/* A Bison parser, made by GNU Bison 3.0.4. */ /* Bison implementation for Yacc-like parsers in C Copyright (C) 1984, 1989-1990, 2000-2015 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* As a special exception, you may create a larger work that contains part or all of the Bison parser skeleton and distribute that work under terms of your choice, so long as that work isn't itself a parser generator using the skeleton or a modified version thereof as a parser skeleton. Alternatively, if you modify or redistribute the parser skeleton itself, you may (at your option) remove this special exception, which will cause the skeleton and the resulting Bison output files to be licensed under the GNU General Public License without this special exception. This special exception was added by the Free Software Foundation in version 2.2 of Bison. */ /* C LALR(1) parser skeleton written by Richard Stallman, by simplifying the original so-called "semantic" parser. */ /* All symbols defined below should begin with yy or YY, to avoid infringing on user name space. This should be done even for local variables, as they might otherwise be expanded by user macros. There are some unavoidable exceptions within include files to define necessary library symbols; they are noted "INFRINGES ON USER NAME SPACE" below. */ /* Identify Bison output. */ #define YYBISON 1 /* Bison version. */ #define YYBISON_VERSION "3.0.4" /* Skeleton name. */ #define YYSKELETON_NAME "yacc.c" /* Pure parsers. */ #define YYPURE 1 /* Push parsers. */ #define YYPUSH 0 /* Pull parsers. */ #define YYPULL 1 /* Copy the first part of user declarations. */ #line 1 "parse-datetime.y" /* yacc.c:339 */ /* Parse a string into an internal timestamp. Copyright (C) 1999-2000, 2002-2018 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Originally written by Steven M. Bellovin while at the University of North Carolina at Chapel Hill. Later tweaked by a couple of people on Usenet. Completely overhauled by Rich $alz and Jim Berets in August, 1990. Modified by Assaf Gordon in 2016 to add debug output. Modified by Paul Eggert in 1999 to do the right thing about local DST. Also modified by Paul Eggert in 2004 to support nanosecond-resolution timestamps, in 2004 to support TZ strings in dates, and in 2017 to check for integer overflow and to support longer-than-'long' 'time_t' and 'tv_nsec'. */ #include #include "parse-datetime.h" #include "intprops.h" #include "timespec.h" #include "verify.h" #include "strftime.h" /* There's no need to extend the stack, so there's no need to involve alloca. */ #define YYSTACK_USE_ALLOCA 0 /* Tell Bison how much stack space is needed. 20 should be plenty for this grammar, which is not right recursive. Beware setting it too high, since that might cause problems on machines whose implementations have lame stack-overflow checking. */ #define YYMAXDEPTH 20 #define YYINITDEPTH YYMAXDEPTH /* Since the code of parse-datetime.y is not included in the Emacs executable itself, there is no need to #define static in this file. Even if the code were included in the Emacs executable, it probably wouldn't do any harm to #undef it here; this will only cause problems if we try to write to a static variable, which I don't think this code needs to do. */ #ifdef emacs # undef static #endif #include #include #include #include #include #include #include #include "gettext.h" #define _(str) gettext (str) /* Bison's skeleton tests _STDLIB_H, while some stdlib.h headers use _STDLIB_H_ as witness. Map the latter to the one bison uses. */ /* FIXME: this is temporary. Remove when we have a mechanism to ensure that the version we're using is fixed, too. */ #ifdef _STDLIB_H_ # undef _STDLIB_H # define _STDLIB_H 1 #endif /* The __attribute__ feature is available in gcc versions 2.5 and later. The __-protected variants of the attributes 'format' and 'printf' are accepted by gcc versions 2.6.4 (effectively 2.7) and later. Enable _GL_ATTRIBUTE_FORMAT only if these are supported too, because gnulib and libintl do '#define printf __printf__' when they override the 'printf' function. */ #if 2 < __GNUC__ + (7 <= __GNUC_MINOR__) # define _GL_ATTRIBUTE_FORMAT(spec) __attribute__ ((__format__ spec)) #else # define _GL_ATTRIBUTE_FORMAT(spec) /* empty */ #endif /* Shift A right by B bits portably, by dividing A by 2**B and truncating towards minus infinity. A and B should be free of side effects, and B should be in the range 0 <= B <= INT_BITS - 2, where INT_BITS is the number of useful bits in an int. GNU code can assume that INT_BITS is at least 32. ISO C99 says that A >> B is implementation-defined if A < 0. Some implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift right in the usual way when A < 0, so SHR falls back on division if ordinary A >> B doesn't seem to be the usual signed shift. */ #define SHR(a, b) \ (-1 >> 1 == -1 \ ? (a) >> (b) \ : (a) / (1 << (b)) - ((a) % (1 << (b)) < 0)) #define HOUR(x) (60 * 60 * (x)) #define STREQ(a, b) (strcmp (a, b) == 0) /* Verify that time_t is an integer as POSIX requires, and that every time_t value fits in intmax_t. Please file a bug report if these assumptions are false on your platform. */ verify (TYPE_IS_INTEGER (time_t)); verify (!TYPE_SIGNED (time_t) || INTMAX_MIN <= TYPE_MINIMUM (time_t)); verify (TYPE_MAXIMUM (time_t) <= INTMAX_MAX); /* True if N is out of range for time_t. */ static bool time_overflow (intmax_t n) { return ! ((TYPE_SIGNED (time_t) ? TYPE_MINIMUM (time_t) <= n : 0 <= n) && n <= TYPE_MAXIMUM (time_t)); } /* Convert a possibly-signed character to an unsigned character. This is a bit safer than casting to unsigned char, since it catches some type errors that the cast doesn't. */ static unsigned char to_uchar (char ch) { return ch; } static void _GL_ATTRIBUTE_FORMAT ((__printf__, 1, 2)) dbg_printf (char const *msg, ...) { va_list args; /* TODO: use gnulib's 'program_name' instead? */ fputs ("date: ", stderr); va_start (args, msg); vfprintf (stderr, msg, args); va_end (args); } /* An integer value, and the number of digits in its textual representation. */ typedef struct { bool negative; intmax_t value; ptrdiff_t digits; } textint; /* An entry in the lexical lookup table. */ typedef struct { char const *name; int type; int value; } table; /* Meridian: am, pm, or 24-hour style. */ enum { MERam, MERpm, MER24 }; /* A reasonable upper bound for the buffer used in debug output. */ enum { DBGBUFSIZE = 100 }; enum { BILLION = 1000000000, LOG10_BILLION = 9 }; /* Relative times. */ typedef struct { /* Relative year, month, day, hour, minutes, seconds, and nanoseconds. */ intmax_t year; intmax_t month; intmax_t day; intmax_t hour; intmax_t minutes; intmax_t seconds; int ns; } relative_time; #if HAVE_COMPOUND_LITERALS # define RELATIVE_TIME_0 ((relative_time) { 0, 0, 0, 0, 0, 0, 0 }) #else static relative_time const RELATIVE_TIME_0; #endif /* Information passed to and from the parser. */ typedef struct { /* The input string remaining to be parsed. */ const char *input; /* N, if this is the Nth Tuesday. */ intmax_t day_ordinal; /* Day of week; Sunday is 0. */ int day_number; /* tm_isdst flag for the local zone. */ int local_isdst; /* Time zone, in seconds east of UT. */ int time_zone; /* Style used for time. */ int meridian; /* Gregorian year, month, day, hour, minutes, seconds, and nanoseconds. */ textint year; intmax_t month; intmax_t day; intmax_t hour; intmax_t minutes; struct timespec seconds; /* includes nanoseconds */ /* Relative year, month, day, hour, minutes, seconds, and nanoseconds. */ relative_time rel; /* Presence or counts of nonterminals of various flavors parsed so far. */ bool timespec_seen; bool rels_seen; ptrdiff_t dates_seen; ptrdiff_t days_seen; ptrdiff_t local_zones_seen; ptrdiff_t dsts_seen; ptrdiff_t times_seen; ptrdiff_t zones_seen; bool year_seen; /* Print debugging output to stderr. */ bool parse_datetime_debug; /* Which of the 'seen' parts have been printed when debugging. */ bool debug_dates_seen; bool debug_days_seen; bool debug_local_zones_seen; bool debug_times_seen; bool debug_zones_seen; bool debug_year_seen; /* The user specified explicit ordinal day value. */ bool debug_ordinal_day_seen; /* Table of local time zone abbreviations, terminated by a null entry. */ table local_time_zone_table[3]; } parser_control; union YYSTYPE; static int yylex (union YYSTYPE *, parser_control *); static int yyerror (parser_control const *, char const *); static bool time_zone_hhmm (parser_control *, textint, intmax_t); /* Extract into *PC any date and time info from a string of digits of the form e.g., YYYYMMDD, YYMMDD, HHMM, HH (and sometimes YYY, YYYY, ...). */ static void digits_to_date_time (parser_control *pc, textint text_int) { if (pc->dates_seen && ! pc->year.digits && ! pc->rels_seen && (pc->times_seen || 2 < text_int.digits)) { pc->year_seen = true; pc->year = text_int; } else { if (4 < text_int.digits) { pc->dates_seen++; pc->day = text_int.value % 100; pc->month = (text_int.value / 100) % 100; pc->year.value = text_int.value / 10000; pc->year.digits = text_int.digits - 4; } else { pc->times_seen++; if (text_int.digits <= 2) { pc->hour = text_int.value; pc->minutes = 0; } else { pc->hour = text_int.value / 100; pc->minutes = text_int.value % 100; } pc->seconds.tv_sec = 0; pc->seconds.tv_nsec = 0; pc->meridian = MER24; } } } /* Increment PC->rel by FACTOR * REL (FACTOR is 1 or -1). Return true if successful, false if an overflow occurred. */ static bool apply_relative_time (parser_control *pc, relative_time rel, int factor) { if (factor < 0 ? (INT_SUBTRACT_WRAPV (pc->rel.ns, rel.ns, &pc->rel.ns) | INT_SUBTRACT_WRAPV (pc->rel.seconds, rel.seconds, &pc->rel.seconds) | INT_SUBTRACT_WRAPV (pc->rel.minutes, rel.minutes, &pc->rel.minutes) | INT_SUBTRACT_WRAPV (pc->rel.hour, rel.hour, &pc->rel.hour) | INT_SUBTRACT_WRAPV (pc->rel.day, rel.day, &pc->rel.day) | INT_SUBTRACT_WRAPV (pc->rel.month, rel.month, &pc->rel.month) | INT_SUBTRACT_WRAPV (pc->rel.year, rel.year, &pc->rel.year)) : (INT_ADD_WRAPV (pc->rel.ns, rel.ns, &pc->rel.ns) | INT_ADD_WRAPV (pc->rel.seconds, rel.seconds, &pc->rel.seconds) | INT_ADD_WRAPV (pc->rel.minutes, rel.minutes, &pc->rel.minutes) | INT_ADD_WRAPV (pc->rel.hour, rel.hour, &pc->rel.hour) | INT_ADD_WRAPV (pc->rel.day, rel.day, &pc->rel.day) | INT_ADD_WRAPV (pc->rel.month, rel.month, &pc->rel.month) | INT_ADD_WRAPV (pc->rel.year, rel.year, &pc->rel.year))) return false; pc->rels_seen = true; return true; } /* Set PC-> hour, minutes, seconds and nanoseconds members from arguments. */ static void set_hhmmss (parser_control *pc, intmax_t hour, intmax_t minutes, time_t sec, int nsec) { pc->hour = hour; pc->minutes = minutes; pc->seconds.tv_sec = sec; pc->seconds.tv_nsec = nsec; } /* Return a textual representation of the day ordinal/number values in the parser_control struct (e.g., "last wed", "this tues", "thu"). */ static const char * str_days (parser_control *pc, char *buffer, int n) { /* TODO: use relative_time_table for reverse lookup. */ static char const ordinal_values[][11] = { "last", "this", "next/first", "(SECOND)", /* SECOND is commented out in relative_time_table. */ "third", "fourth", "fifth", "sixth", "seventh", "eight", "ninth", "tenth", "eleventh", "twelfth" }; static char const days_values[][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" }; int len; /* Don't add an ordinal prefix if the user didn't specify it (e.g., "this wed" vs "wed"). */ if (pc->debug_ordinal_day_seen) { /* Use word description if possible (e.g., -1 = last, 3 = third). */ len = (-1 <= pc->day_ordinal && pc->day_ordinal <= 12 ? snprintf (buffer, n, "%s", ordinal_values[pc->day_ordinal + 1]) : snprintf (buffer, n, "%"PRIdMAX, pc->day_ordinal)); } else { buffer[0] = '\0'; len = 0; } /* Add the day name */ if (0 <= pc->day_number && pc->day_number <= 6 && 0 <= len && len < n) snprintf (buffer + len, n - len, &" %s"[len == 0], days_values[pc->day_number]); else { /* invalid day_number value - should never happen */ } return buffer; } /* Convert a time zone to its string representation. */ enum { TIME_ZONE_BUFSIZE = INT_STRLEN_BOUND (intmax_t) + sizeof ":MM:SS" } ; static char const * time_zone_str (int time_zone, char time_zone_buf[TIME_ZONE_BUFSIZE]) { char *p = time_zone_buf; char sign = time_zone < 0 ? '-' : '+'; int hour = abs (time_zone / (60 * 60)); p += sprintf (time_zone_buf, "%c%02d", sign, hour); int offset_from_hour = abs (time_zone % (60 * 60)); if (offset_from_hour != 0) { int mm = offset_from_hour / 60; int ss = offset_from_hour % 60; *p++ = ':'; *p++ = '0' + mm / 10; *p++ = '0' + mm % 10; if (ss) { *p++ = ':'; *p++ = '0' + ss / 10; *p++ = '0' + ss % 10; } *p = '\0'; } return time_zone_buf; } /* debugging: print the current time in the parser_control structure. The parser will increment "*_seen" members for those which were parsed. This function will print only newly seen parts. */ static void debug_print_current_time (char const *item, parser_control *pc) { bool space = false; if (!pc->parse_datetime_debug) return; /* no newline, more items printed below */ dbg_printf (_("parsed %s part: "), item); if (pc->dates_seen && !pc->debug_dates_seen) { /*TODO: use pc->year.negative? */ fprintf (stderr, "(Y-M-D) %04"PRIdMAX"-%02"PRIdMAX"-%02"PRIdMAX, pc->year.value, pc->month, pc->day); pc->debug_dates_seen = true; space = true; } if (pc->year_seen != pc->debug_year_seen) { if (space) fputc (' ', stderr); fprintf (stderr, _("year: %04"PRIdMAX), pc->year.value); pc->debug_year_seen = pc->year_seen; space = true; } if (pc->times_seen && !pc->debug_times_seen) { intmax_t sec = pc->seconds.tv_sec; fprintf (stderr, &" %02"PRIdMAX":%02"PRIdMAX":%02"PRIdMAX[!space], pc->hour, pc->minutes, sec); if (pc->seconds.tv_nsec != 0) { int nsec = pc->seconds.tv_nsec; fprintf (stderr, ".%09d", nsec); } if (pc->meridian == MERpm) fputs ("pm", stderr); pc->debug_times_seen = true; space = true; } if (pc->days_seen && !pc->debug_days_seen) { if (space) fputc (' ', stderr); char tmp[DBGBUFSIZE]; fprintf (stderr, _("%s (day ordinal=%"PRIdMAX" number=%d)"), str_days (pc, tmp, sizeof tmp), pc->day_ordinal, pc->day_number); pc->debug_days_seen = true; space = true; } /* local zone strings only change the DST settings, not the timezone value. If seen, inform about the DST. */ if (pc->local_zones_seen && !pc->debug_local_zones_seen) { fprintf (stderr, &" isdst=%d%s"[!space], pc->local_isdst, pc->dsts_seen ? " DST" : ""); pc->debug_local_zones_seen = true; space = true; } if (pc->zones_seen && !pc->debug_zones_seen) { char time_zone_buf[TIME_ZONE_BUFSIZE]; fprintf (stderr, &" UTC%s"[!space], time_zone_str (pc->time_zone, time_zone_buf)); pc->debug_zones_seen = true; space = true; } if (pc->timespec_seen) { intmax_t sec = pc->seconds.tv_sec; if (space) fputc (' ', stderr); fprintf (stderr, _("number of seconds: %"PRIdMAX), sec); } fputc ('\n', stderr); } /* Debugging: print the current relative values. */ static bool print_rel_part (bool space, intmax_t val, char const *name) { if (val == 0) return space; fprintf (stderr, &" %+"PRIdMAX" %s"[!space], val, name); return true; } static void debug_print_relative_time (char const *item, parser_control const *pc) { bool space = false; if (!pc->parse_datetime_debug) return; /* no newline, more items printed below */ dbg_printf (_("parsed %s part: "), item); if (pc->rel.year == 0 && pc->rel.month == 0 && pc->rel.day == 0 && pc->rel.hour == 0 && pc->rel.minutes == 0 && pc->rel.seconds == 0 && pc->rel.ns == 0) { /* Special case: relative time of this/today/now */ fputs (_("today/this/now\n"), stderr); return; } space = print_rel_part (space, pc->rel.year, "year(s)"); space = print_rel_part (space, pc->rel.month, "month(s)"); space = print_rel_part (space, pc->rel.day, "day(s)"); space = print_rel_part (space, pc->rel.hour, "hour(s)"); space = print_rel_part (space, pc->rel.minutes, "minutes"); space = print_rel_part (space, pc->rel.seconds, "seconds"); print_rel_part (space, pc->rel.ns, "nanoseconds"); fputc ('\n', stderr); } #line 631 "parse-datetime.c" /* yacc.c:339 */ # ifndef YY_NULLPTR # if defined __cplusplus && 201103L <= __cplusplus # define YY_NULLPTR nullptr # else # define YY_NULLPTR 0 # endif # endif /* Enabling verbose error messages. */ #ifdef YYERROR_VERBOSE # undef YYERROR_VERBOSE # define YYERROR_VERBOSE 1 #else # define YYERROR_VERBOSE 0 #endif /* Debug traces. */ #ifndef YYDEBUG # define YYDEBUG 0 #endif #if YYDEBUG extern int yydebug; #endif /* Token type. */ #ifndef YYTOKENTYPE # define YYTOKENTYPE enum yytokentype { tAGO = 258, tDST = 259, tYEAR_UNIT = 260, tMONTH_UNIT = 261, tHOUR_UNIT = 262, tMINUTE_UNIT = 263, tSEC_UNIT = 264, tDAY_UNIT = 265, tDAY_SHIFT = 266, tDAY = 267, tDAYZONE = 268, tLOCAL_ZONE = 269, tMERIDIAN = 270, tMONTH = 271, tORDINAL = 272, tZONE = 273, tSNUMBER = 274, tUNUMBER = 275, tSDECIMAL_NUMBER = 276, tUDECIMAL_NUMBER = 277 }; #endif /* Tokens. */ #define tAGO 258 #define tDST 259 #define tYEAR_UNIT 260 #define tMONTH_UNIT 261 #define tHOUR_UNIT 262 #define tMINUTE_UNIT 263 #define tSEC_UNIT 264 #define tDAY_UNIT 265 #define tDAY_SHIFT 266 #define tDAY 267 #define tDAYZONE 268 #define tLOCAL_ZONE 269 #define tMERIDIAN 270 #define tMONTH 271 #define tORDINAL 272 #define tZONE 273 #define tSNUMBER 274 #define tUNUMBER 275 #define tSDECIMAL_NUMBER 276 #define tUDECIMAL_NUMBER 277 /* Value type. */ #if ! defined YYSTYPE && ! defined YYSTYPE_IS_DECLARED union YYSTYPE { #line 576 "parse-datetime.y" /* yacc.c:355 */ intmax_t intval; textint textintval; struct timespec timespec; relative_time rel; #line 719 "parse-datetime.c" /* yacc.c:355 */ }; typedef union YYSTYPE YYSTYPE; # define YYSTYPE_IS_TRIVIAL 1 # define YYSTYPE_IS_DECLARED 1 #endif int yyparse (parser_control *pc); /* Copy the second part of user declarations. */ #line 735 "parse-datetime.c" /* yacc.c:358 */ #ifdef short # undef short #endif #ifdef YYTYPE_UINT8 typedef YYTYPE_UINT8 yytype_uint8; #else typedef unsigned char yytype_uint8; #endif #ifdef YYTYPE_INT8 typedef YYTYPE_INT8 yytype_int8; #else typedef signed char yytype_int8; #endif #ifdef YYTYPE_UINT16 typedef YYTYPE_UINT16 yytype_uint16; #else typedef unsigned short int yytype_uint16; #endif #ifdef YYTYPE_INT16 typedef YYTYPE_INT16 yytype_int16; #else typedef short int yytype_int16; #endif #ifndef YYSIZE_T # ifdef __SIZE_TYPE__ # define YYSIZE_T __SIZE_TYPE__ # elif defined size_t # define YYSIZE_T size_t # elif ! defined YYSIZE_T # include /* INFRINGES ON USER NAME SPACE */ # define YYSIZE_T size_t # else # define YYSIZE_T unsigned int # endif #endif #define YYSIZE_MAXIMUM ((YYSIZE_T) -1) #ifndef YY_ # if defined YYENABLE_NLS && YYENABLE_NLS # if ENABLE_NLS # include /* INFRINGES ON USER NAME SPACE */ # define YY_(Msgid) dgettext ("bison-runtime", Msgid) # endif # endif # ifndef YY_ # define YY_(Msgid) Msgid # endif #endif #ifndef YY_ATTRIBUTE # if (defined __GNUC__ \ && (2 < __GNUC__ || (__GNUC__ == 2 && 96 <= __GNUC_MINOR__))) \ || defined __SUNPRO_C && 0x5110 <= __SUNPRO_C # define YY_ATTRIBUTE(Spec) __attribute__(Spec) # else # define YY_ATTRIBUTE(Spec) /* empty */ # endif #endif #ifndef YY_ATTRIBUTE_PURE # define YY_ATTRIBUTE_PURE YY_ATTRIBUTE ((__pure__)) #endif #ifndef YY_ATTRIBUTE_UNUSED # define YY_ATTRIBUTE_UNUSED YY_ATTRIBUTE ((__unused__)) #endif #if !defined _Noreturn \ && (!defined __STDC_VERSION__ || __STDC_VERSION__ < 201112) # if defined _MSC_VER && 1200 <= _MSC_VER # define _Noreturn __declspec (noreturn) # else # define _Noreturn YY_ATTRIBUTE ((__noreturn__)) # endif #endif /* Suppress unused-variable warnings by "using" E. */ #if ! defined lint || defined __GNUC__ # define YYUSE(E) ((void) (E)) #else # define YYUSE(E) /* empty */ #endif #if defined __GNUC__ && 407 <= __GNUC__ * 100 + __GNUC_MINOR__ /* Suppress an incorrect diagnostic about yylval being uninitialized. */ # define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN \ _Pragma ("GCC diagnostic push") \ _Pragma ("GCC diagnostic ignored \"-Wuninitialized\"")\ _Pragma ("GCC diagnostic ignored \"-Wmaybe-uninitialized\"") # define YY_IGNORE_MAYBE_UNINITIALIZED_END \ _Pragma ("GCC diagnostic pop") #else # define YY_INITIAL_VALUE(Value) Value #endif #ifndef YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN # define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN # define YY_IGNORE_MAYBE_UNINITIALIZED_END #endif #ifndef YY_INITIAL_VALUE # define YY_INITIAL_VALUE(Value) /* Nothing. */ #endif #if ! defined yyoverflow || YYERROR_VERBOSE /* The parser invokes alloca or malloc; define the necessary symbols. */ # ifdef YYSTACK_USE_ALLOCA # if YYSTACK_USE_ALLOCA # ifdef __GNUC__ # define YYSTACK_ALLOC __builtin_alloca # elif defined __BUILTIN_VA_ARG_INCR # include /* INFRINGES ON USER NAME SPACE */ # elif defined _AIX # define YYSTACK_ALLOC __alloca # elif defined _MSC_VER # include /* INFRINGES ON USER NAME SPACE */ # define alloca _alloca # else # define YYSTACK_ALLOC alloca # if ! defined _ALLOCA_H && ! defined EXIT_SUCCESS # include /* INFRINGES ON USER NAME SPACE */ /* Use EXIT_SUCCESS as a witness for stdlib.h. */ # ifndef EXIT_SUCCESS # define EXIT_SUCCESS 0 # endif # endif # endif # endif # endif # ifdef YYSTACK_ALLOC /* Pacify GCC's 'empty if-body' warning. */ # define YYSTACK_FREE(Ptr) do { /* empty */; } while (0) # ifndef YYSTACK_ALLOC_MAXIMUM /* The OS might guarantee only one guard page at the bottom of the stack, and a page size can be as small as 4096 bytes. So we cannot safely invoke alloca (N) if N exceeds 4096. Use a slightly smaller number to allow for a few compiler-allocated temporary stack slots. */ # define YYSTACK_ALLOC_MAXIMUM 4032 /* reasonable circa 2006 */ # endif # else # define YYSTACK_ALLOC YYMALLOC # define YYSTACK_FREE YYFREE # ifndef YYSTACK_ALLOC_MAXIMUM # define YYSTACK_ALLOC_MAXIMUM YYSIZE_MAXIMUM # endif # if (defined __cplusplus && ! defined EXIT_SUCCESS \ && ! ((defined YYMALLOC || defined malloc) \ && (defined YYFREE || defined free))) # include /* INFRINGES ON USER NAME SPACE */ # ifndef EXIT_SUCCESS # define EXIT_SUCCESS 0 # endif # endif # ifndef YYMALLOC # define YYMALLOC malloc # if ! defined malloc && ! defined EXIT_SUCCESS void *malloc (YYSIZE_T); /* INFRINGES ON USER NAME SPACE */ # endif # endif # ifndef YYFREE # define YYFREE free # if ! defined free && ! defined EXIT_SUCCESS void free (void *); /* INFRINGES ON USER NAME SPACE */ # endif # endif # endif #endif /* ! defined yyoverflow || YYERROR_VERBOSE */ #if (! defined yyoverflow \ && (! defined __cplusplus \ || (defined YYSTYPE_IS_TRIVIAL && YYSTYPE_IS_TRIVIAL))) /* A type that is properly aligned for any stack member. */ union yyalloc { yytype_int16 yyss_alloc; YYSTYPE yyvs_alloc; }; /* The size of the maximum gap between one aligned stack and the next. */ # define YYSTACK_GAP_MAXIMUM (sizeof (union yyalloc) - 1) /* The size of an array large to enough to hold all stacks, each with N elements. */ # define YYSTACK_BYTES(N) \ ((N) * (sizeof (yytype_int16) + sizeof (YYSTYPE)) \ + YYSTACK_GAP_MAXIMUM) # define YYCOPY_NEEDED 1 /* Relocate STACK from its old location to the new one. The local variables YYSIZE and YYSTACKSIZE give the old and new number of elements in the stack, and YYPTR gives the new location of the stack. Advance YYPTR to a properly aligned location for the next stack. */ # define YYSTACK_RELOCATE(Stack_alloc, Stack) \ do \ { \ YYSIZE_T yynewbytes; \ YYCOPY (&yyptr->Stack_alloc, Stack, yysize); \ Stack = &yyptr->Stack_alloc; \ yynewbytes = yystacksize * sizeof (*Stack) + YYSTACK_GAP_MAXIMUM; \ yyptr += yynewbytes / sizeof (*yyptr); \ } \ while (0) #endif #if defined YYCOPY_NEEDED && YYCOPY_NEEDED /* Copy COUNT objects from SRC to DST. The source and destination do not overlap. */ # ifndef YYCOPY # if defined __GNUC__ && 1 < __GNUC__ # define YYCOPY(Dst, Src, Count) \ __builtin_memcpy (Dst, Src, (Count) * sizeof (*(Src))) # else # define YYCOPY(Dst, Src, Count) \ do \ { \ YYSIZE_T yyi; \ for (yyi = 0; yyi < (Count); yyi++) \ (Dst)[yyi] = (Src)[yyi]; \ } \ while (0) # endif # endif #endif /* !YYCOPY_NEEDED */ /* YYFINAL -- State number of the termination state. */ #define YYFINAL 12 /* YYLAST -- Last index in YYTABLE. */ #define YYLAST 112 /* YYNTOKENS -- Number of terminals. */ #define YYNTOKENS 28 /* YYNNTS -- Number of nonterminals. */ #define YYNNTS 26 /* YYNRULES -- Number of rules. */ #define YYNRULES 91 /* YYNSTATES -- Number of states. */ #define YYNSTATES 114 /* YYTRANSLATE[YYX] -- Symbol number corresponding to YYX as returned by yylex, with out-of-bounds checking. */ #define YYUNDEFTOK 2 #define YYMAXUTOK 277 #define YYTRANSLATE(YYX) \ ((unsigned int) (YYX) <= YYMAXUTOK ? yytranslate[YYX] : YYUNDEFTOK) /* YYTRANSLATE[TOKEN-NUM] -- Symbol number corresponding to TOKEN-NUM as returned by yylex, without out-of-bounds checking. */ static const yytype_uint8 yytranslate[] = { 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 2, 2, 27, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 25, 2, 2, 2, 2, 2, 23, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 24, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 }; #if YYDEBUG /* YYRLINE[YYN] -- Source line where rule number YYN was defined. */ static const yytype_uint16 yyrline[] = { 0, 603, 603, 604, 608, 616, 618, 622, 627, 632, 637, 642, 647, 652, 656, 660, 667, 671, 675, 680, 685, 690, 694, 699, 704, 711, 713, 717, 742, 744, 754, 756, 758, 763, 768, 771, 773, 778, 783, 788, 794, 803, 808, 841, 849, 857, 862, 868, 873, 879, 883, 893, 895, 897, 902, 904, 906, 908, 910, 912, 914, 917, 920, 922, 924, 926, 928, 930, 932, 934, 936, 938, 940, 942, 944, 948, 950, 952, 955, 957, 959, 964, 968, 968, 971, 972, 978, 979, 985, 990, 1001, 1002 }; #endif #if YYDEBUG || YYERROR_VERBOSE || 0 /* YYTNAME[SYMBOL-NUM] -- String name of the symbol SYMBOL-NUM. First, the terminals, then, starting at YYNTOKENS, nonterminals. */ static const char *const yytname[] = { "$end", "error", "$undefined", "tAGO", "tDST", "tYEAR_UNIT", "tMONTH_UNIT", "tHOUR_UNIT", "tMINUTE_UNIT", "tSEC_UNIT", "tDAY_UNIT", "tDAY_SHIFT", "tDAY", "tDAYZONE", "tLOCAL_ZONE", "tMERIDIAN", "tMONTH", "tORDINAL", "tZONE", "tSNUMBER", "tUNUMBER", "tSDECIMAL_NUMBER", "tUDECIMAL_NUMBER", "'@'", "'T'", "':'", "','", "'/'", "$accept", "spec", "timespec", "items", "item", "datetime", "iso_8601_datetime", "time", "iso_8601_time", "o_zone_offset", "zone_offset", "local_zone", "zone", "day", "date", "iso_8601_date", "rel", "relunit", "relunit_snumber", "dayshift", "seconds", "signed_seconds", "unsigned_seconds", "number", "hybrid", "o_colon_minutes", YY_NULLPTR }; #endif # ifdef YYPRINT /* YYTOKNUM[NUM] -- (External) token number corresponding to the (internal) symbol number NUM (which must be that of a token). */ static const yytype_uint16 yytoknum[] = { 0, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 64, 84, 58, 44, 47 }; # endif #define YYPACT_NINF -93 #define yypact_value_is_default(Yystate) \ (!!((Yystate) == (-93))) #define YYTABLE_NINF -1 #define yytable_value_is_error(Yytable_value) \ 0 /* YYPACT[STATE-NUM] -- Index in YYTABLE of the portion describing STATE-NUM. */ static const yytype_int8 yypact[] = { 38, 27, 77, -93, 46, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, 62, -93, 82, -3, 66, 3, 74, -4, 83, 84, 75, -93, -93, -93, -93, -93, -93, -93, -93, -93, 71, -93, 93, -93, -93, -93, -93, -93, -93, 78, 72, -93, -93, -93, -93, -93, -93, -93, -93, 25, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, 21, 19, 79, 80, -93, -93, -93, -93, -93, 81, -93, -93, 85, 86, -93, -93, -93, -93, -93, -6, 76, 17, -93, -93, -93, -93, 87, 69, -93, -93, 88, 89, -1, -93, 18, -93, -93, 69, 91 }; /* YYDEFACT[STATE-NUM] -- Default reduction number in state STATE-NUM. Performed when YYTABLE does not specify something else to do. Zero means the default is an error. */ static const yytype_uint8 yydefact[] = { 5, 0, 0, 2, 3, 85, 87, 84, 86, 4, 82, 83, 1, 56, 59, 65, 68, 73, 62, 81, 37, 35, 28, 0, 0, 30, 0, 88, 0, 0, 31, 6, 7, 16, 8, 21, 9, 10, 12, 11, 49, 13, 52, 74, 53, 14, 15, 38, 29, 0, 45, 54, 57, 63, 66, 69, 60, 39, 36, 90, 32, 75, 76, 78, 79, 80, 77, 55, 58, 64, 67, 70, 61, 40, 18, 47, 90, 0, 0, 22, 89, 71, 72, 33, 0, 51, 44, 0, 0, 34, 43, 48, 50, 27, 25, 41, 0, 17, 46, 91, 19, 90, 0, 23, 26, 0, 0, 25, 42, 25, 20, 24, 0, 25 }; /* YYPGOTO[NTERM-NUM]. */ static const yytype_int8 yypgoto[] = { -93, -93, -93, -93, -93, -93, -93, -93, 20, -68, -27, -93, -93, -93, -93, -93, -93, -93, 60, -93, -93, -93, -92, -93, -93, 43 }; /* YYDEFGOTO[NTERM-NUM]. */ static const yytype_int8 yydefgoto[] = { -1, 2, 3, 4, 31, 32, 33, 34, 35, 103, 104, 36, 37, 38, 39, 40, 41, 42, 43, 44, 9, 10, 11, 45, 46, 93 }; /* YYTABLE[YYPACT[STATE-NUM]] -- What to do in state STATE-NUM. If positive, shift that token. If negative, reduce the rule whose number is the opposite. If YYTABLE_NINF, syntax error. */ static const yytype_uint8 yytable[] = { 79, 67, 68, 69, 70, 71, 72, 58, 73, 100, 107, 74, 75, 101, 110, 76, 49, 50, 101, 102, 113, 77, 59, 78, 61, 62, 63, 64, 65, 66, 61, 62, 63, 64, 65, 66, 101, 101, 92, 111, 90, 91, 106, 112, 88, 111, 5, 6, 7, 8, 88, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 1, 23, 24, 25, 26, 27, 28, 29, 79, 30, 51, 52, 53, 54, 55, 56, 12, 57, 61, 62, 63, 64, 65, 66, 60, 48, 80, 47, 6, 83, 8, 81, 82, 26, 84, 85, 86, 87, 94, 95, 96, 89, 105, 97, 98, 99, 0, 108, 109, 101, 0, 88 }; static const yytype_int8 yycheck[] = { 27, 5, 6, 7, 8, 9, 10, 4, 12, 15, 102, 15, 16, 19, 15, 19, 19, 20, 19, 25, 112, 25, 19, 27, 5, 6, 7, 8, 9, 10, 5, 6, 7, 8, 9, 10, 19, 19, 19, 107, 19, 20, 25, 25, 25, 113, 19, 20, 21, 22, 25, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 16, 17, 18, 19, 20, 21, 22, 96, 24, 5, 6, 7, 8, 9, 10, 0, 12, 5, 6, 7, 8, 9, 10, 25, 4, 27, 26, 20, 30, 22, 9, 9, 19, 24, 3, 19, 26, 20, 20, 20, 59, 27, 84, 20, 20, -1, 20, 20, 19, -1, 25 }; /* YYSTOS[STATE-NUM] -- The (internal number of the) accessing symbol of state STATE-NUM. */ static const yytype_uint8 yystos[] = { 0, 23, 29, 30, 31, 19, 20, 21, 22, 48, 49, 50, 0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 26, 4, 19, 20, 5, 6, 7, 8, 9, 10, 12, 4, 19, 46, 5, 6, 7, 8, 9, 10, 5, 6, 7, 8, 9, 10, 12, 15, 16, 19, 25, 27, 38, 46, 9, 9, 46, 24, 3, 19, 26, 25, 53, 19, 20, 19, 53, 20, 20, 20, 36, 20, 20, 15, 19, 25, 37, 38, 27, 25, 50, 20, 20, 15, 37, 25, 50 }; /* YYR1[YYN] -- Symbol number of symbol that rule YYN derives. */ static const yytype_uint8 yyr1[] = { 0, 28, 29, 29, 30, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 34, 35, 35, 35, 35, 36, 36, 36, 37, 37, 38, 39, 39, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 47, 48, 48, 49, 49, 50, 50, 51, 52, 53, 53 }; /* YYR2[YYN] -- Number of symbols on the right hand side of rule YYN. */ static const yytype_uint8 yyr2[] = { 0, 2, 1, 1, 2, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 4, 6, 1, 2, 4, 6, 0, 1, 2, 1, 2, 1, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 3, 5, 3, 3, 2, 4, 2, 3, 1, 3, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2 }; #define yyerrok (yyerrstatus = 0) #define yyclearin (yychar = YYEMPTY) #define YYEMPTY (-2) #define YYEOF 0 #define YYACCEPT goto yyacceptlab #define YYABORT goto yyabortlab #define YYERROR goto yyerrorlab #define YYRECOVERING() (!!yyerrstatus) #define YYBACKUP(Token, Value) \ do \ if (yychar == YYEMPTY) \ { \ yychar = (Token); \ yylval = (Value); \ YYPOPSTACK (yylen); \ yystate = *yyssp; \ goto yybackup; \ } \ else \ { \ yyerror (pc, YY_("syntax error: cannot back up")); \ YYERROR; \ } \ while (0) /* Error token number */ #define YYTERROR 1 #define YYERRCODE 256 /* Enable debugging if requested. */ #if YYDEBUG # ifndef YYFPRINTF # include /* INFRINGES ON USER NAME SPACE */ # define YYFPRINTF fprintf # endif # define YYDPRINTF(Args) \ do { \ if (yydebug) \ YYFPRINTF Args; \ } while (0) /* This macro is provided for backward compatibility. */ #ifndef YY_LOCATION_PRINT # define YY_LOCATION_PRINT(File, Loc) ((void) 0) #endif # define YY_SYMBOL_PRINT(Title, Type, Value, Location) \ do { \ if (yydebug) \ { \ YYFPRINTF (stderr, "%s ", Title); \ yy_symbol_print (stderr, \ Type, Value, pc); \ YYFPRINTF (stderr, "\n"); \ } \ } while (0) /*----------------------------------------. | Print this symbol's value on YYOUTPUT. | `----------------------------------------*/ static void yy_symbol_value_print (FILE *yyoutput, int yytype, YYSTYPE const * const yyvaluep, parser_control *pc) { FILE *yyo = yyoutput; YYUSE (yyo); YYUSE (pc); if (!yyvaluep) return; # ifdef YYPRINT if (yytype < YYNTOKENS) YYPRINT (yyoutput, yytoknum[yytype], *yyvaluep); # endif YYUSE (yytype); } /*--------------------------------. | Print this symbol on YYOUTPUT. | `--------------------------------*/ static void yy_symbol_print (FILE *yyoutput, int yytype, YYSTYPE const * const yyvaluep, parser_control *pc) { YYFPRINTF (yyoutput, "%s %s (", yytype < YYNTOKENS ? "token" : "nterm", yytname[yytype]); yy_symbol_value_print (yyoutput, yytype, yyvaluep, pc); YYFPRINTF (yyoutput, ")"); } /*------------------------------------------------------------------. | yy_stack_print -- Print the state stack from its BOTTOM up to its | | TOP (included). | `------------------------------------------------------------------*/ static void yy_stack_print (yytype_int16 *yybottom, yytype_int16 *yytop) { YYFPRINTF (stderr, "Stack now"); for (; yybottom <= yytop; yybottom++) { int yybot = *yybottom; YYFPRINTF (stderr, " %d", yybot); } YYFPRINTF (stderr, "\n"); } # define YY_STACK_PRINT(Bottom, Top) \ do { \ if (yydebug) \ yy_stack_print ((Bottom), (Top)); \ } while (0) /*------------------------------------------------. | Report that the YYRULE is going to be reduced. | `------------------------------------------------*/ static void yy_reduce_print (yytype_int16 *yyssp, YYSTYPE *yyvsp, int yyrule, parser_control *pc) { unsigned long int yylno = yyrline[yyrule]; int yynrhs = yyr2[yyrule]; int yyi; YYFPRINTF (stderr, "Reducing stack by rule %d (line %lu):\n", yyrule - 1, yylno); /* The symbols being reduced. */ for (yyi = 0; yyi < yynrhs; yyi++) { YYFPRINTF (stderr, " $%d = ", yyi + 1); yy_symbol_print (stderr, yystos[yyssp[yyi + 1 - yynrhs]], &(yyvsp[(yyi + 1) - (yynrhs)]) , pc); YYFPRINTF (stderr, "\n"); } } # define YY_REDUCE_PRINT(Rule) \ do { \ if (yydebug) \ yy_reduce_print (yyssp, yyvsp, Rule, pc); \ } while (0) /* Nonzero means print parse trace. It is left uninitialized so that multiple parsers can coexist. */ int yydebug; #else /* !YYDEBUG */ # define YYDPRINTF(Args) # define YY_SYMBOL_PRINT(Title, Type, Value, Location) # define YY_STACK_PRINT(Bottom, Top) # define YY_REDUCE_PRINT(Rule) #endif /* !YYDEBUG */ /* YYINITDEPTH -- initial size of the parser's stacks. */ #ifndef YYINITDEPTH # define YYINITDEPTH 200 #endif /* YYMAXDEPTH -- maximum size the stacks can grow to (effective only if the built-in stack extension method is used). Do not make this value too large; the results are undefined if YYSTACK_ALLOC_MAXIMUM < YYSTACK_BYTES (YYMAXDEPTH) evaluated with infinite-precision integer arithmetic. */ #ifndef YYMAXDEPTH # define YYMAXDEPTH 10000 #endif #if YYERROR_VERBOSE # ifndef yystrlen # if defined __GLIBC__ && defined _STRING_H # define yystrlen strlen # else /* Return the length of YYSTR. */ static YYSIZE_T yystrlen (const char *yystr) { YYSIZE_T yylen; for (yylen = 0; yystr[yylen]; yylen++) continue; return yylen; } # endif # endif # ifndef yystpcpy # if defined __GLIBC__ && defined _STRING_H && defined _GNU_SOURCE # define yystpcpy stpcpy # else /* Copy YYSRC to YYDEST, returning the address of the terminating '\0' in YYDEST. */ static char * yystpcpy (char *yydest, const char *yysrc) { char *yyd = yydest; const char *yys = yysrc; while ((*yyd++ = *yys++) != '\0') continue; return yyd - 1; } # endif # endif # ifndef yytnamerr /* Copy to YYRES the contents of YYSTR after stripping away unnecessary quotes and backslashes, so that it's suitable for yyerror. The heuristic is that double-quoting is unnecessary unless the string contains an apostrophe, a comma, or backslash (other than backslash-backslash). YYSTR is taken from yytname. If YYRES is null, do not copy; instead, return the length of what the result would have been. */ static YYSIZE_T yytnamerr (char *yyres, const char *yystr) { if (*yystr == '"') { YYSIZE_T yyn = 0; char const *yyp = yystr; for (;;) switch (*++yyp) { case '\'': case ',': goto do_not_strip_quotes; case '\\': if (*++yyp != '\\') goto do_not_strip_quotes; /* Fall through. */ default: if (yyres) yyres[yyn] = *yyp; yyn++; break; case '"': if (yyres) yyres[yyn] = '\0'; return yyn; } do_not_strip_quotes: ; } if (! yyres) return yystrlen (yystr); return yystpcpy (yyres, yystr) - yyres; } # endif /* Copy into *YYMSG, which is of size *YYMSG_ALLOC, an error message about the unexpected token YYTOKEN for the state stack whose top is YYSSP. Return 0 if *YYMSG was successfully written. Return 1 if *YYMSG is not large enough to hold the message. In that case, also set *YYMSG_ALLOC to the required number of bytes. Return 2 if the required number of bytes is too large to store. */ static int yysyntax_error (YYSIZE_T *yymsg_alloc, char **yymsg, yytype_int16 *yyssp, int yytoken) { YYSIZE_T yysize0 = yytnamerr (YY_NULLPTR, yytname[yytoken]); YYSIZE_T yysize = yysize0; enum { YYERROR_VERBOSE_ARGS_MAXIMUM = 5 }; /* Internationalized format string. */ const char *yyformat = YY_NULLPTR; /* Arguments of yyformat. */ char const *yyarg[YYERROR_VERBOSE_ARGS_MAXIMUM]; /* Number of reported tokens (one for the "unexpected", one per "expected"). */ int yycount = 0; /* There are many possibilities here to consider: - If this state is a consistent state with a default action, then the only way this function was invoked is if the default action is an error action. In that case, don't check for expected tokens because there are none. - The only way there can be no lookahead present (in yychar) is if this state is a consistent state with a default action. Thus, detecting the absence of a lookahead is sufficient to determine that there is no unexpected or expected token to report. In that case, just report a simple "syntax error". - Don't assume there isn't a lookahead just because this state is a consistent state with a default action. There might have been a previous inconsistent state, consistent state with a non-default action, or user semantic action that manipulated yychar. - Of course, the expected token list depends on states to have correct lookahead information, and it depends on the parser not to perform extra reductions after fetching a lookahead from the scanner and before detecting a syntax error. Thus, state merging (from LALR or IELR) and default reductions corrupt the expected token list. However, the list is correct for canonical LR with one exception: it will still contain any token that will not be accepted due to an error action in a later state. */ if (yytoken != YYEMPTY) { int yyn = yypact[*yyssp]; yyarg[yycount++] = yytname[yytoken]; if (!yypact_value_is_default (yyn)) { /* Start YYX at -YYN if negative to avoid negative indexes in YYCHECK. In other words, skip the first -YYN actions for this state because they are default actions. */ int yyxbegin = yyn < 0 ? -yyn : 0; /* Stay within bounds of both yycheck and yytname. */ int yychecklim = YYLAST - yyn + 1; int yyxend = yychecklim < YYNTOKENS ? yychecklim : YYNTOKENS; int yyx; for (yyx = yyxbegin; yyx < yyxend; ++yyx) if (yycheck[yyx + yyn] == yyx && yyx != YYTERROR && !yytable_value_is_error (yytable[yyx + yyn])) { if (yycount == YYERROR_VERBOSE_ARGS_MAXIMUM) { yycount = 1; yysize = yysize0; break; } yyarg[yycount++] = yytname[yyx]; { YYSIZE_T yysize1 = yysize + yytnamerr (YY_NULLPTR, yytname[yyx]); if (! (yysize <= yysize1 && yysize1 <= YYSTACK_ALLOC_MAXIMUM)) return 2; yysize = yysize1; } } } } switch (yycount) { # define YYCASE_(N, S) \ case N: \ yyformat = S; \ break YYCASE_(0, YY_("syntax error")); YYCASE_(1, YY_("syntax error, unexpected %s")); YYCASE_(2, YY_("syntax error, unexpected %s, expecting %s")); YYCASE_(3, YY_("syntax error, unexpected %s, expecting %s or %s")); YYCASE_(4, YY_("syntax error, unexpected %s, expecting %s or %s or %s")); YYCASE_(5, YY_("syntax error, unexpected %s, expecting %s or %s or %s or %s")); # undef YYCASE_ } { YYSIZE_T yysize1 = yysize + yystrlen (yyformat); if (! (yysize <= yysize1 && yysize1 <= YYSTACK_ALLOC_MAXIMUM)) return 2; yysize = yysize1; } if (*yymsg_alloc < yysize) { *yymsg_alloc = 2 * yysize; if (! (yysize <= *yymsg_alloc && *yymsg_alloc <= YYSTACK_ALLOC_MAXIMUM)) *yymsg_alloc = YYSTACK_ALLOC_MAXIMUM; return 1; } /* Avoid sprintf, as that infringes on the user's name space. Don't have undefined behavior even if the translation produced a string with the wrong number of "%s"s. */ { char *yyp = *yymsg; int yyi = 0; while ((*yyp = *yyformat) != '\0') if (*yyp == '%' && yyformat[1] == 's' && yyi < yycount) { yyp += yytnamerr (yyp, yyarg[yyi++]); yyformat += 2; } else { yyp++; yyformat++; } } return 0; } #endif /* YYERROR_VERBOSE */ /*-----------------------------------------------. | Release the memory associated to this symbol. | `-----------------------------------------------*/ static void yydestruct (const char *yymsg, int yytype, YYSTYPE *yyvaluep, parser_control *pc) { YYUSE (yyvaluep); YYUSE (pc); if (!yymsg) yymsg = "Deleting"; YY_SYMBOL_PRINT (yymsg, yytype, yyvaluep, yylocationp); YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN YYUSE (yytype); YY_IGNORE_MAYBE_UNINITIALIZED_END } /*----------. | yyparse. | `----------*/ int yyparse (parser_control *pc) { /* The lookahead symbol. */ int yychar; /* The semantic value of the lookahead symbol. */ /* Default value used for initialization, for pacifying older GCCs or non-GCC compilers. */ YY_INITIAL_VALUE (static YYSTYPE yyval_default;) YYSTYPE yylval YY_INITIAL_VALUE (= yyval_default); /* Number of syntax errors so far. */ int yynerrs; int yystate; /* Number of tokens to shift before error messages enabled. */ int yyerrstatus; /* The stacks and their tools: 'yyss': related to states. 'yyvs': related to semantic values. Refer to the stacks through separate pointers, to allow yyoverflow to reallocate them elsewhere. */ /* The state stack. */ yytype_int16 yyssa[YYINITDEPTH]; yytype_int16 *yyss; yytype_int16 *yyssp; /* The semantic value stack. */ YYSTYPE yyvsa[YYINITDEPTH]; YYSTYPE *yyvs; YYSTYPE *yyvsp; YYSIZE_T yystacksize; int yyn; int yyresult; /* Lookahead token as an internal (translated) token number. */ int yytoken = 0; /* The variables used to return semantic value and location from the action routines. */ YYSTYPE yyval; #if YYERROR_VERBOSE /* Buffer for error messages, and its allocated size. */ char yymsgbuf[128]; char *yymsg = yymsgbuf; YYSIZE_T yymsg_alloc = sizeof yymsgbuf; #endif #define YYPOPSTACK(N) (yyvsp -= (N), yyssp -= (N)) /* The number of symbols on the RHS of the reduced rule. Keep to zero when no symbol should be popped. */ int yylen = 0; yyssp = yyss = yyssa; yyvsp = yyvs = yyvsa; yystacksize = YYINITDEPTH; YYDPRINTF ((stderr, "Starting parse\n")); yystate = 0; yyerrstatus = 0; yynerrs = 0; yychar = YYEMPTY; /* Cause a token to be read. */ goto yysetstate; /*------------------------------------------------------------. | yynewstate -- Push a new state, which is found in yystate. | `------------------------------------------------------------*/ yynewstate: /* In all cases, when you get here, the value and location stacks have just been pushed. So pushing a state here evens the stacks. */ yyssp++; yysetstate: *yyssp = yystate; if (yyss + yystacksize - 1 <= yyssp) { /* Get the current used size of the three stacks, in elements. */ YYSIZE_T yysize = yyssp - yyss + 1; #ifdef yyoverflow { /* Give user a chance to reallocate the stack. Use copies of these so that the &'s don't force the real ones into memory. */ YYSTYPE *yyvs1 = yyvs; yytype_int16 *yyss1 = yyss; /* Each stack pointer address is followed by the size of the data in use in that stack, in bytes. This used to be a conditional around just the two extra args, but that might be undefined if yyoverflow is a macro. */ yyoverflow (YY_("memory exhausted"), &yyss1, yysize * sizeof (*yyssp), &yyvs1, yysize * sizeof (*yyvsp), &yystacksize); yyss = yyss1; yyvs = yyvs1; } #else /* no yyoverflow */ # ifndef YYSTACK_RELOCATE goto yyexhaustedlab; # else /* Extend the stack our own way. */ if (YYMAXDEPTH <= yystacksize) goto yyexhaustedlab; yystacksize *= 2; if (YYMAXDEPTH < yystacksize) yystacksize = YYMAXDEPTH; { yytype_int16 *yyss1 = yyss; union yyalloc *yyptr = (union yyalloc *) YYSTACK_ALLOC (YYSTACK_BYTES (yystacksize)); if (! yyptr) goto yyexhaustedlab; YYSTACK_RELOCATE (yyss_alloc, yyss); YYSTACK_RELOCATE (yyvs_alloc, yyvs); # undef YYSTACK_RELOCATE if (yyss1 != yyssa) YYSTACK_FREE (yyss1); } # endif #endif /* no yyoverflow */ yyssp = yyss + yysize - 1; yyvsp = yyvs + yysize - 1; YYDPRINTF ((stderr, "Stack size increased to %lu\n", (unsigned long int) yystacksize)); if (yyss + yystacksize - 1 <= yyssp) YYABORT; } YYDPRINTF ((stderr, "Entering state %d\n", yystate)); if (yystate == YYFINAL) YYACCEPT; goto yybackup; /*-----------. | yybackup. | `-----------*/ yybackup: /* Do appropriate processing given the current state. Read a lookahead token if we need one and don't already have one. */ /* First try to decide what to do without reference to lookahead token. */ yyn = yypact[yystate]; if (yypact_value_is_default (yyn)) goto yydefault; /* Not known => get a lookahead token if don't already have one. */ /* YYCHAR is either YYEMPTY or YYEOF or a valid lookahead symbol. */ if (yychar == YYEMPTY) { YYDPRINTF ((stderr, "Reading a token: ")); yychar = yylex (&yylval, pc); } if (yychar <= YYEOF) { yychar = yytoken = YYEOF; YYDPRINTF ((stderr, "Now at end of input.\n")); } else { yytoken = YYTRANSLATE (yychar); YY_SYMBOL_PRINT ("Next token is", yytoken, &yylval, &yylloc); } /* If the proper action on seeing token YYTOKEN is to reduce or to detect an error, take that action. */ yyn += yytoken; if (yyn < 0 || YYLAST < yyn || yycheck[yyn] != yytoken) goto yydefault; yyn = yytable[yyn]; if (yyn <= 0) { if (yytable_value_is_error (yyn)) goto yyerrlab; yyn = -yyn; goto yyreduce; } /* Count tokens shifted since error; after three, turn off error status. */ if (yyerrstatus) yyerrstatus--; /* Shift the lookahead token. */ YY_SYMBOL_PRINT ("Shifting", yytoken, &yylval, &yylloc); /* Discard the shifted token. */ yychar = YYEMPTY; yystate = yyn; YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN *++yyvsp = yylval; YY_IGNORE_MAYBE_UNINITIALIZED_END goto yynewstate; /*-----------------------------------------------------------. | yydefault -- do the default action for the current state. | `-----------------------------------------------------------*/ yydefault: yyn = yydefact[yystate]; if (yyn == 0) goto yyerrlab; goto yyreduce; /*-----------------------------. | yyreduce -- Do a reduction. | `-----------------------------*/ yyreduce: /* yyn is the number of a rule to reduce with. */ yylen = yyr2[yyn]; /* If YYLEN is nonzero, implement the default value of the action: '$$ = $1'. Otherwise, the following line sets YYVAL to garbage. This behavior is undocumented and Bison users should not rely upon it. Assigning to YYVAL unconditionally makes the parser a bit smaller, and it avoids a GCC warning that YYVAL may be used uninitialized. */ yyval = yyvsp[1-yylen]; YY_REDUCE_PRINT (yyn); switch (yyn) { case 4: #line 609 "parse-datetime.y" /* yacc.c:1646 */ { pc->seconds = (yyvsp[0].timespec); pc->timespec_seen = true; debug_print_current_time (_("number of seconds"), pc); } #line 1908 "parse-datetime.c" /* yacc.c:1646 */ break; case 7: #line 623 "parse-datetime.y" /* yacc.c:1646 */ { pc->times_seen++; pc->dates_seen++; debug_print_current_time (_("datetime"), pc); } #line 1917 "parse-datetime.c" /* yacc.c:1646 */ break; case 8: #line 628 "parse-datetime.y" /* yacc.c:1646 */ { pc->times_seen++; debug_print_current_time (_("time"), pc); } #line 1926 "parse-datetime.c" /* yacc.c:1646 */ break; case 9: #line 633 "parse-datetime.y" /* yacc.c:1646 */ { pc->local_zones_seen++; debug_print_current_time (_("local_zone"), pc); } #line 1935 "parse-datetime.c" /* yacc.c:1646 */ break; case 10: #line 638 "parse-datetime.y" /* yacc.c:1646 */ { pc->zones_seen++; debug_print_current_time (_("zone"), pc); } #line 1944 "parse-datetime.c" /* yacc.c:1646 */ break; case 11: #line 643 "parse-datetime.y" /* yacc.c:1646 */ { pc->dates_seen++; debug_print_current_time (_("date"), pc); } #line 1953 "parse-datetime.c" /* yacc.c:1646 */ break; case 12: #line 648 "parse-datetime.y" /* yacc.c:1646 */ { pc->days_seen++; debug_print_current_time (_("day"), pc); } #line 1962 "parse-datetime.c" /* yacc.c:1646 */ break; case 13: #line 653 "parse-datetime.y" /* yacc.c:1646 */ { debug_print_relative_time (_("relative"), pc); } #line 1970 "parse-datetime.c" /* yacc.c:1646 */ break; case 14: #line 657 "parse-datetime.y" /* yacc.c:1646 */ { debug_print_current_time (_("number"), pc); } #line 1978 "parse-datetime.c" /* yacc.c:1646 */ break; case 15: #line 661 "parse-datetime.y" /* yacc.c:1646 */ { debug_print_relative_time (_("hybrid"), pc); } #line 1986 "parse-datetime.c" /* yacc.c:1646 */ break; case 18: #line 676 "parse-datetime.y" /* yacc.c:1646 */ { set_hhmmss (pc, (yyvsp[-1].textintval).value, 0, 0, 0); pc->meridian = (yyvsp[0].intval); } #line 1995 "parse-datetime.c" /* yacc.c:1646 */ break; case 19: #line 681 "parse-datetime.y" /* yacc.c:1646 */ { set_hhmmss (pc, (yyvsp[-3].textintval).value, (yyvsp[-1].textintval).value, 0, 0); pc->meridian = (yyvsp[0].intval); } #line 2004 "parse-datetime.c" /* yacc.c:1646 */ break; case 20: #line 686 "parse-datetime.y" /* yacc.c:1646 */ { set_hhmmss (pc, (yyvsp[-5].textintval).value, (yyvsp[-3].textintval).value, (yyvsp[-1].timespec).tv_sec, (yyvsp[-1].timespec).tv_nsec); pc->meridian = (yyvsp[0].intval); } #line 2013 "parse-datetime.c" /* yacc.c:1646 */ break; case 22: #line 695 "parse-datetime.y" /* yacc.c:1646 */ { set_hhmmss (pc, (yyvsp[-1].textintval).value, 0, 0, 0); pc->meridian = MER24; } #line 2022 "parse-datetime.c" /* yacc.c:1646 */ break; case 23: #line 700 "parse-datetime.y" /* yacc.c:1646 */ { set_hhmmss (pc, (yyvsp[-3].textintval).value, (yyvsp[-1].textintval).value, 0, 0); pc->meridian = MER24; } #line 2031 "parse-datetime.c" /* yacc.c:1646 */ break; case 24: #line 705 "parse-datetime.y" /* yacc.c:1646 */ { set_hhmmss (pc, (yyvsp[-5].textintval).value, (yyvsp[-3].textintval).value, (yyvsp[-1].timespec).tv_sec, (yyvsp[-1].timespec).tv_nsec); pc->meridian = MER24; } #line 2040 "parse-datetime.c" /* yacc.c:1646 */ break; case 27: #line 718 "parse-datetime.y" /* yacc.c:1646 */ { pc->zones_seen++; if (! time_zone_hhmm (pc, (yyvsp[-1].textintval), (yyvsp[0].intval))) YYABORT; } #line 2049 "parse-datetime.c" /* yacc.c:1646 */ break; case 28: #line 743 "parse-datetime.y" /* yacc.c:1646 */ { pc->local_isdst = (yyvsp[0].intval); } #line 2055 "parse-datetime.c" /* yacc.c:1646 */ break; case 29: #line 745 "parse-datetime.y" /* yacc.c:1646 */ { pc->local_isdst = 1; pc->dsts_seen++; } #line 2064 "parse-datetime.c" /* yacc.c:1646 */ break; case 30: #line 755 "parse-datetime.y" /* yacc.c:1646 */ { pc->time_zone = (yyvsp[0].intval); } #line 2070 "parse-datetime.c" /* yacc.c:1646 */ break; case 31: #line 757 "parse-datetime.y" /* yacc.c:1646 */ { pc->time_zone = HOUR (7); } #line 2076 "parse-datetime.c" /* yacc.c:1646 */ break; case 32: #line 759 "parse-datetime.y" /* yacc.c:1646 */ { pc->time_zone = (yyvsp[-1].intval); if (! apply_relative_time (pc, (yyvsp[0].rel), 1)) YYABORT; debug_print_relative_time (_("relative"), pc); } #line 2085 "parse-datetime.c" /* yacc.c:1646 */ break; case 33: #line 764 "parse-datetime.y" /* yacc.c:1646 */ { pc->time_zone = HOUR (7); if (! apply_relative_time (pc, (yyvsp[0].rel), 1)) YYABORT; debug_print_relative_time (_("relative"), pc); } #line 2094 "parse-datetime.c" /* yacc.c:1646 */ break; case 34: #line 769 "parse-datetime.y" /* yacc.c:1646 */ { if (! time_zone_hhmm (pc, (yyvsp[-1].textintval), (yyvsp[0].intval))) YYABORT; if (INT_ADD_WRAPV (pc->time_zone, (yyvsp[-2].intval), &pc->time_zone)) YYABORT; } #line 2101 "parse-datetime.c" /* yacc.c:1646 */ break; case 35: #line 772 "parse-datetime.y" /* yacc.c:1646 */ { pc->time_zone = (yyvsp[0].intval) + 60 * 60; } #line 2107 "parse-datetime.c" /* yacc.c:1646 */ break; case 36: #line 774 "parse-datetime.y" /* yacc.c:1646 */ { pc->time_zone = (yyvsp[-1].intval) + 60 * 60; } #line 2113 "parse-datetime.c" /* yacc.c:1646 */ break; case 37: #line 779 "parse-datetime.y" /* yacc.c:1646 */ { pc->day_ordinal = 0; pc->day_number = (yyvsp[0].intval); } #line 2122 "parse-datetime.c" /* yacc.c:1646 */ break; case 38: #line 784 "parse-datetime.y" /* yacc.c:1646 */ { pc->day_ordinal = 0; pc->day_number = (yyvsp[-1].intval); } #line 2131 "parse-datetime.c" /* yacc.c:1646 */ break; case 39: #line 789 "parse-datetime.y" /* yacc.c:1646 */ { pc->day_ordinal = (yyvsp[-1].intval); pc->day_number = (yyvsp[0].intval); pc->debug_ordinal_day_seen = true; } #line 2141 "parse-datetime.c" /* yacc.c:1646 */ break; case 40: #line 795 "parse-datetime.y" /* yacc.c:1646 */ { pc->day_ordinal = (yyvsp[-1].textintval).value; pc->day_number = (yyvsp[0].intval); pc->debug_ordinal_day_seen = true; } #line 2151 "parse-datetime.c" /* yacc.c:1646 */ break; case 41: #line 804 "parse-datetime.y" /* yacc.c:1646 */ { pc->month = (yyvsp[-2].textintval).value; pc->day = (yyvsp[0].textintval).value; } #line 2160 "parse-datetime.c" /* yacc.c:1646 */ break; case 42: #line 809 "parse-datetime.y" /* yacc.c:1646 */ { /* Interpret as YYYY/MM/DD if the first value has 4 or more digits, otherwise as MM/DD/YY. The goal in recognizing YYYY/MM/DD is solely to support legacy machine-generated dates like those in an RCS log listing. If you want portability, use the ISO 8601 format. */ if (4 <= (yyvsp[-4].textintval).digits) { if (pc->parse_datetime_debug) { intmax_t digits = (yyvsp[-4].textintval).digits; dbg_printf (_("warning: value %"PRIdMAX" has %"PRIdMAX" digits. " "Assuming YYYY/MM/DD\n"), (yyvsp[-4].textintval).value, digits); } pc->year = (yyvsp[-4].textintval); pc->month = (yyvsp[-2].textintval).value; pc->day = (yyvsp[0].textintval).value; } else { if (pc->parse_datetime_debug) dbg_printf (_("warning: value %"PRIdMAX" has less than 4 digits. " "Assuming MM/DD/YY[YY]\n"), (yyvsp[-4].textintval).value); pc->month = (yyvsp[-4].textintval).value; pc->day = (yyvsp[-2].textintval).value; pc->year = (yyvsp[0].textintval); } } #line 2197 "parse-datetime.c" /* yacc.c:1646 */ break; case 43: #line 842 "parse-datetime.y" /* yacc.c:1646 */ { /* E.g., 17-JUN-1992. */ pc->day = (yyvsp[-2].textintval).value; pc->month = (yyvsp[-1].intval); if (INT_SUBTRACT_WRAPV (0, (yyvsp[0].textintval).value, &pc->year.value)) YYABORT; pc->year.digits = (yyvsp[0].textintval).digits; } #line 2209 "parse-datetime.c" /* yacc.c:1646 */ break; case 44: #line 850 "parse-datetime.y" /* yacc.c:1646 */ { /* E.g., JUN-17-1992. */ pc->month = (yyvsp[-2].intval); if (INT_SUBTRACT_WRAPV (0, (yyvsp[-1].textintval).value, &pc->day)) YYABORT; if (INT_SUBTRACT_WRAPV (0, (yyvsp[0].textintval).value, &pc->year.value)) YYABORT; pc->year.digits = (yyvsp[0].textintval).digits; } #line 2221 "parse-datetime.c" /* yacc.c:1646 */ break; case 45: #line 858 "parse-datetime.y" /* yacc.c:1646 */ { pc->month = (yyvsp[-1].intval); pc->day = (yyvsp[0].textintval).value; } #line 2230 "parse-datetime.c" /* yacc.c:1646 */ break; case 46: #line 863 "parse-datetime.y" /* yacc.c:1646 */ { pc->month = (yyvsp[-3].intval); pc->day = (yyvsp[-2].textintval).value; pc->year = (yyvsp[0].textintval); } #line 2240 "parse-datetime.c" /* yacc.c:1646 */ break; case 47: #line 869 "parse-datetime.y" /* yacc.c:1646 */ { pc->day = (yyvsp[-1].textintval).value; pc->month = (yyvsp[0].intval); } #line 2249 "parse-datetime.c" /* yacc.c:1646 */ break; case 48: #line 874 "parse-datetime.y" /* yacc.c:1646 */ { pc->day = (yyvsp[-2].textintval).value; pc->month = (yyvsp[-1].intval); pc->year = (yyvsp[0].textintval); } #line 2259 "parse-datetime.c" /* yacc.c:1646 */ break; case 50: #line 884 "parse-datetime.y" /* yacc.c:1646 */ { /* ISO 8601 format. YYYY-MM-DD. */ pc->year = (yyvsp[-2].textintval); if (INT_SUBTRACT_WRAPV (0, (yyvsp[-1].textintval).value, &pc->month)) YYABORT; if (INT_SUBTRACT_WRAPV (0, (yyvsp[0].textintval).value, &pc->day)) YYABORT; } #line 2270 "parse-datetime.c" /* yacc.c:1646 */ break; case 51: #line 894 "parse-datetime.y" /* yacc.c:1646 */ { if (! apply_relative_time (pc, (yyvsp[-1].rel), (yyvsp[0].intval))) YYABORT; } #line 2276 "parse-datetime.c" /* yacc.c:1646 */ break; case 52: #line 896 "parse-datetime.y" /* yacc.c:1646 */ { if (! apply_relative_time (pc, (yyvsp[0].rel), 1)) YYABORT; } #line 2282 "parse-datetime.c" /* yacc.c:1646 */ break; case 53: #line 898 "parse-datetime.y" /* yacc.c:1646 */ { if (! apply_relative_time (pc, (yyvsp[0].rel), 1)) YYABORT; } #line 2288 "parse-datetime.c" /* yacc.c:1646 */ break; case 54: #line 903 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).year = (yyvsp[-1].intval); } #line 2294 "parse-datetime.c" /* yacc.c:1646 */ break; case 55: #line 905 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).year = (yyvsp[-1].textintval).value; } #line 2300 "parse-datetime.c" /* yacc.c:1646 */ break; case 56: #line 907 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).year = 1; } #line 2306 "parse-datetime.c" /* yacc.c:1646 */ break; case 57: #line 909 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).month = (yyvsp[-1].intval); } #line 2312 "parse-datetime.c" /* yacc.c:1646 */ break; case 58: #line 911 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).month = (yyvsp[-1].textintval).value; } #line 2318 "parse-datetime.c" /* yacc.c:1646 */ break; case 59: #line 913 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).month = 1; } #line 2324 "parse-datetime.c" /* yacc.c:1646 */ break; case 60: #line 915 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; if (INT_MULTIPLY_WRAPV ((yyvsp[-1].intval), (yyvsp[0].intval), &(yyval.rel).day)) YYABORT; } #line 2331 "parse-datetime.c" /* yacc.c:1646 */ break; case 61: #line 918 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; if (INT_MULTIPLY_WRAPV ((yyvsp[-1].textintval).value, (yyvsp[0].intval), &(yyval.rel).day)) YYABORT; } #line 2338 "parse-datetime.c" /* yacc.c:1646 */ break; case 62: #line 921 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).day = (yyvsp[0].intval); } #line 2344 "parse-datetime.c" /* yacc.c:1646 */ break; case 63: #line 923 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).hour = (yyvsp[-1].intval); } #line 2350 "parse-datetime.c" /* yacc.c:1646 */ break; case 64: #line 925 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).hour = (yyvsp[-1].textintval).value; } #line 2356 "parse-datetime.c" /* yacc.c:1646 */ break; case 65: #line 927 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).hour = 1; } #line 2362 "parse-datetime.c" /* yacc.c:1646 */ break; case 66: #line 929 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).minutes = (yyvsp[-1].intval); } #line 2368 "parse-datetime.c" /* yacc.c:1646 */ break; case 67: #line 931 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).minutes = (yyvsp[-1].textintval).value; } #line 2374 "parse-datetime.c" /* yacc.c:1646 */ break; case 68: #line 933 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).minutes = 1; } #line 2380 "parse-datetime.c" /* yacc.c:1646 */ break; case 69: #line 935 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].intval); } #line 2386 "parse-datetime.c" /* yacc.c:1646 */ break; case 70: #line 937 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].textintval).value; } #line 2392 "parse-datetime.c" /* yacc.c:1646 */ break; case 71: #line 939 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].timespec).tv_sec; (yyval.rel).ns = (yyvsp[-1].timespec).tv_nsec; } #line 2398 "parse-datetime.c" /* yacc.c:1646 */ break; case 72: #line 941 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].timespec).tv_sec; (yyval.rel).ns = (yyvsp[-1].timespec).tv_nsec; } #line 2404 "parse-datetime.c" /* yacc.c:1646 */ break; case 73: #line 943 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = 1; } #line 2410 "parse-datetime.c" /* yacc.c:1646 */ break; case 75: #line 949 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).year = (yyvsp[-1].textintval).value; } #line 2416 "parse-datetime.c" /* yacc.c:1646 */ break; case 76: #line 951 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).month = (yyvsp[-1].textintval).value; } #line 2422 "parse-datetime.c" /* yacc.c:1646 */ break; case 77: #line 953 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; if (INT_MULTIPLY_WRAPV ((yyvsp[-1].textintval).value, (yyvsp[0].intval), &(yyval.rel).day)) YYABORT; } #line 2429 "parse-datetime.c" /* yacc.c:1646 */ break; case 78: #line 956 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).hour = (yyvsp[-1].textintval).value; } #line 2435 "parse-datetime.c" /* yacc.c:1646 */ break; case 79: #line 958 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).minutes = (yyvsp[-1].textintval).value; } #line 2441 "parse-datetime.c" /* yacc.c:1646 */ break; case 80: #line 960 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].textintval).value; } #line 2447 "parse-datetime.c" /* yacc.c:1646 */ break; case 81: #line 965 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).day = (yyvsp[0].intval); } #line 2453 "parse-datetime.c" /* yacc.c:1646 */ break; case 85: #line 973 "parse-datetime.y" /* yacc.c:1646 */ { if (time_overflow ((yyvsp[0].textintval).value)) YYABORT; (yyval.timespec).tv_sec = (yyvsp[0].textintval).value; (yyval.timespec).tv_nsec = 0; } #line 2460 "parse-datetime.c" /* yacc.c:1646 */ break; case 87: #line 980 "parse-datetime.y" /* yacc.c:1646 */ { if (time_overflow ((yyvsp[0].textintval).value)) YYABORT; (yyval.timespec).tv_sec = (yyvsp[0].textintval).value; (yyval.timespec).tv_nsec = 0; } #line 2467 "parse-datetime.c" /* yacc.c:1646 */ break; case 88: #line 986 "parse-datetime.y" /* yacc.c:1646 */ { digits_to_date_time (pc, (yyvsp[0].textintval)); } #line 2473 "parse-datetime.c" /* yacc.c:1646 */ break; case 89: #line 991 "parse-datetime.y" /* yacc.c:1646 */ { /* Hybrid all-digit and relative offset, so that we accept e.g., "YYYYMMDD +N days" as well as "YYYYMMDD N days". */ digits_to_date_time (pc, (yyvsp[-1].textintval)); if (! apply_relative_time (pc, (yyvsp[0].rel), 1)) YYABORT; } #line 2484 "parse-datetime.c" /* yacc.c:1646 */ break; case 90: #line 1001 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.intval) = -1; } #line 2490 "parse-datetime.c" /* yacc.c:1646 */ break; case 91: #line 1003 "parse-datetime.y" /* yacc.c:1646 */ { (yyval.intval) = (yyvsp[0].textintval).value; } #line 2496 "parse-datetime.c" /* yacc.c:1646 */ break; #line 2500 "parse-datetime.c" /* yacc.c:1646 */ default: break; } /* User semantic actions sometimes alter yychar, and that requires that yytoken be updated with the new translation. We take the approach of translating immediately before every use of yytoken. One alternative is translating here after every semantic action, but that translation would be missed if the semantic action invokes YYABORT, YYACCEPT, or YYERROR immediately after altering yychar or if it invokes YYBACKUP. In the case of YYABORT or YYACCEPT, an incorrect destructor might then be invoked immediately. In the case of YYERROR or YYBACKUP, subsequent parser actions might lead to an incorrect destructor call or verbose syntax error message before the lookahead is translated. */ YY_SYMBOL_PRINT ("-> $$ =", yyr1[yyn], &yyval, &yyloc); YYPOPSTACK (yylen); yylen = 0; YY_STACK_PRINT (yyss, yyssp); *++yyvsp = yyval; /* Now 'shift' the result of the reduction. Determine what state that goes to, based on the state we popped back to and the rule number reduced by. */ yyn = yyr1[yyn]; yystate = yypgoto[yyn - YYNTOKENS] + *yyssp; if (0 <= yystate && yystate <= YYLAST && yycheck[yystate] == *yyssp) yystate = yytable[yystate]; else yystate = yydefgoto[yyn - YYNTOKENS]; goto yynewstate; /*--------------------------------------. | yyerrlab -- here on detecting error. | `--------------------------------------*/ yyerrlab: /* Make sure we have latest lookahead translation. See comments at user semantic actions for why this is necessary. */ yytoken = yychar == YYEMPTY ? YYEMPTY : YYTRANSLATE (yychar); /* If not already recovering from an error, report this error. */ if (!yyerrstatus) { ++yynerrs; #if ! YYERROR_VERBOSE yyerror (pc, YY_("syntax error")); #else # define YYSYNTAX_ERROR yysyntax_error (&yymsg_alloc, &yymsg, \ yyssp, yytoken) { char const *yymsgp = YY_("syntax error"); int yysyntax_error_status; yysyntax_error_status = YYSYNTAX_ERROR; if (yysyntax_error_status == 0) yymsgp = yymsg; else if (yysyntax_error_status == 1) { if (yymsg != yymsgbuf) YYSTACK_FREE (yymsg); yymsg = (char *) YYSTACK_ALLOC (yymsg_alloc); if (!yymsg) { yymsg = yymsgbuf; yymsg_alloc = sizeof yymsgbuf; yysyntax_error_status = 2; } else { yysyntax_error_status = YYSYNTAX_ERROR; yymsgp = yymsg; } } yyerror (pc, yymsgp); if (yysyntax_error_status == 2) goto yyexhaustedlab; } # undef YYSYNTAX_ERROR #endif } if (yyerrstatus == 3) { /* If just tried and failed to reuse lookahead token after an error, discard it. */ if (yychar <= YYEOF) { /* Return failure if at end of input. */ if (yychar == YYEOF) YYABORT; } else { yydestruct ("Error: discarding", yytoken, &yylval, pc); yychar = YYEMPTY; } } /* Else will try to reuse lookahead token after shifting the error token. */ goto yyerrlab1; /*---------------------------------------------------. | yyerrorlab -- error raised explicitly by YYERROR. | `---------------------------------------------------*/ yyerrorlab: /* Pacify compilers like GCC when the user code never invokes YYERROR and the label yyerrorlab therefore never appears in user code. */ if (/*CONSTCOND*/ 0) goto yyerrorlab; /* Do not reclaim the symbols of the rule whose action triggered this YYERROR. */ YYPOPSTACK (yylen); yylen = 0; YY_STACK_PRINT (yyss, yyssp); yystate = *yyssp; goto yyerrlab1; /*-------------------------------------------------------------. | yyerrlab1 -- common code for both syntax error and YYERROR. | `-------------------------------------------------------------*/ yyerrlab1: yyerrstatus = 3; /* Each real token shifted decrements this. */ for (;;) { yyn = yypact[yystate]; if (!yypact_value_is_default (yyn)) { yyn += YYTERROR; if (0 <= yyn && yyn <= YYLAST && yycheck[yyn] == YYTERROR) { yyn = yytable[yyn]; if (0 < yyn) break; } } /* Pop the current state because it cannot handle the error token. */ if (yyssp == yyss) YYABORT; yydestruct ("Error: popping", yystos[yystate], yyvsp, pc); YYPOPSTACK (1); yystate = *yyssp; YY_STACK_PRINT (yyss, yyssp); } YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN *++yyvsp = yylval; YY_IGNORE_MAYBE_UNINITIALIZED_END /* Shift the error token. */ YY_SYMBOL_PRINT ("Shifting", yystos[yyn], yyvsp, yylsp); yystate = yyn; goto yynewstate; /*-------------------------------------. | yyacceptlab -- YYACCEPT comes here. | `-------------------------------------*/ yyacceptlab: yyresult = 0; goto yyreturn; /*-----------------------------------. | yyabortlab -- YYABORT comes here. | `-----------------------------------*/ yyabortlab: yyresult = 1; goto yyreturn; #if !defined yyoverflow || YYERROR_VERBOSE /*-------------------------------------------------. | yyexhaustedlab -- memory exhaustion comes here. | `-------------------------------------------------*/ yyexhaustedlab: yyerror (pc, YY_("memory exhausted")); yyresult = 2; /* Fall through. */ #endif yyreturn: if (yychar != YYEMPTY) { /* Make sure we have latest lookahead translation. See comments at user semantic actions for why this is necessary. */ yytoken = YYTRANSLATE (yychar); yydestruct ("Cleanup: discarding lookahead", yytoken, &yylval, pc); } /* Do not reclaim the symbols of the rule whose action triggered this YYABORT or YYACCEPT. */ YYPOPSTACK (yylen); YY_STACK_PRINT (yyss, yyssp); while (yyssp != yyss) { yydestruct ("Cleanup: popping", yystos[*yyssp], yyvsp, pc); YYPOPSTACK (1); } #ifndef yyoverflow if (yyss != yyssa) YYSTACK_FREE (yyss); #endif #if YYERROR_VERBOSE if (yymsg != yymsgbuf) YYSTACK_FREE (yymsg); #endif return yyresult; } #line 1006 "parse-datetime.y" /* yacc.c:1906 */ static table const meridian_table[] = { { "AM", tMERIDIAN, MERam }, { "A.M.", tMERIDIAN, MERam }, { "PM", tMERIDIAN, MERpm }, { "P.M.", tMERIDIAN, MERpm }, { NULL, 0, 0 } }; static table const dst_table[] = { { "DST", tDST, 0 } }; static table const month_and_day_table[] = { { "JANUARY", tMONTH, 1 }, { "FEBRUARY", tMONTH, 2 }, { "MARCH", tMONTH, 3 }, { "APRIL", tMONTH, 4 }, { "MAY", tMONTH, 5 }, { "JUNE", tMONTH, 6 }, { "JULY", tMONTH, 7 }, { "AUGUST", tMONTH, 8 }, { "SEPTEMBER",tMONTH, 9 }, { "SEPT", tMONTH, 9 }, { "OCTOBER", tMONTH, 10 }, { "NOVEMBER", tMONTH, 11 }, { "DECEMBER", tMONTH, 12 }, { "SUNDAY", tDAY, 0 }, { "MONDAY", tDAY, 1 }, { "TUESDAY", tDAY, 2 }, { "TUES", tDAY, 2 }, { "WEDNESDAY",tDAY, 3 }, { "WEDNES", tDAY, 3 }, { "THURSDAY", tDAY, 4 }, { "THUR", tDAY, 4 }, { "THURS", tDAY, 4 }, { "FRIDAY", tDAY, 5 }, { "SATURDAY", tDAY, 6 }, { NULL, 0, 0 } }; static table const time_units_table[] = { { "YEAR", tYEAR_UNIT, 1 }, { "MONTH", tMONTH_UNIT, 1 }, { "FORTNIGHT",tDAY_UNIT, 14 }, { "WEEK", tDAY_UNIT, 7 }, { "DAY", tDAY_UNIT, 1 }, { "HOUR", tHOUR_UNIT, 1 }, { "MINUTE", tMINUTE_UNIT, 1 }, { "MIN", tMINUTE_UNIT, 1 }, { "SECOND", tSEC_UNIT, 1 }, { "SEC", tSEC_UNIT, 1 }, { NULL, 0, 0 } }; /* Assorted relative-time words. */ static table const relative_time_table[] = { { "TOMORROW", tDAY_SHIFT, 1 }, { "YESTERDAY",tDAY_SHIFT, -1 }, { "TODAY", tDAY_SHIFT, 0 }, { "NOW", tDAY_SHIFT, 0 }, { "LAST", tORDINAL, -1 }, { "THIS", tORDINAL, 0 }, { "NEXT", tORDINAL, 1 }, { "FIRST", tORDINAL, 1 }, /*{ "SECOND", tORDINAL, 2 }, */ { "THIRD", tORDINAL, 3 }, { "FOURTH", tORDINAL, 4 }, { "FIFTH", tORDINAL, 5 }, { "SIXTH", tORDINAL, 6 }, { "SEVENTH", tORDINAL, 7 }, { "EIGHTH", tORDINAL, 8 }, { "NINTH", tORDINAL, 9 }, { "TENTH", tORDINAL, 10 }, { "ELEVENTH", tORDINAL, 11 }, { "TWELFTH", tORDINAL, 12 }, { "AGO", tAGO, -1 }, { "HENCE", tAGO, 1 }, { NULL, 0, 0 } }; /* The universal time zone table. These labels can be used even for timestamps that would not otherwise be valid, e.g., GMT timestamps oin London during summer. */ static table const universal_time_zone_table[] = { { "GMT", tZONE, HOUR ( 0) }, /* Greenwich Mean */ { "UT", tZONE, HOUR ( 0) }, /* Universal (Coordinated) */ { "UTC", tZONE, HOUR ( 0) }, { NULL, 0, 0 } }; /* The time zone table. This table is necessarily incomplete, as time zone abbreviations are ambiguous; e.g., Australians interpret "EST" as Eastern time in Australia, not as US Eastern Standard Time. You cannot rely on parse_datetime to handle arbitrary time zone abbreviations; use numeric abbreviations like "-0500" instead. */ static table const time_zone_table[] = { { "WET", tZONE, HOUR ( 0) }, /* Western European */ { "WEST", tDAYZONE, HOUR ( 0) }, /* Western European Summer */ { "BST", tDAYZONE, HOUR ( 0) }, /* British Summer */ { "ART", tZONE, -HOUR ( 3) }, /* Argentina */ { "BRT", tZONE, -HOUR ( 3) }, /* Brazil */ { "BRST", tDAYZONE, -HOUR ( 3) }, /* Brazil Summer */ { "NST", tZONE, -(HOUR ( 3) + 30 * 60) }, /* Newfoundland Standard */ { "NDT", tDAYZONE,-(HOUR ( 3) + 30 * 60) }, /* Newfoundland Daylight */ { "AST", tZONE, -HOUR ( 4) }, /* Atlantic Standard */ { "ADT", tDAYZONE, -HOUR ( 4) }, /* Atlantic Daylight */ { "CLT", tZONE, -HOUR ( 4) }, /* Chile */ { "CLST", tDAYZONE, -HOUR ( 4) }, /* Chile Summer */ { "EST", tZONE, -HOUR ( 5) }, /* Eastern Standard */ { "EDT", tDAYZONE, -HOUR ( 5) }, /* Eastern Daylight */ { "CST", tZONE, -HOUR ( 6) }, /* Central Standard */ { "CDT", tDAYZONE, -HOUR ( 6) }, /* Central Daylight */ { "MST", tZONE, -HOUR ( 7) }, /* Mountain Standard */ { "MDT", tDAYZONE, -HOUR ( 7) }, /* Mountain Daylight */ { "PST", tZONE, -HOUR ( 8) }, /* Pacific Standard */ { "PDT", tDAYZONE, -HOUR ( 8) }, /* Pacific Daylight */ { "AKST", tZONE, -HOUR ( 9) }, /* Alaska Standard */ { "AKDT", tDAYZONE, -HOUR ( 9) }, /* Alaska Daylight */ { "HST", tZONE, -HOUR (10) }, /* Hawaii Standard */ { "HAST", tZONE, -HOUR (10) }, /* Hawaii-Aleutian Standard */ { "HADT", tDAYZONE, -HOUR (10) }, /* Hawaii-Aleutian Daylight */ { "SST", tZONE, -HOUR (12) }, /* Samoa Standard */ { "WAT", tZONE, HOUR ( 1) }, /* West Africa */ { "CET", tZONE, HOUR ( 1) }, /* Central European */ { "CEST", tDAYZONE, HOUR ( 1) }, /* Central European Summer */ { "MET", tZONE, HOUR ( 1) }, /* Middle European */ { "MEZ", tZONE, HOUR ( 1) }, /* Middle European */ { "MEST", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */ { "MESZ", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */ { "EET", tZONE, HOUR ( 2) }, /* Eastern European */ { "EEST", tDAYZONE, HOUR ( 2) }, /* Eastern European Summer */ { "CAT", tZONE, HOUR ( 2) }, /* Central Africa */ { "SAST", tZONE, HOUR ( 2) }, /* South Africa Standard */ { "EAT", tZONE, HOUR ( 3) }, /* East Africa */ { "MSK", tZONE, HOUR ( 3) }, /* Moscow */ { "MSD", tDAYZONE, HOUR ( 3) }, /* Moscow Daylight */ { "IST", tZONE, (HOUR ( 5) + 30 * 60) }, /* India Standard */ { "SGT", tZONE, HOUR ( 8) }, /* Singapore */ { "KST", tZONE, HOUR ( 9) }, /* Korea Standard */ { "JST", tZONE, HOUR ( 9) }, /* Japan Standard */ { "GST", tZONE, HOUR (10) }, /* Guam Standard */ { "NZST", tZONE, HOUR (12) }, /* New Zealand Standard */ { "NZDT", tDAYZONE, HOUR (12) }, /* New Zealand Daylight */ { NULL, 0, 0 } }; /* Military time zone table. Note 'T' is a special case, as it is used as the separator in ISO 8601 date and time of day representation. */ static table const military_table[] = { { "A", tZONE, -HOUR ( 1) }, { "B", tZONE, -HOUR ( 2) }, { "C", tZONE, -HOUR ( 3) }, { "D", tZONE, -HOUR ( 4) }, { "E", tZONE, -HOUR ( 5) }, { "F", tZONE, -HOUR ( 6) }, { "G", tZONE, -HOUR ( 7) }, { "H", tZONE, -HOUR ( 8) }, { "I", tZONE, -HOUR ( 9) }, { "K", tZONE, -HOUR (10) }, { "L", tZONE, -HOUR (11) }, { "M", tZONE, -HOUR (12) }, { "N", tZONE, HOUR ( 1) }, { "O", tZONE, HOUR ( 2) }, { "P", tZONE, HOUR ( 3) }, { "Q", tZONE, HOUR ( 4) }, { "R", tZONE, HOUR ( 5) }, { "S", tZONE, HOUR ( 6) }, { "T", 'T', 0 }, { "U", tZONE, HOUR ( 8) }, { "V", tZONE, HOUR ( 9) }, { "W", tZONE, HOUR (10) }, { "X", tZONE, HOUR (11) }, { "Y", tZONE, HOUR (12) }, { "Z", tZONE, HOUR ( 0) }, { NULL, 0, 0 } }; /* Convert a time zone expressed as HH:MM into an integer count of seconds. If MM is negative, then S is of the form HHMM and needs to be picked apart; otherwise, S is of the form HH. As specified in http://www.opengroup.org/susv3xbd/xbd_chap08.html#tag_08_03, allow only valid TZ range, and consider first two digits as hours, if no minutes specified. Return true if successful. */ static bool time_zone_hhmm (parser_control *pc, textint s, intmax_t mm) { intmax_t n_minutes; bool overflow = false; /* If the length of S is 1 or 2 and no minutes are specified, interpret it as a number of hours. */ if (s.digits <= 2 && mm < 0) s.value *= 100; if (mm < 0) n_minutes = (s.value / 100) * 60 + s.value % 100; else { overflow |= INT_MULTIPLY_WRAPV (s.value, 60, &n_minutes); overflow |= (s.negative ? INT_SUBTRACT_WRAPV (n_minutes, mm, &n_minutes) : INT_ADD_WRAPV (n_minutes, mm, &n_minutes)); } if (overflow || ! (-24 * 60 <= n_minutes && n_minutes <= 24 * 60)) return false; pc->time_zone = n_minutes * 60; return true; } static int to_hour (intmax_t hours, int meridian) { switch (meridian) { default: /* Pacify GCC. */ case MER24: return 0 <= hours && hours < 24 ? hours : -1; case MERam: return 0 < hours && hours < 12 ? hours : hours == 12 ? 0 : -1; case MERpm: return 0 < hours && hours < 12 ? hours + 12 : hours == 12 ? 12 : -1; } } enum { TM_YEAR_BASE = 1900 }; enum { TM_YEAR_BUFSIZE = INT_BUFSIZE_BOUND (int) + 1 }; /* Convert TM_YEAR, a year minus 1900, to a string that is numerically correct even if subtracting 1900 would overflow. */ static char const * tm_year_str (int tm_year, char buf[TM_YEAR_BUFSIZE]) { verify (TM_YEAR_BASE % 100 == 0); sprintf (buf, &"-%02d%02d"[-TM_YEAR_BASE <= tm_year], abs (tm_year / 100 + TM_YEAR_BASE / 100), abs (tm_year % 100)); return buf; } /* Convert a text year number to a year minus 1900, working correctly even if the input is in the range INT_MAX .. INT_MAX + 1900 - 1. */ static bool to_tm_year (textint textyear, bool debug, int *tm_year) { intmax_t year = textyear.value; /* XPG4 suggests that years 00-68 map to 2000-2068, and years 69-99 map to 1969-1999. */ if (0 <= year && textyear.digits == 2) { year += year < 69 ? 2000 : 1900; if (debug) dbg_printf (_("warning: adjusting year value %"PRIdMAX " to %"PRIdMAX"\n"), textyear.value, year); } if (year < 0 ? INT_SUBTRACT_WRAPV (-TM_YEAR_BASE, year, tm_year) : INT_SUBTRACT_WRAPV (year, TM_YEAR_BASE, tm_year)) { if (debug) dbg_printf (_("error: out-of-range year %"PRIdMAX"\n"), year); return false; } return true; } static table const * _GL_ATTRIBUTE_PURE lookup_zone (parser_control const *pc, char const *name) { table const *tp; for (tp = universal_time_zone_table; tp->name; tp++) if (strcmp (name, tp->name) == 0) return tp; /* Try local zone abbreviations before those in time_zone_table, as the local ones are more likely to be right. */ for (tp = pc->local_time_zone_table; tp->name; tp++) if (strcmp (name, tp->name) == 0) return tp; for (tp = time_zone_table; tp->name; tp++) if (strcmp (name, tp->name) == 0) return tp; return NULL; } #if ! HAVE_TM_GMTOFF /* Yield the difference between *A and *B, measured in seconds, ignoring leap seconds. The body of this function is taken directly from the GNU C Library; see strftime.c. */ static int tm_diff (const struct tm *a, const struct tm *b) { /* Compute intervening leap days correctly even if year is negative. Take care to avoid int overflow in leap day calculations, but it's OK to assume that A and B are close to each other. */ int a4 = SHR (a->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (a->tm_year & 3); int b4 = SHR (b->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (b->tm_year & 3); int a100 = a4 / 25 - (a4 % 25 < 0); int b100 = b4 / 25 - (b4 % 25 < 0); int a400 = SHR (a100, 2); int b400 = SHR (b100, 2); int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); int years = a->tm_year - b->tm_year; int days = (365 * years + intervening_leap_days + (a->tm_yday - b->tm_yday)); return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour)) + (a->tm_min - b->tm_min)) + (a->tm_sec - b->tm_sec)); } #endif /* ! HAVE_TM_GMTOFF */ static table const * lookup_word (parser_control const *pc, char *word) { char *p; char *q; ptrdiff_t wordlen; table const *tp; bool period_found; bool abbrev; /* Make it uppercase. */ for (p = word; *p; p++) *p = c_toupper (to_uchar (*p)); for (tp = meridian_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; /* See if we have an abbreviation for a month. */ wordlen = strlen (word); abbrev = wordlen == 3 || (wordlen == 4 && word[3] == '.'); for (tp = month_and_day_table; tp->name; tp++) if ((abbrev ? strncmp (word, tp->name, 3) : strcmp (word, tp->name)) == 0) return tp; if ((tp = lookup_zone (pc, word))) return tp; if (strcmp (word, dst_table[0].name) == 0) return dst_table; for (tp = time_units_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; /* Strip off any plural and try the units table again. */ if (word[wordlen - 1] == 'S') { word[wordlen - 1] = '\0'; for (tp = time_units_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; word[wordlen - 1] = 'S'; /* For "this" in relative_time_table. */ } for (tp = relative_time_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; /* Military time zones. */ if (wordlen == 1) for (tp = military_table; tp->name; tp++) if (word[0] == tp->name[0]) return tp; /* Drop out any periods and try the time zone table again. */ for (period_found = false, p = q = word; (*p = *q); q++) if (*q == '.') period_found = true; else p++; if (period_found && (tp = lookup_zone (pc, word))) return tp; return NULL; } static int yylex (union YYSTYPE *lvalp, parser_control *pc) { unsigned char c; for (;;) { while (c = *pc->input, c_isspace (c)) pc->input++; if (c_isdigit (c) || c == '-' || c == '+') { char const *p; int sign; intmax_t value = 0; if (c == '-' || c == '+') { sign = c == '-' ? -1 : 1; while (c = *++pc->input, c_isspace (c)) continue; if (! c_isdigit (c)) /* skip the '-' sign */ continue; } else sign = 0; p = pc->input; do { if (INT_MULTIPLY_WRAPV (value, 10, &value)) return '?'; if (INT_ADD_WRAPV (value, sign < 0 ? '0' - c : c - '0', &value)) return '?'; c = *++p; } while (c_isdigit (c)); if ((c == '.' || c == ',') && c_isdigit (p[1])) { time_t s; int ns; int digits; if (time_overflow (value)) return '?'; s = value; /* Accumulate fraction, to ns precision. */ p++; ns = *p++ - '0'; for (digits = 2; digits <= LOG10_BILLION; digits++) { ns *= 10; if (c_isdigit (*p)) ns += *p++ - '0'; } /* Skip excess digits, truncating toward -Infinity. */ if (sign < 0) for (; c_isdigit (*p); p++) if (*p != '0') { ns++; break; } while (c_isdigit (*p)) p++; /* Adjust to the timespec convention, which is that tv_nsec is always a positive offset even if tv_sec is negative. */ if (sign < 0 && ns) { if (s == TYPE_MINIMUM (time_t)) return '?'; s--; ns = BILLION - ns; } lvalp->timespec.tv_sec = s; lvalp->timespec.tv_nsec = ns; pc->input = p; return sign ? tSDECIMAL_NUMBER : tUDECIMAL_NUMBER; } else { lvalp->textintval.negative = sign < 0; lvalp->textintval.value = value; lvalp->textintval.digits = p - pc->input; pc->input = p; return sign ? tSNUMBER : tUNUMBER; } } if (c_isalpha (c)) { char buff[20]; char *p = buff; table const *tp; do { if (p < buff + sizeof buff - 1) *p++ = c; c = *++pc->input; } while (c_isalpha (c) || c == '.'); *p = '\0'; tp = lookup_word (pc, buff); if (! tp) { if (pc->parse_datetime_debug) dbg_printf (_("error: unknown word '%s'\n"), buff); return '?'; } lvalp->intval = tp->value; return tp->type; } if (c != '(') return to_uchar (*pc->input++); ptrdiff_t count = 0; do { c = *pc->input++; if (c == '\0') return c; if (c == '(') count++; else if (c == ')') count--; } while (count != 0); } } /* Do nothing if the parser reports an error. */ static int yyerror (parser_control const *pc _GL_UNUSED, char const *s _GL_UNUSED) { return 0; } /* In timezone TZ, if *TM0 is the old and *TM1 is the new value of a struct tm after passing it to mktime_z, return true if it's OK that mktime_z returned T. It's not OK if *TM0 has out-of-range members. */ static bool mktime_ok (timezone_t tz, struct tm const *tm0, struct tm const *tm1, time_t t) { struct tm ltm; if (t == (time_t) -1) { /* Guard against falsely reporting an error when parsing a timestamp that happens to equal (time_t) -1, on a host that supports such a timestamp. */ tm1 = localtime_rz (tz, &t, <m); if (!tm1) return false; } return ! ((tm0->tm_sec ^ tm1->tm_sec) | (tm0->tm_min ^ tm1->tm_min) | (tm0->tm_hour ^ tm1->tm_hour) | (tm0->tm_mday ^ tm1->tm_mday) | (tm0->tm_mon ^ tm1->tm_mon) | (tm0->tm_year ^ tm1->tm_year)); } /* Debugging: format a 'struct tm' into a buffer, taking the parser's timezone information into account (if pc != NULL). */ static char const * debug_strfdatetime (struct tm const *tm, parser_control const *pc, char *buf, int n) { /* TODO: 1. find an optimal way to print date string in a clear and unambiguous format. Currently, always add '(Y-M-D)' prefix. Consider '2016y01m10d' or 'year(2016) month(01) day(10)'. If the user needs debug printing, it means he/she already having issues with the parsing - better to avoid formats that could be mis-interpreted (e.g., just YYYY-MM-DD). 2. Can strftime be used instead? depends if it is portable and can print invalid dates on all systems. 3. Print timezone information ? 4. Print DST information ? 5. Print nanosecond information ? NOTE: Printed date/time values might not be valid, e.g., '2016-02-31' or '2016-19-2016' . These are the values as parsed from the user string, before validation. */ int m = nstrftime (buf, n, "(Y-M-D) %Y-%m-%d %H:%M:%S", tm, 0, 0); /* If parser_control information was provided (for timezone), and there's enough space in the buffer, add timezone info. */ if (pc && m < n && pc->zones_seen) { int tz = pc->time_zone; /* Account for DST if tLOCAL_ZONE was seen. */ if (pc->local_zones_seen && !pc->zones_seen && 0 < pc->local_isdst) tz += 60 * 60; char time_zone_buf[TIME_ZONE_BUFSIZE]; snprintf (&buf[m], n - m, " TZ=%s", time_zone_str (tz, time_zone_buf)); } return buf; } static char const * debug_strfdate (struct tm const *tm, char *buf, int n) { char tm_year_buf[TM_YEAR_BUFSIZE]; snprintf (buf, n, "(Y-M-D) %s-%02d-%02d", tm_year_str (tm->tm_year, tm_year_buf), tm->tm_mon + 1, tm->tm_mday); return buf; } static char const * debug_strftime (struct tm const *tm, char *buf, int n) { snprintf (buf, n, "%02d:%02d:%02d", tm->tm_hour, tm->tm_min, tm->tm_sec); return buf; } /* If mktime_ok failed, display the failed time values, and provide possible hints. Example output: date: error: invalid date/time value: date: user provided time: '(Y-M-D) 2006-04-02 02:45:00' date: normalized time: '(Y-M-D) 2006-04-02 03:45:00' date: __ date: possible reasons: date: non-existing due to daylight-saving time; date: numeric values overflow; date: missing timezone; */ static void debug_mktime_not_ok (struct tm const *tm0, struct tm const *tm1, parser_control const *pc, bool time_zone_seen) { /* TODO: handle t == -1 (as in 'mktime_ok'). */ char tmp[DBGBUFSIZE]; int i; const bool eq_sec = (tm0->tm_sec == tm1->tm_sec); const bool eq_min = (tm0->tm_min == tm1->tm_min); const bool eq_hour = (tm0->tm_hour == tm1->tm_hour); const bool eq_mday = (tm0->tm_mday == tm1->tm_mday); const bool eq_month = (tm0->tm_mon == tm1->tm_mon); const bool eq_year = (tm0->tm_year == tm1->tm_year); const bool dst_shift = eq_sec && eq_min && !eq_hour && eq_mday && eq_month && eq_year; if (!pc->parse_datetime_debug) return; dbg_printf (_("error: invalid date/time value:\n")); dbg_printf (_(" user provided time: '%s'\n"), debug_strfdatetime (tm0, pc, tmp, sizeof tmp)); dbg_printf (_(" normalized time: '%s'\n"), debug_strfdatetime (tm1, pc, tmp, sizeof tmp)); /* The format must be aligned with debug_strfdatetime and the two DEBUG statements above. This string is not translated. */ i = snprintf (tmp, sizeof tmp, " %4s %2s %2s %2s %2s %2s", eq_year ? "" : "----", eq_month ? "" : "--", eq_mday ? "" : "--", eq_hour ? "" : "--", eq_min ? "" : "--", eq_sec ? "" : "--"); /* Trim trailing whitespace. */ if (0 <= i) { if (sizeof tmp - 1 < i) i = sizeof tmp - 1; while (0 < i && tmp[i - 1] == ' ') --i; tmp[i] = '\0'; } dbg_printf ("%s\n", tmp); dbg_printf (_(" possible reasons:\n")); if (dst_shift) dbg_printf (_(" non-existing due to daylight-saving time;\n")); if (!eq_mday && !eq_month) dbg_printf (_(" invalid day/month combination;\n")); dbg_printf (_(" numeric values overflow;\n")); dbg_printf (" %s\n", (time_zone_seen ? _("incorrect timezone") : _("missing timezone"))); } /* The original interface: run with debug=false and the default timezone. */ bool parse_datetime (struct timespec *result, char const *p, struct timespec const *now) { char const *tzstring = getenv ("TZ"); timezone_t tz = tzalloc (tzstring); if (!tz) return false; bool ok = parse_datetime2 (result, p, now, 0, tz, tzstring); tzfree (tz); return ok; } /* Parse a date/time string, storing the resulting time value into *RESULT. The string itself is pointed to by P. Return true if successful. P can be an incomplete or relative time specification; if so, use *NOW as the basis for the returned time. Default to timezone TZDEFAULT, which corresponds to tzalloc (TZSTRING). */ bool parse_datetime2 (struct timespec *result, char const *p, struct timespec const *now, unsigned int flags, timezone_t tzdefault, char const *tzstring) { struct tm tm; struct tm tm0; char time_zone_buf[TIME_ZONE_BUFSIZE]; char dbg_tm[DBGBUFSIZE]; bool ok = false; char const *input_sentinel = p + strlen (p); char *tz1alloc = NULL; /* A reasonable upper bound for the size of ordinary TZ strings. Use heap allocation if TZ's length exceeds this. */ enum { TZBUFSIZE = 100 }; char tz1buf[TZBUFSIZE]; struct timespec gettime_buffer; if (! now) { gettime (&gettime_buffer); now = &gettime_buffer; } time_t Start = now->tv_sec; int Start_ns = now->tv_nsec; unsigned char c; while (c = *p, c_isspace (c)) p++; timezone_t tz = tzdefault; if (strncmp (p, "TZ=\"", 4) == 0) { char const *tzbase = p + 4; ptrdiff_t tzsize = 1; char const *s; for (s = tzbase; *s; s++, tzsize++) if (*s == '\\') { s++; if (! (*s == '\\' || *s == '"')) break; } else if (*s == '"') { timezone_t tz1; char *tz1string = tz1buf; char *z; if (TZBUFSIZE < tzsize) { tz1alloc = malloc (tzsize); if (!tz1alloc) goto fail; tz1string = tz1alloc; } z = tz1string; for (s = tzbase; *s != '"'; s++) *z++ = *(s += *s == '\\'); *z = '\0'; tz1 = tzalloc (tz1string); if (!tz1) goto fail; tz = tz1; tzstring = tz1string; p = s + 1; while (c = *p, c_isspace (c)) p++; break; } } struct tm tmp; if (! localtime_rz (tz, &now->tv_sec, &tmp)) goto fail; /* As documented, be careful to treat the empty string just like a date string of "0". Without this, an empty string would be declared invalid when parsed during a DST transition. */ if (*p == '\0') p = "0"; parser_control pc; pc.input = p; pc.parse_datetime_debug = (flags & PARSE_DATETIME_DEBUG) != 0; if (INT_ADD_WRAPV (tmp.tm_year, TM_YEAR_BASE, &pc.year.value)) { if (pc.parse_datetime_debug) dbg_printf (_("error: initial year out of range\n")); goto fail; } pc.year.digits = 0; pc.month = tmp.tm_mon + 1; pc.day = tmp.tm_mday; pc.hour = tmp.tm_hour; pc.minutes = tmp.tm_min; pc.seconds.tv_sec = tmp.tm_sec; pc.seconds.tv_nsec = Start_ns; tm.tm_isdst = tmp.tm_isdst; pc.meridian = MER24; pc.rel = RELATIVE_TIME_0; pc.timespec_seen = false; pc.rels_seen = false; pc.dates_seen = 0; pc.days_seen = 0; pc.times_seen = 0; pc.local_zones_seen = 0; pc.dsts_seen = 0; pc.zones_seen = 0; pc.year_seen = false; pc.debug_dates_seen = false; pc.debug_days_seen = false; pc.debug_times_seen = false; pc.debug_local_zones_seen = false; pc.debug_zones_seen = false; pc.debug_year_seen = false; pc.debug_ordinal_day_seen = false; #if HAVE_STRUCT_TM_TM_ZONE pc.local_time_zone_table[0].name = tmp.tm_zone; pc.local_time_zone_table[0].type = tLOCAL_ZONE; pc.local_time_zone_table[0].value = tmp.tm_isdst; pc.local_time_zone_table[1].name = NULL; /* Probe the names used in the next three calendar quarters, looking for a tm_isdst different from the one we already have. */ { int quarter; for (quarter = 1; quarter <= 3; quarter++) { intmax_t iprobe; if (INT_ADD_WRAPV (Start, quarter * (90 * 24 * 60 * 60), &iprobe) || time_overflow (iprobe)) break; time_t probe = iprobe; struct tm probe_tm; if (localtime_rz (tz, &probe, &probe_tm) && probe_tm.tm_zone && probe_tm.tm_isdst != pc.local_time_zone_table[0].value) { { pc.local_time_zone_table[1].name = probe_tm.tm_zone; pc.local_time_zone_table[1].type = tLOCAL_ZONE; pc.local_time_zone_table[1].value = probe_tm.tm_isdst; pc.local_time_zone_table[2].name = NULL; } break; } } } #else #if HAVE_TZNAME { # if !HAVE_DECL_TZNAME extern char *tzname[]; # endif int i; for (i = 0; i < 2; i++) { pc.local_time_zone_table[i].name = tzname[i]; pc.local_time_zone_table[i].type = tLOCAL_ZONE; pc.local_time_zone_table[i].value = i; } pc.local_time_zone_table[i].name = NULL; } #else pc.local_time_zone_table[0].name = NULL; #endif #endif if (pc.local_time_zone_table[0].name && pc.local_time_zone_table[1].name && ! strcmp (pc.local_time_zone_table[0].name, pc.local_time_zone_table[1].name)) { /* This locale uses the same abbreviation for standard and daylight times. So if we see that abbreviation, we don't know whether it's daylight time. */ pc.local_time_zone_table[0].value = -1; pc.local_time_zone_table[1].name = NULL; } if (yyparse (&pc) != 0) { if (pc.parse_datetime_debug) dbg_printf ((input_sentinel <= pc.input ? _("error: parsing failed\n") : _("error: parsing failed, stopped at '%s'\n")), pc.input); goto fail; } /* Determine effective timezone source. */ if (pc.parse_datetime_debug) { dbg_printf (_("input timezone: ")); if (pc.timespec_seen) fprintf (stderr, _("'@timespec' - always UTC")); else if (pc.zones_seen) fprintf (stderr, _("parsed date/time string")); else if (tzstring) { if (tz != tzdefault) fprintf (stderr, _("TZ=\"%s\" in date string"), tzstring); else if (STREQ (tzstring, "UTC0")) { /* Special case: 'date -u' sets TZ="UTC0". */ fprintf (stderr, _("TZ=\"UTC0\" environment value or -u")); } else fprintf (stderr, _("TZ=\"%s\" environment value"), tzstring); } else fprintf (stderr, _("system default")); /* Account for DST changes if tLOCAL_ZONE was seen. local timezone only changes DST and is relative to the default timezone.*/ if (pc.local_zones_seen && !pc.zones_seen && 0 < pc.local_isdst) fprintf (stderr, ", dst"); if (pc.zones_seen) fprintf (stderr, " (%s)", time_zone_str (pc.time_zone, time_zone_buf)); fputc ('\n', stderr); } if (pc.timespec_seen) *result = pc.seconds; else { if (1 < (pc.times_seen | pc.dates_seen | pc.days_seen | pc.dsts_seen | (pc.local_zones_seen + pc.zones_seen))) { if (pc.parse_datetime_debug) { if (pc.times_seen > 1) dbg_printf ("error: seen multiple time parts\n"); if (pc.dates_seen > 1) dbg_printf ("error: seen multiple date parts\n"); if (pc.days_seen > 1) dbg_printf ("error: seen multiple days parts\n"); if (pc.dsts_seen > 1) dbg_printf ("error: seen multiple daylight-saving parts\n"); if ((pc.local_zones_seen + pc.zones_seen) > 1) dbg_printf ("error: seen multiple time-zone parts\n"); } goto fail; } if (! to_tm_year (pc.year, pc.parse_datetime_debug, &tm.tm_year) || INT_ADD_WRAPV (pc.month, -1, &tm.tm_mon) || INT_ADD_WRAPV (pc.day, 0, &tm.tm_mday)) { if (pc.parse_datetime_debug) dbg_printf (_("error: year, month, or day overflow\n")); goto fail; } if (pc.times_seen || (pc.rels_seen && ! pc.dates_seen && ! pc.days_seen)) { tm.tm_hour = to_hour (pc.hour, pc.meridian); if (tm.tm_hour < 0) { char const *mrd = (pc.meridian == MERam ? "am" : pc.meridian == MERpm ?"pm" : ""); if (pc.parse_datetime_debug) dbg_printf (_("error: invalid hour %"PRIdMAX"%s\n"), pc.hour, mrd); goto fail; } tm.tm_min = pc.minutes; tm.tm_sec = pc.seconds.tv_sec; if (pc.parse_datetime_debug) dbg_printf ((pc.times_seen ? _("using specified time as starting value: '%s'\n") : _("using current time as starting value: '%s'\n")), debug_strftime (&tm, dbg_tm, sizeof dbg_tm)); } else { tm.tm_hour = tm.tm_min = tm.tm_sec = 0; pc.seconds.tv_nsec = 0; if (pc.parse_datetime_debug) dbg_printf ("warning: using midnight as starting time: 00:00:00\n"); } /* Let mktime deduce tm_isdst if we have an absolute timestamp. */ if (pc.dates_seen | pc.days_seen | pc.times_seen) tm.tm_isdst = -1; /* But if the input explicitly specifies local time with or without DST, give mktime that information. */ if (pc.local_zones_seen) tm.tm_isdst = pc.local_isdst; tm0.tm_sec = tm.tm_sec; tm0.tm_min = tm.tm_min; tm0.tm_hour = tm.tm_hour; tm0.tm_mday = tm.tm_mday; tm0.tm_mon = tm.tm_mon; tm0.tm_year = tm.tm_year; tm0.tm_isdst = tm.tm_isdst; Start = mktime_z (tz, &tm); if (! mktime_ok (tz, &tm0, &tm, Start)) { bool repaired = false; bool time_zone_seen = pc.zones_seen != 0; if (time_zone_seen) { /* Guard against falsely reporting errors near the time_t boundaries when parsing times in other time zones. For example, suppose the input string "1969-12-31 23:00:00 -0100", the current time zone is 8 hours ahead of UTC, and the min time_t value is 1970-01-01 00:00:00 UTC. Then the min localtime value is 1970-01-01 08:00:00, and mktime will therefore fail on 1969-12-31 23:00:00. To work around the problem, set the time zone to 1 hour behind UTC temporarily by setting TZ="XXX1:00" and try mktime again. */ char tz2buf[sizeof "XXX" - 1 + TIME_ZONE_BUFSIZE]; tz2buf[0] = tz2buf[1] = tz2buf[2] = 'X'; time_zone_str (pc.time_zone, &tz2buf[3]); timezone_t tz2 = tzalloc (tz2buf); if (!tz2) { if (pc.parse_datetime_debug) dbg_printf (_("error: tzalloc (\"%s\") failed\n"), tz2buf); goto fail; } tm.tm_sec = tm0.tm_sec; tm.tm_min = tm0.tm_min; tm.tm_hour = tm0.tm_hour; tm.tm_mday = tm0.tm_mday; tm.tm_mon = tm0.tm_mon; tm.tm_year = tm0.tm_year; tm.tm_isdst = tm0.tm_isdst; Start = mktime_z (tz2, &tm); repaired = mktime_ok (tz2, &tm0, &tm, Start); tzfree (tz2); } if (! repaired) { debug_mktime_not_ok (&tm0, &tm, &pc, time_zone_seen); goto fail; } } char dbg_ord[DBGBUFSIZE]; if (pc.days_seen && ! pc.dates_seen) { intmax_t dayincr; if (INT_MULTIPLY_WRAPV ((pc.day_ordinal - (0 < pc.day_ordinal && tm.tm_wday != pc.day_number)), 7, &dayincr) || INT_ADD_WRAPV ((pc.day_number - tm.tm_wday + 7) % 7, dayincr, &dayincr) || INT_ADD_WRAPV (dayincr, tm.tm_mday, &tm.tm_mday)) Start = -1; else { tm.tm_isdst = -1; Start = mktime_z (tz, &tm); } if (Start == (time_t) -1) { if (pc.parse_datetime_debug) dbg_printf (_("error: day '%s' " "(day ordinal=%"PRIdMAX" number=%d) " "resulted in an invalid date: '%s'\n"), str_days (&pc, dbg_ord, sizeof dbg_ord), pc.day_ordinal, pc.day_number, debug_strfdatetime (&tm, &pc, dbg_tm, sizeof dbg_tm)); goto fail; } if (pc.parse_datetime_debug) dbg_printf (_("new start date: '%s' is '%s'\n"), str_days (&pc, dbg_ord, sizeof dbg_ord), debug_strfdatetime (&tm, &pc, dbg_tm, sizeof dbg_tm)); } if (pc.parse_datetime_debug) { if (!pc.dates_seen && !pc.days_seen) dbg_printf (_("using current date as starting value: '%s'\n"), debug_strfdate (&tm, dbg_tm, sizeof dbg_tm)); if (pc.days_seen && pc.dates_seen) dbg_printf (_("warning: day (%s) ignored when explicit dates " "are given\n"), str_days (&pc, dbg_ord, sizeof dbg_ord)); dbg_printf (_("starting date/time: '%s'\n"), debug_strfdatetime (&tm, &pc, dbg_tm, sizeof dbg_tm)); } /* Add relative date. */ if (pc.rel.year | pc.rel.month | pc.rel.day) { if (pc.parse_datetime_debug) { if ((pc.rel.year != 0 || pc.rel.month != 0) && tm.tm_mday != 15) dbg_printf (_("warning: when adding relative months/years, " "it is recommended to specify the 15th of the " "months\n")); if (pc.rel.day != 0 && tm.tm_hour != 12) dbg_printf (_("warning: when adding relative days, " "it is recommended to specify noon\n")); } int year, month, day; if (INT_ADD_WRAPV (tm.tm_year, pc.rel.year, &year) || INT_ADD_WRAPV (tm.tm_mon, pc.rel.month, &month) || INT_ADD_WRAPV (tm.tm_mday, pc.rel.day, &day)) { if (pc.parse_datetime_debug) dbg_printf (_("error: %s:%d\n"), __FILE__, __LINE__); goto fail; } tm.tm_year = year; tm.tm_mon = month; tm.tm_mday = day; tm.tm_hour = tm0.tm_hour; tm.tm_min = tm0.tm_min; tm.tm_sec = tm0.tm_sec; tm.tm_isdst = tm0.tm_isdst; Start = mktime_z (tz, &tm); if (Start == (time_t) -1) { if (pc.parse_datetime_debug) dbg_printf (_("error: adding relative date resulted " "in an invalid date: '%s'\n"), debug_strfdatetime (&tm, &pc, dbg_tm, sizeof dbg_tm)); goto fail; } if (pc.parse_datetime_debug) { dbg_printf (_("after date adjustment " "(%+"PRIdMAX" years, %+"PRIdMAX" months, " "%+"PRIdMAX" days),\n"), pc.rel.year, pc.rel.month, pc.rel.day); dbg_printf (_(" new date/time = '%s'\n"), debug_strfdatetime (&tm, &pc, dbg_tm, sizeof dbg_tm)); /* Warn about crossing DST due to time adjustment. Example: https://bugs.gnu.org/8357 env TZ=Europe/Helsinki \ date --debug \ -d 'Mon Mar 28 00:36:07 2011 EEST 1 day ago' This case is different than DST changes due to time adjustment, i.e., "1 day ago" vs "24 hours ago" are calculated in different places. 'tm0.tm_isdst' contains the DST of the input date, 'tm.tm_isdst' is the normalized result after calling mktime (&tm). */ if (tm0.tm_isdst != -1 && tm.tm_isdst != tm0.tm_isdst) dbg_printf (_("warning: daylight saving time changed after " "date adjustment\n")); /* Warn if the user did not ask to adjust days but mday changed, or user did not ask to adjust months/days but the month changed. Example for first case: 2016-05-31 + 1 month => 2016-06-31 => 2016-07-01. User asked to adjust month, but the day changed from 31 to 01. Example for second case: 2016-02-29 + 1 year => 2017-02-29 => 2017-03-01. User asked to adjust year, but the month changed from 02 to 03. */ if (pc.rel.day == 0 && (tm.tm_mday != day || (pc.rel.month == 0 && tm.tm_mon != month))) { dbg_printf (_("warning: month/year adjustment resulted in " "shifted dates:\n")); char tm_year_buf[TM_YEAR_BUFSIZE]; dbg_printf (_(" adjusted Y M D: %s %02d %02d\n"), tm_year_str (year, tm_year_buf), month + 1, day); dbg_printf (_(" normalized Y M D: %s %02d %02d\n"), tm_year_str (tm.tm_year, tm_year_buf), tm.tm_mon + 1, tm.tm_mday); } } } /* The only "output" of this if-block is an updated Start value, so this block must follow others that clobber Start. */ if (pc.zones_seen) { intmax_t delta = pc.time_zone, t1; bool overflow = false; #ifdef HAVE_TM_GMTOFF long int utcoff = tm.tm_gmtoff; #else time_t t = Start; struct tm gmt; int utcoff = (gmtime_r (&t, &gmt) ? tm_diff (&tm, &gmt) : (overflow = true, 0)); #endif overflow |= INT_SUBTRACT_WRAPV (delta, utcoff, &delta); overflow |= INT_SUBTRACT_WRAPV (Start, delta, &t1); if (overflow || time_overflow (t1)) { if (pc.parse_datetime_debug) dbg_printf (_("error: timezone %d caused time_t overflow\n"), pc.time_zone); goto fail; } Start = t1; } if (pc.parse_datetime_debug) { intmax_t Starti = Start; dbg_printf (_("'%s' = %"PRIdMAX" epoch-seconds\n"), debug_strfdatetime (&tm, &pc, dbg_tm, sizeof dbg_tm), Starti); } /* Add relative hours, minutes, and seconds. On hosts that support leap seconds, ignore the possibility of leap seconds; e.g., "+ 10 minutes" adds 600 seconds, even if one of them is a leap second. Typically this is not what the user wants, but it's too hard to do it the other way, because the time zone indicator must be applied before relative times, and if mktime is applied again the time zone will be lost. */ { intmax_t orig_ns = pc.seconds.tv_nsec; intmax_t sum_ns = orig_ns + pc.rel.ns; int normalized_ns = (sum_ns % BILLION + BILLION) % BILLION; int d4 = (sum_ns - normalized_ns) / BILLION; intmax_t d1, t1, d2, t2, t3, t4; if (INT_MULTIPLY_WRAPV (pc.rel.hour, 60 * 60, &d1) || INT_ADD_WRAPV (Start, d1, &t1) || INT_MULTIPLY_WRAPV (pc.rel.minutes, 60, &d2) || INT_ADD_WRAPV (t1, d2, &t2) || INT_ADD_WRAPV (t2, pc.rel.seconds, &t3) || INT_ADD_WRAPV (t3, d4, &t4) || time_overflow (t4)) { if (pc.parse_datetime_debug) dbg_printf (_("error: adding relative time caused an " "overflow\n")); goto fail; } result->tv_sec = t4; result->tv_nsec = normalized_ns; if (pc.parse_datetime_debug && (pc.rel.hour | pc.rel.minutes | pc.rel.seconds | pc.rel.ns)) { dbg_printf (_("after time adjustment (%+"PRIdMAX" hours, " "%+"PRIdMAX" minutes, " "%+"PRIdMAX" seconds, %+d ns),\n"), pc.rel.hour, pc.rel.minutes, pc.rel.seconds, pc.rel.ns); dbg_printf (_(" new time = %"PRIdMAX" epoch-seconds\n"), t4); /* Warn about crossing DST due to time adjustment. Example: https://bugs.gnu.org/8357 env TZ=Europe/Helsinki \ date --debug \ -d 'Mon Mar 28 00:36:07 2011 EEST 24 hours ago' This case is different than DST changes due to days adjustment, i.e., "1 day ago" vs "24 hours ago" are calculated in different places. 'tm.tm_isdst' contains the date after date adjustment. */ struct tm lmt; if (tm.tm_isdst != -1 && localtime_rz (tz, &result->tv_sec, &lmt) && tm.tm_isdst != lmt.tm_isdst) dbg_printf (_("warning: daylight saving time changed after " "time adjustment\n")); } } } if (pc.parse_datetime_debug) { /* Special case: using 'date -u' simply set TZ=UTC0 */ if (! tzstring) dbg_printf (_("timezone: system default\n")); else if (STREQ (tzstring, "UTC0")) dbg_printf (_("timezone: Universal Time\n")); else dbg_printf (_("timezone: TZ=\"%s\" environment value\n"), tzstring); intmax_t sec = result->tv_sec; int nsec = result->tv_nsec; dbg_printf (_("final: %"PRIdMAX".%09d (epoch-seconds)\n"), sec, nsec); struct tm gmt, lmt; bool got_utc = !!gmtime_r (&result->tv_sec, &gmt); if (got_utc) dbg_printf (_("final: %s (UTC)\n"), debug_strfdatetime (&gmt, NULL, dbg_tm, sizeof dbg_tm)); if (localtime_rz (tz, &result->tv_sec, &lmt)) { #ifdef HAVE_TM_GMTOFF bool got_utcoff = true; long int utcoff = lmt.tm_gmtoff; #else bool got_utcoff = got_utc; int utcoff; if (got_utcoff) utcoff = tm_diff (&lmt, &gmt); #endif if (got_utcoff) dbg_printf (_("final: %s (UTC%s)\n"), debug_strfdatetime (&lmt, NULL, dbg_tm, sizeof dbg_tm), time_zone_str (utcoff, time_zone_buf)); else dbg_printf (_("final: %s (unknown time zone offset)\n"), debug_strfdatetime (&lmt, NULL, dbg_tm, sizeof dbg_tm)); } } ok = true; fail: if (tz != tzdefault) tzfree (tz); free (tz1alloc); return ok; } #if TEST int main (int ac, char **av) { char buff[BUFSIZ]; printf ("Enter date, or blank line to exit.\n\t> "); fflush (stdout); buff[BUFSIZ - 1] = '\0'; while (fgets (buff, BUFSIZ - 1, stdin) && buff[0]) { struct timespec d; struct tm const *tm; if (! parse_datetime (&d, buff, NULL)) printf ("Bad format - couldn't convert.\n"); else if (! (tm = localtime (&d.tv_sec))) { intmax_t sec = d.tv_sec; printf ("localtime (%"PRIdMAX") failed\n", sec); } else { int ns = d.tv_nsec; char tm_year_buf[TM_YEAR_BUFSIZE]; printf ("%s-%02d-%02d %02d:%02d:%02d.%09d\n", tm_year_str (tm->tm_year, tm_year_buf), tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, ns); } printf ("\t> "); fflush (stdout); } return 0; } #endif /* TEST */