/** Arbitrary-precision ('bignum') arithmetic. * * Performance is optimized for numbers below ~1000 decimal digits. * For X86 machines, highly optimised assembly routines are used. * * The following algorithms are currently implemented: * $(UL * $(LI Karatsuba multiplication) * $(LI Squaring is optimized independently of multiplication) * $(LI Divide-and-conquer division) * $(LI Binary exponentiation) * ) * * For very large numbers, consider using the $(HTTP gmplib.org, GMP library) instead. * * License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0). * Authors: Don Clugston * Source: $(PHOBOSSRC std/bigint.d) */ /* Copyright Don Clugston 2008 - 2010. * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) */ module std.bigint; import std.conv : ConvException; import std.format.spec : FormatSpec; import std.format : FormatException; import std.internal.math.biguintcore; import std.internal.math.biguintnoasm : BigDigit; import std.range.primitives; import std.traits; /** A struct representing an arbitrary precision integer. * * All arithmetic operations are supported, except unsigned shift right (`>>>`). * Bitwise operations (`|`, `&`, `^`, `~`) are supported, and behave as if BigInt was * an infinite length 2's complement number. * * BigInt implements value semantics using copy-on-write. This means that * assignment is cheap, but operations such as x++ will cause heap * allocation. (But note that for most bigint operations, heap allocation is * inevitable anyway.) */ struct BigInt { private: BigUint data; // BigInt adds signed arithmetic to BigUint. bool sign = false; public: /** * Construct a `BigInt` from a decimal or hexadecimal string. The number must * be in the form of a decimal or hex literal. It may have a leading `+` * or `-` sign, followed by `0x` or `0X` if hexadecimal. Underscores are * permitted in any location after the `0x` and/or the sign of the number. * * Params: * s = a finite bidirectional range of any character type * * Throws: * $(REF ConvException, std,conv) if the string doesn't represent a valid number */ this(Range)(Range s) if ( isBidirectionalRange!Range && isSomeChar!(ElementType!Range) && !isInfinite!Range && !isNarrowString!Range) { import std.algorithm.iteration : filterBidirectional; import std.algorithm.searching : startsWith; import std.conv : ConvException; import std.exception : enforce; import std.utf : byChar; enforce!ConvException(!s.empty, "Can't initialize BigInt with an empty range"); bool neg = false; bool ok; data = 0UL; // check for signs and if the string is a hex value if (s.front == '+') { s.popFront(); // skip '+' } else if (s.front == '-') { neg = true; s.popFront(); } if (s.save.startsWith("0x".byChar) || s.save.startsWith("0X".byChar)) { s.popFront; s.popFront; if (!s.empty) ok = data.fromHexString(s.filterBidirectional!(a => a != '_')); else ok = false; } else { ok = data.fromDecimalString(s.filterBidirectional!(a => a != '_')); } enforce!ConvException(ok, "Not a valid numerical string"); if (isZero()) neg = false; sign = neg; } /// ditto this(Range)(Range s) pure if (isNarrowString!Range) { import std.utf : byCodeUnit; this(s.byCodeUnit); } @safe unittest { // system because of the dummy ranges eventually call std.array!string import std.exception : assertThrown; import std.internal.test.dummyrange; auto r1 = new ReferenceBidirectionalRange!dchar("101"); auto big1 = BigInt(r1); assert(big1 == BigInt(101)); auto r2 = new ReferenceBidirectionalRange!dchar("1_000"); auto big2 = BigInt(r2); assert(big2 == BigInt(1000)); auto r3 = new ReferenceBidirectionalRange!dchar("0x0"); auto big3 = BigInt(r3); assert(big3 == BigInt(0)); auto r4 = new ReferenceBidirectionalRange!dchar("0x"); assertThrown!ConvException(BigInt(r4)); } /** * Construct a `BigInt` from a sign and a magnitude. * * The magnitude is an $(REF_ALTTEXT input range, isInputRange, std,range,primitives) * of unsigned integers that satisfies either $(REF hasLength, std,range,primitives) * or $(REF isForwardRange, std,range,primitives). The first (leftmost) * element of the magnitude is considered the most significant. * * Params: * isNegative = true for negative, false for non-negative * (ignored when magnitude is zero) * magnitude = a finite range of unsigned integers */ this(Range)(bool isNegative, Range magnitude) if ( isInputRange!Range && isUnsigned!(ElementType!Range) && (hasLength!Range || isForwardRange!Range) && !isInfinite!Range) { data.fromMagnitude(magnitude); sign = isNegative && !data.isZero; } /// pure @safe unittest { ubyte[] magnitude = [1, 2, 3, 4, 5, 6]; auto b1 = BigInt(false, magnitude); assert(cast(long) b1 == 0x01_02_03_04_05_06L); auto b2 = BigInt(true, magnitude); assert(cast(long) b2 == -0x01_02_03_04_05_06L); } /// Construct a `BigInt` from a built-in integral type. this(T)(T x) pure nothrow @safe if (isIntegral!T) { data = data.init; // @@@: Workaround for compiler bug opAssign(x); } /// @safe unittest { ulong data = 1_000_000_000_000; auto bigData = BigInt(data); assert(bigData == BigInt("1_000_000_000_000")); } /// Construct a `BigInt` from another `BigInt`. this(T)(T x) pure nothrow @safe if (is(immutable T == immutable BigInt)) { opAssign(x); } /// @safe unittest { const(BigInt) b1 = BigInt("1_234_567_890"); BigInt b2 = BigInt(b1); assert(b2 == BigInt("1_234_567_890")); } /// Assignment from built-in integer types. BigInt opAssign(T)(T x) pure nothrow @safe if (isIntegral!T) { data = cast(ulong) absUnsign(x); sign = (x < 0); return this; } /// @safe unittest { auto b = BigInt("123"); b = 456; assert(b == BigInt("456")); } /// Assignment from another BigInt. BigInt opAssign(T:BigInt)(T x) pure @nogc @safe { data = x.data; sign = x.sign; return this; } /// @safe unittest { auto b1 = BigInt("123"); auto b2 = BigInt("456"); b2 = b1; assert(b2 == BigInt("123")); } /** * Implements assignment operators from built-in integers of the form * `BigInt op= integer`. */ BigInt opOpAssign(string op, T)(T y) pure nothrow @safe return scope if ((op=="+" || op=="-" || op=="*" || op=="/" || op=="%" || op==">>" || op=="<<" || op=="^^" || op=="|" || op=="&" || op=="^") && isIntegral!T) { ulong u = absUnsign(y); static if (op=="+") { data = BigUint.addOrSubInt(data, u, sign != (y<0), sign); } else static if (op=="-") { data = BigUint.addOrSubInt(data, u, sign == (y<0), sign); } else static if (op=="*") { if (y == 0) { sign = false; data = 0UL; } else { sign = ( sign != (y<0) ); data = BigUint.mulInt(data, u); } } else static if (op=="/") { assert(y != 0, "Division by zero"); static if (T.sizeof <= uint.sizeof) { data = BigUint.divInt(data, cast(uint) u); } else { data = BigUint.divInt(data, u); } sign = data.isZero() ? false : sign ^ (y < 0); } else static if (op=="%") { assert(y != 0, "Division by zero"); static if (is(immutable(T) == immutable(long)) || is( immutable(T) == immutable(ulong) )) { this %= BigInt(y); } else { data = cast(ulong) BigUint.modInt(data, cast(uint) u); if (data.isZero()) sign = false; } // x%y always has the same sign as x. // This is not the same as mathematical mod. } else static if (op==">>" || op=="<<") { // Do a left shift if y>0 and <<, or // if y<0 and >>; else do a right shift. if (y == 0) return this; else if ((y > 0) == (op=="<<")) { // Sign never changes during left shift data = data.opBinary!(op)(u); } else { data = data.opBinary!(op)(u); if (data.isZero()) sign = false; } } else static if (op=="^^") { sign = (y & 1) ? sign : false; data = BigUint.pow(data, u); } else static if (op=="&") { if (y >= 0 && (y <= 1 || !sign)) // In these cases we can avoid some allocation. { static if (T.sizeof <= uint.sizeof && BigDigit.sizeof <= uint.sizeof) data = cast(ulong) data.peekUint(0) & y; else data = data.peekUlong(0) & y; sign = false; } else { BigInt b = y; opOpAssign!op(b); } } else static if (op=="|" || op=="^") { BigInt b = y; opOpAssign!op(b); } else static assert(0, "BigInt " ~ op[0..$-1] ~ "= " ~ T.stringof ~ " is not supported"); return this; } /// @safe unittest { auto b = BigInt("1_000_000_000"); b += 12345; assert(b == BigInt("1_000_012_345")); b /= 5; assert(b == BigInt("200_002_469")); } // https://issues.dlang.org/show_bug.cgi?id=16264 @safe unittest { auto a = BigInt( `335690982744637013564796917901053301979460129353374296317539383938630086938` ~ `465898213033510992292836631752875403891802201862860531801760096359705447768` ~ `957432600293361240407059207520920532482429912948952142341440301429494694368` ~ `264560802292927144211230021750155988283029753927847924288850436812178022006` ~ `408597793414273953252832688620479083497367463977081627995406363446761896298` ~ `967177607401918269561385622811274398143647535024987050366350585544531063531` ~ `7118554808325723941557169427279911052268935775`); auto b = BigInt( `207672245542926038535480439528441949928508406405023044025560363701392340829` ~ `852529131306106648201340460604257466180580583656068555417076345439694125326` ~ `843947164365500055567495554645796102453565953360564114634705366335703491527` ~ `429426780005741168078089657359833601261803592920462081364401456331489106355` ~ `199133982282631108670436696758342051198891939367812305559960349479160308314` ~ `068518200681530999860641597181672463704794566473241690395901768680673716414` ~ `243691584391572899147223065906633310537507956952626106509069491302359792769` ~ `378934570685117202046921464019396759638376362935855896435623442486036961070` ~ `534574698959398017332214518246531363445309522357827985468581166065335726996` ~ `711467464306784543112544076165391268106101754253962102479935962248302404638` ~ `21737237102628470475027851189594709504`); BigInt c = a * b; // Crashes assert(c == BigInt( `697137001950904057507249234183127244116872349433141878383548259425589716813` ~ `135440660252012378417669596912108637127036044977634382385990472429604619344` ~ `738746224291111527200379708978133071390303850450970292020176369525401803474` ~ `998613408923490273129022167907826017408385746675184651576154302536663744109` ~ `111018961065316024005076097634601030334948684412785487182572502394847587887` ~ `507385831062796361152176364659197432600147716058873232435238712648552844428` ~ `058885217631715287816333209463171932255049134340904981280717725999710525214` ~ `161541960645335744430049558161514565159449390036287489478108344584188898872` ~ `434914159748515512161981956372737022393466624249130107254611846175580584736` ~ `276213025837422102290580044755202968610542057651282410252208599309841499843` ~ `672251048622223867183370008181364966502137725166782667358559333222947265344` ~ `524195551978394625568228658697170315141077913403482061673401937141405425042` ~ `283546509102861986303306729882186190883772633960389974665467972016939172303` ~ `653623175801495207204880400522581834672918935651426160175413277309985678579` ~ `830872397214091472424064274864210953551447463312267310436493480881235642109` ~ `668498742629676513172286703948381906930297135997498416573231570483993847269` ~ `479552708416124555462530834668011570929850407031109157206202741051573633443` ~ `58105600` )); } /** * Implements assignment operators of the form `BigInt op= BigInt`. */ BigInt opOpAssign(string op, T)(T y) pure nothrow @safe return scope if ((op=="+" || op== "-" || op=="*" || op=="|" || op=="&" || op=="^" || op=="/" || op=="%") && is (T: BigInt)) { static if (op == "+") { data = BigUint.addOrSub(data, y.data, sign != y.sign, sign); } else static if (op == "-") { data = BigUint.addOrSub(data, y.data, sign == y.sign, sign); } else static if (op == "*") { data = BigUint.mul(data, y.data); sign = isZero() ? false : sign ^ y.sign; } else static if (op == "/") { y.checkDivByZero(); if (!isZero()) { data = BigUint.div(data, y.data); sign = isZero() ? false : sign ^ y.sign; } } else static if (op == "%") { y.checkDivByZero(); if (!isZero()) { data = BigUint.mod(data, y.data); // x%y always has the same sign as x. if (isZero()) sign = false; } } else static if (op == "|" || op == "&" || op == "^") { data = BigUint.bitwiseOp!op(data, y.data, sign, y.sign, sign); } else static assert(0, "BigInt " ~ op[0..$-1] ~ "= " ~ T.stringof ~ " is not supported"); return this; } /// @safe unittest { auto x = BigInt("123"); auto y = BigInt("321"); x += y; assert(x == BigInt("444")); } /** * Implements binary operators between `BigInt`s. */ BigInt opBinary(string op, T)(T y) pure nothrow @safe const return scope if ((op=="+" || op == "*" || op=="-" || op=="|" || op=="&" || op=="^" || op=="/" || op=="%") && is (T: BigInt)) { BigInt r = this; return r.opOpAssign!(op)(y); } /// @safe unittest { auto x = BigInt("123"); auto y = BigInt("456"); BigInt z = x * y; assert(z == BigInt("56088")); } /** * Implements binary operators between `BigInt`'s and built-in integers. */ BigInt opBinary(string op, T)(T y) pure nothrow @safe const return scope if ((op=="+" || op == "*" || op=="-" || op=="/" || op=="|" || op=="&" || op=="^"|| op==">>" || op=="<<" || op=="^^") && isIntegral!T) { BigInt r = this; r.opOpAssign!(op)(y); return r; } /// @safe unittest { auto x = BigInt("123"); x *= 300; assert(x == BigInt("36900")); } /** Implements a narrowing remainder operation with built-in integer types. This binary operator returns a narrower, built-in integer type where applicable, according to the following table. $(TABLE , $(TR $(TD `BigInt`) $(TD $(CODE_PERCENT)) $(TD `uint`) $(TD $(RARR)) $(TD `long`)) $(TR $(TD `BigInt`) $(TD $(CODE_PERCENT)) $(TD `long`) $(TD $(RARR)) $(TD `long`)) $(TR $(TD `BigInt`) $(TD $(CODE_PERCENT)) $(TD `ulong`) $(TD $(RARR)) $(TD `BigInt`)) $(TR $(TD `BigInt`) $(TD $(CODE_PERCENT)) $(TD other type) $(TD $(RARR)) $(TD `int`)) ) */ auto opBinary(string op, T)(T y) pure nothrow @safe const if (op == "%" && isIntegral!T) { assert(y != 0, "% 0 not allowed"); // BigInt % uint => long // BigInt % long => long // BigInt % ulong => BigInt // BigInt % other_type => int static if (is(immutable T == immutable long) || is(immutable T == immutable ulong)) { auto r = this % BigInt(y); static if (is(immutable T == immutable long)) { return r.toLong(); } else { // return as-is to avoid overflow return r; } } else { immutable uint u = absUnsign(y); static if (is(immutable T == immutable uint)) alias R = long; else alias R = int; R rem = BigUint.modInt(data, u); // x%y always has the same sign as x. // This is not the same as mathematical mod. return sign ? -rem : rem; } } /// @safe unittest { auto x = BigInt("1_000_000_500"); long l = 1_000_000L; ulong ul = 2_000_000UL; int i = 500_000; short s = 30_000; assert(is(typeof(x % l) == long) && x % l == 500L); assert(is(typeof(x % ul) == BigInt) && x % ul == BigInt(500)); assert(is(typeof(x % i) == int) && x % i == 500); assert(is(typeof(x % s) == int) && x % s == 10500); } /** Implements operators with built-in integers on the left-hand side and `BigInt` on the right-hand side. */ BigInt opBinaryRight(string op, T)(T y) pure nothrow @safe const if ((op=="+" || op=="*" || op=="|" || op=="&" || op=="^") && isIntegral!T) { return opBinary!(op)(y); } /// @safe unittest { auto x = BigInt("100"); BigInt y = 123 + x; assert(y == BigInt("223")); BigInt z = 123 - x; assert(z == BigInt("23")); // Dividing a built-in integer type by BigInt always results in // something that fits in a built-in type, so the built-in type is // returned, not BigInt. assert(is(typeof(1000 / x) == int)); assert(1000 / x == 10); } // BigInt = integer op BigInt /// ditto BigInt opBinaryRight(string op, T)(T y) pure nothrow @safe const if (op == "-" && isIntegral!T) { ulong u = absUnsign(y); BigInt r; static if (op == "-") { r.sign = sign; r.data = BigUint.addOrSubInt(data, u, sign == (y<0), r.sign); r.negate(); } return r; } // integer = integer op BigInt /// ditto T opBinaryRight(string op, T)(T x) pure nothrow @safe const if ((op=="%" || op=="/") && isIntegral!T) { checkDivByZero(); static if (op == "%") { // x%y always has the same sign as x. if (data.ulongLength > 1) return x; immutable u = absUnsign(x); immutable rem = u % data.peekUlong(0); // x%y always has the same sign as x. return cast(T)((x<0) ? -rem : rem); } else static if (op == "/") { if (data.ulongLength > 1) return 0; return cast(T)(x / data.peekUlong(0)); } } // const unary operations /** Implements `BigInt` unary operators. */ BigInt opUnary(string op)() pure nothrow @safe const if (op=="+" || op=="-" || op=="~") { static if (op=="-") { BigInt r = this; r.negate(); return r; } else static if (op=="~") { return -(this+1); } else static if (op=="+") return this; } // non-const unary operations /// ditto BigInt opUnary(string op)() pure nothrow @safe if (op=="++" || op=="--") { static if (op=="++") { data = BigUint.addOrSubInt(data, 1UL, sign, sign); return this; } else static if (op=="--") { data = BigUint.addOrSubInt(data, 1UL, !sign, sign); return this; } } /// @safe unittest { auto x = BigInt("1234"); assert(-x == BigInt("-1234")); ++x; assert(x == BigInt("1235")); } /** Implements `BigInt` equality test with other `BigInt`'s and built-in numeric types. */ bool opEquals()(auto ref const BigInt y) const pure @nogc @safe { return sign == y.sign && y.data == data; } /// ditto bool opEquals(T)(const T y) const pure nothrow @nogc @safe if (isIntegral!T) { if (sign != (y<0)) return 0; return data.opEquals(cast(ulong) absUnsign(y)); } /// ditto bool opEquals(T)(const T y) const pure nothrow @nogc if (isFloatingPoint!T) { return 0 == opCmp(y); } /// @safe unittest { // Note that when comparing a BigInt to a float or double the // full precision of the BigInt is always considered, unlike // when comparing an int to a float or a long to a double. assert(BigInt(123456789) != cast(float) 123456789); } @safe unittest { auto x = BigInt("12345"); auto y = BigInt("12340"); int z = 12345; int w = 54321; assert(x == x); assert(x != y); assert(x == y + 5); assert(x == z); assert(x != w); } @safe unittest { import std.math.operations : nextDown, nextUp; const x = BigInt("0x1abc_de80_0000_0000_0000_0000_0000_0000"); BigInt x1 = x + 1; BigInt x2 = x - 1; const d = 0x1.abcde8p124; assert(x == d); assert(x1 != d); assert(x2 != d); assert(x != nextUp(d)); assert(x != nextDown(d)); assert(x != double.nan); const dL = 0x1.abcde8p124L; assert(x == dL); assert(x1 != dL); assert(x2 != dL); assert(x != nextUp(dL)); assert(x != nextDown(dL)); assert(x != real.nan); assert(BigInt(0) == 0.0f); assert(BigInt(0) == 0.0); assert(BigInt(0) == 0.0L); assert(BigInt(0) == -0.0f); assert(BigInt(0) == -0.0); assert(BigInt(0) == -0.0L); assert(BigInt("999_999_999_999_999_999_999_999_999_999_999_999_999") != float.infinity); } /** Implements casting to `bool`. */ T opCast(T:bool)() pure nothrow @nogc @safe const { return !isZero(); } /// @safe unittest { // Non-zero values are regarded as true auto x = BigInt("1"); auto y = BigInt("10"); assert(x); assert(y); // Zero value is regarded as false auto z = BigInt("0"); assert(!z); } /** Implements casting to integer types. Throws: $(REF ConvOverflowException, std,conv) if the number exceeds the target type's range. */ T opCast(T:ulong)() pure @safe const { if (isUnsigned!T && sign) { /* throw */ } else if (data.ulongLength == 1) { ulong l = data.peekUlong(0); if (isUnsigned!T || !sign) { if (l <= T.max) return cast(T) l; } else { if (l <= ulong(T.max)+1) return cast(T)-long(l); // -long.min == long.min } } import std.conv : ConvOverflowException; import std.string : format; throw new ConvOverflowException( "BigInt(%s) cannot be represented as a %s" .format(this.toDecimalString, T.stringof)); } /// @safe unittest { import std.conv : to, ConvOverflowException; import std.exception : assertThrown; assert(BigInt("0").to!int == 0); assert(BigInt("0").to!ubyte == 0); assert(BigInt("255").to!ubyte == 255); assertThrown!ConvOverflowException(BigInt("256").to!ubyte); assertThrown!ConvOverflowException(BigInt("-1").to!ubyte); } @safe unittest { import std.conv : to, ConvOverflowException; import std.exception : assertThrown; assert(BigInt("-1").to!byte == -1); assert(BigInt("-128").to!byte == -128); assert(BigInt("127").to!byte == 127); assertThrown!ConvOverflowException(BigInt("-129").to!byte); assertThrown!ConvOverflowException(BigInt("128").to!byte); assert(BigInt("0").to!uint == 0); assert(BigInt("4294967295").to!uint == uint.max); assertThrown!ConvOverflowException(BigInt("4294967296").to!uint); assertThrown!ConvOverflowException(BigInt("-1").to!uint); assert(BigInt("-1").to!int == -1); assert(BigInt("-2147483648").to!int == int.min); assert(BigInt("2147483647").to!int == int.max); assertThrown!ConvOverflowException(BigInt("-2147483649").to!int); assertThrown!ConvOverflowException(BigInt("2147483648").to!int); assert(BigInt("0").to!ulong == 0); assert(BigInt("18446744073709551615").to!ulong == ulong.max); assertThrown!ConvOverflowException(BigInt("18446744073709551616").to!ulong); assertThrown!ConvOverflowException(BigInt("-1").to!ulong); assert(BigInt("-1").to!long == -1); assert(BigInt("-9223372036854775808").to!long == long.min); assert(BigInt("9223372036854775807").to!long == long.max); assertThrown!ConvOverflowException(BigInt("-9223372036854775809").to!long); assertThrown!ConvOverflowException(BigInt("9223372036854775808").to!long); } /** Implements casting to floating point types. */ T opCast(T)() @safe nothrow @nogc const if (isFloatingPoint!T) { return toFloat!(T, "nearest"); } /// @system unittest { assert(cast(float) BigInt("35540592535949172786332045140593475584") == 35540592535949172786332045140593475584.0f); assert(cast(double) BigInt("35540601499647381470685035515422441472") == 35540601499647381470685035515422441472.0); assert(cast(real) BigInt("35540601499647381470685035515422441472") == 35540601499647381470685035515422441472.0L); assert(cast(float) BigInt("-0x1345_6780_0000_0000_0000_0000_0000") == -0x1.3456_78p+108f ); assert(cast(double) BigInt("-0x1345_678a_bcde_f000_0000_0000_0000") == -0x1.3456_78ab_cdefp+108 ); assert(cast(real) BigInt("-0x1345_678a_bcde_f000_0000_0000_0000") == -0x1.3456_78ab_cdefp+108L); } /// Rounding when casting to floating point @system unittest { // BigInts whose values cannot be exactly represented as float/double/real // are rounded when cast to float/double/real. When cast to float or // double or 64-bit real the rounding is strictly defined. When cast // to extended-precision real the rounding rules vary by environment. // BigInts that fall somewhere between two non-infinite floats/doubles // are rounded to the closer value when cast to float/double. assert(cast(float) BigInt(0x1aaa_aae7) == 0x1.aaa_aaep+28f); assert(cast(float) BigInt(0x1aaa_aaff) == 0x1.aaa_ab0p+28f); assert(cast(float) BigInt(-0x1aaa_aae7) == -0x1.aaaaaep+28f); assert(cast(float) BigInt(-0x1aaa_aaff) == -0x1.aaaab0p+28f); assert(cast(double) BigInt(0x1aaa_aaaa_aaaa_aa77) == 0x1.aaa_aaaa_aaaa_aa00p+60); assert(cast(double) BigInt(0x1aaa_aaaa_aaaa_aaff) == 0x1.aaa_aaaa_aaaa_ab00p+60); assert(cast(double) BigInt(-0x1aaa_aaaa_aaaa_aa77) == -0x1.aaa_aaaa_aaaa_aa00p+60); assert(cast(double) BigInt(-0x1aaa_aaaa_aaaa_aaff) == -0x1.aaa_aaaa_aaaa_ab00p+60); // BigInts that fall exactly between two non-infinite floats/doubles // are rounded away from zero when cast to float/double. (Note that // in most environments this is NOT the same rounding rule rule used // when casting int/long to float/double.) assert(cast(float) BigInt(0x1aaa_aaf0) == 0x1.aaa_ab0p+28f); assert(cast(float) BigInt(-0x1aaa_aaf0) == -0x1.aaaab0p+28f); assert(cast(double) BigInt(0x1aaa_aaaa_aaaa_aa80) == 0x1.aaa_aaaa_aaaa_ab00p+60); assert(cast(double) BigInt(-0x1aaa_aaaa_aaaa_aa80) == -0x1.aaa_aaaa_aaaa_ab00p+60); // BigInts that are bounded on one side by the largest positive or // most negative finite float/double and on the other side by infinity // or -infinity are rounded as if in place of infinity was the value // `2^^(T.max_exp)` when cast to float/double. assert(cast(float) BigInt("999_999_999_999_999_999_999_999_999_999_999_999_999") == float.infinity); assert(cast(float) BigInt("-999_999_999_999_999_999_999_999_999_999_999_999_999") == -float.infinity); assert(cast(double) BigInt("999_999_999_999_999_999_999_999_999_999_999_999_999") < double.infinity); assert(cast(real) BigInt("999_999_999_999_999_999_999_999_999_999_999_999_999") < real.infinity); } @safe unittest { // Test exponent overflow is correct. assert(cast(float) BigInt(0x1fffffff) == 0x1.000000p+29f); assert(cast(double) BigInt(0x1fff_ffff_ffff_fff0) == 0x1.000000p+61); } private T toFloat(T, string roundingMode)() @safe nothrow @nogc const if (__traits(isFloating, T) && (roundingMode == "nearest" || roundingMode == "truncate")) { import core.bitop : bsr; enum performRounding = (roundingMode == "nearest"); enum performTruncation = (roundingMode == "truncate"); static assert(performRounding || performTruncation, "unrecognized rounding mode"); enum int totalNeededBits = T.mant_dig + int(performRounding); static if (totalNeededBits <= 64) { // We need to examine the top two 64-bit words, not just the top one, // since the top word could have just a single significant bit. const ulongLength = data.ulongLength; const ulong w1 = data.peekUlong(ulongLength - 1); if (w1 == 0) return T(0); // Special: exponent should be all zero bits, plus bsr(w1) is undefined. const ulong w2 = ulongLength < 2 ? 0 : data.peekUlong(ulongLength - 2); const uint w1BitCount = bsr(w1) + 1; ulong sansExponent = (w1 << (64 - w1BitCount)) | (w2 >>> (w1BitCount)); size_t exponent = (ulongLength - 1) * 64 + w1BitCount + 1; static if (performRounding) { sansExponent += 1UL << (64 - totalNeededBits); if (0 <= cast(long) sansExponent) // Use high bit to detect overflow. { // Do not bother filling in the high bit of sansExponent // with 1. It will be discarded by float and double and 80 // bit real cannot be on this path with rounding enabled. exponent += 1; } } static if (T.mant_dig == float.mant_dig) { if (exponent >= T.max_exp) return isNegative ? -T.infinity : T.infinity; uint resultBits = (uint(isNegative) << 31) | // sign bit ((0xFF & (exponent - float.min_exp)) << 23) | // exponent cast(uint) ((sansExponent << 1) >>> (64 - 23)); // mantissa. // TODO: remove @trusted lambda after DIP 1000 is enabled by default. return (() @trusted => *cast(float*) &resultBits)(); } else static if (T.mant_dig == double.mant_dig) { if (exponent >= T.max_exp) return isNegative ? -T.infinity : T.infinity; ulong resultBits = (ulong(isNegative) << 63) | // sign bit ((0x7FFUL & (exponent - double.min_exp)) << 52) | // exponent ((sansExponent << 1) >>> (64 - 52)); // mantissa. // TODO: remove @trusted lambda after DIP 1000 is enabled by default. return (() @trusted => *cast(double*) &resultBits)(); } else { import core.math : ldexp; return ldexp(isNegative ? -cast(real) sansExponent : cast(real) sansExponent, cast(int) exponent - 65); } } else { import core.math : ldexp; const ulongLength = data.ulongLength; if ((ulongLength - 1) * 64L > int.max) return isNegative ? -T.infinity : T.infinity; int scale = cast(int) ((ulongLength - 1) * 64); const ulong w1 = data.peekUlong(ulongLength - 1); if (w1 == 0) return T(0); // Special: bsr(w1) is undefined. int bitsStillNeeded = totalNeededBits - bsr(w1) - 1; T acc = ldexp(cast(T) w1, scale); for (ptrdiff_t i = ulongLength - 2; i >= 0 && bitsStillNeeded > 0; i--) { ulong w = data.peekUlong(i); // To round towards zero we must make sure not to use too many bits. if (bitsStillNeeded >= 64) { acc += ldexp(cast(T) w, scale -= 64); bitsStillNeeded -= 64; } else { w = (w >>> (64 - bitsStillNeeded)) << (64 - bitsStillNeeded); acc += ldexp(cast(T) w, scale -= 64); break; } } if (isNegative) acc = -acc; return cast(T) acc; } } /** Implements casting to/from qualified `BigInt`'s. Warning: Casting to/from `const` or `immutable` may break type system guarantees. Use with care. */ T opCast(T)() pure nothrow @nogc const if (is(immutable T == immutable BigInt)) { return this; } /// @safe unittest { const(BigInt) x = BigInt("123"); BigInt y = cast() x; // cast away const assert(y == x); } // Hack to make BigInt's typeinfo.compare work properly. // Note that this must appear before the other opCmp overloads, otherwise // DMD won't find it. /** Implements 3-way comparisons of `BigInt` with `BigInt` or `BigInt` with built-in numeric types. */ int opCmp(ref const BigInt y) pure nothrow @nogc @safe const { // Simply redirect to the "real" opCmp implementation. return this.opCmp!BigInt(y); } /// ditto int opCmp(T)(const T y) pure nothrow @nogc @safe const if (isIntegral!T) { if (sign != (y<0) ) return sign ? -1 : 1; int cmp = data.opCmp(cast(ulong) absUnsign(y)); return sign? -cmp: cmp; } /// ditto int opCmp(T)(const T y) nothrow @nogc @safe const if (isFloatingPoint!T) { import core.bitop : bsr; import std.math.operations : cmp; import std.math.traits : isFinite; const asFloat = toFloat!(T, "truncate"); if (asFloat != y) return cmp(asFloat, y); // handles +/- NaN. if (!isFinite(y)) return isNegative ? 1 : -1; const ulongLength = data.ulongLength; const w1 = data.peekUlong(ulongLength - 1); if (w1 == 0) return 0; // Special: bsr(w1) is undefined. const numSignificantBits = (ulongLength - 1) * 64 + bsr(w1) + 1; for (ptrdiff_t bitsRemainingToCheck = numSignificantBits - T.mant_dig, i = 0; bitsRemainingToCheck > 0; i++, bitsRemainingToCheck -= 64) { auto word = data.peekUlong(i); if (word == 0) continue; // Make sure we're only checking digits that are beyond // the precision of `y`. if (bitsRemainingToCheck < 64 && (word << (64 - bitsRemainingToCheck)) == 0) break; // This can only happen on the last loop iteration. return isNegative ? -1 : 1; } return 0; } /// ditto int opCmp(T:BigInt)(const T y) pure nothrow @nogc @safe const { if (sign != y.sign) return sign ? -1 : 1; immutable cmp = data.opCmp(y.data); return sign? -cmp: cmp; } /// @safe unittest { auto x = BigInt("100"); auto y = BigInt("10"); int z = 50; const int w = 200; assert(y < x); assert(x > z); assert(z > y); assert(x < w); } /// @safe unittest { auto x = BigInt("0x1abc_de80_0000_0000_0000_0000_0000_0000"); BigInt y = x - 1; BigInt z = x + 1; double d = 0x1.abcde8p124; assert(y < d); assert(z > d); assert(x >= d && x <= d); // Note that when comparing a BigInt to a float or double the // full precision of the BigInt is always considered, unlike // when comparing an int to a float or a long to a double. assert(BigInt(123456789) < cast(float) 123456789); } @safe unittest { assert(BigInt("999_999_999_999_999_999_999_999_999_999_999_999_999") < float.infinity); // Test `real` works. auto x = BigInt("0x1abc_de80_0000_0000_0000_0000_0000_0000"); BigInt y = x - 1; BigInt z = x + 1; real d = 0x1.abcde8p124; assert(y < d); assert(z > d); assert(x >= d && x <= d); // Test comparison for numbers of 64 bits or fewer. auto w1 = BigInt(0x1abc_de80_0000_0000); auto w2 = w1 - 1; auto w3 = w1 + 1; assert(w1.ulongLength == 1); assert(w2.ulongLength == 1); assert(w3.ulongLength == 1); double e = 0x1.abcde8p+60; assert(w1 >= e && w1 <= e); assert(w2 < e); assert(w3 > e); real eL = 0x1.abcde8p+60; assert(w1 >= eL && w1 <= eL); assert(w2 < eL); assert(w3 > eL); } /** Returns: The value of this `BigInt` as a `long`, or `long.max`/`long.min` if outside the representable range. */ long toLong() @safe pure nothrow const @nogc { return (sign ? -1 : 1) * (data.ulongLength == 1 && (data.peekUlong(0) <= sign+cast(ulong)(long.max)) // 1+long.max = |long.min| ? cast(long)(data.peekUlong(0)) : long.max); } /// @safe unittest { auto b = BigInt("12345"); long l = b.toLong(); assert(l == 12345); } /** Returns: The value of this `BigInt` as an `int`, or `int.max`/`int.min` if outside the representable range. */ int toInt() @safe pure nothrow @nogc const { return (sign ? -1 : 1) * (data.uintLength == 1 && (data.peekUint(0) <= sign+cast(uint)(int.max)) // 1+int.max = |int.min| ? cast(int)(data.peekUint(0)) : int.max); } /// @safe unittest { auto big = BigInt("5_000_000"); auto i = big.toInt(); assert(i == 5_000_000); // Numbers that are too big to fit into an int will be clamped to int.max. auto tooBig = BigInt("5_000_000_000"); i = tooBig.toInt(); assert(i == int.max); } /// Number of significant `uint`s which are used in storing this number. /// The absolute value of this `BigInt` is always < 2$(SUPERSCRIPT 32*uintLength) @property size_t uintLength() @safe pure nothrow @nogc const { return data.uintLength; } /// Number of significant `ulong`s which are used in storing this number. /// The absolute value of this `BigInt` is always < 2$(SUPERSCRIPT 64*ulongLength) @property size_t ulongLength() @safe pure nothrow @nogc const { return data.ulongLength; } /** Convert the `BigInt` to `string`, passing it to the given sink. * * Params: * sink = An OutputRange for accepting possibly piecewise segments of the * formatted string. * formatString = A format string specifying the output format. * * $(TABLE Available output formats:, * $(TR $(TD "d") $(TD Decimal)) * $(TR $(TD "o") $(TD Octal)) * $(TR $(TD "x") $(TD Hexadecimal, lower case)) * $(TR $(TD "X") $(TD Hexadecimal, upper case)) * $(TR $(TD "s") $(TD Default formatting (same as "d") )) * $(TR $(TD null) $(TD Default formatting (same as "d") )) * ) */ void toString(Writer)(scope ref Writer sink, string formatString) const { auto f = FormatSpec!char(formatString); f.writeUpToNextSpec(sink); toString!Writer(sink, f); } /// ditto void toString(Writer)(scope ref Writer sink, scope const ref FormatSpec!char f) const { import std.range.primitives : put; const spec = f.spec; immutable hex = (spec == 'x' || spec == 'X'); if (!(spec == 's' || spec == 'd' || spec =='o' || hex)) throw new FormatException("Format specifier not understood: %" ~ spec); char[] buff; if (spec == 'X') { buff = data.toHexString(0, '_', 0, f.flZero ? '0' : ' ', LetterCase.upper); } else if (spec == 'x') { buff = data.toHexString(0, '_', 0, f.flZero ? '0' : ' ', LetterCase.lower); } else if (spec == 'o') { buff = data.toOctalString(); } else { buff = data.toDecimalString(0); } assert(buff.length > 0, "Invalid buffer length"); char signChar = isNegative ? '-' : 0; auto minw = buff.length + (signChar ? 1 : 0); if (!hex && !signChar && (f.width == 0 || minw < f.width)) { if (f.flPlus) { signChar = '+'; ++minw; } else if (f.flSpace) { signChar = ' '; ++minw; } } immutable maxw = minw < f.width ? f.width : minw; immutable difw = maxw - minw; if (!f.flDash && !f.flZero) foreach (i; 0 .. difw) put(sink, " "); if (signChar) { scope char[1] buf = signChar; put(sink, buf[]); } if (!f.flDash && f.flZero) foreach (i; 0 .. difw) put(sink, "0"); put(sink, buff); if (f.flDash) foreach (i; 0 .. difw) put(sink, " "); } /** `toString` is rarely directly invoked; the usual way of using it is via $(REF format, std, format): */ @safe unittest { import std.format : format; auto x = BigInt("1_000_000"); x *= 12345; assert(format("%d", x) == "12345000000"); assert(format("%x", x) == "2_dfd1c040"); assert(format("%X", x) == "2_DFD1C040"); assert(format("%o", x) == "133764340100"); } // for backwards compatibility, see unittest below /// ditto void toString(scope void delegate(scope const(char)[]) sink, string formatString) const { toString!(void delegate(scope const(char)[]))(sink, formatString); } // for backwards compatibility, see unittest below /// ditto void toString(scope void delegate(scope const(char)[]) sink, scope const ref FormatSpec!char f) const { toString!(void delegate(scope const(char)[]))(sink, f); } // Backwards compatibility test // BigInt.toString used to only accept a delegate sink function, but this does not work // well with attributes such as @safe. A template function toString was added that // works on OutputRanges, but when a delegate was passed in the form of an untyped // lambda such as `str => dst.put(str)` the parameter type was inferred as `void` and // the function failed to instantiate. @system unittest { import std.format.spec : FormatSpec; import std.array : appender; BigInt num = 503; auto dst = appender!string(); num.toString(str => dst.put(str), null); assert(dst[] == "503"); num = 504; auto f = FormatSpec!char(""); num.toString(str => dst.put(str), f); assert(dst[] == "503504"); } // Implement toHash so that BigInt works properly as an AA key. /** Returns: A unique hash of the `BigInt`'s value suitable for use in a hash table. */ size_t toHash() const @safe pure nothrow @nogc { return data.toHash() + sign; } /** `toHash` is rarely directly invoked; it is implicitly used when BigInt is used as the key of an associative array. */ @safe pure unittest { string[BigInt] aa; aa[BigInt(123)] = "abc"; aa[BigInt(456)] = "def"; assert(aa[BigInt(123)] == "abc"); assert(aa[BigInt(456)] == "def"); } /** * Gets the nth number in the underlying representation that makes up the whole * `BigInt`. * * Params: * T = the type to view the underlying representation as * n = The nth number to retrieve. Must be less than $(LREF ulongLength) or * $(LREF uintLength) with respect to `T`. * Returns: * The nth `ulong` in the representation of this `BigInt`. */ T getDigit(T = ulong)(size_t n) const if (is(T == ulong) || is(T == uint)) { static if (is(T == ulong)) { assert(n < ulongLength(), "getDigit index out of bounds"); return data.peekUlong(n); } else { assert(n < uintLength(), "getDigit index out of bounds"); return data.peekUint(n); } } /// @safe pure unittest { auto a = BigInt("1000"); assert(a.ulongLength() == 1); assert(a.getDigit(0) == 1000); assert(a.uintLength() == 1); assert(a.getDigit!uint(0) == 1000); auto b = BigInt("2_000_000_000_000_000_000_000_000_000"); assert(b.ulongLength() == 2); assert(b.getDigit(0) == 4584946418820579328); assert(b.getDigit(1) == 108420217); assert(b.uintLength() == 3); assert(b.getDigit!uint(0) == 3489660928); assert(b.getDigit!uint(1) == 1067516025); assert(b.getDigit!uint(2) == 108420217); } private: void negate() @safe pure nothrow @nogc scope { if (!data.isZero()) sign = !sign; } bool isZero() pure const nothrow @nogc @safe scope { return data.isZero(); } alias isNegative = sign; // Generate a runtime error if division by zero occurs void checkDivByZero() pure const nothrow @safe scope { assert(!isZero(), "BigInt division by zero"); } } /// @safe unittest { BigInt a = "9588669891916142"; BigInt b = "7452469135154800"; auto c = a * b; assert(c == BigInt("71459266416693160362545788781600")); auto d = b * a; assert(d == BigInt("71459266416693160362545788781600")); assert(d == c); d = c * BigInt("794628672112"); assert(d == BigInt("56783581982794522489042432639320434378739200")); auto e = c + d; assert(e == BigInt("56783581982865981755459125799682980167520800")); auto f = d + c; assert(f == e); auto g = f - c; assert(g == d); g = f - d; assert(g == c); e = 12345678; g = c + e; auto h = g / b; auto i = g % b; assert(h == a); assert(i == e); BigInt j = "-0x9A56_57f4_7B83_AB78"; BigInt k = j; j ^^= 11; assert(k ^^ 11 == j); } /** Params: x = The `BigInt` to convert to a decimal `string`. Returns: A `string` that represents the `BigInt` as a decimal number. */ string toDecimalString(const(BigInt) x) pure nothrow @safe { auto buff = x.data.toDecimalString(x.isNegative ? 1 : 0); if (x.isNegative) buff[0] = '-'; return buff; } /// @safe pure unittest { auto x = BigInt("123"); x *= 1000; x += 456; auto xstr = x.toDecimalString(); assert(xstr == "123456"); } /** Params: x = The `BigInt` to convert to a hexadecimal `string`. Returns: A `string` that represents the `BigInt` as a hexadecimal (base 16) number in upper case. */ string toHex(const(BigInt) x) @safe { import std.array : appender; auto outbuff = appender!string(); x.toString(outbuff, "%X"); return outbuff[]; } /// @safe unittest { auto x = BigInt("123"); x *= 1000; x += 456; auto xstr = x.toHex(); assert(xstr == "1E240"); } /** Returns the absolute value of x converted to the corresponding unsigned type. Params: x = The integral value to return the absolute value of. Returns: The absolute value of x. */ Unsigned!T absUnsign(T)(T x) if (isIntegral!T) { static if (isSigned!T) { import std.conv : unsigned; /* This returns the correct result even when x = T.min * on two's complement machines because unsigned(T.min) = |T.min| * even though -T.min = T.min. */ return unsigned((x < 0) ? cast(T)(0-x) : x); } else { return x; } } /// nothrow pure @safe unittest { assert((-1).absUnsign == 1); assert(1.absUnsign == 1); } nothrow pure @safe unittest { BigInt a, b; a = 1; b = 2; auto c = a + b; assert(c == 3); } nothrow pure @safe unittest { long a; BigInt b; auto c = a + b; assert(c == 0); auto d = b + a; assert(d == 0); } nothrow pure @safe unittest { BigInt x = 1, y = 2; assert(x < y); assert(x <= y); assert(y >= x); assert(y > x); assert(x != y); long r1 = x.toLong; assert(r1 == 1); BigInt r2 = 10 % x; assert(r2 == 0); BigInt r3 = 10 / y; assert(r3 == 5); BigInt[] arr = [BigInt(1)]; auto incr = arr[0]++; assert(arr == [BigInt(2)]); assert(incr == BigInt(1)); } @safe unittest { // Radix conversion assert( toDecimalString(BigInt("-1_234_567_890_123_456_789")) == "-1234567890123456789"); assert( toHex(BigInt("0x1234567890123456789")) == "123_45678901_23456789"); assert( toHex(BigInt("0x00000000000000000000000000000000000A234567890123456789")) == "A23_45678901_23456789"); assert( toHex(BigInt("0x000_00_000000_000_000_000000000000_000000_")) == "0"); assert(BigInt(-0x12345678).toInt() == -0x12345678); assert(BigInt(-0x12345678).toLong() == -0x12345678); assert(BigInt(0x1234_5678_9ABC_5A5AL).ulongLength == 1); assert(BigInt(0x1234_5678_9ABC_5A5AL).toLong() == 0x1234_5678_9ABC_5A5AL); assert(BigInt(-0x1234_5678_9ABC_5A5AL).toLong() == -0x1234_5678_9ABC_5A5AL); assert(BigInt(0xF234_5678_9ABC_5A5AL).toLong() == long.max); assert(BigInt(-0x123456789ABCL).toInt() == -int.max); char[] s1 = "123".dup; // https://issues.dlang.org/show_bug.cgi?id=8164 assert(BigInt(s1) == 123); char[] s2 = "0xABC".dup; assert(BigInt(s2) == 2748); assert((BigInt(-2) + BigInt(1)) == BigInt(-1)); BigInt a = ulong.max - 5; auto b = -long.max % a; assert( b == -long.max % (ulong.max - 5)); b = long.max / a; assert( b == long.max /(ulong.max - 5)); assert(BigInt(1) - 1 == 0); assert((-4) % BigInt(5) == -4); // https://issues.dlang.org/show_bug.cgi?id=5928 assert(BigInt(-4) % BigInt(5) == -4); assert(BigInt(2)/BigInt(-3) == BigInt(0)); // https://issues.dlang.org/show_bug.cgi?id=8022 assert(BigInt("-1") > long.min); // https://issues.dlang.org/show_bug.cgi?id=9548 assert(toDecimalString(BigInt("0000000000000000000000000000000000000000001234567")) == "1234567"); } @safe unittest // Minimum signed value bug tests. { assert(BigInt("-0x8000000000000000") == BigInt(long.min)); assert(BigInt("-0x8000000000000000")+1 > BigInt(long.min)); assert(BigInt("-0x80000000") == BigInt(int.min)); assert(BigInt("-0x80000000")+1 > BigInt(int.min)); assert(BigInt(long.min).toLong() == long.min); // lossy toLong bug for long.min assert(BigInt(int.min).toInt() == int.min); // lossy toInt bug for int.min assert(BigInt(long.min).ulongLength == 1); assert(BigInt(int.min).uintLength == 1); // cast/sign extend bug in opAssign BigInt a; a += int.min; assert(a == BigInt(int.min)); a = int.min - BigInt(int.min); assert(a == 0); a = int.min; assert(a == BigInt(int.min)); assert(int.min % (BigInt(int.min)-1) == int.min); assert((BigInt(int.min)-1)%int.min == -1); } // Recursive division (https://issues.dlang.org/show_bug.cgi?id=5568) @safe unittest { enum Z = 4843; BigInt m = (BigInt(1) << (Z*8) ) - 1; m -= (BigInt(1) << (Z*6)) - 1; BigInt oldm = m; BigInt a = (BigInt(1) << (Z*4) )-1; BigInt b = m % a; m /= a; m *= a; assert( m + b == oldm); m = (BigInt(1) << (4846 + 4843) ) - 1; a = (BigInt(1) << 4846 ) - 1; b = (BigInt(1) << (4846*2 + 4843)) - 1; BigInt c = (BigInt(1) << (4846*2 + 4843*2)) - 1; BigInt w = c - b + a; assert(w % m == 0); // https://issues.dlang.org/show_bug.cgi?id=6819 BigInt z1 = BigInt(10)^^64; BigInt w1 = BigInt(10)^^128; assert(z1^^2 == w1); BigInt z2 = BigInt(1)<<64; BigInt w2 = BigInt(1)<<128; assert(z2^^2 == w2); // https://issues.dlang.org/show_bug.cgi?id=7993 BigInt n7793 = 10; assert( n7793 / 1 == 10); // https://issues.dlang.org/show_bug.cgi?id=7973 auto a7973 = 10_000_000_000_000_000; const c7973 = 10_000_000_000_000_000; immutable i7973 = 10_000_000_000_000_000; BigInt v7973 = 2551700137; v7973 %= a7973; assert(v7973 == 2551700137); v7973 %= c7973; assert(v7973 == 2551700137); v7973 %= i7973; assert(v7973 == 2551700137); // https://issues.dlang.org/show_bug.cgi?id=8165 BigInt[2] a8165; a8165[0] = a8165[1] = 1; } @safe unittest { import std.array; import std.format.write : formattedWrite; immutable string[][] table = [ /* fmt, +10 -10 */ ["%d", "10", "-10"], ["%+d", "+10", "-10"], ["%-d", "10", "-10"], ["%+-d", "+10", "-10"], ["%4d", " 10", " -10"], ["%+4d", " +10", " -10"], ["%-4d", "10 ", "-10 "], ["%+-4d", "+10 ", "-10 "], ["%04d", "0010", "-010"], ["%+04d", "+010", "-010"], ["%-04d", "10 ", "-10 "], ["%+-04d", "+10 ", "-10 "], ["% 04d", " 010", "-010"], ["%+ 04d", "+010", "-010"], ["%- 04d", " 10 ", "-10 "], ["%+- 04d", "+10 ", "-10 "], ]; auto w1 = appender!(char[])(); auto w2 = appender!(char[])(); foreach (entry; table) { immutable fmt = entry[0]; formattedWrite(w1, fmt, BigInt(10)); formattedWrite(w2, fmt, 10); assert(w1.data == w2.data); assert(w1.data == entry[1]); w1.clear(); w2.clear(); formattedWrite(w1, fmt, BigInt(-10)); formattedWrite(w2, fmt, -10); assert(w1.data == w2.data); assert(w1.data == entry[2]); w1.clear(); w2.clear(); } } @safe unittest { import std.array; import std.format.write : formattedWrite; immutable string[][] table = [ /* fmt, +10 -10 */ ["%x", "a", "-a"], ["%+x", "a", "-a"], ["%-x", "a", "-a"], ["%+-x", "a", "-a"], ["%4x", " a", " -a"], ["%+4x", " a", " -a"], ["%-4x", "a ", "-a "], ["%+-4x", "a ", "-a "], ["%04x", "000a", "-00a"], ["%+04x", "000a", "-00a"], ["%-04x", "a ", "-a "], ["%+-04x", "a ", "-a "], ["% 04x", "000a", "-00a"], ["%+ 04x", "000a", "-00a"], ["%- 04x", "a ", "-a "], ["%+- 04x", "a ", "-a "], ]; auto w1 = appender!(char[])(); auto w2 = appender!(char[])(); foreach (entry; table) { immutable fmt = entry[0]; formattedWrite(w1, fmt, BigInt(10)); formattedWrite(w2, fmt, 10); assert(w1.data == w2.data); // Equal only positive BigInt assert(w1.data == entry[1]); w1.clear(); w2.clear(); formattedWrite(w1, fmt, BigInt(-10)); //formattedWrite(w2, fmt, -10); //assert(w1.data == w2.data); assert(w1.data == entry[2]); w1.clear(); //w2.clear(); } } @safe unittest { import std.array; import std.format.write : formattedWrite; immutable string[][] table = [ /* fmt, +10 -10 */ ["%X", "A", "-A"], ["%+X", "A", "-A"], ["%-X", "A", "-A"], ["%+-X", "A", "-A"], ["%4X", " A", " -A"], ["%+4X", " A", " -A"], ["%-4X", "A ", "-A "], ["%+-4X", "A ", "-A "], ["%04X", "000A", "-00A"], ["%+04X", "000A", "-00A"], ["%-04X", "A ", "-A "], ["%+-04X", "A ", "-A "], ["% 04X", "000A", "-00A"], ["%+ 04X", "000A", "-00A"], ["%- 04X", "A ", "-A "], ["%+- 04X", "A ", "-A "], ]; auto w1 = appender!(char[])(); auto w2 = appender!(char[])(); foreach (entry; table) { immutable fmt = entry[0]; formattedWrite(w1, fmt, BigInt(10)); formattedWrite(w2, fmt, 10); assert(w1.data == w2.data); // Equal only positive BigInt assert(w1.data == entry[1]); w1.clear(); w2.clear(); formattedWrite(w1, fmt, BigInt(-10)); //formattedWrite(w2, fmt, -10); //assert(w1.data == w2.data); assert(w1.data == entry[2]); w1.clear(); //w2.clear(); } } // https://issues.dlang.org/show_bug.cgi?id=6448 @safe unittest { import std.array; import std.format.write : formattedWrite; auto w1 = appender!string(); auto w2 = appender!string(); int x = 100; formattedWrite(w1, "%010d", x); BigInt bx = x; formattedWrite(w2, "%010d", bx); assert(w1.data == w2.data); // https://issues.dlang.org/show_bug.cgi?id=8011 BigInt y = -3; ++y; assert(y.toLong() == -2); y = 1; --y; assert(y.toLong() == 0); --y; assert(y.toLong() == -1); --y; assert(y.toLong() == -2); } @safe unittest { import std.math.algebraic : abs; auto r = abs(BigInt(-1000)); // https://issues.dlang.org/show_bug.cgi?id=6486 assert(r == 1000); auto r2 = abs(const(BigInt)(-500)); // https://issues.dlang.org/show_bug.cgi?id=11188 assert(r2 == 500); auto r3 = abs(immutable(BigInt)(-733)); // https://issues.dlang.org/show_bug.cgi?id=11188 assert(r3 == 733); // opCast!bool BigInt one = 1, zero; assert(one && !zero); } // https://issues.dlang.org/show_bug.cgi?id=6850 @safe unittest { pure long pureTest() { BigInt a = 1; BigInt b = 1336; a += b; return a.toLong(); } assert(pureTest() == 1337); } // https://issues.dlang.org/show_bug.cgi?id=8435 // https://issues.dlang.org/show_bug.cgi?id=10118 @safe unittest { auto i = BigInt(100); auto j = BigInt(100); // Two separate BigInt instances representing same value should have same // hash. assert(typeid(i).getHash(&i) == typeid(j).getHash(&j)); assert(typeid(i).compare(&i, &j) == 0); // BigInt AA keys should behave consistently. int[BigInt] aa; aa[BigInt(123)] = 123; assert(BigInt(123) in aa); aa[BigInt(123)] = 321; assert(aa[BigInt(123)] == 321); auto keys = aa.byKey; assert(keys.front == BigInt(123)); keys.popFront(); assert(keys.empty); } // https://issues.dlang.org/show_bug.cgi?id=11148 @safe unittest { void foo(BigInt) {} const BigInt cbi = 3; immutable BigInt ibi = 3; foo(cbi); foo(ibi); import std.conv : to; import std.meta : AliasSeq; static foreach (T1; AliasSeq!(BigInt, const(BigInt), immutable(BigInt))) { static foreach (T2; AliasSeq!(BigInt, const(BigInt), immutable(BigInt))) {{ T1 t1 = 2; T2 t2 = t1; T2 t2_1 = to!T2(t1); T2 t2_2 = cast(T2) t1; assert(t2 == t1); assert(t2 == 2); assert(t2_1 == t1); assert(t2_1 == 2); assert(t2_2 == t1); assert(t2_2 == 2); }} } BigInt n = 2; n *= 2; assert(n == 4); } // https://issues.dlang.org/show_bug.cgi?id=8167 @safe unittest { BigInt a = BigInt(3); BigInt b = BigInt(a); assert(b == 3); } // https://issues.dlang.org/show_bug.cgi?id=9061 @safe unittest { long l1 = 0x12345678_90ABCDEF; long l2 = 0xFEDCBA09_87654321; long l3 = l1 | l2; long l4 = l1 & l2; long l5 = l1 ^ l2; BigInt b1 = l1; BigInt b2 = l2; BigInt b3 = b1 | b2; BigInt b4 = b1 & b2; BigInt b5 = b1 ^ b2; assert(l3 == b3); assert(l4 == b4); assert(l5 == b5); } // https://issues.dlang.org/show_bug.cgi?id=11600 @safe unittest { import std.conv; import std.exception : assertThrown; // Original bug report assertThrown!ConvException(to!BigInt("avadakedavra")); // Digit string lookalikes that are actually invalid assertThrown!ConvException(to!BigInt("0123hellothere")); assertThrown!ConvException(to!BigInt("-hihomarylowe")); assertThrown!ConvException(to!BigInt("__reallynow__")); assertThrown!ConvException(to!BigInt("-123four")); } // https://issues.dlang.org/show_bug.cgi?id=11583 @safe unittest { BigInt x = 0; assert((x > 0) == false); } // https://issues.dlang.org/show_bug.cgi?id=13391 @safe unittest { BigInt x1 = "123456789"; BigInt x2 = "123456789123456789"; BigInt x3 = "123456789123456789123456789"; import std.meta : AliasSeq; static foreach (T; AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong)) { assert((x1 * T.max) / T.max == x1); assert((x2 * T.max) / T.max == x2); assert((x3 * T.max) / T.max == x3); } assert(x1 / -123456789 == -1); assert(x1 / 123456789U == 1); assert(x1 / -123456789L == -1); assert(x1 / 123456789UL == 1); assert(x2 / -123456789123456789L == -1); assert(x2 / 123456789123456789UL == 1); assert(x1 / uint.max == 0); assert(x1 / ulong.max == 0); assert(x2 / ulong.max == 0); x1 /= 123456789UL; assert(x1 == 1); x2 /= 123456789123456789UL; assert(x2 == 1); } // https://issues.dlang.org/show_bug.cgi?id=13963 @safe unittest { BigInt x = 1; import std.meta : AliasSeq; static foreach (Int; AliasSeq!(byte, ubyte, short, ushort, int)) { assert(is(typeof(x % Int(1)) == int)); } assert(is(typeof(x % 1U) == long)); assert(is(typeof(x % 1L) == long)); assert(is(typeof(x % 1UL) == BigInt)); auto x0 = BigInt(uint.max - 1); auto x1 = BigInt(8); assert(x1 / x == x1); auto x2 = -BigInt(long.min) + 1; // uint assert( x0 % uint.max == x0 % BigInt(uint.max)); assert(-x0 % uint.max == -x0 % BigInt(uint.max)); assert( x0 % uint.max == long(uint.max - 1)); assert(-x0 % uint.max == -long(uint.max - 1)); // long assert(x1 % 2L == 0L); assert(-x1 % 2L == 0L); assert(x1 % 3L == 2L); assert(x1 % -3L == 2L); assert(-x1 % 3L == -2L); assert(-x1 % -3L == -2L); assert(x1 % 11L == 8L); assert(x1 % -11L == 8L); assert(-x1 % 11L == -8L); assert(-x1 % -11L == -8L); // ulong assert(x1 % 2UL == BigInt(0)); assert(-x1 % 2UL == BigInt(0)); assert(x1 % 3UL == BigInt(2)); assert(-x1 % 3UL == -BigInt(2)); assert(x1 % 11UL == BigInt(8)); assert(-x1 % 11UL == -BigInt(8)); assert(x2 % ulong.max == x2); assert(-x2 % ulong.max == -x2); } // https://issues.dlang.org/show_bug.cgi?id=14124 @safe unittest { auto x = BigInt(-3); x %= 3; assert(!x.isNegative); assert(x.isZero); x = BigInt(-3); x %= cast(ushort) 3; assert(!x.isNegative); assert(x.isZero); x = BigInt(-3); x %= 3L; assert(!x.isNegative); assert(x.isZero); x = BigInt(3); x %= -3; assert(!x.isNegative); assert(x.isZero); } // https://issues.dlang.org/show_bug.cgi?id=15678 @safe unittest { import std.exception : assertThrown; assertThrown!ConvException(BigInt("")); assertThrown!ConvException(BigInt("0x1234BARF")); assertThrown!ConvException(BigInt("1234PUKE")); } // https://issues.dlang.org/show_bug.cgi?id=6447 @safe unittest { import std.algorithm.comparison : equal; import std.range : iota; auto s = BigInt(1_000_000_000_000); auto e = BigInt(1_000_000_000_003); auto r = iota(s, e); assert(r.equal([ BigInt(1_000_000_000_000), BigInt(1_000_000_000_001), BigInt(1_000_000_000_002) ])); } // https://issues.dlang.org/show_bug.cgi?id=17330 @safe unittest { auto b = immutable BigInt("123"); assert(b == 123); } // https://issues.dlang.org/show_bug.cgi?id=14767 @safe pure unittest { static immutable a = BigInt("340282366920938463463374607431768211455"); assert(a == BigInt("340282366920938463463374607431768211455")); BigInt plusTwo(in BigInt n) { return n + 2; } enum BigInt test1 = BigInt(123); enum BigInt test2 = plusTwo(test1); assert(test2 == 125); } /** * Finds the quotient and remainder for the given dividend and divisor in one operation. * * Params: * dividend = the $(LREF BigInt) to divide * divisor = the $(LREF BigInt) to divide the dividend by * quotient = is set to the result of the division * remainder = is set to the remainder of the division */ void divMod(const BigInt dividend, const BigInt divisor, out BigInt quotient, out BigInt remainder) pure nothrow @safe { BigUint q, r; BigUint.divMod(dividend.data, divisor.data, q, r); quotient.sign = dividend.sign != divisor.sign; quotient.data = q; remainder.sign = r.isZero() ? false : dividend.sign; remainder.data = r; } /// @safe pure nothrow unittest { auto a = BigInt(123); auto b = BigInt(25); BigInt q, r; divMod(a, b, q, r); assert(q == 4); assert(r == 23); assert(q * b + r == a); } // https://issues.dlang.org/show_bug.cgi?id=18086 @safe pure nothrow unittest { BigInt q = 1; BigInt r = 1; BigInt c = 1024; BigInt d = 100; divMod(c, d, q, r); assert(q == 10); assert(r == 24); assert((q * d + r) == c); divMod(c, -d, q, r); assert(q == -10); assert(r == 24); assert(q * -d + r == c); divMod(-c, -d, q, r); assert(q == 10); assert(r == -24); assert(q * -d + r == -c); divMod(-c, d, q, r); assert(q == -10); assert(r == -24); assert(q * d + r == -c); } // https://issues.dlang.org/show_bug.cgi?id=22771 @safe pure nothrow unittest { BigInt quotient, remainder; divMod(BigInt(-50), BigInt(1), quotient, remainder); assert(remainder == 0); } // https://issues.dlang.org/show_bug.cgi?id=19740 @safe unittest { BigInt a = BigInt( "241127122100380210001001124020210001001100000200003101000062221012075223052000021042250111300200000000000" ~ "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"); BigInt b = BigInt( "700200000000500418321000401140010110000022007221432000000141020011323301104104060202100200457210001600142" ~ "000001012245300100001110215200000000120000000000000000000000000000000000000000000000000000000000000000000" ~ "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"); BigInt c = a * b; assert(c == BigInt( "1688372108948068874722901180228375682334987075822938736581472847151834613694489486296103575639363261807341" ~ "3910091006778604956808730652275328822700182498926542563654351871390166691461743896850906716336187966456064" ~ "2702007176328110013356024000000000000000000000000000000000000000000000000000000000000000000000000000000000" ~ "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000" ~ "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000")); } @safe unittest { auto n = BigInt("1234"d); } /** Fast power modulus calculation for $(LREF BigInt) operands. Params: base = the $(LREF BigInt) is basic operands. exponent = the $(LREF BigInt) is power exponent of base. modulus = the $(LREF BigInt) is modules to be modular of base ^ exponent. Returns: The power modulus value of (base ^ exponent) % modulus. */ BigInt powmod(BigInt base, BigInt exponent, BigInt modulus) pure nothrow @safe { BigInt result = 1; while (exponent) { if (exponent.data.peekUint(0) & 1) { result = (result * base) % modulus; } auto tmp = base % modulus; base = (tmp * tmp) % modulus; exponent >>= 1; } return result; } /// for powmod @safe unittest { BigInt base = BigInt("123456789012345678901234567890"); BigInt exponent = BigInt("1234567890123456789012345678901234567"); BigInt modulus = BigInt("1234567"); BigInt result = powmod(base, exponent, modulus); assert(result == 359079); }