/******************************************************************************* * libretroshare/src/serialiser: rsbaseserial.cc * * * * libretroshare: retroshare core library * * * * Copyright 2007-2008 by Robert Fernie * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU Lesser General Public License as * * published by the Free Software Foundation, either version 3 of the * * License, or (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public License * * along with this program. If not, see . * * * *******************************************************************************/ #include /* Included because GCC4.4 wants it */ #include /* Included because GCC4.4 wants it */ #include "retroshare/rstypes.h" #include "serialiser/rsbaseserial.h" #include "util/rsnet.h" #include "util/rstime.h" #include #include /* UInt8 get/set */ bool getRawUInt8(const void *data, uint32_t size, uint32_t *offset, uint8_t *out) { /* first check there is space */ if (size < *offset + 1) { std::cerr << "(EE) Cannot deserialise uint8_t: not enough size." << std::endl; return false; } void *buf = (void *) &(((uint8_t *) data)[*offset]); /* extract the data */ memcpy(out, buf, sizeof(uint8_t)); (*offset) += 1; return true; } bool setRawUInt8(void *data, uint32_t size, uint32_t *offset, uint8_t in) { /* first check there is space */ if (size < *offset + 1) { std::cerr << "(EE) Cannot serialise uint8_t: not enough size." << std::endl; return false; } void *buf = (void *) &(((uint8_t *) data)[*offset]); /* pack it in */ memcpy(buf, &in, sizeof(uint8_t)); (*offset) += 1; return true; } /* UInt16 get/set */ bool getRawUInt16(const void *data, uint32_t size, uint32_t *offset, uint16_t *out) { /* first check there is space */ if (size < *offset + 2) { std::cerr << "(EE) Cannot deserialise uint16_t: not enough size." << std::endl; return false; } void *buf = (void *) &(((uint8_t *) data)[*offset]); /* extract the data */ uint16_t netorder_num; memcpy(&netorder_num, buf, sizeof(uint16_t)); (*out) = ntohs(netorder_num); (*offset) += 2; return true; } bool setRawUInt16(void *data, uint32_t size, uint32_t *offset, uint16_t in) { /* first check there is space */ if (size < *offset + 2) { std::cerr << "(EE) Cannot serialise uint16_t: not enough size." << std::endl; return false; } void *buf = (void *) &(((uint8_t *) data)[*offset]); /* convert the data to the right format */ uint16_t netorder_num = htons(in); /* pack it in */ memcpy(buf, &netorder_num, sizeof(uint16_t)); (*offset) += 2; return true; } /* UInt32 get/set */ bool getRawUInt32(const void *data, uint32_t size, uint32_t *offset, uint32_t *out) { /* first check there is space */ if (size < *offset + 4) { std::cerr << "(EE) Cannot deserialise uint32_t: not enough size." << std::endl; return false; } void *buf = (void *) &(((uint8_t *) data)[*offset]); /* extract the data */ uint32_t netorder_num; memcpy(&netorder_num, buf, sizeof(uint32_t)); (*out) = ntohl(netorder_num); (*offset) += 4; return true; } bool setRawUInt32(void *data, uint32_t size, uint32_t *offset, uint32_t in) { /* first check there is space */ if (size < *offset + 4) { std::cerr << "(EE) Cannot serialise uint32_t: not enough size." << std::endl; return false; } void *buf = (void *) &(((uint8_t *) data)[*offset]); /* convert the data to the right format */ uint32_t netorder_num = htonl(in); /* pack it in */ memcpy(buf, &netorder_num, sizeof(uint32_t)); (*offset) += 4; return true; } /* UInt64 get/set */ bool getRawUInt64(const void *data, uint32_t size, uint32_t *offset, uint64_t *out) { /* first check there is space */ if (size < *offset + 8) { std::cerr << "(EE) Cannot deserialise uint64_t: not enough size." << std::endl; return false; } void *buf = (void *) &(((uint8_t *) data)[*offset]); /* extract the data */ uint64_t netorder_num; memcpy(&netorder_num, buf, sizeof(uint64_t)); (*out) = ntohll(netorder_num); (*offset) += 8; return true; } bool setRawUInt64(void *data, uint32_t size, uint32_t *offset, uint64_t in) { /* first check there is space */ if (size < *offset + 8) { std::cerr << "(EE) Cannot serialise uint64_t: not enough size." << std::endl; return false; } void *buf = (void *) &(((uint8_t *) data)[*offset]); /* convert the data to the right format */ uint64_t netorder_num = htonll(in); /* pack it in */ memcpy(buf, &netorder_num, sizeof(uint64_t)); (*offset) += 8; return true; } bool getRawUFloat32(const void *data, uint32_t size, uint32_t *offset, float& f) { uint32_t n ; if(!getRawUInt32(data, size, offset, &n) ) return false ; f = 1.0f/ ( n/(float)(~(uint32_t)0)) - 1.0f ; return true ; } bool setRawUFloat32(void *data,uint32_t size,uint32_t *offset,float f) { uint32_t sz = 4; if ( !data || size <= *offset || size < sz + *offset ) { std::cerr << "(EE) not enough room. SIZE+offset=" << sz+*offset << " and size is only " << size << std::endl; return false; } if(f < 0.0f) { std::cerr << "(EE) Cannot serialise invalid negative float value " << f << " in " << __PRETTY_FUNCTION__ << std::endl; return false ; } // This serialisation is quite accurate. The max relative error is approx. // 0.01% and most of the time less than 1e-05% The error is well distributed // over numbers also. // uint32_t n = (f < 1e-7)?(~(uint32_t)0): ((uint32_t)( (1.0f/(1.0f+f) * (~(uint32_t)0)))) ; return setRawUInt32(data, size, offset, n); } uint32_t getRawStringSize(const std::string &outStr) { return outStr.length() + 4; } bool getRawString(const void *data, uint32_t size, uint32_t *offset, std::string &outStr) { outStr.clear(); uint32_t len = 0; if (!getRawUInt32(data, size, offset, &len)) { std::cerr << "getRawString() get size failed" << std::endl; return false; } /* check there is space for string */ if(len > size || size-len < *offset) // better than if(size < *offset + len) because it avoids integer overflow { std::cerr << "getRawString() not enough size" << std::endl; print_stacktrace(); return false; } uint8_t *buf = &(((uint8_t *) data)[*offset]); for (uint32_t i = 0; i < len; i++) { outStr += buf[i]; } (*offset) += len; return true; } bool setRawString(void *data, uint32_t size, uint32_t *offset, const std::string &inStr) { uint32_t len = inStr.length(); /* first check there is space */ if(size < 4 || len > size-4 || size-len-4 < *offset) // better than if(size < *offset + len + 4) because it avoids integer overflow { std::cerr << "setRawString() Not enough size" << std::endl; return false; } if (!setRawUInt32(data, size, offset, len)) { std::cerr << "setRawString() set size failed" << std::endl; return false; } void *buf = (void *) &(((uint8_t *) data)[*offset]); /* pack it in */ memcpy(buf, inStr.c_str(), len); (*offset) += len; return true; } bool getRawTimeT(const void *data,uint32_t size,uint32_t *offset,rstime_t& t) { uint64_t T; bool res = getRawUInt64(data,size,offset,&T); t = T; if(t < 0) // [[unlikely]] std::cerr << __PRETTY_FUNCTION__ << " got a negative time: " << t << " this seems fishy, report to the developers!" << std::endl; return res; } bool setRawTimeT(void *data, uint32_t size, uint32_t *offset, const rstime_t& t) { if(t < 0) // [[unlikely]] std::cerr << __PRETTY_FUNCTION__ << " got a negative time: " << t << " this seems fishy, report to the developers!" << std::endl; return setRawUInt64(data,size,offset,t) ; }