/* BEGIN_HEADER */ #include #include #include #include "mbedtls/bignum.h" #include "mbedtls/asn1.h" #if defined(MBEDTLS_ASN1_WRITE_C) #include "mbedtls/asn1write.h" #endif /* Used internally to report an error that indicates a bug in a parsing function. */ #define ERR_PARSE_INCONSISTENCY INT_MAX /* Use this magic value in some tests to indicate that the expected result * should not be checked. */ #define UNPREDICTABLE_RESULT 0x5552 static int nested_parse(unsigned char **const p, const unsigned char *const end) { int ret; size_t len = 0; size_t len2 = 0; unsigned char *const start = *p; unsigned char *content_start; unsigned char tag; /* First get the length, skipping over the tag. */ content_start = start + 1; ret = mbedtls_asn1_get_len(&content_start, end, &len); TEST_ASSERT(content_start <= end); if (ret != 0) { return ret; } /* Since we have a valid element start (tag and length), retrieve and * check the tag. */ tag = start[0]; TEST_EQUAL(mbedtls_asn1_get_tag(p, end, &len2, tag ^ 1), MBEDTLS_ERR_ASN1_UNEXPECTED_TAG); *p = start; TEST_EQUAL(mbedtls_asn1_get_tag(p, end, &len2, tag), 0); TEST_EQUAL(len, len2); TEST_ASSERT(*p == content_start); *p = content_start; switch (tag & 0x1f) { case MBEDTLS_ASN1_BOOLEAN: { int val = -257; *p = start; ret = mbedtls_asn1_get_bool(p, end, &val); if (ret == 0) { TEST_ASSERT(val == 0 || val == 1); } break; } case MBEDTLS_ASN1_INTEGER: { #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi mpi; mbedtls_mpi_init(&mpi); *p = start; ret = mbedtls_asn1_get_mpi(p, end, &mpi); mbedtls_mpi_free(&mpi); #else *p = start + 1; ret = mbedtls_asn1_get_len(p, end, &len); *p += len; #endif /* If we're sure that the number fits in an int, also * call mbedtls_asn1_get_int(). */ if (ret == 0 && len < sizeof(int)) { int val = -257; unsigned char *q = start; ret = mbedtls_asn1_get_int(&q, end, &val); TEST_ASSERT(*p == q); } break; } case MBEDTLS_ASN1_BIT_STRING: { mbedtls_asn1_bitstring bs; *p = start; ret = mbedtls_asn1_get_bitstring(p, end, &bs); break; } case MBEDTLS_ASN1_SEQUENCE: { while (*p <= end && *p < content_start + len && ret == 0) { ret = nested_parse(p, content_start + len); } break; } case MBEDTLS_ASN1_OCTET_STRING: case MBEDTLS_ASN1_NULL: case MBEDTLS_ASN1_OID: case MBEDTLS_ASN1_UTF8_STRING: case MBEDTLS_ASN1_SET: case MBEDTLS_ASN1_PRINTABLE_STRING: case MBEDTLS_ASN1_T61_STRING: case MBEDTLS_ASN1_IA5_STRING: case MBEDTLS_ASN1_UTC_TIME: case MBEDTLS_ASN1_GENERALIZED_TIME: case MBEDTLS_ASN1_UNIVERSAL_STRING: case MBEDTLS_ASN1_BMP_STRING: default: /* No further testing implemented for this tag. */ *p += len; return 0; } TEST_ASSERT(*p <= end); return ret; exit: return ERR_PARSE_INCONSISTENCY; } int get_len_step(const data_t *input, size_t buffer_size, size_t actual_length) { unsigned char *buf = NULL; unsigned char *p = NULL; unsigned char *end; size_t parsed_length; int ret; mbedtls_test_set_step(buffer_size); /* Allocate a new buffer of exactly the length to parse each time. * This gives memory sanitizers a chance to catch buffer overreads. */ if (buffer_size == 0) { TEST_CALLOC(buf, 1); end = buf + 1; p = end; } else { TEST_CALLOC_OR_SKIP(buf, buffer_size); if (buffer_size > input->len) { memcpy(buf, input->x, input->len); memset(buf + input->len, 'A', buffer_size - input->len); } else { memcpy(buf, input->x, buffer_size); } p = buf; end = buf + buffer_size; } ret = mbedtls_asn1_get_len(&p, end, &parsed_length); if (buffer_size >= input->len + actual_length) { TEST_EQUAL(ret, 0); TEST_ASSERT(p == buf + input->len); TEST_EQUAL(parsed_length, actual_length); } else { TEST_EQUAL(ret, MBEDTLS_ERR_ASN1_OUT_OF_DATA); } mbedtls_free(buf); return 1; exit: mbedtls_free(buf); return 0; } typedef struct { const unsigned char *input_start; const char *description; } traverse_state_t; /* Value returned by traverse_callback if description runs out. */ #define RET_TRAVERSE_STOP 1 /* Value returned by traverse_callback if description has an invalid format * (see traverse_sequence_of). */ #define RET_TRAVERSE_ERROR 2 static int traverse_callback(void *ctx, int tag, unsigned char *content, size_t len) { traverse_state_t *state = ctx; size_t offset; const char *rest = state->description; unsigned long n; TEST_ASSERT(content > state->input_start); offset = content - state->input_start; mbedtls_test_set_step(offset); if (*rest == 0) { return RET_TRAVERSE_STOP; } n = strtoul(rest, (char **) &rest, 0); TEST_EQUAL(n, offset); TEST_EQUAL(*rest, ','); ++rest; n = strtoul(rest, (char **) &rest, 0); TEST_EQUAL(n, (unsigned) tag); TEST_EQUAL(*rest, ','); ++rest; n = strtoul(rest, (char **) &rest, 0); TEST_EQUAL(n, len); if (*rest == ',') { ++rest; } state->description = rest; return 0; exit: return RET_TRAVERSE_ERROR; } /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_ASN1_PARSE_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void parse_prefixes(const data_t *input, int full_result, int overfull_result) { /* full_result: expected result from parsing the given string. */ /* overfull_result: expected_result from parsing the given string plus * some trailing garbage. This may be UNPREDICTABLE_RESULT to accept * any result: use this for invalid inputs that may or may not become * valid depending on what the trailing garbage is. */ unsigned char *buf = NULL; unsigned char *p = NULL; size_t buffer_size; int ret; /* Test every prefix of the input, except the empty string. * The first byte of the string is the tag. Without a tag byte, * we wouldn't know what to parse the input as. * Also test the input followed by an extra byte. */ for (buffer_size = 1; buffer_size <= input->len + 1; buffer_size++) { mbedtls_test_set_step(buffer_size); /* Allocate a new buffer of exactly the length to parse each time. * This gives memory sanitizers a chance to catch buffer overreads. */ TEST_CALLOC(buf, buffer_size); memcpy(buf, input->x, buffer_size); p = buf; ret = nested_parse(&p, buf + buffer_size); if (ret == ERR_PARSE_INCONSISTENCY) { goto exit; } if (buffer_size < input->len) { TEST_EQUAL(ret, MBEDTLS_ERR_ASN1_OUT_OF_DATA); } else if (buffer_size == input->len) { TEST_EQUAL(ret, full_result); } else { /* ( buffer_size > input->len ) */ if (overfull_result != UNPREDICTABLE_RESULT) { TEST_EQUAL(ret, overfull_result); } } if (ret == 0) { TEST_ASSERT(p == buf + input->len); } mbedtls_free(buf); buf = NULL; } exit: mbedtls_free(buf); } /* END_CASE */ /* BEGIN_CASE */ void get_len(const data_t *input, int actual_length_arg) { size_t actual_length = actual_length_arg; size_t buffer_size; /* Test prefixes of a buffer containing the given length string * followed by `actual_length` bytes of payload. To save a bit of * time, we skip some "boring" prefixes: we don't test prefixes where * the payload is truncated more than one byte away from either end, * and we only test the empty string on a 1-byte input. */ for (buffer_size = 1; buffer_size <= input->len + 1; buffer_size++) { if (!get_len_step(input, buffer_size, actual_length)) { goto exit; } } if (!get_len_step(input, input->len + actual_length - 1, actual_length)) { goto exit; } if (!get_len_step(input, input->len + actual_length, actual_length)) { goto exit; } } /* END_CASE */ /* BEGIN_CASE */ void get_boolean(const data_t *input, int expected_value, int expected_result) { unsigned char *p = input->x; int val; int ret; ret = mbedtls_asn1_get_bool(&p, input->x + input->len, &val); TEST_EQUAL(ret, expected_result); if (expected_result == 0) { TEST_EQUAL(val, expected_value); TEST_ASSERT(p == input->x + input->len); } } /* END_CASE */ /* BEGIN_CASE */ void empty_integer(const data_t *input) { unsigned char *p; #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi actual_mpi; #endif int val; #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi_init(&actual_mpi); #endif /* An INTEGER with no content is not valid. */ p = input->x; TEST_EQUAL(mbedtls_asn1_get_int(&p, input->x + input->len, &val), MBEDTLS_ERR_ASN1_INVALID_LENGTH); #if defined(MBEDTLS_BIGNUM_C) /* INTEGERs are sometimes abused as bitstrings, so the library accepts * an INTEGER with empty content and gives it the value 0. */ p = input->x; TEST_EQUAL(mbedtls_asn1_get_mpi(&p, input->x + input->len, &actual_mpi), 0); TEST_EQUAL(mbedtls_mpi_cmp_int(&actual_mpi, 0), 0); #endif exit: #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi_free(&actual_mpi); #endif /*empty cleanup in some configurations*/; } /* END_CASE */ /* BEGIN_CASE */ void get_integer(const data_t *input, const char *expected_hex, int expected_result) { unsigned char *p; #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi expected_mpi; mbedtls_mpi actual_mpi; mbedtls_mpi complement; int expected_result_for_mpi = expected_result; #endif long expected_value; int expected_result_for_int = expected_result; int val; int ret; #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi_init(&expected_mpi); mbedtls_mpi_init(&actual_mpi); mbedtls_mpi_init(&complement); #endif errno = 0; expected_value = strtol(expected_hex, NULL, 16); if (expected_result == 0 && (errno == ERANGE #if LONG_MAX > INT_MAX || expected_value > INT_MAX || expected_value < INT_MIN #endif )) { /* The library returns the dubious error code INVALID_LENGTH * for integers that are out of range. */ expected_result_for_int = MBEDTLS_ERR_ASN1_INVALID_LENGTH; } if (expected_result == 0 && expected_value < 0) { /* The library does not support negative INTEGERs and * returns the dubious error code INVALID_LENGTH. * Test that we preserve the historical behavior. If we * decide to change the behavior, we'll also change this test. */ expected_result_for_int = MBEDTLS_ERR_ASN1_INVALID_LENGTH; } p = input->x; ret = mbedtls_asn1_get_int(&p, input->x + input->len, &val); TEST_EQUAL(ret, expected_result_for_int); if (ret == 0) { TEST_EQUAL(val, expected_value); TEST_ASSERT(p == input->x + input->len); } #if defined(MBEDTLS_BIGNUM_C) ret = mbedtls_test_read_mpi(&expected_mpi, expected_hex); TEST_ASSERT(ret == 0 || ret == MBEDTLS_ERR_MPI_BAD_INPUT_DATA); if (ret == MBEDTLS_ERR_MPI_BAD_INPUT_DATA) { /* The data overflows the maximum MPI size. */ expected_result_for_mpi = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; } p = input->x; ret = mbedtls_asn1_get_mpi(&p, input->x + input->len, &actual_mpi); TEST_EQUAL(ret, expected_result_for_mpi); if (ret == 0) { if (expected_value >= 0) { TEST_ASSERT(mbedtls_mpi_cmp_mpi(&actual_mpi, &expected_mpi) == 0); } else { /* The library ignores the sign bit in ASN.1 INTEGERs * (which makes sense insofar as INTEGERs are sometimes * abused as bit strings), so the result of parsing them * is a positive integer such that expected_mpi + * actual_mpi = 2^n where n is the length of the content * of the INTEGER. (Leading ff octets don't matter for the * expected value, but they matter for the actual value.) * Test that we don't change from this behavior. If we * decide to fix the library to change the behavior on * negative INTEGERs, we'll fix this test code. */ unsigned char *q = input->x + 1; size_t len; TEST_ASSERT(mbedtls_asn1_get_len(&q, input->x + input->len, &len) == 0); TEST_ASSERT(mbedtls_mpi_lset(&complement, 1) == 0); TEST_ASSERT(mbedtls_mpi_shift_l(&complement, len * 8) == 0); TEST_ASSERT(mbedtls_mpi_add_mpi(&complement, &complement, &expected_mpi) == 0); TEST_ASSERT(mbedtls_mpi_cmp_mpi(&complement, &actual_mpi) == 0); } TEST_ASSERT(p == input->x + input->len); } #endif exit: #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi_free(&expected_mpi); mbedtls_mpi_free(&actual_mpi); mbedtls_mpi_free(&complement); #endif /*empty cleanup in some configurations*/; } /* END_CASE */ /* BEGIN_CASE */ void get_enum(const data_t *input, const char *expected_hex, int expected_result) { unsigned char *p; long expected_value; int expected_result_for_enum = expected_result; int val; int ret; errno = 0; expected_value = strtol(expected_hex, NULL, 16); if (expected_result == 0 && (errno == ERANGE #if LONG_MAX > INT_MAX || expected_value > INT_MAX || expected_value < INT_MIN #endif )) { /* The library returns the dubious error code INVALID_LENGTH * for integers that are out of range. */ expected_result_for_enum = MBEDTLS_ERR_ASN1_INVALID_LENGTH; } if (expected_result == 0 && expected_value < 0) { /* The library does not support negative INTEGERs and * returns the dubious error code INVALID_LENGTH. * Test that we preserve the historical behavior. If we * decide to change the behavior, we'll also change this test. */ expected_result_for_enum = MBEDTLS_ERR_ASN1_INVALID_LENGTH; } p = input->x; ret = mbedtls_asn1_get_enum(&p, input->x + input->len, &val); TEST_EQUAL(ret, expected_result_for_enum); if (ret == 0) { TEST_EQUAL(val, expected_value); TEST_ASSERT(p == input->x + input->len); } } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_BIGNUM_C */ void get_mpi_too_large() { unsigned char *buf = NULL; unsigned char *p; mbedtls_mpi actual_mpi; size_t too_many_octets = MBEDTLS_MPI_MAX_LIMBS * sizeof(mbedtls_mpi_uint) + 1; size_t size = too_many_octets + 6; mbedtls_mpi_init(&actual_mpi); TEST_CALLOC(buf, size); buf[0] = 0x02; /* tag: INTEGER */ buf[1] = 0x84; /* 4-octet length */ buf[2] = (too_many_octets >> 24) & 0xff; buf[3] = (too_many_octets >> 16) & 0xff; buf[4] = (too_many_octets >> 8) & 0xff; buf[5] = too_many_octets & 0xff; buf[6] = 0x01; /* most significant octet */ p = buf; TEST_EQUAL(mbedtls_asn1_get_mpi(&p, buf + size, &actual_mpi), MBEDTLS_ERR_MPI_ALLOC_FAILED); exit: mbedtls_mpi_free(&actual_mpi); mbedtls_free(buf); } /* END_CASE */ /* BEGIN_CASE */ void get_bitstring(const data_t *input, int expected_length, int expected_unused_bits, int expected_result, int expected_result_null) { mbedtls_asn1_bitstring bs = { 0xdead, 0x21, NULL }; unsigned char *p = input->x; TEST_EQUAL(mbedtls_asn1_get_bitstring(&p, input->x + input->len, &bs), expected_result); if (expected_result == 0) { TEST_EQUAL(bs.len, (size_t) expected_length); TEST_EQUAL(bs.unused_bits, expected_unused_bits); TEST_ASSERT(bs.p != NULL); TEST_EQUAL(bs.p - input->x + bs.len, input->len); TEST_ASSERT(p == input->x + input->len); } p = input->x; TEST_EQUAL(mbedtls_asn1_get_bitstring_null(&p, input->x + input->len, &bs.len), expected_result_null); if (expected_result_null == 0) { TEST_EQUAL(bs.len, (size_t) expected_length); if (expected_result == 0) { TEST_ASSERT(p == input->x + input->len - bs.len); } } } /* END_CASE */ /* BEGIN_CASE */ void get_sequence_of(const data_t *input, int tag, const char *description, int expected_result) { /* The description string is a comma-separated list of integers. * For each element in the SEQUENCE in input, description contains * two integers: the offset of the element (offset from the start * of input to the tag of the element) and the length of the * element's contents. * "offset1,length1,..." */ mbedtls_asn1_sequence head = { { 0, 0, NULL }, NULL }; mbedtls_asn1_sequence *cur; unsigned char *p = input->x; const char *rest = description; unsigned long n; unsigned int step = 0; TEST_EQUAL(mbedtls_asn1_get_sequence_of(&p, input->x + input->len, &head, tag), expected_result); if (expected_result == 0) { TEST_ASSERT(p == input->x + input->len); if (!*rest) { TEST_EQUAL(head.buf.tag, 0); TEST_ASSERT(head.buf.p == NULL); TEST_EQUAL(head.buf.len, 0); TEST_ASSERT(head.next == NULL); } else { cur = &head; while (*rest) { mbedtls_test_set_step(step); TEST_ASSERT(cur != NULL); TEST_EQUAL(cur->buf.tag, tag); n = strtoul(rest, (char **) &rest, 0); TEST_EQUAL(n, (size_t) (cur->buf.p - input->x)); ++rest; n = strtoul(rest, (char **) &rest, 0); TEST_EQUAL(n, cur->buf.len); if (*rest) { ++rest; } cur = cur->next; ++step; } TEST_ASSERT(cur == NULL); } } exit: mbedtls_asn1_sequence_free(head.next); } /* END_CASE */ /* BEGIN_CASE */ void traverse_sequence_of(const data_t *input, int tag_must_mask, int tag_must_val, int tag_may_mask, int tag_may_val, const char *description, int expected_result) { /* The description string is a comma-separated list of integers. * For each element in the SEQUENCE in input, description contains * three integers: the offset of the element's content (offset from * the start of input to the content of the element), the element's tag, * and the length of the element's contents. * "offset1,tag1,length1,..." */ unsigned char *p = input->x; traverse_state_t traverse_state = { input->x, description }; int ret; ret = mbedtls_asn1_traverse_sequence_of(&p, input->x + input->len, (uint8_t) tag_must_mask, (uint8_t) tag_must_val, (uint8_t) tag_may_mask, (uint8_t) tag_may_val, traverse_callback, &traverse_state); if (ret == RET_TRAVERSE_ERROR) { goto exit; } TEST_EQUAL(ret, expected_result); TEST_EQUAL(*traverse_state.description, 0); } /* END_CASE */ /* BEGIN_CASE */ void get_alg(const data_t *input, int oid_offset, int oid_length, int params_tag, int params_offset, int params_length, int total_length, int expected_result) { mbedtls_asn1_buf oid = { -1, 0, NULL }; mbedtls_asn1_buf params = { -1, 0, NULL }; unsigned char *p = input->x; int ret; TEST_EQUAL(mbedtls_asn1_get_alg(&p, input->x + input->len, &oid, ¶ms), expected_result); if (expected_result == 0) { TEST_EQUAL(oid.tag, MBEDTLS_ASN1_OID); TEST_EQUAL(oid.p - input->x, oid_offset); TEST_EQUAL(oid.len, (size_t) oid_length); TEST_EQUAL(params.tag, params_tag); if (params_offset != 0) { TEST_EQUAL(params.p - input->x, params_offset); } else { TEST_ASSERT(params.p == NULL); } TEST_EQUAL(params.len, (size_t) params_length); TEST_EQUAL(p - input->x, total_length); } ret = mbedtls_asn1_get_alg_null(&p, input->x + input->len, &oid); if (expected_result == 0 && params_offset == 0) { TEST_EQUAL(oid.tag, MBEDTLS_ASN1_OID); TEST_EQUAL(oid.p - input->x, oid_offset); TEST_EQUAL(oid.len, (size_t) oid_length); TEST_EQUAL(p - input->x, total_length); } else { TEST_ASSERT(ret != 0); } } /* END_CASE */ /* BEGIN_CASE */ void find_named_data(data_t *oid0, data_t *oid1, data_t *oid2, data_t *oid3, data_t *needle, int from, int position) { mbedtls_asn1_named_data nd[] = { { { 0x06, oid0->len, oid0->x }, { 0, 0, NULL }, NULL, 0 }, { { 0x06, oid1->len, oid1->x }, { 0, 0, NULL }, NULL, 0 }, { { 0x06, oid2->len, oid2->x }, { 0, 0, NULL }, NULL, 0 }, { { 0x06, oid3->len, oid3->x }, { 0, 0, NULL }, NULL, 0 }, }; mbedtls_asn1_named_data *pointers[ARRAY_LENGTH(nd) + 1]; size_t i; mbedtls_asn1_named_data *found; for (i = 0; i < ARRAY_LENGTH(nd); i++) { pointers[i] = &nd[i]; } pointers[ARRAY_LENGTH(nd)] = NULL; for (i = 0; i < ARRAY_LENGTH(nd); i++) { nd[i].next = pointers[i+1]; } found = mbedtls_asn1_find_named_data(pointers[from], (const char *) needle->x, needle->len); TEST_ASSERT(found == pointers[position]); } /* END_CASE */ /* BEGIN_CASE */ void free_named_data_null() { mbedtls_asn1_free_named_data(NULL); goto exit; /* Silence unused label warning */ } /* END_CASE */ /* BEGIN_CASE */ void free_named_data(int with_oid, int with_val, int with_next) { mbedtls_asn1_named_data next = { { 0x06, 0, NULL }, { 0, 0xcafe, NULL }, NULL, 0 }; mbedtls_asn1_named_data head = { { 0x06, 0, NULL }, { 0, 0, NULL }, NULL, 0 }; if (with_oid) { TEST_CALLOC(head.oid.p, 1); } if (with_val) { TEST_CALLOC(head.val.p, 1); } if (with_next) { head.next = &next; } mbedtls_asn1_free_named_data(&head); TEST_ASSERT(head.oid.p == NULL); TEST_ASSERT(head.val.p == NULL); TEST_ASSERT(head.next == NULL); TEST_ASSERT(next.val.len == 0xcafe); exit: mbedtls_free(head.oid.p); mbedtls_free(head.val.p); } /* END_CASE */ /* BEGIN_CASE */ void free_named_data_list(int length) { mbedtls_asn1_named_data *head = NULL; int i; for (i = 0; i < length; i++) { mbedtls_asn1_named_data *new = NULL; TEST_CALLOC(new, 1); new->next = head; head = new; } mbedtls_asn1_free_named_data_list(&head); TEST_ASSERT(head == NULL); /* Most of the point of the test is that it doesn't leak memory. * So this test is only really useful under a memory leak detection * framework. */ exit: mbedtls_asn1_free_named_data_list(&head); } /* END_CASE */