/* BEGIN_HEADER */ #include #include "mps_reader.h" /* * Compile-time configuration for test suite. */ /* Comment/Uncomment this to disable/enable the * testing of the various MPS layers. * This can be useful for time-consuming instrumentation * tasks such as the conversion of E-ACSL annotations * into runtime assertions. */ #define TEST_SUITE_MPS_READER /* End of compile-time configuration. */ /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_SSL_PROTO_TLS1_3_EXPERIMENTAL * END_DEPENDENCIES */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_no_pausing_single_step_single_round(int with_acc) { /* This test exercises the most basic use of the MPS reader: * - The 'producing' layer provides a buffer * - The 'consuming' layer fetches it in a single go. * - After processing, the consuming layer commits the data * and the reader is moved back to producing mode. * * Parameters: * - with_acc: 0 if the reader should be initialized without accumulator. * 1 if the reader should be initialized with accumulator. * * Whether the accumulator is present or not should not matter, * since the consumer's request can be fulfilled from the data * that the producer has provided. */ unsigned char bufA[100]; unsigned char acc[10]; unsigned char *tmp; int paused; mbedtls_mps_reader rd; for (size_t i = 0; (unsigned) i < sizeof(bufA); i++) { bufA[i] = (unsigned char) i; } /* Preparation (lower layer) */ if (with_acc == 0) { mbedtls_mps_reader_init(&rd, NULL, 0); } else { mbedtls_mps_reader_init(&rd, acc, sizeof(acc)); } TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufA, sizeof(bufA)) == 0); /* Consumption (upper layer) */ /* Consume exactly what's available */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 100, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 100, bufA, 100); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); /* Wrapup (lower layer) */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, &paused) == 0); TEST_ASSERT(paused == 0); mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_no_pausing_single_step_multiple_rounds(int with_acc) { /* This test exercises multiple rounds of the basic use of the MPS reader: * - The 'producing' layer provides a buffer * - The 'consuming' layer fetches it in a single go. * - After processing, the consuming layer commits the data * and the reader is moved back to producing mode. * * Parameters: * - with_acc: 0 if the reader should be initialized without accumulator. * 1 if the reader should be initialized with accumulator. * * Whether the accumulator is present or not should not matter, * since the consumer's request can be fulfilled from the data * that the producer has provided. */ unsigned char bufA[100], bufB[100]; unsigned char acc[10]; unsigned char *tmp; mbedtls_mps_reader rd; for (size_t i = 0; (unsigned) i < sizeof(bufA); i++) { bufA[i] = (unsigned char) i; } for (size_t i = 0; (unsigned) i < sizeof(bufB); i++) { bufB[i] = ~((unsigned char) i); } /* Preparation (lower layer) */ if (with_acc == 0) { mbedtls_mps_reader_init(&rd, NULL, 0); } else { mbedtls_mps_reader_init(&rd, acc, sizeof(acc)); } TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufA, sizeof(bufA)) == 0); /* Consumption (upper layer) */ /* Consume exactly what's available */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 100, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 100, bufA, 100); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); /* Preparation */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufB, sizeof(bufB)) == 0); /* Consumption */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 100, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 100, bufB, 100); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); /* Wrapup (lower layer) */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_no_pausing_multiple_steps_single_round(int with_acc) { /* This test exercises one round of the following: * - The 'producing' layer provides a buffer * - The 'consuming' layer fetches it in multiple calls * to `mbedtls_mps_reader_get()`, without committing in between. * - After processing, the consuming layer commits the data * and the reader is moved back to producing mode. * * Parameters: * - with_acc: 0 if the reader should be initialized without accumulator. * 1 if the reader should be initialized with accumulator. * * Whether the accumulator is present or not should not matter, * since the consumer's requests can be fulfilled from the data * that the producer has provided. */ /* Lower layer provides data that the upper layer fully consumes * through multiple `get` calls. */ unsigned char buf[100]; unsigned char acc[10]; unsigned char *tmp; mbedtls_mps_size_t tmp_len; mbedtls_mps_reader rd; for (size_t i = 0; (unsigned) i < sizeof(buf); i++) { buf[i] = (unsigned char) i; } /* Preparation (lower layer) */ if (with_acc == 0) { mbedtls_mps_reader_init(&rd, NULL, 0); } else { mbedtls_mps_reader_init(&rd, acc, sizeof(acc)); } TEST_ASSERT(mbedtls_mps_reader_feed(&rd, buf, sizeof(buf)) == 0); /* Consumption (upper layer) */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, buf, 10); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 70, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 70, buf + 10, 70); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 30, &tmp, &tmp_len) == 0); TEST_MEMORY_COMPARE(tmp, tmp_len, buf + 80, 20); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); /* Wrapup (lower layer) */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_no_pausing_multiple_steps_multiple_rounds(int with_acc) { /* This test exercises one round of fetching a buffer in multiple chunks * and passing it back to the producer afterwards, followed by another * single-step sequence of feed-fetch-commit-reclaim. */ unsigned char bufA[100], bufB[100]; unsigned char acc[10]; unsigned char *tmp; mbedtls_mps_size_t tmp_len; mbedtls_mps_reader rd; for (size_t i = 0; (unsigned) i < sizeof(bufA); i++) { bufA[i] = (unsigned char) i; } for (size_t i = 0; (unsigned) i < sizeof(bufB); i++) { bufB[i] = ~((unsigned char) i); } /* Preparation (lower layer) */ if (with_acc == 0) { mbedtls_mps_reader_init(&rd, NULL, 0); } else { mbedtls_mps_reader_init(&rd, acc, sizeof(acc)); } TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufA, sizeof(bufA)) == 0); /* Consumption (upper layer) */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA, 10); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 70, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 70, bufA + 10, 70); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 30, &tmp, &tmp_len) == 0); TEST_MEMORY_COMPARE(tmp, tmp_len, bufA + 80, 20); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); /* Preparation */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufB, sizeof(bufB)) == 0); /* Consumption */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 100, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 100, bufB, 100); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); /* Wrapup */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_pausing_needed_disabled() { /* This test exercises the behaviour of the MPS reader when a read request * of the consumer exceeds what has been provided by the producer, and when * no accumulator is available in the reader. * * In this case, we expect the reader to fail. */ unsigned char buf[100]; unsigned char *tmp; mbedtls_mps_reader rd; for (size_t i = 0; (unsigned) i < sizeof(buf); i++) { buf[i] = (unsigned char) i; } /* Preparation (lower layer) */ mbedtls_mps_reader_init(&rd, NULL, 0); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, buf, sizeof(buf)) == 0); /* Consumption (upper layer) */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 50, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 50, buf, 50); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 100, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_OUT_OF_DATA); /* Wrapup (lower layer) */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == MBEDTLS_ERR_MPS_READER_NEED_ACCUMULATOR); mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_pausing_needed_buffer_too_small() { /* This test exercises the behaviour of the MPS reader with accumulator * in the situation where a read request goes beyond the bounds of the * current read buffer, _and_ the reader's accumulator is too small to * hold the requested amount of data. * * In this case, we expect mbedtls_mps_reader_reclaim() to fail, * but it should be possible to continue fetching data as if * there had been no excess request via mbedtls_mps_reader_get() * and the call to mbedtls_mps_reader_reclaim() had been rejected * because of data remaining. */ unsigned char buf[100]; unsigned char acc[10]; unsigned char *tmp; mbedtls_mps_reader rd; mbedtls_mps_size_t tmp_len; for (size_t i = 0; (unsigned) i < sizeof(buf); i++) { buf[i] = (unsigned char) i; } /* Preparation (lower layer) */ mbedtls_mps_reader_init(&rd, acc, sizeof(acc)); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, buf, sizeof(buf)) == 0); /* Consumption (upper layer) */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 50, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 50, buf, 50); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, buf + 50, 10); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 100, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_OUT_OF_DATA); /* Wrapup (lower layer) */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == MBEDTLS_ERR_MPS_READER_ACCUMULATOR_TOO_SMALL); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 50, &tmp, &tmp_len) == 0); TEST_MEMORY_COMPARE(tmp, tmp_len, buf + 50, 50); mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_reclaim_overflow() { /* This test exercises the behaviour of the MPS reader with accumulator * in the situation where upon calling mbedtls_mps_reader_reclaim(), the * uncommitted data together with the excess data missing in the last * call to mbedtls_mps_reader_get() exceeds the bounds of the type * holding the buffer length. */ unsigned char buf[100]; unsigned char acc[50]; unsigned char *tmp; mbedtls_mps_reader rd; for (size_t i = 0; (unsigned) i < sizeof(buf); i++) { buf[i] = (unsigned char) i; } /* Preparation (lower layer) */ mbedtls_mps_reader_init(&rd, acc, sizeof(acc)); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, buf, sizeof(buf)) == 0); /* Consumption (upper layer) */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 50, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 50, buf, 50); /* Excess request */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, (mbedtls_mps_size_t) -1, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_OUT_OF_DATA); /* Wrapup (lower layer) */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == MBEDTLS_ERR_MPS_READER_ACCUMULATOR_TOO_SMALL); mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_pausing(int option) { /* This test exercises the behaviour of the reader when the * accumulator is used to fulfill a consumer's request. * * More detailed: * - The producer feeds some data. * - The consumer asks for more data than what's available. * - The reader remembers the request and goes back to * producing mode, waiting for more data from the producer. * - The producer provides another chunk of data which is * sufficient to fulfill the original read request. * - The consumer retries the original read request, which * should now succeed. * * This test comes in multiple variants controlled by the * `option` parameter and documented below. */ unsigned char bufA[100], bufB[100]; unsigned char *tmp; unsigned char acc[40]; int paused; mbedtls_mps_reader rd; for (size_t i = 0; (unsigned) i < sizeof(bufA); i++) { bufA[i] = (unsigned char) i; } for (size_t i = 0; (unsigned) i < sizeof(bufB); i++) { bufB[i] = ~((unsigned char) i); } /* Preparation (lower layer) */ mbedtls_mps_reader_init(&rd, acc, sizeof(acc)); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufA, sizeof(bufA)) == 0); /* Consumption (upper layer) */ /* Ask for more than what's available. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 80, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 80, bufA, 80); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 80, 10); switch (option) { case 0: /* Single uncommitted fetch at pausing */ case 1: TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); break; default: /* Multiple uncommitted fetches at pausing */ break; } TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_OUT_OF_DATA); /* Preparation */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, &paused) == 0); TEST_ASSERT(paused == 1); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufB, sizeof(bufB)) == 0); /* Consumption */ switch (option) { case 0: /* Single fetch at pausing, re-fetch with commit. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 90, 10); TEST_MEMORY_COMPARE(tmp + 10, 10, bufB, 10); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); break; case 1: /* Single fetch at pausing, re-fetch without commit. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 90, 10); TEST_MEMORY_COMPARE(tmp + 10, 10, bufB, 10); break; case 2: /* Multiple fetches at pausing, repeat without commit. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 80, 10); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 90, 10); TEST_MEMORY_COMPARE(tmp + 10, 10, bufB, 10); break; case 3: /* Multiple fetches at pausing, repeat with commit 1. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 80, 10); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 90, 10); TEST_MEMORY_COMPARE(tmp + 10, 10, bufB, 10); break; case 4: /* Multiple fetches at pausing, repeat with commit 2. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 80, 10); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 90, 10); TEST_MEMORY_COMPARE(tmp + 10, 10, bufB, 10); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); break; case 5: /* Multiple fetches at pausing, repeat with commit 3. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 80, 10); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 90, 10); TEST_MEMORY_COMPARE(tmp + 10, 10, bufB, 10); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); break; default: TEST_ASSERT(0); } /* In all cases, fetch the rest of the second buffer. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 90, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 90, bufB + 10, 90); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); /* Wrapup */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_pausing_multiple_feeds(int option) { /* This test exercises the behaviour of the MPS reader * in the following situation: * - The consumer has asked for more than what's available, so the * reader pauses and waits for further input data via * `mbedtls_mps_reader_feed()` * - Multiple such calls to `mbedtls_mps_reader_feed()` are necessary * to fulfill the original request, and the reader needs to do * the necessary bookkeeping under the hood. * * This test comes in a few variants differing in the number and * size of feed calls that the producer issues while the reader is * accumulating the necessary data - see the comments below. */ unsigned char bufA[100], bufB[100]; unsigned char *tmp; unsigned char acc[70]; mbedtls_mps_reader rd; mbedtls_mps_size_t fetch_len; for (size_t i = 0; (unsigned) i < sizeof(bufA); i++) { bufA[i] = (unsigned char) i; } for (size_t i = 0; (unsigned) i < sizeof(bufB); i++) { bufB[i] = ~((unsigned char) i); } /* Preparation (lower layer) */ mbedtls_mps_reader_init(&rd, acc, sizeof(acc)); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufA, sizeof(bufA)) == 0); /* Consumption (upper layer) */ /* Ask for more than what's available. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 80, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 80, bufA, 80); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); /* 20 left, ask for 70 -> 50 overhead */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 70, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_OUT_OF_DATA); /* Preparation */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); switch (option) { case 0: /* 10 + 10 + 80 byte feed */ TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufB, 10) == MBEDTLS_ERR_MPS_READER_NEED_MORE); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufB + 10, 10) == MBEDTLS_ERR_MPS_READER_NEED_MORE); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufB + 20, 80) == 0); break; case 1: /* 50 x 1byte */ for (size_t num_feed = 0; num_feed < 49; num_feed++) { TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufB + num_feed, 1) == MBEDTLS_ERR_MPS_READER_NEED_MORE); } TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufB + 49, 1) == 0); break; case 2: /* 49 x 1byte + 51bytes */ for (size_t num_feed = 0; num_feed < 49; num_feed++) { TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufB + num_feed, 1) == MBEDTLS_ERR_MPS_READER_NEED_MORE); } TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufB + 49, 51) == 0); break; default: TEST_ASSERT(0); break; } /* Consumption */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 70, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 20, bufA + 80, 20); TEST_MEMORY_COMPARE(tmp + 20, 50, bufB, 50); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 1000, &tmp, &fetch_len) == 0); switch (option) { case 0: TEST_ASSERT(fetch_len == 50); break; case 1: TEST_ASSERT(fetch_len == 0); break; case 2: TEST_ASSERT(fetch_len == 50); break; default: TEST_ASSERT(0); break; } TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); /* Wrapup */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_reclaim_data_left(int option) { /* This test exercises the behaviour of the MPS reader when a * call to mbedtls_mps_reader_reclaim() is made before all data * provided by the producer has been fetched and committed. */ unsigned char buf[100]; unsigned char *tmp; mbedtls_mps_reader rd; for (size_t i = 0; (unsigned) i < sizeof(buf); i++) { buf[i] = (unsigned char) i; } /* Preparation (lower layer) */ mbedtls_mps_reader_init(&rd, NULL, 0); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, buf, sizeof(buf)) == 0); /* Consumption (upper layer) */ switch (option) { case 0: /* Fetch (but not commit) the entire buffer. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, sizeof(buf), &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 100, buf, 100); break; case 1: /* Fetch (but not commit) parts of the buffer. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, sizeof(buf) / 2, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, sizeof(buf) / 2, buf, sizeof(buf) / 2); break; case 2: /* Fetch and commit parts of the buffer, then * fetch but not commit the rest of the buffer. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, sizeof(buf) / 2, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, sizeof(buf) / 2, buf, sizeof(buf) / 2); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, sizeof(buf) / 2, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, sizeof(buf) / 2, buf + sizeof(buf) / 2, sizeof(buf) / 2); break; default: TEST_ASSERT(0); break; } /* Wrapup */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == MBEDTLS_ERR_MPS_READER_DATA_LEFT); mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_reclaim_data_left_retry() { /* This test exercises the behaviour of the MPS reader when an attempt * by the producer to reclaim the reader fails because of more data pending * to be processed, and the consumer subsequently fetches more data. */ unsigned char buf[100]; unsigned char *tmp; mbedtls_mps_reader rd; for (size_t i = 0; (unsigned) i < sizeof(buf); i++) { buf[i] = (unsigned char) i; } /* Preparation (lower layer) */ mbedtls_mps_reader_init(&rd, NULL, 0); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, buf, sizeof(buf)) == 0); /* Consumption (upper layer) */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 50, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 50, buf, 50); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 50, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 50, buf + 50, 50); /* Preparation */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == MBEDTLS_ERR_MPS_READER_DATA_LEFT); /* Consumption */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 50, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 50, buf + 50, 50); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); /* Wrapup */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_multiple_pausing(int option) { /* This test exercises the behaviour of the MPS reader * in the following situation: * - A read request via `mbedtls_mps_reader_get()` can't * be served and the reader is paused to accumulate * the desired amount of data from the producer. * - Once enough data is available, the consumer successfully * reads the data from the reader, but afterwards exceeds * the available data again - pausing is necessary for a * second time. */ unsigned char bufA[100], bufB[20], bufC[10]; unsigned char *tmp; unsigned char acc[50]; mbedtls_mps_size_t tmp_len; mbedtls_mps_reader rd; for (size_t i = 0; (unsigned) i < sizeof(bufA); i++) { bufA[i] = (unsigned char) i; } for (size_t i = 0; (unsigned) i < sizeof(bufB); i++) { bufB[i] = ~((unsigned char) i); } for (size_t i = 0; (unsigned) i < sizeof(bufC); i++) { bufC[i] = ~((unsigned char) i); } /* Preparation (lower layer) */ mbedtls_mps_reader_init(&rd, acc, sizeof(acc)); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufA, sizeof(bufA)) == 0); /* Consumption (upper layer) */ /* Ask for more than what's available. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 80, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 80, bufA, 80); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 80, 10); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_OUT_OF_DATA); /* Preparation */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufB, sizeof(bufB)) == 0); switch (option) { case 0: /* Fetch same chunks, commit afterwards, and * then exceed bounds of new buffer; accumulator * large enough. */ /* Consume */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, &tmp_len) == 0); TEST_MEMORY_COMPARE(tmp, tmp_len, bufA + 80, 10); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 90, 10); TEST_MEMORY_COMPARE(tmp + 10, 10, bufB, 10); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_OUT_OF_DATA); /* Prepare */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufC, sizeof(bufC)) == 0);; /* Consume */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufB + 10, 10); TEST_MEMORY_COMPARE(tmp + 10, 10, bufC, 10); break; case 1: /* Fetch same chunks, commit afterwards, and * then exceed bounds of new buffer; accumulator * not large enough. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 80, 10); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 90, 10); TEST_MEMORY_COMPARE(tmp + 10, 10, bufB, 10); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 51, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_OUT_OF_DATA); /* Prepare */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == MBEDTLS_ERR_MPS_READER_ACCUMULATOR_TOO_SMALL); break; case 2: /* Fetch same chunks, don't commit afterwards, and * then exceed bounds of new buffer; accumulator * large enough. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 80, 10); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 90, 10); TEST_MEMORY_COMPARE(tmp + 10, 10, bufB, 10); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_OUT_OF_DATA); /* Prepare */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufC, sizeof(bufC)) == 0);; /* Consume */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 50, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 20, bufA + 80, 20); TEST_MEMORY_COMPARE(tmp + 20, 20, bufB, 20); TEST_MEMORY_COMPARE(tmp + 40, 10, bufC, 10); break; case 3: /* Fetch same chunks, don't commit afterwards, and * then exceed bounds of new buffer; accumulator * not large enough. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 80, 10); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 10, bufA + 90, 10); TEST_MEMORY_COMPARE(tmp + 10, 10, bufB, 10); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 21, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_OUT_OF_DATA); /* Prepare */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == MBEDTLS_ERR_MPS_READER_ACCUMULATOR_TOO_SMALL); break; default: TEST_ASSERT(0); break; } mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER:MBEDTLS_MPS_STATE_VALIDATION */ void mbedtls_mps_reader_random_usage(int num_out_chunks, int max_chunk_size, int max_request, int acc_size) { /* Randomly pass a reader object back and forth between lower and * upper layer and let each of them call the respective reader API * functions in a random fashion. * * On the lower layer, we're tracking and concatenating * the data passed to successful feed calls. * * For the upper layer, we track and concatenate buffers * obtained from successful get calls. * * As long as the lower layer calls reclaim at least once, (resetting the * fetched but not-yet-committed data), this should always lead to the same * stream of outgoing/incoming data for the lower/upper layers, even if * most of the random calls fail. * * NOTE: This test uses rand() for random data, which is not optimal. * Instead, it would be better to get the random data from a * static buffer. This both eases reproducibility and allows * simple conversion to a fuzz target. */ int ret; unsigned char *acc = NULL; unsigned char *outgoing = NULL, *incoming = NULL; unsigned char *cur_chunk = NULL; size_t cur_out_chunk, out_pos, in_commit, in_fetch; int rand_op; /* Lower layer: * - Reclaim (0) * - Feed (1) * Upper layer: * - Get, do tolerate smaller output (0) * - Get, don't tolerate smaller output (1) * - Commit (2) */ int mode = 0; /* Lower layer (0) or Upper layer (1) */ int reclaimed = 1; /* Have to call reclaim at least once before * returning the reader to the upper layer. */ mbedtls_mps_reader rd; if (acc_size > 0) { TEST_CALLOC(acc, acc_size); } /* This probably needs to be changed because we want * our tests to be deterministic. */ // srand( time( NULL ) ); TEST_CALLOC(outgoing, num_out_chunks * max_chunk_size); TEST_CALLOC(incoming, num_out_chunks * max_chunk_size); mbedtls_mps_reader_init(&rd, acc, acc_size); cur_out_chunk = 0; in_commit = 0; in_fetch = 0; out_pos = 0; while (cur_out_chunk < (unsigned) num_out_chunks) { if (mode == 0) { /* Choose randomly between reclaim and feed */ rand_op = rand() % 2; if (rand_op == 0) { /* Reclaim */ ret = mbedtls_mps_reader_reclaim(&rd, NULL); if (ret == 0) { TEST_ASSERT(cur_chunk != NULL); mbedtls_free(cur_chunk); cur_chunk = NULL; } reclaimed = 1; } else { /* Feed reader with a random chunk */ unsigned char *tmp = NULL; size_t tmp_size; if (cur_out_chunk == (unsigned) num_out_chunks) { continue; } tmp_size = (rand() % max_chunk_size) + 1; TEST_CALLOC(tmp, tmp_size); TEST_ASSERT(mbedtls_test_rnd_std_rand(NULL, tmp, tmp_size) == 0); ret = mbedtls_mps_reader_feed(&rd, tmp, tmp_size); if (ret == 0 || ret == MBEDTLS_ERR_MPS_READER_NEED_MORE) { cur_out_chunk++; memcpy(outgoing + out_pos, tmp, tmp_size); out_pos += tmp_size; } if (ret == 0) { TEST_ASSERT(cur_chunk == NULL); cur_chunk = tmp; } else { mbedtls_free(tmp); } } /* Randomly switch to consumption mode if reclaim * was called at least once. */ if (reclaimed == 1 && rand() % 3 == 0) { in_fetch = 0; mode = 1; } } else { /* Choose randomly between get tolerating fewer data, * get not tolerating fewer data, and commit. */ rand_op = rand() % 3; if (rand_op == 0 || rand_op == 1) { mbedtls_mps_size_t get_size, real_size; unsigned char *chunk_get; get_size = (rand() % max_request) + 1; if (rand_op == 0) { ret = mbedtls_mps_reader_get(&rd, get_size, &chunk_get, &real_size); } else { real_size = get_size; ret = mbedtls_mps_reader_get(&rd, get_size, &chunk_get, NULL); } /* Check if output is in accordance with what was written */ if (ret == 0) { memcpy(incoming + in_commit + in_fetch, chunk_get, real_size); TEST_ASSERT(memcmp(incoming + in_commit + in_fetch, outgoing + in_commit + in_fetch, real_size) == 0); in_fetch += real_size; } } else if (rand_op == 2) { /* Commit */ ret = mbedtls_mps_reader_commit(&rd); if (ret == 0) { in_commit += in_fetch; in_fetch = 0; } } /* Randomly switch back to preparation */ if (rand() % 3 == 0) { reclaimed = 0; mode = 0; } } } /* Cleanup */ mbedtls_mps_reader_free(&rd); mbedtls_free(incoming); mbedtls_free(outgoing); mbedtls_free(acc); mbedtls_free(cur_chunk); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_reader_inconsistent_usage(int option) { /* This test exercises the behaviour of the MPS reader * in the following situation: * - The consumer asks for more data than what's available * - The reader is paused and receives more data from the * producer until the original read request can be fulfilled. * - The consumer does not repeat the original request but * requests data in a different way. * * The reader does not guarantee that inconsistent read requests * after pausing will succeed, and this test triggers some cases * where the request fails. */ unsigned char bufA[100], bufB[100]; unsigned char *tmp; unsigned char acc[40]; mbedtls_mps_reader rd; int success = 0; for (size_t i = 0; (unsigned) i < sizeof(bufA); i++) { bufA[i] = (unsigned char) i; } for (size_t i = 0; (unsigned) i < sizeof(bufB); i++) { bufB[i] = ~((unsigned char) i); } /* Preparation (lower layer) */ mbedtls_mps_reader_init(&rd, acc, sizeof(acc)); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufA, sizeof(bufA)) == 0); /* Consumption (upper layer) */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 80, &tmp, NULL) == 0); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 20, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_OUT_OF_DATA); /* Preparation */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, bufB, sizeof(bufB)) == 0); /* Consumption */ switch (option) { case 0: /* Ask for buffered data in a single chunk, no commit */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 30, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 20, bufA + 80, 20); TEST_MEMORY_COMPARE(tmp + 20, 10, bufB, 10); success = 1; break; case 1: /* Ask for buffered data in a single chunk, with commit */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 30, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 20, bufA + 80, 20); TEST_MEMORY_COMPARE(tmp + 20, 10, bufB, 10); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); success = 1; break; case 2: /* Ask for more than was requested when pausing, #1 */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 31, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_INCONSISTENT_REQUESTS); break; case 3: /* Ask for more than was requested when pausing #2 */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, (mbedtls_mps_size_t) -1, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_INCONSISTENT_REQUESTS); break; case 4: /* Asking for buffered data in different * chunks than before CAN fail. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 15, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 15, bufA + 80, 15); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 10, &tmp, NULL) == MBEDTLS_ERR_MPS_READER_INCONSISTENT_REQUESTS); break; case 5: /* Asking for buffered data different chunks * than before NEED NOT fail - no commits */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 15, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 15, bufA + 80, 15); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 15, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 5, bufA + 95, 5); TEST_MEMORY_COMPARE(tmp + 5, 10, bufB, 10); success = 1; break; case 6: /* Asking for buffered data different chunks * than before NEED NOT fail - intermediate commit */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 15, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 15, bufA + 80, 15); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 15, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 5, bufA + 95, 5); TEST_MEMORY_COMPARE(tmp + 5, 10, bufB, 10); success = 1; break; case 7: /* Asking for buffered data different chunks * than before NEED NOT fail - end commit */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 15, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 15, bufA + 80, 15); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 15, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 5, bufA + 95, 5); TEST_MEMORY_COMPARE(tmp + 5, 10, bufB, 10); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); success = 1; break; case 8: /* Asking for buffered data different chunks * than before NEED NOT fail - intermediate & end commit */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 15, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 15, bufA + 80, 15); TEST_ASSERT(mbedtls_mps_reader_get(&rd, 15, &tmp, NULL) == 0); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); TEST_MEMORY_COMPARE(tmp, 5, bufA + 95, 5); TEST_MEMORY_COMPARE(tmp + 5, 10, bufB, 10); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); success = 1; break; default: TEST_ASSERT(0); break; } if (success == 1) { /* In all succeeding cases, fetch the rest of the second buffer. */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 90, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 90, bufB + 10, 90); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); /* Wrapup */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); } /* Wrapup */ mbedtls_mps_reader_free(&rd); } /* END_CASE */ /* BEGIN_CASE depends_on:TEST_SUITE_MPS_READER */ void mbedtls_mps_reader_feed_empty() { /* This test exercises the behaviour of the reader when it is * fed with a NULL buffer. */ unsigned char buf[100]; unsigned char *tmp; mbedtls_mps_reader rd; for (size_t i = 0; (unsigned) i < sizeof(buf); i++) { buf[i] = (unsigned char) i; } /* Preparation (lower layer) */ mbedtls_mps_reader_init(&rd, NULL, 0); TEST_ASSERT(mbedtls_mps_reader_feed(&rd, NULL, sizeof(buf)) == MBEDTLS_ERR_MPS_READER_INVALID_ARG); /* Subsequent feed-calls should still succeed. */ TEST_ASSERT(mbedtls_mps_reader_feed(&rd, buf, sizeof(buf)) == 0); /* Consumption (upper layer) */ TEST_ASSERT(mbedtls_mps_reader_get(&rd, 100, &tmp, NULL) == 0); TEST_MEMORY_COMPARE(tmp, 100, buf, 100); TEST_ASSERT(mbedtls_mps_reader_commit(&rd) == 0); /* Wrapup */ TEST_ASSERT(mbedtls_mps_reader_reclaim(&rd, NULL) == 0); mbedtls_mps_reader_free(&rd); } /* END_CASE */