/* dnsmasq is Copyright (c) 2000-2024 Simon Kelley
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 dated June, 1991, or
(at your option) version 3 dated 29 June, 2007.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "dnsmasq.h"
#if defined(HAVE_DNSSEC) || defined(HAVE_CRYPTOHASH)
/* Minimal version of nettle */
/* bignum.h includes version.h and works on
earlier releases of nettle which don't have version.h */
#include
#if !defined(NETTLE_VERSION_MAJOR)
# define NETTLE_VERSION_MAJOR 2
# define NETTLE_VERSION_MINOR 0
#endif
#define MIN_VERSION(major, minor) ((NETTLE_VERSION_MAJOR == (major) && NETTLE_VERSION_MINOR >= (minor)) || \
(NETTLE_VERSION_MAJOR > (major)))
#endif /* defined(HAVE_DNSSEC) || defined(HAVE_CRYPTOHASH) */
#if defined(HAVE_DNSSEC)
#include
#include
#include
#if MIN_VERSION(3, 1)
#include
#endif
#if MIN_VERSION(3, 6)
# include
#endif
#if MIN_VERSION(3, 1)
/* Implement a "hash-function" to the nettle API, which simply returns
the input data, concatenated into a single, statically maintained, buffer.
Used for the EdDSA sigs, which operate on the whole message, rather
than a digest. */
struct null_hash_digest
{
uint8_t *buff;
size_t len;
};
struct null_hash_ctx
{
size_t len;
};
static size_t null_hash_buff_sz = 0;
static uint8_t *null_hash_buff = NULL;
#define BUFF_INCR 128
static void null_hash_init(void *ctx)
{
((struct null_hash_ctx *)ctx)->len = 0;
}
static void null_hash_update(void *ctxv, size_t length, const uint8_t *src)
{
struct null_hash_ctx *ctx = ctxv;
size_t new_len = ctx->len + length;
if (new_len > null_hash_buff_sz)
{
uint8_t *new;
if (!(new = whine_malloc(new_len + BUFF_INCR)))
return;
if (null_hash_buff)
{
if (ctx->len != 0)
memcpy(new, null_hash_buff, ctx->len);
free(null_hash_buff);
}
null_hash_buff_sz = new_len + BUFF_INCR;
null_hash_buff = new;
}
memcpy(null_hash_buff + ctx->len, src, length);
ctx->len += length;
}
static void null_hash_digest(void *ctx, size_t length, uint8_t *dst)
{
(void)length;
((struct null_hash_digest *)dst)->buff = null_hash_buff;
((struct null_hash_digest *)dst)->len = ((struct null_hash_ctx *)ctx)->len;
}
static struct nettle_hash null_hash = {
"null_hash",
sizeof(struct null_hash_ctx),
sizeof(struct null_hash_digest),
0,
(nettle_hash_init_func *) null_hash_init,
(nettle_hash_update_func *) null_hash_update,
(nettle_hash_digest_func *) null_hash_digest
};
#endif /* MIN_VERSION(3, 1) */
/* expand ctx and digest memory allocations if necessary and init hash function */
int hash_init(const struct nettle_hash *hash, void **ctxp, unsigned char **digestp)
{
static void *ctx = NULL;
static unsigned char *digest = NULL;
static unsigned int ctx_sz = 0;
static unsigned int digest_sz = 0;
void *new;
if (ctx_sz < hash->context_size)
{
if (!(new = whine_malloc(hash->context_size)))
return 0;
if (ctx)
free(ctx);
ctx = new;
ctx_sz = hash->context_size;
}
if (digest_sz < hash->digest_size)
{
if (!(new = whine_malloc(hash->digest_size)))
return 0;
if (digest)
free(digest);
digest = new;
digest_sz = hash->digest_size;
}
*ctxp = ctx;
*digestp = digest;
hash->init(ctx);
return 1;
}
static int dnsmasq_rsa_verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len,
unsigned char *digest, size_t digest_len, int algo)
{
unsigned char *p;
size_t exp_len;
static struct rsa_public_key *key = NULL;
static mpz_t sig_mpz;
(void)digest_len;
if (key == NULL)
{
if (!(key = whine_malloc(sizeof(struct rsa_public_key))))
return 0;
nettle_rsa_public_key_init(key);
mpz_init(sig_mpz);
}
if ((key_len < 3) || !(p = blockdata_retrieve(key_data, key_len, NULL)))
return 0;
key_len--;
if ((exp_len = *p++) == 0)
{
GETSHORT(exp_len, p);
key_len -= 2;
}
if (exp_len >= key_len)
return 0;
key->size = key_len - exp_len;
mpz_import(key->e, exp_len, 1, 1, 0, 0, p);
mpz_import(key->n, key->size, 1, 1, 0, 0, p + exp_len);
mpz_import(sig_mpz, sig_len, 1, 1, 0, 0, sig);
switch (algo)
{
case 5: case 7:
return nettle_rsa_sha1_verify_digest(key, digest, sig_mpz);
case 8:
return nettle_rsa_sha256_verify_digest(key, digest, sig_mpz);
case 10:
return nettle_rsa_sha512_verify_digest(key, digest, sig_mpz);
}
return 0;
}
static int dnsmasq_ecdsa_verify(struct blockdata *key_data, unsigned int key_len,
unsigned char *sig, size_t sig_len,
unsigned char *digest, size_t digest_len, int algo)
{
unsigned char *p;
unsigned int t;
struct ecc_point *key;
static struct ecc_point *key_256 = NULL, *key_384 = NULL;
static mpz_t x, y;
static struct dsa_signature *sig_struct;
#if !MIN_VERSION(3, 4)
#define nettle_get_secp_256r1() (&nettle_secp_256r1)
#define nettle_get_secp_384r1() (&nettle_secp_384r1)
#endif
if (!sig_struct)
{
if (!(sig_struct = whine_malloc(sizeof(struct dsa_signature))))
return 0;
nettle_dsa_signature_init(sig_struct);
mpz_init(x);
mpz_init(y);
}
switch (algo)
{
case 13:
if (!key_256)
{
if (!(key_256 = whine_malloc(sizeof(struct ecc_point))))
return 0;
nettle_ecc_point_init(key_256, nettle_get_secp_256r1());
}
key = key_256;
t = 32;
break;
case 14:
if (!key_384)
{
if (!(key_384 = whine_malloc(sizeof(struct ecc_point))))
return 0;
nettle_ecc_point_init(key_384, nettle_get_secp_384r1());
}
key = key_384;
t = 48;
break;
default:
return 0;
}
if (sig_len != 2*t || key_len != 2*t ||
!(p = blockdata_retrieve(key_data, key_len, NULL)))
return 0;
mpz_import(x, t , 1, 1, 0, 0, p);
mpz_import(y, t , 1, 1, 0, 0, p + t);
if (!ecc_point_set(key, x, y))
return 0;
mpz_import(sig_struct->r, t, 1, 1, 0, 0, sig);
mpz_import(sig_struct->s, t, 1, 1, 0, 0, sig + t);
return nettle_ecdsa_verify(key, digest_len, digest, sig_struct);
}
#if MIN_VERSION(3, 6)
static int dnsmasq_gostdsa_verify(struct blockdata *key_data, unsigned int key_len,
unsigned char *sig, size_t sig_len,
unsigned char *digest, size_t digest_len, int algo)
{
unsigned char *p;
static struct ecc_point *gost_key = NULL;
static mpz_t x, y;
static struct dsa_signature *sig_struct;
if (algo != 12 ||
sig_len != 64 || key_len != 64 ||
!(p = blockdata_retrieve(key_data, key_len, NULL)))
return 0;
if (!sig_struct)
{
if (!(sig_struct = whine_malloc(sizeof(struct dsa_signature))) ||
!(gost_key = whine_malloc(sizeof(struct ecc_point))))
return 0;
nettle_dsa_signature_init(sig_struct);
nettle_ecc_point_init(gost_key, nettle_get_gost_gc256b());
mpz_init(x);
mpz_init(y);
}
mpz_import(x, 32, -1, 1, 0, 0, p);
mpz_import(y, 32, -1, 1, 0, 0, p + 32);
if (!ecc_point_set(gost_key, x, y))
return 0;
mpz_import(sig_struct->s, 32, 1, 1, 0, 0, sig);
mpz_import(sig_struct->r, 32, 1, 1, 0, 0, sig + 32);
return nettle_gostdsa_verify(gost_key, digest_len, digest, sig_struct);
}
#endif
#if MIN_VERSION(3, 1)
static int dnsmasq_eddsa_verify(struct blockdata *key_data, unsigned int key_len,
unsigned char *sig, size_t sig_len,
unsigned char *digest, size_t digest_len, int algo)
{
unsigned char *p;
if (digest_len != sizeof(struct null_hash_digest) ||
!(p = blockdata_retrieve(key_data, key_len, NULL)))
return 0;
/* The "digest" returned by the null_hash function is simply a struct null_hash_digest
which has a pointer to the actual data and a length, because the buffer
may need to be extended during "hashing". */
switch (algo)
{
case 15:
if (key_len != ED25519_KEY_SIZE ||
sig_len != ED25519_SIGNATURE_SIZE)
return 0;
return ed25519_sha512_verify(p,
((struct null_hash_digest *)digest)->len,
((struct null_hash_digest *)digest)->buff,
sig);
#if MIN_VERSION(3, 6)
case 16:
if (key_len != ED448_KEY_SIZE ||
sig_len != ED448_SIGNATURE_SIZE)
return 0;
return ed448_shake256_verify(p,
((struct null_hash_digest *)digest)->len,
((struct null_hash_digest *)digest)->buff,
sig);
#endif
}
return 0;
}
#endif
static int (*verify_func(int algo))(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len,
unsigned char *digest, size_t digest_len, int algo)
{
/* Ensure at runtime that we have support for this digest */
if (!hash_find(algo_digest_name(algo)))
return NULL;
/* This switch defines which sig algorithms we support, can't introspect Nettle for that. */
switch (algo)
{
case 5: case 7: case 8: case 10:
return dnsmasq_rsa_verify;
#if MIN_VERSION(3, 6)
case 12:
return dnsmasq_gostdsa_verify;
#endif
case 13: case 14:
return dnsmasq_ecdsa_verify;
#if MIN_VERSION(3, 1)
case 15:
return dnsmasq_eddsa_verify;
#endif
#if MIN_VERSION(3, 6)
case 16:
return dnsmasq_eddsa_verify;
#endif
}
return NULL;
}
int verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len,
unsigned char *digest, size_t digest_len, int algo)
{
int (*func)(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len,
unsigned char *digest, size_t digest_len, int algo);
func = verify_func(algo);
if (!func)
return 0;
return (*func)(key_data, key_len, sig, sig_len, digest, digest_len, algo);
}
/* Note the ds_digest_name(), algo_digest_name() and nsec3_digest_name()
define which algo numbers we support. If algo_digest_name() returns
non-NULL for an algorithm number, we assume that algorithm is
supported by verify(). */
/* http://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
char *ds_digest_name(int digest)
{
switch (digest)
{
case 1: return "sha1";
case 2: return "sha256";
#if MIN_VERSION(3, 6)
case 3: return "gosthash94cp";
#endif
case 4: return "sha384";
default: return NULL;
}
}
/* http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
char *algo_digest_name(int algo)
{
switch (algo)
{
case 1: return NULL; /* RSA/MD5 - Must Not Implement. RFC 6944 para 2.3. */
case 2: return NULL; /* Diffie-Hellman */
case 3: return NULL; ; /* DSA/SHA1 - Must Not Implement. RFC 8624 section 3.1 */
case 5: return "sha1"; /* RSA/SHA1 */
case 6: return NULL; /* DSA-NSEC3-SHA1 - Must Not Implement. RFC 8624 section 3.1 */
case 7: return "sha1"; /* RSASHA1-NSEC3-SHA1 */
case 8: return "sha256"; /* RSA/SHA-256 */
case 10: return "sha512"; /* RSA/SHA-512 */
#if MIN_VERSION(3, 6)
case 12: return "gosthash94cp"; /* ECC-GOST */
#endif
case 13: return "sha256"; /* ECDSAP256SHA256 */
case 14: return "sha384"; /* ECDSAP384SHA384 */
#if MIN_VERSION(3, 1)
case 15: return "null_hash"; /* ED25519 */
# if MIN_VERSION(3, 6)
case 16: return "null_hash"; /* ED448 */
# endif
#endif
default: return NULL;
}
}
/* http://www.iana.org/assignments/dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml */
char *nsec3_digest_name(int digest)
{
switch (digest)
{
case 1: return "sha1";
default: return NULL;
}
}
#endif /* defined(HAVE_DNSSEC) */
#if defined(HAVE_DNSSEC) || defined(HAVE_CRYPTOHASH)
/* Find pointer to correct hash function in nettle library */
const struct nettle_hash *hash_find(char *name)
{
if (!name)
return NULL;
#if MIN_VERSION(3,1) && defined(HAVE_DNSSEC)
/* We provide a "null" hash which returns the input data as digest. */
if (strcmp(null_hash.name, name) == 0)
return &null_hash;
#endif
/* libnettle >= 3.4 provides nettle_lookup_hash() which avoids nasty ABI
incompatibilities if sizeof(nettle_hashes) changes between library
versions. */
#if MIN_VERSION(3, 4)
return nettle_lookup_hash(name);
#else
{
int i;
for (i = 0; nettle_hashes[i]; i++)
if (strcmp(nettle_hashes[i]->name, name) == 0)
return nettle_hashes[i];
}
return NULL;
#endif
}
#endif /* defined(HAVE_DNSSEC) || defined(HAVE_CRYPTOHASH) */