIT = 0, FL_FIT_TYPE = 1, /* full fit */ LE_FIT_TYPE = 2, /* left edge fit */ RE_FIT_TYPE = 3, /* right edge fit */ NE_FIT_TYPE = 4 /* no edge fit */ }; static __always_inline enum fit_type classify_va_fit_type(struct vmap_area *va, unsigned long nva_start_addr, unsigned long size) { enum fit_type type; /* Check if it is within VA. */ if (nva_start_addr < va->va_start || nva_start_addr + size > va->va_end) return NOTHING_FIT; /* Now classify. */ if (va->va_start == nva_start_addr) { if (va->va_end == nva_start_addr + size) type = FL_FIT_TYPE; else type = LE_FIT_TYPE; } else if (va->va_end == nva_start_addr + size) { type = RE_FIT_TYPE; } else { type = NE_FIT_TYPE; } return type; } static __always_inline int adjust_va_to_fit_type(struct vmap_area *va, unsigned long nva_start_addr, unsigned long size, enum fit_type type) { struct vmap_area *lva = NULL; if (type == FL_FIT_TYPE) { /* * No need to split VA, it fully fits. * * | | * V NVA V * |---------------| */ unlink_va(va, &free_vmap_area_root); kmem_cache_free(vmap_area_cachep, va); } else if (type == LE_FIT_TYPE) { /* * Split left edge of fit VA. * * | | * V NVA V R * |-------|-------| */ va->va_start += size; } else if (type == RE_FIT_TYPE) { /* * Split right edge of fit VA. * * | | * L V NVA V * |-------|-------| */ va->va_end = nva_start_addr; } else if (type == NE_FIT_TYPE) { /* * Split no edge of fit VA. * * | | * L V NVA V R * |---|-------|---| */ lva = __this_cpu_xchg(ne_fit_preload_node, NULL); if (unlikely(!lva)) { /* * For percpu allocator we do not do any pre-allocation * and leave it as it is. The reason is it most likely * never ends up with NE_FIT_TYPE splitting. In case of * percpu allocations offsets and sizes are aligned to * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE * are its main fitting cases. * * There are a few exceptions though, as an example it is * a first allocation (early boot up) when we have "one" * big free space that has to be split. * * Also we can hit this path in case of regular "vmap" * allocations, if "this" current CPU was not preloaded. * See the comment in alloc_vmap_area() why. If so, then * GFP_NOWAIT is used instead to get an extra object for * split purpose. That is rare and most time does not * occur. * * What happens if an allocation gets failed. Basically, * an "overflow" path is triggered to purge lazily freed * areas to free some memory, then, the "retry" path is * triggered to repeat one more time. See more details * in alloc_vmap_area() function. */ lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); if (!lva) return -1; } /* * Build the remainder. */ lva->va_start = va->va_start; lva->va_end = nva_start_addr; /* * Shrink this VA to remaining size. */ va->va_start = nva_start_addr + size; } else { return -1; } if (type != FL_FIT_TYPE) { augment_tree_propagate_from(va); if (lva) /* type == NE_FIT_TYPE */ insert_vmap_area_augment(lva, &va->rb_node, &free_vmap_area_root, &free_vmap_area_list); } return 0; } /* * Returns a start address of the newly allocated area, if success. * Otherwise a vend is returned that indicates failure. */ static __always_inline unsigned long __alloc_vmap_area(unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend) { unsigned long nva_start_addr; struct vmap_area *va; enum fit_type type; int ret; va = find_vmap_lowest_match(size, align, vstart); if (unlikely(!va)) return vend; if (va->va_start > vstart) nva_start_addr = ALIGN(va->va_start, align); else nva_start_addr = ALIGN(vstart, align); /* Check the "vend" restriction. */ if (nva_start_addr + size > vend) return vend; /* Classify what we have found. */ type = classify_va_fit_type(va, nva_start_addr, size); if (WARN_ON_ONCE(type == NOTHING_FIT)) return vend; /* Update the free vmap_area. */ ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); if (ret) return vend; #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK find_vmap_lowest_match_check(size); #endif return nva_start_addr; } /* * Free a region of KVA allocated by alloc_vmap_area */ static void free_vmap_area(struct vmap_area *va) { /* * Remove from the busy tree/list. */ spin_lock(&vmap_area_lock); unlink_va(va, &vmap_area_root); spin_unlock(&vmap_area_lock); /* * Insert/Merge it back to the free tree/list. */ spin_lock(&free_vmap_area_lock); merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); spin_unlock(&free_vmap_area_lock); } static inline void preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) { struct vmap_area *va = NULL; /* * Preload this CPU with one extra vmap_area object. It is used * when fit type of free area is NE_FIT_TYPE. It guarantees that * a CPU that does an allocation is preloaded. * * We do it in non-atomic context, thus it allows us to use more * permissive allocation masks to be more stable under low memory * condition and high memory pressure. */ if (!this_cpu_read(ne_fit_preload_node)) va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); spin_lock(lock); if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) kmem_cache_free(vmap_area_cachep, va); } /* * Allocate a region of KVA of the specified size and alignment, within the * vstart and vend. */ static struct vmap_area *alloc_vmap_area(unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend, int node, gfp_t gfp_mask) { struct vmap_area *va; unsigned long freed; unsigned long addr; int purged = 0; int ret; BUG_ON(!size); BUG_ON(offset_in_page(size)); BUG_ON(!is_power_of_2(align)); if (unlikely(!vmap_initialized)) return ERR_PTR(-EBUSY); might_sleep(); gfp_mask = gfp_mask & GFP_RECLAIM_MASK; va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); if (unlikely(!va)) return ERR_PTR(-ENOMEM); /* * Only scan the relevant parts containing pointers to other objects * to avoid false negatives. */ kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); retry: preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); addr = __alloc_vmap_area(size, align, vstart, vend); spin_unlock(&free_vmap_area_lock); /* * If an allocation fails, the "vend" address is * returned. Therefore trigger the overflow path. */ if (unlikely(addr == vend)) goto overflow; va->va_start = addr; va->va_end = addr + size; va->vm = NULL; spin_lock(&vmap_area_lock); insert_vmap_area(va, &vmap_area_root, &vmap_area_list); spin_unlock(&vmap_area_lock); BUG_ON(!IS_ALIGNED(va->va_start, align)); BUG_ON(va->va_start < vstart); BUG_ON(va->va_end > vend); ret = kasan_populate_vmalloc(addr, size); if (ret) { free_vmap_area(va); return ERR_PTR(ret); } return va; overflow: if (!purged) { purge_vmap_area_lazy(); purged = 1; goto retry; } freed = 0; blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); if (freed > 0) { purged = 0; goto retry; } if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) pr_warn("vmap allocation for size %lu failed: use vmalloc= to increase size\n", size); kmem_cache_free(vmap_area_cachep, va); return ERR_PTR(-EBUSY); } int register_vmap_purge_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&vmap_notify_list, nb); } EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); int unregister_vmap_purge_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&vmap_notify_list, nb); } EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); /* * lazy_max_pages is the maximum amount of virtual address space we gather up * before attempting to purge with a TLB flush. * * There is a tradeoff here: a larger number will cover more kernel page tables * and take slightly longer to purge, but it will linearly reduce the number of * global TLB flushes that must be performed. It would seem natural to scale * this number up linearly with the number of CPUs (because vmapping activity * could also scale linearly with the number of CPUs), however it is likely * that in practice, workloads might be constrained in other ways that mean * vmap activity will not scale linearly with CPUs. Also, I want to be * conservative and not introduce a big latency on huge systems, so go with * a less aggressive log scale. It will still be an improvement over the old * code, and it will be simple to change the scale factor if we find that it * becomes a problem on bigger systems. */ static unsigned long lazy_max_pages(void) { unsigned int log; log = fls(num_online_cpus()); return log * (32UL * 1024 * 1024 / PAGE_SIZE); } static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); /* * Serialize vmap purging. There is no actual critical section protected * by this look, but we want to avoid concurrent calls for performance * reasons and to make the pcpu_get_vm_areas more deterministic. */ static DEFINE_MUTEX(vmap_purge_lock); /* for per-CPU blocks */ static void purge_fragmented_blocks_allcpus(void); #ifdef CONFIG_X86_64 /* * called before a call to iounmap() if the caller wants vm_area_struct's * immediately freed. */ void set_iounmap_nonlazy(void) { atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); } #endif /* CONFIG_X86_64 */ /* * Purges all lazily-freed vmap areas. */ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) { unsigned long resched_threshold; struct list_head local_pure_list; struct vmap_area *va, *n_va; lockdep_assert_held(&vmap_purge_lock); spin_lock(&purge_vmap_area_lock); purge_vmap_area_root = RB_ROOT; list_replace_init(&purge_vmap_area_list, &local_pure_list); spin_unlock(&purge_vmap_area_lock); if (unlikely(list_empty(&local_pure_list))) return false; start = min(start, list_first_entry(&local_pure_list, struct vmap_area, list)->va_start); end = max(end, list_last_entry(&local_pure_list, struct vmap_area, list)->va_end); flush_tlb_kernel_range(start, end); resched_threshold = lazy_max_pages() << 1; spin_lock(&free_vmap_area_lock); list_for_each_entry_safe(va, n_va, &local_pure_list, list) { unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; unsigned long orig_start = va->va_start; unsigned long orig_end = va->va_end; /* * Finally insert or merge lazily-freed area. It is * detached and there is no need to "unlink" it from * anything. */ va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); if (!va) continue; if (is_vmalloc_or_module_addr((void *)orig_start)) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); atomic_long_sub(nr, &vmap_lazy_nr); if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) cond_resched_lock(&free_vmap_area_lock); } spin_unlock(&free_vmap_area_lock); return true; } /* * Kick off a purge of the outstanding lazy areas. Don't bother if somebody * is already purging. */ static void try_purge_vmap_area_lazy(void) { if (mutex_trylock(&vmap_purge_lock)) { __purge_vmap_area_lazy(ULONG_MAX, 0); mutex_unlock(&vmap_purge_lock); } } /* * Kick off a purge of the outstanding lazy areas. */ static void purge_vmap_area_lazy(void) { mutex_lock(&vmap_purge_lock); purge_fragmented_blocks_allcpus(); __purge_vmap_area_lazy(ULONG_MAX, 0); mutex_unlock(&vmap_purge_lock); } /* * Free a vmap area, caller ensuring that the area has been unmapped * and flush_cache_vunmap had been called for the correct range * previously. */ static void free_vmap_area_noflush(struct vmap_area *va) { unsigned long nr_lazy; spin_lock(&vmap_area_lock); unlink_va(va, &vmap_area_root); spin_unlock(&vmap_area_lock); nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); /* * Merge or place it to the purge tree/list. */ spin_lock(&purge_vmap_area_lock); merge_or_add_vmap_area(va, &purge_vmap_area_root, &purge_vmap_area_list); spin_unlock(&purge_vmap_area_lock); /* After this point, we may free va at any time */ if (unlikely(nr_lazy > lazy_max_pages())) try_purge_vmap_area_lazy(); } /* * Free and unmap a vmap area */ static void free_unmap_vmap_area(struct vmap_area *va) { flush_cache_vunmap(va->va_start, va->va_end); vunmap_range_noflush(va->va_start, va->va_end); if (debug_pagealloc_enabled_static()) flush_tlb_kernel_range(va->va_start, va->va_end); free_vmap_area_noflush(va); } static struct vmap_area *find_vmap_area(unsigned long addr) { struct vmap_area *va; spin_lock(&vmap_area_lock); va = __find_vmap_area(addr); spin_unlock(&vmap_area_lock); return va; } /*** Per cpu kva allocator ***/ /* * vmap space is limited especially on 32 bit architectures. Ensure there is * room for at least 16 percpu vmap blocks per CPU. */ /* * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess * instead (we just need a rough idea) */ #if BITS_PER_LONG == 32 #define VMALLOC_SPACE (128UL*1024*1024) #else #define VMALLOC_SPACE (128UL*1024*1024*1024) #endif #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ #define VMAP_BBMAP_BITS \ VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) struct vmap_block_queue { spinlock_t lock; struct list_head free; }; struct vmap_block { spinlock_t lock; struct vmap_area *va; unsigned long free, dirty; unsigned long dirty_min, dirty_max; /*< dirty range */ struct list_head free_list; struct rcu_head rcu_head; struct list_head purge; }; /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); /* * XArray of vmap blocks, indexed by address, to quickly find a vmap block * in the free path. Could get rid of this if we change the API to return a * "cookie" from alloc, to be passed to free. But no big deal yet. */ static DEFINE_XARRAY(vmap_blocks); /* * We should probably have a fallback mechanism to allocate virtual memory * out of partially filled vmap blocks. However vmap block sizing should be * fairly reasonable according to the vmalloc size, so it shouldn't be a * big problem. */ static unsigned long addr_to_vb_idx(unsigned long addr) { addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); addr /= VMAP_BLOCK_SIZE; return addr; } static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) { unsigned long addr; addr = va_start + (pages_off << PAGE_SHIFT); BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); return (void *)addr; } /** * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this * block. Of course pages number can't exceed VMAP_BBMAP_BITS * @order: how many 2^order pages should be occupied in newly allocated block * @gfp_mask: flags for the page level allocator * * Return: virtual address in a newly allocated block or ERR_PTR(-errno) */ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) { struct vmap_block_queue *vbq; struct vmap_block *vb; struct vmap_area *va; unsigned long vb_idx; int node, err; void *vaddr; node = numa_node_id(); vb = kmalloc_node(sizeof(struct vmap_block), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!vb)) return ERR_PTR(-ENOMEM); va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, VMALLOC_START, VMALLOC_END, node, gfp_mask); if (IS_ERR(va)) { kfree(vb); return ERR_CAST(va); } vaddr = vmap_block_vaddr(va->va_start, 0); spin_lock_init(&vb->lock); vb->va = va; /* At least something should be left free */ BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); vb->free = VMAP_BBMAP_BITS - (1UL << order); vb->dirty = 0; vb->dirty_min = VMAP_BBMAP_BITS; vb->dirty_max = 0; INIT_LIST_HEAD(&vb->free_list); vb_idx = addr_to_vb_idx(va->va_start); err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); if (err) { kfree(vb); free_vmap_area(va); return ERR_PTR(err); } vbq = &get_cpu_var(vmap_block_queue); spin_lock(&vbq->lock); list_add_tail_rcu(&vb->free_list, &vbq->free); spin_unlock(&vbq->lock); put_cpu_var(vmap_block_queue); return vaddr; } static void free_vmap_block(struct vmap_block *vb) { struct vmap_block *tmp; tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); BUG_ON(tmp != vb); free_vmap_area_noflush(vb->va); kfree_rcu(vb, rcu_head); } static void purge_fragmented_blocks(int cpu) { LIST_HEAD(purge); struct vmap_block *vb; struct vmap_block *n_vb; struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); rcu_read_lock(); list_for_each_entry_rcu(vb, &vbq->free, free_list) { if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) continue; spin_lock(&vb->lock); if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { vb->free = 0; /* prevent further allocs after releasing lock */ vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ vb->dirty_min = 0; vb->dirty_max = VMAP_BBMAP_BITS; spin_lock(&vbq->lock); list_del_rcu(&vb->free_list); spin_unlock(&vbq->lock); spin_unlock(&vb->lock); list_add_tail(&vb->purge, &purge); } else spin_unlock(&vb->lock); } rcu_read_unlock(); list_for_each_entry_safe(vb, n_vb, &purge, purge) { list_del(&vb->purge); free_vmap_block(vb); } } static void purge_fragmented_blocks_allcpus(void) { int cpu; for_each_possible_cpu(cpu) purge_fragmented_blocks(cpu); } static void *vb_alloc(unsigned long size, gfp_t gfp_mask) { struct vmap_block_queue *vbq; struct vmap_block *vb; void *vaddr = NULL; unsigned int order; BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); if (WARN_ON(size == 0)) { /* * Allocating 0 bytes isn't what caller wants since * get_order(0) returns funny result. Just warn and terminate * early. */ return NULL; } order = get_order(size); rcu_read_lock(); vbq = &get_cpu_var(vmap_block_queue); list_for_each_entry_rcu(vb, &vbq->free, free_list) { unsigned long pages_off; spin_lock(&vb->lock); if (vb->free < (1UL << order)) { spin_unlock(&vb->lock); continue; } pages_off = VMAP_BBMAP_BITS - vb->free; vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); vb->free -= 1UL << order; if (vb->free == 0) { spin_lock(&vbq->lock); list_del_rcu(&vb->free_list); spin_unlock(&vbq->lock); } spin_unlock(&vb->lock); break; } put_cpu_var(vmap_block_queue); rcu_read_unlock(); /* Allocate new block if nothing was found */ if (!vaddr) vaddr = new_vmap_block(order, gfp_mask); return vaddr; } static void vb_free(unsigned long addr, unsigned long size) { unsigned long offset; unsigned int order; struct vmap_block *vb; BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); flush_cache_vunmap(addr, addr + size); order = get_order(size); offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); vunmap_range_noflush(addr, addr + size); if (debug_pagealloc_enabled_static()) flush_tlb_kernel_range(addr, addr + size); spin_lock(&vb->lock); /* Expand dirty range */ vb->dirty_min = min(vb->dirty_min, offset); vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); vb->dirty += 1UL << order; if (vb->dirty == VMAP_BBMAP_BITS) { BUG_ON(vb->free); spin_unlock(&vb->lock); free_vmap_block(vb); } else spin_unlock(&vb->lock); } static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) { int cpu; if (unlikely(!vmap_initialized)) return; might_sleep(); for_each_possible_cpu(cpu) { struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); struct vmap_block *vb; rcu_read_lock(); list_for_each_entry_rcu(vb, &vbq->free, free_list) { spin_lock(&vb->lock); if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { unsigned long va_start = vb->va->va_start; unsigned long s, e; s = va_start + (vb->dirty_min << PAGE_SHIFT); e = va_start + (vb->dirty_max << PAGE_SHIFT); start = min(s, start); end = max(e, end); flush = 1; } spin_unlock(&vb->lock); } rcu_read_unlock(); } mutex_lock(&vmap_purge_lock); purge_fragmented_blocks_allcpus(); if (!__purge_vmap_area_lazy(start, end) && flush) flush_tlb_kernel_range(start, end); mutex_unlock(&vmap_purge_lock); } /** * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer * * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily * to amortize TLB flushing overheads. What this means is that any page you * have now, may, in a former life, have been mapped into kernel virtual * address by the vmap layer and so there might be some CPUs with TLB entries * still referencing that page (additional to the regular 1:1 kernel mapping). * * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can * be sure that none of the pages we have control over will have any aliases * from the vmap layer. */ void vm_unmap_aliases(void) { unsigned long start = ULONG_MAX, end = 0; int flush = 0; _vm_unmap_aliases(start, end, flush); } EXPORT_SYMBOL_GPL(vm_unmap_aliases); /** * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram * @mem: the pointer returned by vm_map_ram * @count: the count passed to that vm_map_ram call (cannot unmap partial) */ void vm_unmap_ram(const void *mem, unsigned int count) { unsigned long size = (unsigned long)count << PAGE_SHIFT; unsigned long addr = (unsigned long)mem; struct vmap_area *va; might_sleep(); BUG_ON(!addr); BUG_ON(addr < VMALLOC_START); BUG_ON(addr > VMALLOC_END); BUG_ON(!PAGE_ALIGNED(addr)); kasan_poison_vmalloc(mem, size); if (likely(count <= VMAP_MAX_ALLOC)) { debug_check_no_locks_freed(mem, size); vb_free(addr, size); return; } va = find_vmap_area(addr); BUG_ON(!va); debug_check_no_locks_freed((void *)va->va_start, (va->va_end - va->va_start)); free_unmap_vmap_area(va); } EXPORT_SYMBOL(vm_unmap_ram); /** * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) * @pages: an array of pointers to the pages to be mapped * @count: number of pages * @node: prefer to allocate data structures on this node * * If you use this function for less than VMAP_MAX_ALLOC pages, it could be * faster than vmap so it's good. But if you mix long-life and short-life * objects with vm_map_ram(), it could consume lots of address space through * fragmentation (especially on a 32bit machine). You could see failures in * the end. Please use this function for short-lived objects. * * Returns: a pointer to the address that has been mapped, or %NULL on failure */ void *vm_map_ram(struct page **pages, unsigned int count, int node) { unsigned long size = (unsigned long)count << PAGE_SHIFT; unsigned long addr; void *mem; if (likely(count <= VMAP_MAX_ALLOC)) { mem = vb_alloc(size, GFP_KERNEL); if (IS_ERR(mem)) return NULL; addr = (unsigned long)mem; } else { struct vmap_area *va; va = alloc_vmap_area(size, PAGE_SIZE, VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); if (IS_ERR(va)) return NULL; addr = va->va_start; mem = (void *)addr; } kasan_unpoison_vmalloc(mem, size); if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, pages, PAGE_SHIFT) < 0) { vm_unmap_ram(mem, count); return NULL; } return mem; } EXPORT_SYMBOL(vm_map_ram); static struct vm_struct *vmlist __initdata; static inline unsigned int vm_area_page_order(struct vm_struct *vm) { #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC return vm->page_order; #else return 0; #endif } static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) { #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC vm->page_order = order; #else BUG_ON(order != 0); #endif } /** * vm_area_add_early - add vmap area early during boot * @vm: vm_struct to add * * This function is used to add fixed kernel vm area to vmlist before * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags * should contain proper values and the other fields should be zero. * * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. */ void __init vm_area_add_early(struct vm_struct *vm) { struct vm_struct *tmp, **p; BUG_ON(vmap_initialized); for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { if (tmp->addr >= vm->addr) { BUG_ON(tmp->addr < vm->addr + vm->size); break; } else BUG_ON(tmp->addr + tmp->size > vm->addr); } vm->next = *p; *p = vm; } /** * vm_area_register_early - register vmap area early during boot * @vm: vm_struct to register * @align: requested alignment * * This function is used to register kernel vm area before * vmalloc_init() is called. @vm->size and @vm->flags should contain * proper values on entry and other fields should be zero. On return, * vm->addr contains the allocated address. * * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. */ void __init vm_area_register_early(struct vm_struct *vm, size_t align) { static size_t vm_init_off __initdata; unsigned long addr; addr = ALIGN(VMALLOC_START + vm_init_off, align); vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; vm->addr = (void *)addr; vm_area_add_early(vm); } static void vmap_init_free_space(void) { unsigned long vmap_start = 1; const unsigned long vmap_end = ULONG_MAX; struct vmap_area *busy, *free; /* * B F B B B F * -|-----|.....|-----|-----|-----|.....|- * | The KVA space | * |<--------------------------------->| */ list_for_each_entry(busy, &vmap_area_list, list) { if (busy->va_start - vmap_start > 0) { free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); if (!WARN_ON_ONCE(!free)) { free->va_start = vmap_start; free->va_end = busy->va_start; insert_vmap_area_augment(free, NULL, &free_vmap_area_root, &free_vmap_area_list); } } vmap_start = busy->va_end; } if (vmap_end - vmap_start > 0) { free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); if (!WARN_ON_ONCE(!free)) { free->va_start = vmap_start; free->va_end = vmap_end; insert_vmap_area_augment(free, NULL, &free_vmap_area_root, &free_vmap_area_list); } } } void __init vmalloc_init(void) { struct vmap_area *va; struct vm_struct *tmp; int i; /* * Create the cache for vmap_area objects. */ vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); for_each_possible_cpu(i) { struct vmap_block_queue *vbq; struct vfree_deferred *p; vbq = &per_cpu(vmap_block_queue, i); spin_lock_init(&vbq->lock); INIT_LIST_HEAD(&vbq->free); p = &per_cpu(vfree_deferred, i); init_llist_head(&p->list); INIT_WORK(&p->wq, free_work); } /* Import existing vmlist entries. */ for (tmp = vmlist; tmp; tmp = tmp->next) { va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); if (WARN_ON_ONCE(!va)) continue; va->va_start = (unsigned long)tmp->addr; va->va_end = va->va_start + tmp->size; va->vm = tmp; insert_vmap_area(va, &vmap_area_root, &vmap_area_list); } /* * Now we can initialize a free vmap space. */ vmap_init_free_space(); vmap_initialized = true; } static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, struct vmap_area *va, unsigned long flags, const void *caller) { vm->flags = flags; vm->addr = (void *)va->va_start; vm->size = va->va_end - va->va_start; vm->caller = caller; va->vm = vm; } static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, unsigned long flags, const void *caller) { spin_lock(&vmap_area_lock); setup_vmalloc_vm_locked(vm, va, flags, caller); spin_unlock(&vmap_area_lock); } static void clear_vm_uninitialized_flag(struct vm_struct *vm) { /* * Before removing VM_UNINITIALIZED, * we should make sure that vm has proper values. * Pair with smp_rmb() in show_numa_info(). */ smp_wmb(); vm->flags &= ~VM_UNINITIALIZED; } static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long align, unsigned long shift, unsigned long flags, unsigned long start, unsigned long end, int node, gfp_t gfp_mask, const void *caller) { struct vmap_area *va; struct vm_struct *area; unsigned long requested_size = size; BUG_ON(in_interrupt()); size = ALIGN(size, 1ul << shift); if (unlikely(!size)) return NULL; if (flags & VM_IOREMAP) align = 1ul << clamp_t(int, get_count_order_long(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!area)) return NULL; if (!(flags & VM_NO_GUARD)) size += PAGE_SIZE; va = alloc_vmap_area(size, align, start, end, node, gfp_mask); if (IS_ERR(va)) { kfree(area); return NULL; } kasan_unpoison_vmalloc((void *)va->va_start, requested_size); setup_vmalloc_vm(area, va, flags, caller); return area; } struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, const void *caller) { return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, NUMA_NO_NODE, GFP_KERNEL, caller); } /** * get_vm_area - reserve a contiguous kernel virtual area * @size: size of the area * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC * * Search an area of @size in the kernel virtual mapping area, * and reserved it for out purposes. Returns the area descriptor * on success or %NULL on failure. * * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) { return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, VMALLOC_START, VMALLOC_END, NUMA_NO_NODE, GFP_KERNEL, __builtin_return_address(0)); } struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, const void *caller) { return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, VMALLOC_START, VMALLOC_END, NUMA_NO_NODE, GFP_KERNEL, caller); } /** * find_vm_area - find a continuous kernel virtual area * @addr: base address * * Search for the kernel VM area starting at @addr, and return it. * It is up to the caller to do all required locking to keep the returned * pointer valid. * * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *find_vm_area(const void *addr) { struct vmap_area *va; va = find_vmap_area((unsigned long)addr); if (!va) return NULL; return va->vm; } /** * remove_vm_area - find and remove a continuous kernel virtual area * @addr: base address * * Search for the kernel VM area starting at @addr, and remove it. * This function returns the found VM area, but using it is NOT safe * on SMP machines, except for its size or flags. * * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *remove_vm_area(const void *addr) { struct vmap_area *va; might_sleep(); spin_lock(&vmap_area_lock); va = __find_vmap_area((unsigned long)addr); if (va && va->vm) { struct vm_struct *vm = va->vm; va->vm = NULL; spin_unlock(&vmap_area_lock); kasan_free_shadow(vm); free_unmap_vmap_area(va); return vm; } spin_unlock(&vmap_area_lock); return NULL; } static inline void set_area_direct_map(const struct vm_struct *area, int (*set_direct_map)(struct page *page)) { int i; /* HUGE_VMALLOC passes small pages to set_direct_map */ for (i = 0; i < area->nr_pages; i++) if (page_address(area->pages[i])) set_direct_map(area->pages[i]); } /* Handle removing and resetting vm mappings related to the vm_struct. */ static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) { unsigned long start = ULONG_MAX, end = 0; unsigned int page_order = vm_area_page_order(area); int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; int flush_dmap = 0; int i; remove_vm_area(area->addr); /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ if (!flush_reset) return; /* * If not deallocating pages, just do the flush of the VM area and * return. */ if (!deallocate_pages) { vm_unmap_aliases(); return; } /* * If execution gets here, flush the vm mapping and reset the direct * map. Find the start and end range of the direct mappings to make sure * the vm_unmap_aliases() flush includes the direct map. */ for (i = 0; i < area->nr_pages; i += 1U << page_order) { unsigned long addr = (unsigned long)page_address(area->pages[i]); if (addr) { unsigned long page_size; page_size = PAGE_SIZE << page_order; start = min(addr, start); end = max(addr + page_size, end); flush_dmap = 1; } } /* * Set direct map to something invalid so that it won't be cached if * there are any accesses after the TLB flush, then flush the TLB and * reset the direct map permissions to the default. */ set_area_direct_map(area, set_direct_map_invalid_noflush); _vm_unmap_aliases(start, end, flush_dmap); set_area_direct_map(area, set_direct_map_default_noflush); } static void __vunmap(const void *addr, int deallocate_pages) { struct vm_struct *area; if (!addr) return; if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", addr)) return; area = find_vm_area(addr); if (unlikely(!area)) { WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", addr); return; } debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); vm_remove_mappings(area, deallocate_pages); if (deallocate_pages) { unsigned int page_order = vm_area_page_order(area); int i; for (i = 0; i < area->nr_pages; i += 1U << page_order) { struct page *page = area->pages[i]; BUG_ON(!page); __free_pages(page, page_order); cond_resched(); } atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); kvfree(area->pages); } kfree(area); } static inline void __vfree_deferred(const void *addr) { /* * Use raw_cpu_ptr() because this can be called from preemptible * context. Preemption is absolutely fine here, because the llist_add() * implementation is lockless, so it works even if we are adding to * another cpu's list. schedule_work() should be fine with this too. */ struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); if (llist_add((struct llist_node *)addr, &p->list)) schedule_work(&p->wq); } /** * vfree_atomic - release memory allocated by vmalloc() * @addr: memory base address * * This one is just like vfree() but can be called in any atomic context * except NMIs. */ void vfree_atomic(const void *addr) { BUG_ON(in_nmi()); kmemleak_free(addr); if (!addr) return; __vfree_deferred(addr); } static void __vfree(const void *addr) { if (unlikely(in_interrupt())) __vfree_deferred(addr); else __vunmap(addr, 1); } /** * vfree - Release memory allocated by vmalloc() * @addr: Memory base address * * Free the virtually continuous memory area starting at @addr, as obtained * from one of the vmalloc() family of APIs. This will usually also free the * physical memory underlying the virtual allocation, but that memory is * reference counted, so it will not be freed until the last user goes away. * * If @addr is NULL, no operation is performed. * * Context: * May sleep if called *not* from interrupt context. * Must not be called in NMI context (strictly speaking, it could be * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling * conventions for vfree() arch-dependent would be a really bad idea). */ void vfree(const void *addr) { BUG_ON(in_nmi()); kmemleak_free(addr); might_sleep_if(!in_interrupt()); if (!addr) return; __vfree(addr); } EXPORT_SYMBOL(vfree); /** * vunmap - release virtual mapping obtained by vmap() * @addr: memory base address * * Free the virtually contiguous memory area starting at @addr, * which was created from the page array passed to vmap(). * * Must not be called in interrupt context. */ void vunmap(const void *addr) { BUG_ON(in_interrupt()); might_sleep(); if (addr) __vunmap(addr, 0); } EXPORT_SYMBOL(vunmap); /** * vmap - map an array of pages into virtually contiguous space * @pages: array of page pointers * @count: number of pages to map * @flags: vm_area->flags * @prot: page protection for the mapping * * Maps @count pages from @pages into contiguous kernel virtual space. * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself * (which must be kmalloc or vmalloc memory) and one reference per pages in it * are transferred from the caller to vmap(), and will be freed / dropped when * vfree() is called on the return value. * * Return: the address of the area or %NULL on failure */ void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) { struct vm_struct *area; unsigned long addr; unsigned long size; /* In bytes */ might_sleep(); if (count > totalram_pages()) return NULL; size = (unsigned long)count << PAGE_SHIFT; area = get_vm_area_caller(size, flags, __builtin_return_address(0)); if (!area) return NULL; addr = (unsigned long)area->addr; if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), pages, PAGE_SHIFT) < 0) { vunmap(area->addr); return NULL; } if (flags & VM_MAP_PUT_PAGES) { area->pages = pages; area->nr_pages = count; } return area->addr; } EXPORT_SYMBOL(vmap); #ifdef CONFIG_VMAP_PFN struct vmap_pfn_data { unsigned long *pfns; pgprot_t prot; unsigned int idx; }; static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) { struct vmap_pfn_data *data = private; if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) return -EINVAL; *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); return 0; } /** * vmap_pfn - map an array of PFNs into virtually contiguous space * @pfns: array of PFNs * @count: number of pages to map * @prot: page protection for the mapping * * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns * the start address of the mapping. */ void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) { struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; struct vm_struct *area; area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, __builtin_return_address(0)); if (!area) return NULL; if (apply_to_page_range(&init_mm, (unsigned long)area->addr, count * PAGE_SIZE, vmap_pfn_apply, &data)) { free_vm_area(area); return NULL; } flush_cache_vmap((unsigned long)area->addr, (unsigned long)area->addr + count * PAGE_SIZE); return area->addr; } EXPORT_SYMBOL_GPL(vmap_pfn); #endif /* CONFIG_VMAP_PFN */ static inline unsigned int vm_area_alloc_pages(gfp_t gfp, int nid, unsigned int order, unsigned int nr_pages, struct page **pages) { unsigned int nr_allocated = 0; struct page *page; int i; /* * For order-0 pages we make use of bulk allocator, if * the page array is partly or not at all populated due * to fails, fallback to a single page allocator that is * more permissive. */ if (!order && nid != NUMA_NO_NODE) { while (nr_allocated < nr_pages) { unsigned int nr, nr_pages_request; /* * A maximum allowed request is hard-coded and is 100 * pages per call. That is done in order to prevent a * long preemption off scenario in the bulk-allocator * so the range is [1:100]. */ nr_pages_request = min(100U, nr_pages - nr_allocated); nr = alloc_pages_bulk_array_node(gfp, nid, nr_pages_request, pages + nr_allocated); nr_allocated += nr; cond_resched(); /* * If zero or pages were obtained partly, * fallback to a single page allocator. */ if (nr != nr_pages_request) break; } } else if (order) /* * Compound pages required for remap_vmalloc_page if * high-order pages. */ gfp |= __GFP_COMP; /* High-order pages or fallback path if "bulk" fails. */ while (nr_allocated < nr_pages) { if (nid == NUMA_NO_NODE) page = alloc_pages(gfp, order); else page = alloc_pages_node(nid, gfp, order); if (unlikely(!page)) break; /* * Careful, we allocate and map page-order pages, but * tracking is done per PAGE_SIZE page so as to keep the * vm_struct APIs independent of the physical/mapped size. */ for (i = 0; i < (1U << order); i++) pages[nr_allocated + i] = page + i; cond_resched(); nr_allocated += 1U << order; } return nr_allocated; } static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot, unsigned int page_shift, int node) { const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; unsigned long addr = (unsigned long)area->addr; unsigned long size = get_vm_area_size(area); unsigned long array_size; unsigned int nr_small_pages = size >> PAGE_SHIFT; unsigned int page_order; array_size = (unsigned long)nr_small_pages * sizeof(struct page *); gfp_mask |= __GFP_NOWARN; if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) gfp_mask |= __GFP_HIGHMEM; /* Please note that the recursion is strictly bounded. */ if (array_size > PAGE_SIZE) { area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, area->caller); } else { area->pages = kmalloc_node(array_size, nested_gfp, node); } if (!area->pages) { warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, failed to allocated page array size %lu", nr_small_pages * PAGE_SIZE, array_size); free_vm_area(area); return NULL; } set_vm_area_page_order(area, page_shift - PAGE_SHIFT); page_order = vm_area_page_order(area); area->nr_pages = vm_area_alloc_pages(gfp_mask, node, page_order, nr_small_pages, area->pages); atomic_long_add(area->nr_pages, &nr_vmalloc_pages); /* * If not enough pages were obtained to accomplish an * allocation request, free them via __vfree() if any. */ if (area->nr_pages != nr_small_pages) { /* vm_area_alloc_pages() can also fail due to a fatal signal */ if (!fatal_signal_pending(current)) warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, page order %u, failed to allocate pages", area->nr_pages * PAGE_SIZE, page_order); goto fail; } if (vmap_pages_range(addr, addr + size, prot, area->pages, page_shift) < 0) { warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, failed to map pages", area->nr_pages * PAGE_SIZE); goto fail; } return area->addr; fail: __vfree(area->addr); return NULL; } /** * __vmalloc_node_range - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @start: vm area range start * @end: vm area range end * @gfp_mask: flags for the page level allocator * @prot: protection mask for the allocated pages * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) * @node: node to use for allocation or NUMA_NO_NODE * @caller: caller's return address * * Allocate enough pages to cover @size from the page level * allocator with @gfp_mask flags. Map them into contiguous * kernel virtual space, using a pagetable protection of @prot. * * Return: the address of the area or %NULL on failure */ void *__vmalloc_node_range(unsigned long size, unsigned long align, unsigned long start, unsigned long end, gfp_t gfp_mask, pgprot_t prot, unsigned long vm_flags, int node, const void *caller) { struct vm_struct *area; void *addr; unsigned long real_size = size; unsigned long real_align = align; unsigned int shift = PAGE_SHIFT; if (WARN_ON_ONCE(!size)) return NULL; if ((size >> PAGE_SHIFT) > totalram_pages()) { warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, exceeds total pages", real_size); return NULL; } if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) { unsigned long size_per_node; /* * Try huge pages. Only try for PAGE_KERNEL allocations, * others like modules don't yet expect huge pages in * their allocations due to apply_to_page_range not * supporting them. */ size_per_node = size; if (node == NUMA_NO_NODE) size_per_node /= num_online_nodes(); if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) shift = PMD_SHIFT; else shift = arch_vmap_pte_supported_shift(size_per_node); align = max(real_align, 1UL << shift); size = ALIGN(real_size, 1UL << shift); } again: area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | VM_UNINITIALIZED | vm_flags, start, end, node, gfp_mask, caller); if (!area) { warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, vm_struct allocation failed", real_size); goto fail; } addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node); if (!addr) goto fail; /* * In this function, newly allocated vm_struct has VM_UNINITIALIZED * flag. It means that vm_struct is not fully initialized. * Now, it is fully initialized, so remove this flag here. */ clear_vm_uninitialized_flag(area); size = PAGE_ALIGN(size); if (!(vm_flags & VM_DEFER_KMEMLEAK)) kmemleak_vmalloc(area, size, gfp_mask); return addr; fail: if (shift > PAGE_SHIFT) { shift = PAGE_SHIFT; align = real_align; size = real_size; goto again; } return NULL; } /** * __vmalloc_node - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @gfp_mask: flags for the page level allocator * @node: node to use for allocation or NUMA_NO_NODE * @caller: caller's return address * * Allocate enough pages to cover @size from the page level allocator with * @gfp_mask flags. Map them into contiguous kernel virtual space. * * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL * and __GFP_NOFAIL are not supported * * Any use of gfp flags outside of GFP_KERNEL should be consulted * with mm people. * * Return: pointer to the allocated memory or %NULL on error */ void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, int node, const void *caller) { return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, gfp_mask, PAGE_KERNEL, 0, node, caller); } /* * This is only for performance analysis of vmalloc and stress purpose. * It is required by vmalloc test module, therefore do not use it other * than that. */ #ifdef CONFIG_TEST_VMALLOC_MODULE EXPORT_SYMBOL_GPL(__vmalloc_node); #endif void *__vmalloc(unsigned long size, gfp_t gfp_mask) { return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(__vmalloc); /** * vmalloc - allocate virtually contiguous memory * @size: allocation size * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc(unsigned long size) { return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc); /** * vmalloc_no_huge - allocate virtually contiguous memory using small pages * @size: allocation size * * Allocate enough non-huge pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_no_huge(unsigned long size) { return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_no_huge); /** * vzalloc - allocate virtually contiguous memory with zero fill * @size: allocation size * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * The memory allocated is set to zero. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. * * Return: pointer to the allocated memory or %NULL on error */ void *vzalloc(unsigned long size) { return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vzalloc); /** * vmalloc_user - allocate zeroed virtually contiguous memory for userspace * @size: allocation size * * The resulting memory area is zeroed so it can be mapped to userspace * without leaking data. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_user(unsigned long size) { return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, VM_USERMAP, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_user); /** * vmalloc_node - allocate memory on a specific node * @size: allocation size * @node: numa node * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_node(unsigned long size, int node) { return __vmalloc_node(size, 1, GFP_KERNEL, node, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_node); /** * vzalloc_node - allocate memory on a specific node with zero fill * @size: allocation size * @node: numa node * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * The memory allocated is set to zero. * * Return: pointer to the allocated memory or %NULL on error */ void *vzalloc_node(unsigned long size, int node) { return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, __builtin_return_address(0)); } EXPORT_SYMBOL(vzalloc_node); #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) #else /* * 64b systems should always have either DMA or DMA32 zones. For others * GFP_DMA32 should do the right thing and use the normal zone. */ #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) #endif /** * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) * @size: allocation size * * Allocate enough 32bit PA addressable pages to cover @size from the * page level allocator and map them into contiguous kernel virtual space. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_32(unsigned long size) { return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_32); /** * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory * @size: allocation size * * The resulting memory area is 32bit addressable and zeroed so it can be * mapped to userspace without leaking data. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_32_user(unsigned long size) { return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, VM_USERMAP, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_32_user); /* * small helper routine , copy contents to buf from addr. * If the page is not present, fill zero. */ static int aligned_vread(char *buf, char *addr, unsigned long count) { struct page *p; int copied = 0; while (count) { unsigned long offset, length; offset = offset_in_page(addr); length = PAGE_SIZE - offset; if (length > count) length = count; p = vmalloc_to_page(addr); /* * To do safe access to this _mapped_ area, we need * lock. But adding lock here means that we need to add * overhead of vmalloc()/vfree() calls for this _debug_ * interface, rarely used. Instead of that, we'll use * kmap() and get small overhead in this access function. */ if (p) { /* We can expect USER0 is not used -- see vread() */ void *map = kmap_atomic(p); memcpy(buf, map + offset, length); kunmap_atomic(map); } else memset(buf, 0, length); addr += length; buf += length; copied += length; count -= length; } return copied; } /** * vread() - read vmalloc area in a safe way. * @buf: buffer for reading data * @addr: vm address. * @count: number of bytes to be read. * * This function checks that addr is a valid vmalloc'ed area, and * copy data from that area to a given buffer. If the given memory range * of [addr...addr+count) includes some valid address, data is copied to * proper area of @buf. If there are memory holes, they'll be zero-filled. * IOREMAP area is treated as memory hole and no copy is done. * * If [addr...addr+count) doesn't includes any intersects with alive * vm_struct area, returns 0. @buf should be kernel's buffer. * * Note: In usual ops, vread() is never necessary because the caller * should know vmalloc() area is valid and can use memcpy(). * This is for routines which have to access vmalloc area without * any information, as /proc/kcore. * * Return: number of bytes for which addr and buf should be increased * (same number as @count) or %0 if [addr...addr+count) doesn't * include any intersection with valid vmalloc area */ long vread(char *buf, char *addr, unsigned long count) { struct vmap_area *va; struct vm_struct *vm; char *vaddr, *buf_start = buf; unsigned long buflen = count; unsigned long n; /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; spin_lock(&vmap_area_lock); va = find_vmap_area_exceed_addr((unsigned long)addr); if (!va) goto finished; /* no intersects with alive vmap_area */ if ((unsigned long)addr + count <= va->va_start) goto finished; list_for_each_entry_from(va, &vmap_area_list, list) { if (!count) break; if (!va->vm) continue; vm = va->vm; vaddr = (char *) vm->addr; if (addr >= vaddr + get_vm_area_size(vm)) continue; while (addr < vaddr) { if (count == 0) goto finished; *buf = '\0'; buf++; addr++; count--; } n = vaddr + get_vm_area_size(vm) - addr; if (n > count) n = count; if (!(vm->flags & VM_IOREMAP)) aligned_vread(buf, addr, n); else /* IOREMAP area is treated as memory hole */ memset(buf, 0, n); buf += n; addr += n; count -= n; } finished: spin_unlock(&vmap_area_lock); if (buf == buf_start) return 0; /* zero-fill memory holes */ if (buf != buf_start + buflen) memset(buf, 0, buflen - (buf - buf_start)); return buflen; } /** * remap_vmalloc_range_partial - map vmalloc pages to userspace * @vma: vma to cover * @uaddr: target user address to start at * @kaddr: virtual address of vmalloc kernel memory * @pgoff: offset from @kaddr to start at * @size: size of map area * * Returns: 0 for success, -Exxx on failure * * This function checks that @kaddr is a valid vmalloc'ed area, * and that it is big enough to cover the range starting at * @uaddr in @vma. Will return failure if that criteria isn't * met. * * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, void *kaddr, unsigned long pgoff, unsigned long size) { struct vm_struct *area; unsigned long off; unsigned long end_index; if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) return -EINVAL; size = PAGE_ALIGN(size); if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) return -EINVAL; area = find_vm_area(kaddr); if (!area) return -EINVAL; if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) return -EINVAL; if (check_add_overflow(size, off, &end_index) || end_index > get_vm_area_size(area)) return -EINVAL; kaddr += off; do { struct page *page = vmalloc_to_page(kaddr); int ret; ret = vm_insert_page(vma, uaddr, page); if (ret) return ret; uaddr += PAGE_SIZE; kaddr += PAGE_SIZE; size -= PAGE_SIZE; } while (size > 0); vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; return 0; } /** * remap_vmalloc_range - map vmalloc pages to userspace * @vma: vma to cover (map full range of vma) * @addr: vmalloc memory * @pgoff: number of pages into addr before first page to map * * Returns: 0 for success, -Exxx on failure * * This function checks that addr is a valid vmalloc'ed area, and * that it is big enough to cover the vma. Will return failure if * that criteria isn't met. * * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff) { return remap_vmalloc_range_partial(vma, vma->vm_start, addr, pgoff, vma->vm_end - vma->vm_start); } EXPORT_SYMBOL(remap_vmalloc_range); void free_vm_area(struct vm_struct *area) { struct vm_struct *ret; ret = remove_vm_area(area->addr); BUG_ON(ret != area); kfree(area); } EXPORT_SYMBOL_GPL(free_vm_area); #ifdef CONFIG_SMP static struct vmap_area *node_to_va(struct rb_node *n) { return rb_entry_safe(n, struct vmap_area, rb_node); } /** * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to * @addr: target address * * Returns: vmap_area if it is found. If there is no such area * the first highest(reverse order) vmap_area is returned * i.e. va->va_start < addr && va->va_end < addr or NULL * if there are no any areas before @addr. */ static struct vmap_area * pvm_find_va_enclose_addr(unsigned long addr) { struct vmap_area *va, *tmp; struct rb_node *n; n = free_vmap_area_root.rb_node; va = NULL; while (n) { tmp = rb_entry(n, struct vmap_area, rb_node); if (tmp->va_start <= addr) { va = tmp; if (tmp->va_end >= addr) break; n = n->rb_right; } else { n = n->rb_left; } } return va; } /** * pvm_determine_end_from_reverse - find the highest aligned address * of free block below VMALLOC_END * @va: * in - the VA we start the search(reverse order); * out - the VA with the highest aligned end address. * @align: alignment for required highest address * * Returns: determined end address within vmap_area */ static unsigned long pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) { unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); unsigned long addr; if (likely(*va)) { list_for_each_entry_from_reverse((*va), &free_vmap_area_list, list) { addr = min((*va)->va_end & ~(align - 1), vmalloc_end); if ((*va)->va_start < addr) return addr; } } return 0; } /** * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator * @offsets: array containing offset of each area * @sizes: array containing size of each area * @nr_vms: the number of areas to allocate * @align: alignment, all entries in @offsets and @sizes must be aligned to this * * Returns: kmalloc'd vm_struct pointer array pointing to allocated * vm_structs on success, %NULL on failure * * Percpu allocator wants to use congruent vm areas so that it can * maintain the offsets among percpu areas. This function allocates * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to * be scattered pretty far, distance between two areas easily going up * to gigabytes. To avoid interacting with regular vmallocs, these * areas are allocated from top. * * Despite its complicated look, this allocator is rather simple. It * does everything top-down and scans free blocks from the end looking * for matching base. While scanning, if any of the areas do not fit the * base address is pulled down to fit the area. Scanning is repeated till * all the areas fit and then all necessary data structures are inserted * and the result is returned. */ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align) { const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); struct vmap_area **vas, *va; struct vm_struct **vms; int area, area2, last_area, term_area; unsigned long base, start, size, end, last_end, orig_start, orig_end; bool purged = false; enum fit_type type; /* verify parameters and allocate data structures */ BUG_ON(offset_in_page(align) || !is_power_of_2(align)); for (last_area = 0, area = 0; area < nr_vms; area++) { start = offsets[area]; end = start + sizes[area]; /* is everything aligned properly? */ BUG_ON(!IS_ALIGNED(offsets[area], align)); BUG_ON(!IS_ALIGNED(sizes[area], align)); /* detect the area with the highest address */ if (start > offsets[last_area]) last_area = area; for (area2 = area + 1; area2 < nr_vms; area2++) { unsigned long start2 = offsets[area2]; unsigned long end2 = start2 + sizes[area2]; BUG_ON(start2 < end && start < end2); } } last_end = offsets[last_area] + sizes[last_area]; if (vmalloc_end - vmalloc_start < last_end) { WARN_ON(true); return NULL; } vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); if (!vas || !vms) goto err_free2; for (area = 0; area < nr_vms; area++) { vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); if (!vas[area] || !vms[area]) goto err_free; } retry: spin_lock(&free_vmap_area_lock); /* start scanning - we scan from the top, begin with the last area */ area = term_area = last_area; start = offsets[area]; end = start + sizes[area]; va = pvm_find_va_enclose_addr(vmalloc_end); base = pvm_determine_end_from_reverse(&va, align) - end; while (true) { /* * base might have underflowed, add last_end before * comparing. */ if (base + last_end < vmalloc_start + last_end) goto overflow; /* * Fitting base has not been found. */ if (va == NULL) goto overflow; /* * If required width exceeds current VA block, move * base downwards and then recheck. */ if (base + end > va->va_end) { base = pvm_determine_end_from_reverse(&va, align) - end; term_area = area; continue; } /* * If this VA does not fit, move base downwards and recheck. */ if (base + start < va->va_start) { va = node_to_va(rb_prev(&va->rb_node)); base = pvm_determine_end_from_reverse(&va, align) - end; term_area = area; continue; } /* * This area fits, move on to the previous one. If * the previous one is the terminal one, we're done. */ area = (area + nr_vms - 1) % nr_vms; if (area == term_area) break; start = offsets[area]; end = start + sizes[area]; va = pvm_find_va_enclose_addr(base + end); } /* we've found a fitting base, insert all va's */ for (area = 0; area < nr_vms; area++) { int ret; start = base + offsets[area]; size = sizes[area]; va = pvm_find_va_enclose_addr(start); if (WARN_ON_ONCE(va == NULL)) /* It is a BUG(), but trigger recovery instead. */ goto recovery; type = classify_va_fit_type(va, start, size); if (WARN_ON_ONCE(type == NOTHING_FIT)) /* It is a BUG(), but trigger recovery instead. */ goto recovery; ret = adjust_va_to_fit_type(va, start, size, type); if (unlikely(ret)) goto recovery; /* Allocated area. */ va = vas[area]; va->va_start = start; va->va_end = start + size; } spin_unlock(&free_vmap_area_lock); /* populate the kasan shadow space */ for (area = 0; area < nr_vms; area++) { if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) goto err_free_shadow; kasan_unpoison_vmalloc((void *)vas[area]->va_start, sizes[area]); } /* insert all vm's */ spin_lock(&vmap_area_lock); for (area = 0; area < nr_vms; area++) { insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, pcpu_get_vm_areas); } spin_unlock(&vmap_area_lock); kfree(vas); return vms; recovery: /* * Remove previously allocated areas. There is no * need in removing these areas from the busy tree, * because they are inserted only on the final step * and when pcpu_get_vm_areas() is success. */ while (area--) { orig_start = vas[area]->va_start; orig_end = vas[area]->va_end; va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, &free_vmap_area_list); if (va) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); vas[area] = NULL; } overflow: spin_unlock(&free_vmap_area_lock); if (!purged) { purge_vmap_area_lazy(); purged = true; /* Before "retry", check if we recover. */ for (area = 0; area < nr_vms; area++) { if (vas[area]) continue; vas[area] = kmem_cache_zalloc( vmap_area_cachep, GFP_KERNEL); if (!vas[area]) goto err_free; } goto retry; } err_free: for (area = 0; area < nr_vms; area++) { if (vas[area]) kmem_cache_free(vmap_area_cachep, vas[area]); kfree(vms[area]); } err_free2: kfree(vas); kfree(vms); return NULL; err_free_shadow: spin_lock(&free_vmap_area_lock); /* * We release all the vmalloc shadows, even the ones for regions that * hadn't been successfully added. This relies on kasan_release_vmalloc * being able to tolerate this case. */ for (area = 0; area < nr_vms; area++) { orig_start = vas[area]->va_start; orig_end = vas[area]->va_end; va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, &free_vmap_area_list); if (va) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); vas[area] = NULL; kfree(vms[area]); } spin_unlock(&free_vmap_area_lock); kfree(vas); kfree(vms); return NULL; } /** * pcpu_free_vm_areas - free vmalloc areas for percpu allocator * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() * @nr_vms: the number of allocated areas * * Free vm_structs and the array allocated by pcpu_get_vm_areas(). */ void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) { int i; for (i = 0; i < nr_vms; i++) free_vm_area(vms[i]); kfree(vms); } #endif /* CONFIG_SMP */ #ifdef CONFIG_PRINTK bool vmalloc_dump_obj(void *object) { void *objp = (void *)PAGE_ALIGN((unsigned long)object); const void *caller; struct vm_struct *vm; struct vmap_area *va; unsigned long addr; unsigned int nr_pages; if (!spin_trylock(&vmap_area_lock)) return false; va = __find_vmap_area((unsigned long)objp); if (!va) { spin_unlock(&vmap_area_lock); return false; } vm = va->vm; if (!vm) { spin_unlock(&vmap_area_lock); return false; } addr = (unsigned long)vm->addr; caller = vm->caller; nr_pages = vm->nr_pages; spin_unlock(&vmap_area_lock); pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", nr_pages, addr, caller); return true; } #endif #ifdef CONFIG_PROC_FS static void *s_start(struct seq_file *m, loff_t *pos) __acquires(&vmap_purge_lock) __acquires(&vmap_area_lock) { mutex_lock(&vmap_purge_lock); spin_lock(&vmap_area_lock); return seq_list_start(&vmap_area_list, *pos); } static void *s_next(struct seq_file *m, void *p, loff_t *pos) { return seq_list_next(p, &vmap_area_list, pos); } static void s_stop(struct seq_file *m, void *p) __releases(&vmap_area_lock) __releases(&vmap_purge_lock) { spin_unlock(&vmap_area_lock); mutex_unlock(&vmap_purge_lock); } static void show_numa_info(struct seq_file *m, struct vm_struct *v) { if (IS_ENABLED(CONFIG_NUMA)) { unsigned int nr, *counters = m->private; if (!counters) return; if (v->flags & VM_UNINITIALIZED) return; /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ smp_rmb(); memset(counters, 0, nr_node_ids * sizeof(unsigned int)); for (nr = 0; nr < v->nr_pages; nr++) counters[page_to_nid(v->pages[nr])]++; for_each_node_state(nr, N_HIGH_MEMORY) if (counters[nr]) seq_printf(m, " N%u=%u", nr, counters[nr]); } } static void show_purge_info(struct seq_file *m) { struct vmap_area *va; spin_lock(&purge_vmap_area_lock); list_for_each_entry(va, &purge_vmap_area_list, list) { seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", (void *)va->va_start, (void *)va->va_end, va->va_end - va->va_start); } spin_unlock(&purge_vmap_area_lock); } static int s_show(struct seq_file *m, void *p) { struct vmap_area *va; struct vm_struct *v; va = list_entry(p, struct vmap_area, list); /* * s_show can encounter race with remove_vm_area, !vm on behalf * of vmap area is being tear down or vm_map_ram allocation. */ if (!va->vm) { seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", (void *)va->va_start, (void *)va->va_end, va->va_end - va->va_start); return 0; } v = va->vm; seq_printf(m, "0x%pK-0x%pK %7ld", v->addr, v->addr + v->size, v->size); if (v->caller) seq_printf(m, " %pS", v->caller); if (v->nr_pages) seq_printf(m, " pages=%d", v->nr_pages); if (v->phys_addr) seq_printf(m, " phys=%pa", &v->phys_addr); if (v->flags & VM_IOREMAP) seq_puts(m, " ioremap"); if (v->flags & VM_ALLOC) seq_puts(m, " vmalloc"); if (v->flags & VM_MAP) seq_puts(m, " vmap"); if (v->flags & VM_USERMAP) seq_puts(m, " user"); if (v->flags & VM_DMA_COHERENT) seq_puts(m, " dma-coherent"); if (is_vmalloc_addr(v->pages)) seq_puts(m, " vpages"); show_numa_info(m, v); seq_putc(m, '\n'); /* * As a final step, dump "unpurged" areas. */ if (list_is_last(&va->list, &vmap_area_list)) show_purge_info(m); return 0; } static const struct seq_operations vmalloc_op = { .start = s_start, .next = s_next, .stop = s_stop, .show = s_show, }; static int __init proc_vmalloc_init(void) { if (IS_ENABLED(CONFIG_PROC_STRIPPED)) return 0; if (IS_ENABLED(CONFIG_NUMA)) proc_create_seq_private("vmallocinfo", 0400, NULL, &vmalloc_op, nr_node_ids * sizeof(unsigned int), NULL); else proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); return 0; } module_init(proc_vmalloc_init); #endif