/** * Implementation of the gamma and beta functions, and their integrals. * * License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0). * Copyright: Based on the CEPHES math library, which is * Copyright (C) 1994 Stephen L. Moshier (moshier@world.std.com). * Authors: Stephen L. Moshier (original C code). Conversion to D by Don Clugston * * Macros: * TABLE_SV = * * $0
Special Values
* SVH = $(TR $(TH $1) $(TH $2)) * SV = $(TR $(TD $1) $(TD $2)) * GAMMA = Γ * INTEGRATE = $(BIG ∫$(SMALL $1)$2) * POWER = $1$2 * NAN = $(RED NAN) */ module std.internal.math.gammafunction; import std.internal.math.errorfunction; import std.math; import core.math : fabs, sin, sqrt; pure: nothrow: @safe: @nogc: private { enum real SQRT2PI = 2.50662827463100050242E0L; // sqrt(2pi) immutable real EULERGAMMA = 0.57721_56649_01532_86060_65120_90082_40243_10421_59335_93992L; /** Euler-Mascheroni constant 0.57721566.. */ // Polynomial approximations for gamma and loggamma. immutable real[8] GammaNumeratorCoeffs = [ 1.0L, 0x1.acf42d903366539ep-1L, 0x1.73a991c8475f1aeap-2L, 0x1.c7e918751d6b2a92p-4L, 0x1.86d162cca32cfe86p-6L, 0x1.0c378e2e6eaf7cd8p-8L, 0x1.dc5c66b7d05feb54p-12L, 0x1.616457b47e448694p-15L ]; immutable real[9] GammaDenominatorCoeffs = [ 1.0L, 0x1.a8f9faae5d8fc8bp-2L, -0x1.cb7895a6756eebdep-3L, -0x1.7b9bab006d30652ap-5L, 0x1.c671af78f312082ep-6L, -0x1.a11ebbfaf96252dcp-11L, -0x1.447b4d2230a77ddap-10L, 0x1.ec1d45bb85e06696p-13L,-0x1.d4ce24d05bd0a8e6p-17L ]; immutable real[9] GammaSmallCoeffs = [ 1.0L, 0x1.2788cfc6fb618f52p-1L, -0x1.4fcf4026afa2f7ecp-1L, -0x1.5815e8fa24d7e306p-5L, 0x1.5512320aea2ad71ap-3L, -0x1.59af0fb9d82e216p-5L, -0x1.3b4b61d3bfdf244ap-7L, 0x1.d9358e9d9d69fd34p-8L, -0x1.38fc4bcbada775d6p-10L ]; immutable real[9] GammaSmallNegCoeffs = [ -1.0L, 0x1.2788cfc6fb618f54p-1L, 0x1.4fcf4026afa2bc4cp-1L, -0x1.5815e8fa2468fec8p-5L, -0x1.5512320baedaf4b6p-3L, -0x1.59af0fa283baf07ep-5L, 0x1.3b4a70de31e05942p-7L, 0x1.d9398be3bad13136p-8L, 0x1.291b73ee05bcbba2p-10L ]; immutable real[7] logGammaStirlingCoeffs = [ 0x1.5555555555553f98p-4L, -0x1.6c16c16c07509b1p-9L, 0x1.a01a012461cbf1e4p-11L, -0x1.3813089d3f9d164p-11L, 0x1.b911a92555a277b8p-11L, -0x1.ed0a7b4206087b22p-10L, 0x1.402523859811b308p-8L ]; immutable real[7] logGammaNumerator = [ -0x1.0edd25913aaa40a2p+23L, -0x1.31c6ce2e58842d1ep+24L, -0x1.f015814039477c3p+23L, -0x1.74ffe40c4b184b34p+22L, -0x1.0d9c6d08f9eab55p+20L, -0x1.54c6b71935f1fc88p+16L, -0x1.0e761b42932b2aaep+11L ]; immutable real[8] logGammaDenominator = [ -0x1.4055572d75d08c56p+24L, -0x1.deeb6013998e4d76p+24L, -0x1.106f7cded5dcc79ep+24L, -0x1.25e17184848c66d2p+22L, -0x1.301303b99a614a0ap+19L, -0x1.09e76ab41ae965p+15L, -0x1.00f95ced9e5f54eep+9L, 1.0L ]; /* * Helper function: Gamma function computed by Stirling's formula. * * Stirling's formula for the gamma function is: * * $(GAMMA)(x) = sqrt(2 π) xx-0.5 exp(-x) (1 + 1/x P(1/x)) * */ real gammaStirling(real x) { // CEPHES code Copyright 1994 by Stephen L. Moshier static immutable real[9] SmallStirlingCoeffs = [ 0x1.55555555555543aap-4L, 0x1.c71c71c720dd8792p-9L, -0x1.5f7268f0b5907438p-9L, -0x1.e13cd410e0477de6p-13L, 0x1.9b0f31643442616ep-11L, 0x1.2527623a3472ae08p-14L, -0x1.37f6bc8ef8b374dep-11L,-0x1.8c968886052b872ap-16L, 0x1.76baa9c6d3eeddbcp-11L ]; static immutable real[7] LargeStirlingCoeffs = [ 1.0L, 8.33333333333333333333E-2L, 3.47222222222222222222E-3L, -2.68132716049382716049E-3L, -2.29472093621399176955E-4L, 7.84039221720066627474E-4L, 6.97281375836585777429E-5L ]; real w = 1.0L/x; real y = exp(x); if ( x > 1024.0L ) { // For large x, use rational coefficients from the analytical expansion. w = poly(w, LargeStirlingCoeffs); // Avoid overflow in pow() real v = pow( x, 0.5L * x - 0.25L ); y = v * (v / y); } else { w = 1.0L + w * poly( w, SmallStirlingCoeffs); static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) { // Avoid overflow in pow() for 64-bit reals if (x > 143.0) { real v = pow( x, 0.5 * x - 0.25 ); y = v * (v / y); } else { y = pow( x, x - 0.5 ) / y; } } else { y = pow( x, x - 0.5L ) / y; } } y = SQRT2PI * y * w; return y; } /* * Helper function: Incomplete gamma function computed by Temme's expansion. * * This is a port of igamma_temme_large from Boost. * */ real igammaTemmeLarge(real a, real x) { static immutable real[][13] coef = [ [ -0.333333333333333333333L, 0.0833333333333333333333L, -0.0148148148148148148148L, 0.00115740740740740740741L, 0.000352733686067019400353L, -0.0001787551440329218107L, 0.39192631785224377817e-4L, -0.218544851067999216147e-5L, -0.18540622107151599607e-5L, 0.829671134095308600502e-6L, -0.176659527368260793044e-6L, 0.670785354340149858037e-8L, 0.102618097842403080426e-7L, -0.438203601845335318655e-8L, 0.914769958223679023418e-9L, -0.255141939949462497669e-10L, -0.583077213255042506746e-10L, 0.243619480206674162437e-10L, -0.502766928011417558909e-11L ], [ -0.00185185185185185185185L, -0.00347222222222222222222L, 0.00264550264550264550265L, -0.000990226337448559670782L, 0.000205761316872427983539L, -0.40187757201646090535e-6L, -0.18098550334489977837e-4L, 0.764916091608111008464e-5L, -0.161209008945634460038e-5L, 0.464712780280743434226e-8L, 0.137863344691572095931e-6L, -0.575254560351770496402e-7L, 0.119516285997781473243e-7L, -0.175432417197476476238e-10L, -0.100915437106004126275e-8L, 0.416279299184258263623e-9L, -0.856390702649298063807e-10L ], [ 0.00413359788359788359788L, -0.00268132716049382716049L, 0.000771604938271604938272L, 0.200938786008230452675e-5L, -0.000107366532263651605215L, 0.529234488291201254164e-4L, -0.127606351886187277134e-4L, 0.342357873409613807419e-7L, 0.137219573090629332056e-5L, -0.629899213838005502291e-6L, 0.142806142060642417916e-6L, -0.204770984219908660149e-9L, -0.140925299108675210533e-7L, 0.622897408492202203356e-8L, -0.136704883966171134993e-8L ], [ 0.000649434156378600823045L, 0.000229472093621399176955L, -0.000469189494395255712128L, 0.000267720632062838852962L, -0.756180167188397641073e-4L, -0.239650511386729665193e-6L, 0.110826541153473023615e-4L, -0.56749528269915965675e-5L, 0.142309007324358839146e-5L, -0.278610802915281422406e-10L, -0.169584040919302772899e-6L, 0.809946490538808236335e-7L, -0.191111684859736540607e-7L ], [ -0.000861888290916711698605L, 0.000784039221720066627474L, -0.000299072480303190179733L, -0.146384525788434181781e-5L, 0.664149821546512218666e-4L, -0.396836504717943466443e-4L, 0.113757269706784190981e-4L, 0.250749722623753280165e-9L, -0.169541495365583060147e-5L, 0.890750753220530968883e-6L, -0.229293483400080487057e-6L ], [ -0.000336798553366358150309L, -0.697281375836585777429e-4L, 0.000277275324495939207873L, -0.000199325705161888477003L, 0.679778047793720783882e-4L, 0.141906292064396701483e-6L, -0.135940481897686932785e-4L, 0.801847025633420153972e-5L, -0.229148117650809517038e-5L ], [ 0.000531307936463992223166L, -0.000592166437353693882865L, 0.000270878209671804482771L, 0.790235323266032787212e-6L, -0.815396936756196875093e-4L, 0.561168275310624965004e-4L, -0.183291165828433755673e-4L, -0.307961345060330478256e-8L, 0.346515536880360908674e-5L, -0.20291327396058603727e-5L, 0.57887928631490037089e-6L ], [ 0.000344367606892377671254L, 0.517179090826059219337e-4L, -0.000334931610811422363117L, 0.000281269515476323702274L, -0.000109765822446847310235L, -0.127410090954844853795e-6L, 0.277444515115636441571e-4L, -0.182634888057113326614e-4L, 0.578769494973505239894e-5L ], [ -0.000652623918595309418922L, 0.000839498720672087279993L, -0.000438297098541721005061L, -0.696909145842055197137e-6L, 0.000166448466420675478374L, -0.000127835176797692185853L, 0.462995326369130429061e-4L ], [ -0.000596761290192746250124L, -0.720489541602001055909e-4L, 0.000678230883766732836162L, -0.0006401475260262758451L, 0.000277501076343287044992L ], [ 0.00133244544948006563713L, -0.0019144384985654775265L, 0.00110893691345966373396L ], [ 0.00157972766073083495909L, 0.000162516262783915816899L, -0.00206334210355432762645L, 0.00213896861856890981541L, -0.00101085593912630031708L ], [ -0.00407251211951401664727L, 0.00640336283380806979482L, -0.00404101610816766177474L ] ]; // avoid nans when one of the arguments is inf: if (x == real.infinity && a != real.infinity) return 0; if (x != real.infinity && a == real.infinity) return 1; real sigma = (x - a) / a; real phi = sigma - log(sigma + 1); real y = a * phi; real z = sqrt(2 * phi); if (x < a) z = -z; real[13] workspace; foreach (i; 0 .. coef.length) workspace[i] = poly(z, coef[i]); real result = poly(1 / a, workspace); result *= exp(-y) / sqrt(2 * PI * a); if (x < a) result = -result; result += erfc(sqrt(y)) / 2; return result; } } // private public: /// The maximum value of x for which gamma(x) < real.infinity. static if (floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) enum real MAXGAMMA = 1755.5483429L; else static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended) enum real MAXGAMMA = 1755.5483429L; else static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended53) enum real MAXGAMMA = 1755.5483429L; else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) enum real MAXGAMMA = 171.6243769L; else static assert(0, "missing MAXGAMMA for other real types"); /***************************************************** * The Gamma function, $(GAMMA)(x) * * $(GAMMA)(x) is a generalisation of the factorial function * to real and complex numbers. * Like x!, $(GAMMA)(x+1) = x*$(GAMMA)(x). * * Mathematically, if z.re > 0 then * $(GAMMA)(z) = $(INTEGRATE 0, ∞) $(POWER t, z-1)$(POWER e, -t) dt * * $(TABLE_SV * $(SVH x, $(GAMMA)(x) ) * $(SV $(NAN), $(NAN) ) * $(SV ±0.0, ±∞) * $(SV integer > 0, (x-1)! ) * $(SV integer < 0, $(NAN) ) * $(SV +∞, +∞ ) * $(SV -∞, $(NAN) ) * ) */ real gamma(real x) { /* Based on code from the CEPHES library. * CEPHES code Copyright 1994 by Stephen L. Moshier * * Arguments |x| <= 13 are reduced by recurrence and the function * approximated by a rational function of degree 7/8 in the * interval (2,3). Large arguments are handled by Stirling's * formula. Large negative arguments are made positive using * a reflection formula. */ real q, z; if (isNaN(x)) return x; if (x == -x.infinity) return real.nan; if ( fabs(x) > MAXGAMMA ) return real.infinity; if (x == 0) return 1.0 / x; // +- infinity depending on sign of x, create an exception. q = fabs(x); if ( q > 13.0L ) { // Large arguments are handled by Stirling's // formula. Large negative arguments are made positive using // the reflection formula. if ( x < 0.0L ) { if (x < -1/real.epsilon) { // Large negatives lose all precision return real.nan; } int sgngam = 1; // sign of gamma. long intpart = cast(long)(q); if (q == intpart) return real.nan; // poles for all integers <0. real p = intpart; if ( (intpart & 1) == 0 ) sgngam = -1; z = q - p; if ( z > 0.5L ) { p += 1.0L; z = q - p; } z = q * sin( PI * z ); z = fabs(z) * gammaStirling(q); if ( z <= PI/real.max ) return sgngam * real.infinity; return sgngam * PI/z; } else { return gammaStirling(x); } } // Arguments |x| <= 13 are reduced by recurrence and the function // approximated by a rational function of degree 7/8 in the // interval (2,3). z = 1.0L; while ( x >= 3.0L ) { x -= 1.0L; z *= x; } while ( x < -0.03125L ) { z /= x; x += 1.0L; } if ( x <= 0.03125L ) { if ( x == 0.0L ) return real.nan; else { if ( x < 0.0L ) { x = -x; return z / (x * poly( x, GammaSmallNegCoeffs )); } else { return z / (x * poly( x, GammaSmallCoeffs )); } } } while ( x < 2.0L ) { z /= x; x += 1.0L; } if ( x == 2.0L ) return z; x -= 2.0L; return z * poly( x, GammaNumeratorCoeffs ) / poly( x, GammaDenominatorCoeffs ); } @safe unittest { // gamma(n) = factorial(n-1) if n is an integer. real fact = 1.0L; for (int i=1; fact= real.mant_dig-15); fact *= (i*1.0L); } assert(gamma(0.0) == real.infinity); assert(gamma(-0.0) == -real.infinity); assert(isNaN(gamma(-1.0))); assert(isNaN(gamma(-15.0))); assert(isIdentical(gamma(NaN(0xABC)), NaN(0xABC))); assert(gamma(real.infinity) == real.infinity); assert(gamma(real.max) == real.infinity); assert(isNaN(gamma(-real.infinity))); assert(gamma(real.min_normal*real.epsilon) == real.infinity); assert(gamma(MAXGAMMA)< real.infinity); assert(gamma(MAXGAMMA*2) == real.infinity); // Test some high-precision values (50 decimal digits) real SQRT_PI = 1.77245385090551602729816748334114518279754945612238L; assert(feqrel(gamma(0.5L), SQRT_PI) >= real.mant_dig-1); assert(feqrel(gamma(17.25L), 4.224986665692703551570937158682064589938e13L) >= real.mant_dig-4); assert(feqrel(gamma(1.0 / 3.0L), 2.67893853470774763365569294097467764412868937795730L) >= real.mant_dig-2); assert(feqrel(gamma(0.25L), 3.62560990822190831193068515586767200299516768288006L) >= real.mant_dig-1); assert(feqrel(gamma(1.0 / 5.0L), 4.59084371199880305320475827592915200343410999829340L) >= real.mant_dig-1); } /***************************************************** * Natural logarithm of gamma function. * * Returns the base e (2.718...) logarithm of the absolute * value of the gamma function of the argument. * * For reals, logGamma is equivalent to log(fabs(gamma(x))). * * $(TABLE_SV * $(SVH x, logGamma(x) ) * $(SV $(NAN), $(NAN) ) * $(SV integer <= 0, +∞ ) * $(SV ±∞, +∞ ) * ) */ real logGamma(real x) { /* Based on code from the CEPHES library. * CEPHES code Copyright 1994 by Stephen L. Moshier * * For arguments greater than 33, the logarithm of the gamma * function is approximated by the logarithmic version of * Stirling's formula using a polynomial approximation of * degree 4. Arguments between -33 and +33 are reduced by * recurrence to the interval [2,3] of a rational approximation. * The cosecant reflection formula is employed for arguments * less than -33. */ real q, w, z, f, nx; if (isNaN(x)) return x; if (fabs(x) == x.infinity) return x.infinity; if ( x < -34.0L ) { q = -x; w = logGamma(q); real p = floor(q); if ( p == q ) return real.infinity; int intpart = cast(int)(p); real sgngam = 1; if ( (intpart & 1) == 0 ) sgngam = -1; z = q - p; if ( z > 0.5L ) { p += 1.0L; z = p - q; } z = q * sin( PI * z ); if ( z == 0.0L ) return sgngam * real.infinity; /* z = LOGPI - logl( z ) - w; */ z = log( PI/z ) - w; return z; } if ( x < 13.0L ) { z = 1.0L; nx = floor( x + 0.5L ); f = x - nx; while ( x >= 3.0L ) { nx -= 1.0L; x = nx + f; z *= x; } while ( x < 2.0L ) { if ( fabs(x) <= 0.03125L ) { if ( x == 0.0L ) return real.infinity; if ( x < 0.0L ) { x = -x; q = z / (x * poly( x, GammaSmallNegCoeffs)); } else q = z / (x * poly( x, GammaSmallCoeffs)); return log( fabs(q) ); } z /= nx + f; nx += 1.0L; x = nx + f; } z = fabs(z); if ( x == 2.0L ) return log(z); x = (nx - 2.0L) + f; real p = x * rationalPoly( x, logGammaNumerator, logGammaDenominator); return log(z) + p; } // const real MAXLGM = 1.04848146839019521116e+4928L; // if ( x > MAXLGM ) return sgngaml * real.infinity; const real LOGSQRT2PI = 0.91893853320467274178L; // log( sqrt( 2*pi ) ) q = ( x - 0.5L ) * log(x) - x + LOGSQRT2PI; if (x > 1.0e10L) return q; real p = 1.0L / (x*x); q += poly( p, logGammaStirlingCoeffs ) / x; return q ; } @safe unittest { assert(isIdentical(logGamma(NaN(0xDEF)), NaN(0xDEF))); assert(logGamma(real.infinity) == real.infinity); assert(logGamma(-1.0) == real.infinity); assert(logGamma(0.0) == real.infinity); assert(logGamma(-50.0) == real.infinity); assert(isIdentical(0.0L, logGamma(1.0L))); assert(isIdentical(0.0L, logGamma(2.0L))); assert(logGamma(real.min_normal*real.epsilon) == real.infinity); assert(logGamma(-real.min_normal*real.epsilon) == real.infinity); // x, correct loggamma(x), correct d/dx loggamma(x). immutable static real[] testpoints = [ 8.0L, 8.525146484375L + 1.48766904143001655310E-5, 2.01564147795560999654E0L, 8.99993896484375e-1L, 6.6375732421875e-2L + 5.11505711292524166220E-6L, -7.54938684259372234258E-1, 7.31597900390625e-1L, 2.2369384765625e-1 + 5.21506341809849792422E-6L, -1.13355566660398608343E0L, 2.31639862060546875e-1L, 1.3686676025390625L + 1.12609441752996145670E-5L, -4.56670961813812679012E0, 1.73162841796875L, -8.88214111328125e-2L + 3.36207740803753034508E-6L, 2.33339034686200586920E-1L, 1.23162841796875L, -9.3902587890625e-2L + 1.28765089229009648104E-5L, -2.49677345775751390414E-1L, 7.3786976294838206464e19L, 3.301798506038663053312e21L - 1.656137564136932662487046269677E5L, 4.57477139169563904215E1L, 1.08420217248550443401E-19L, 4.36682586669921875e1L + 1.37082843669932230418E-5L, -9.22337203685477580858E18L, 1.0L, 0.0L, -5.77215664901532860607E-1L, 2.0L, 0.0L, 4.22784335098467139393E-1L, -0.5L, 1.2655029296875L + 9.19379714539648894580E-6L, 3.64899739785765205590E-2L, -1.5L, 8.6004638671875e-1L + 6.28657731014510932682E-7L, 7.03156640645243187226E-1L, -2.5L, -5.6243896484375E-2L + 1.79986700949327405470E-7, 1.10315664064524318723E0L, -3.5L, -1.30902099609375L + 1.43111007079536392848E-5L, 1.38887092635952890151E0L ]; // TODO: test derivatives as well. for (int i=0; i real.mant_dig-5); if (testpoints[i] real.mant_dig-5); } } assert(feqrel(logGamma(-50.2L),log(fabs(gamma(-50.2L)))) > real.mant_dig-2); assert(feqrel(logGamma(-0.008L),log(fabs(gamma(-0.008L)))) > real.mant_dig-2); assert(feqrel(logGamma(-38.8L),log(fabs(gamma(-38.8L)))) > real.mant_dig-4); static if (real.mant_dig >= 64) // incl. 80-bit reals assert(feqrel(logGamma(1500.0L),log(gamma(1500.0L))) > real.mant_dig-2); else static if (real.mant_dig >= 53) // incl. 64-bit reals assert(feqrel(logGamma(150.0L),log(gamma(150.0L))) > real.mant_dig-2); } private { /* * These value can be calculated like this: * 1) Get exact real.max/min_normal/epsilon from compiler: * writefln!"%a"(real.max/min_normal_epsilon) * 2) Convert for Wolfram Alpha * 0xf.fffffffffffffffp+16380 ==> (f.fffffffffffffff base 16) * 2^16380 * 3) Calculate result on wofram alpha: * http://www.wolframalpha.com/input/?i=ln((1.ffffffffffffffffffffffffffff+base+16)+*+2%5E16383)+in+base+2 * 4) Convert to proper format: * string mantissa = "1.011..."; * write(mantissa[0 .. 2]); mantissa = mantissa[2 .. $]; * for (size_t i = 0; i < mantissa.length/4; i++) * { * writef!"%x"(to!ubyte(mantissa[0 .. 4], 2)); mantissa = mantissa[4 .. $]; * } */ static if (floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) { enum real MAXLOG = 0x1.62e42fefa39ef35793c7673007e6p+13L; // log(real.max) enum real MINLOG = -0x1.6546282207802c89d24d65e96274p+13L; // log(real.min_normal*real.epsilon) = log(smallest denormal) } else static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended) { enum real MAXLOG = 0x1.62e42fefa39ef358p+13L; // log(real.max) enum real MINLOG = -0x1.6436716d5406e6d8p+13L; // log(real.min_normal*real.epsilon) = log(smallest denormal) } else static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended53) { enum real MAXLOG = 0x1.62e42fefa39ef358p+13L; // log(real.max) enum real MINLOG = -0x1.6436716d5406e6d8p+13L; // log(real.min_normal*real.epsilon) = log(smallest denormal) } else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) { enum real MAXLOG = 0x1.62e42fefa39efp+9L; // log(real.max) enum real MINLOG = -0x1.74385446d71c3p+9L; // log(real.min_normal*real.epsilon) = log(smallest denormal) } else static assert(0, "missing MAXLOG and MINLOG for other real types"); enum real BETA_BIG = 9.223372036854775808e18L; enum real BETA_BIGINV = 1.084202172485504434007e-19L; } /** Incomplete beta integral * * Returns incomplete beta integral of the arguments, evaluated * from zero to x. The regularized incomplete beta function is defined as * * betaIncomplete(a, b, x) = Γ(a+b)/(Γ(a) Γ(b)) * * $(INTEGRATE 0, x) $(POWER t, a-1)$(POWER (1-t),b-1) dt * * and is the same as the the cumulative distribution function. * * The domain of definition is 0 <= x <= 1. In this * implementation a and b are restricted to positive values. * The integral from x to 1 may be obtained by the symmetry * relation * * betaIncompleteCompl(a, b, x ) = betaIncomplete( b, a, 1-x ) * * The integral is evaluated by a continued fraction expansion * or, when b*x is small, by a power series. */ real betaIncomplete(real aa, real bb, real xx ) { if ( !(aa>0 && bb>0) ) { if ( isNaN(aa) ) return aa; if ( isNaN(bb) ) return bb; return real.nan; // domain error } if (!(xx>0 && xx<1.0)) { if (isNaN(xx)) return xx; if ( xx == 0.0L ) return 0.0; if ( xx == 1.0L ) return 1.0; return real.nan; // domain error } if ( (bb * xx) <= 1.0L && xx <= 0.95L) { return betaDistPowerSeries(aa, bb, xx); } real x; real xc; // = 1 - x real a, b; int flag = 0; /* Reverse a and b if x is greater than the mean. */ if ( xx > (aa/(aa+bb)) ) { // here x > aa/(aa+bb) and (bb*x>1 or x>0.95) flag = 1; a = bb; b = aa; xc = xx; x = 1.0L - xx; } else { a = aa; b = bb; xc = 1.0L - xx; x = xx; } if ( flag == 1 && (b * x) <= 1.0L && x <= 0.95L) { // here xx > aa/(aa+bb) and ((bb*xx>1) or xx>0.95) and (aa*(1-xx)<=1) and xx > 0.05 return 1.0 - betaDistPowerSeries(a, b, x); // note loss of precision } real w; // Choose expansion for optimal convergence // One is for x * (a+b+2) < (a+1), // the other is for x * (a+b+2) > (a+1). real y = x * (a+b-2.0L) - (a-1.0L); if ( y < 0.0L ) { w = betaDistExpansion1( a, b, x ); } else { w = betaDistExpansion2( a, b, x ) / xc; } /* Multiply w by the factor a b x (1-x) Gamma(a+b) / ( a Gamma(a) Gamma(b) ) . */ y = a * log(x); real t = b * log(xc); if ( (a+b) < MAXGAMMA && fabs(y) < MAXLOG && fabs(t) < MAXLOG ) { t = pow(xc,b); t *= pow(x,a); t /= a; t *= w; t *= gamma(a+b) / (gamma(a) * gamma(b)); } else { /* Resort to logarithms. */ y += t + logGamma(a+b) - logGamma(a) - logGamma(b); y += log(w/a); t = exp(y); /+ // There seems to be a bug in Cephes at this point. // Problems occur for y > MAXLOG, not y < MINLOG. if ( y < MINLOG ) { t = 0.0L; } else { t = exp(y); } +/ } if ( flag == 1 ) { /+ // CEPHES includes this code, but I think it is erroneous. if ( t <= real.epsilon ) { t = 1.0L - real.epsilon; } else +/ t = 1.0L - t; } return t; } /** Inverse of incomplete beta integral * * Given y, the function finds x such that * * betaIncomplete(a, b, x) == y * * Newton iterations or interval halving is used. */ real betaIncompleteInv(real aa, real bb, real yy0 ) { real a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt; int i, rflg, dir, nflg; if (isNaN(yy0)) return yy0; if (isNaN(aa)) return aa; if (isNaN(bb)) return bb; if ( yy0 <= 0.0L ) return 0.0L; if ( yy0 >= 1.0L ) return 1.0L; x0 = 0.0L; yl = 0.0L; x1 = 1.0L; yh = 1.0L; if ( aa <= 1.0L || bb <= 1.0L ) { dithresh = 1.0e-7L; rflg = 0; a = aa; b = bb; y0 = yy0; x = a/(a+b); y = betaIncomplete( a, b, x ); nflg = 0; goto ihalve; } else { nflg = 0; dithresh = 1.0e-4L; } // approximation to inverse function yp = -normalDistributionInvImpl( yy0 ); if ( yy0 > 0.5L ) { rflg = 1; a = bb; b = aa; y0 = 1.0L - yy0; yp = -yp; } else { rflg = 0; a = aa; b = bb; y0 = yy0; } lgm = (yp * yp - 3.0L)/6.0L; x = 2.0L/( 1.0L/(2.0L * a-1.0L) + 1.0L/(2.0L * b - 1.0L) ); d = yp * sqrt( x + lgm ) / x - ( 1.0L/(2.0L * b - 1.0L) - 1.0L/(2.0L * a - 1.0L) ) * (lgm + (5.0L/6.0L) - 2.0L/(3.0L * x)); d = 2.0L * d; if ( d < MINLOG ) { x = 1.0L; goto under; } x = a/( a + b * exp(d) ); y = betaIncomplete( a, b, x ); yp = (y - y0)/y0; if ( fabs(yp) < 0.2 ) goto newt; /* Resort to interval halving if not close enough. */ ihalve: dir = 0; di = 0.5L; for ( i=0; i<400; i++ ) { if ( i != 0 ) { x = x0 + di * (x1 - x0); if ( x == 1.0L ) { x = 1.0L - real.epsilon; } if ( x == 0.0L ) { di = 0.5; x = x0 + di * (x1 - x0); if ( x == 0.0 ) goto under; } y = betaIncomplete( a, b, x ); yp = (x1 - x0)/(x1 + x0); if ( fabs(yp) < dithresh ) goto newt; yp = (y-y0)/y0; if ( fabs(yp) < dithresh ) goto newt; } if ( y < y0 ) { x0 = x; yl = y; if ( dir < 0 ) { dir = 0; di = 0.5L; } else if ( dir > 3 ) di = 1.0L - (1.0L - di) * (1.0L - di); else if ( dir > 1 ) di = 0.5L * di + 0.5L; else di = (y0 - y)/(yh - yl); dir += 1; if ( x0 > 0.95L ) { if ( rflg == 1 ) { rflg = 0; a = aa; b = bb; y0 = yy0; } else { rflg = 1; a = bb; b = aa; y0 = 1.0 - yy0; } x = 1.0L - x; y = betaIncomplete( a, b, x ); x0 = 0.0; yl = 0.0; x1 = 1.0; yh = 1.0; goto ihalve; } } else { x1 = x; if ( rflg == 1 && x1 < real.epsilon ) { x = 0.0L; goto done; } yh = y; if ( dir > 0 ) { dir = 0; di = 0.5L; } else if ( dir < -3 ) di = di * di; else if ( dir < -1 ) di = 0.5L * di; else di = (y - y0)/(yh - yl); dir -= 1; } } if ( x0 >= 1.0L ) { // partial loss of precision x = 1.0L - real.epsilon; goto done; } if ( x <= 0.0L ) { under: // underflow has occurred x = real.min_normal * real.min_normal; goto done; } newt: if ( nflg ) { goto done; } nflg = 1; lgm = logGamma(a+b) - logGamma(a) - logGamma(b); for ( i=0; i<15; i++ ) { /* Compute the function at this point. */ if ( i != 0 ) y = betaIncomplete(a,b,x); if ( y < yl ) { x = x0; y = yl; } else if ( y > yh ) { x = x1; y = yh; } else if ( y < y0 ) { x0 = x; yl = y; } else { x1 = x; yh = y; } if ( x == 1.0L || x == 0.0L ) break; /* Compute the derivative of the function at this point. */ d = (a - 1.0L) * log(x) + (b - 1.0L) * log(1.0L - x) + lgm; if ( d < MINLOG ) { goto done; } if ( d > MAXLOG ) { break; } d = exp(d); /* Compute the step to the next approximation of x. */ d = (y - y0)/d; xt = x - d; if ( xt <= x0 ) { y = (x - x0) / (x1 - x0); xt = x0 + 0.5L * y * (x - x0); if ( xt <= 0.0L ) break; } if ( xt >= x1 ) { y = (x1 - x) / (x1 - x0); xt = x1 - 0.5L * y * (x1 - x); if ( xt >= 1.0L ) break; } x = xt; if ( fabs(d/x) < (128.0L * real.epsilon) ) goto done; } /* Did not converge. */ dithresh = 256.0L * real.epsilon; goto ihalve; done: if ( rflg ) { if ( x <= real.epsilon ) x = 1.0L - real.epsilon; else x = 1.0L - x; } return x; } @safe unittest { // also tested by the normal distribution // check NaN propagation assert(isIdentical(betaIncomplete(NaN(0xABC),2,3), NaN(0xABC))); assert(isIdentical(betaIncomplete(7,NaN(0xABC),3), NaN(0xABC))); assert(isIdentical(betaIncomplete(7,15,NaN(0xABC)), NaN(0xABC))); assert(isIdentical(betaIncompleteInv(NaN(0xABC),1,17), NaN(0xABC))); assert(isIdentical(betaIncompleteInv(2,NaN(0xABC),8), NaN(0xABC))); assert(isIdentical(betaIncompleteInv(2,3, NaN(0xABC)), NaN(0xABC))); assert(isNaN(betaIncomplete(-1, 2, 3))); assert(betaIncomplete(1, 2, 0)==0); assert(betaIncomplete(1, 2, 1)==1); assert(isNaN(betaIncomplete(1, 2, 3))); assert(betaIncompleteInv(1, 1, 0)==0); assert(betaIncompleteInv(1, 1, 1)==1); // Test against Mathematica betaRegularized[z,a,b] // These arbitrary points are chosen to give good code coverage. assert(feqrel(betaIncomplete(8, 10, 0.2L), 0.010_934_315_234_099_2L) >= real.mant_dig - 5); assert(feqrel(betaIncomplete(2, 2.5L, 0.9L), 0.989_722_597_604_452_767_171_003_59L) >= real.mant_dig - 1); static if (real.mant_dig >= 64) // incl. 80-bit reals assert(feqrel(betaIncomplete(1000, 800, 0.5L), 1.179140859734704555102808541457164E-06L) >= real.mant_dig - 13); else assert(feqrel(betaIncomplete(1000, 800, 0.5L), 1.179140859734704555102808541457164E-06L) >= real.mant_dig - 14); assert(feqrel(betaIncomplete(0.0001, 10000, 0.0001L), 0.999978059362107134278786L) >= real.mant_dig - 18); assert(betaIncomplete(0.01L, 327726.7L, 0.545113L) == 1.0); assert(feqrel(betaIncompleteInv(8, 10, 0.010_934_315_234_099_2L), 0.2L) >= real.mant_dig - 2); assert(feqrel(betaIncomplete(0.01L, 498.437L, 0.0121433L), 0.99999664562033077636065L) >= real.mant_dig - 1); assert(feqrel(betaIncompleteInv(5, 10, 0.2000002972865658842L), 0.229121208190918L) >= real.mant_dig - 3); assert(feqrel(betaIncompleteInv(4, 7, 0.8000002209179505L), 0.483657360076904L) >= real.mant_dig - 3); // Coverage tests. I don't have correct values for these tests, but // these values cover most of the code, so they are useful for // regression testing. // Extensive testing failed to increase the coverage. It seems likely that about // half the code in this function is unnecessary; there is potential for // significant improvement over the original CEPHES code. static if (real.mant_dig == 64) // 80-bit reals { assert(betaIncompleteInv(0.01L, 8e-48L, 5.45464e-20L) == 1-real.epsilon); assert(betaIncompleteInv(0.01L, 8e-48L, 9e-26L) == 1-real.epsilon); // Beware: a one-bit change in pow() changes almost all digits in the result! assert(feqrel( betaIncompleteInv(0x1.b3d151fbba0eb18p+1L, 1.2265e-19L, 2.44859e-18L), 0x1.c0110c8531d0952cp-1L ) > 10); // This next case uncovered a one-bit difference in the FYL2X instruction // between Intel and AMD processors. This difference gets magnified by 2^^38. // WolframAlpha crashes attempting to calculate this. assert(feqrel(betaIncompleteInv(0x1.ff1275ae5b939bcap-41L, 4.6713e18L, 0.0813601L), 0x1.f97749d90c7adba8p-63L) >= real.mant_dig - 39); real a1 = 3.40483L; assert(betaIncompleteInv(a1, 4.0640301659679627772e19L, 0.545113L) == 0x1.ba8c08108aaf5d14p-109L); real b1 = 2.82847e-25L; assert(feqrel(betaIncompleteInv(0.01L, b1, 9e-26L), 0x1.549696104490aa9p-830L) >= real.mant_dig-10); // --- Problematic cases --- // This is a situation where the series expansion fails to converge assert( isNaN(betaIncompleteInv(0.12167L, 4.0640301659679627772e19L, 0.0813601L))); // This next result is almost certainly erroneous. // Mathematica states: "(cannot be determined by current methods)" assert(betaIncomplete(1.16251e20L, 2.18e39L, 5.45e-20L) == -real.infinity); // WolframAlpha gives no result for this, though indicates that it approximately 1.0 - 1.3e-9 assert(1 - betaIncomplete(0.01L, 328222, 4.0375e-5L) == 0x1.5f62926b4p-30L); } } private { // Implementation functions // Continued fraction expansion #1 for incomplete beta integral // Use when x < (a+1)/(a+b+2) real betaDistExpansion1(real a, real b, real x ) { real xk, pk, pkm1, pkm2, qk, qkm1, qkm2; real k1, k2, k3, k4, k5, k6, k7, k8; real r, t, ans; int n; k1 = a; k2 = a + b; k3 = a; k4 = a + 1.0L; k5 = 1.0L; k6 = b - 1.0L; k7 = k4; k8 = a + 2.0L; pkm2 = 0.0L; qkm2 = 1.0L; pkm1 = 1.0L; qkm1 = 1.0L; ans = 1.0L; r = 1.0L; n = 0; const real thresh = 3.0L * real.epsilon; do { xk = -( x * k1 * k2 )/( k3 * k4 ); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; xk = ( x * k5 * k6 )/( k7 * k8 ); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if ( qk != 0.0L ) r = pk/qk; if ( r != 0.0L ) { t = fabs( (ans - r)/r ); ans = r; } else { t = 1.0L; } if ( t < thresh ) return ans; k1 += 1.0L; k2 += 1.0L; k3 += 2.0L; k4 += 2.0L; k5 += 1.0L; k6 -= 1.0L; k7 += 2.0L; k8 += 2.0L; if ( (fabs(qk) + fabs(pk)) > BETA_BIG ) { pkm2 *= BETA_BIGINV; pkm1 *= BETA_BIGINV; qkm2 *= BETA_BIGINV; qkm1 *= BETA_BIGINV; } if ( (fabs(qk) < BETA_BIGINV) || (fabs(pk) < BETA_BIGINV) ) { pkm2 *= BETA_BIG; pkm1 *= BETA_BIG; qkm2 *= BETA_BIG; qkm1 *= BETA_BIG; } } while ( ++n < 400 ); // loss of precision has occurred // mtherr( "incbetl", PLOSS ); return ans; } // Continued fraction expansion #2 for incomplete beta integral // Use when x > (a+1)/(a+b+2) real betaDistExpansion2(real a, real b, real x ) { real xk, pk, pkm1, pkm2, qk, qkm1, qkm2; real k1, k2, k3, k4, k5, k6, k7, k8; real r, t, ans, z; k1 = a; k2 = b - 1.0L; k3 = a; k4 = a + 1.0L; k5 = 1.0L; k6 = a + b; k7 = a + 1.0L; k8 = a + 2.0L; pkm2 = 0.0L; qkm2 = 1.0L; pkm1 = 1.0L; qkm1 = 1.0L; z = x / (1.0L-x); ans = 1.0L; r = 1.0L; int n = 0; const real thresh = 3.0L * real.epsilon; do { xk = -( z * k1 * k2 )/( k3 * k4 ); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; xk = ( z * k5 * k6 )/( k7 * k8 ); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if ( qk != 0.0L ) r = pk/qk; if ( r != 0.0L ) { t = fabs( (ans - r)/r ); ans = r; } else t = 1.0L; if ( t < thresh ) return ans; k1 += 1.0L; k2 -= 1.0L; k3 += 2.0L; k4 += 2.0L; k5 += 1.0L; k6 += 1.0L; k7 += 2.0L; k8 += 2.0L; if ( (fabs(qk) + fabs(pk)) > BETA_BIG ) { pkm2 *= BETA_BIGINV; pkm1 *= BETA_BIGINV; qkm2 *= BETA_BIGINV; qkm1 *= BETA_BIGINV; } if ( (fabs(qk) < BETA_BIGINV) || (fabs(pk) < BETA_BIGINV) ) { pkm2 *= BETA_BIG; pkm1 *= BETA_BIG; qkm2 *= BETA_BIG; qkm1 *= BETA_BIG; } } while ( ++n < 400 ); // loss of precision has occurred //mtherr( "incbetl", PLOSS ); return ans; } /* Power series for incomplete gamma integral. Use when b*x is small. */ real betaDistPowerSeries(real a, real b, real x ) { real ai = 1.0L / a; real u = (1.0L - b) * x; real v = u / (a + 1.0L); real t1 = v; real t = u; real n = 2.0L; real s = 0.0L; real z = real.epsilon * ai; while ( fabs(v) > z ) { u = (n - b) * x / n; t *= u; v = t / (a + n); s += v; n += 1.0L; } s += t1; s += ai; u = a * log(x); if ( (a+b) < MAXGAMMA && fabs(u) < MAXLOG ) { t = gamma(a+b)/(gamma(a)*gamma(b)); s = s * t * pow(x,a); } else { t = logGamma(a+b) - logGamma(a) - logGamma(b) + u + log(s); if ( t < MINLOG ) { s = 0.0L; } else s = exp(t); } return s; } } /*************************************** * Incomplete gamma integral and its complement * * These functions are defined by * * gammaIncomplete = ( $(INTEGRATE 0, x) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a) * * gammaIncompleteCompl(a,x) = 1 - gammaIncomplete(a,x) * = ($(INTEGRATE x, ∞) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a) * * In this implementation both arguments must be positive. * The integral is evaluated by either a power series or * continued fraction expansion, depending on the relative * values of a and x. */ real gammaIncomplete(real a, real x ) in { assert(x >= 0); assert(a > 0); } do { /* left tail of incomplete gamma function: * * inf. k * a -x - x * x e > ---------- * - - * k=0 | (a+k+1) * */ if (x == 0) return 0.0L; if ( (x > 1.0L) && (x > a ) ) return 1.0L - gammaIncompleteCompl(a,x); real ax = a * log(x) - x - logGamma(a); /+ if ( ax < MINLOGL ) return 0; // underflow // { mtherr( "igaml", UNDERFLOW ); return( 0.0L ); } +/ ax = exp(ax); /* power series */ real r = a; real c = 1.0L; real ans = 1.0L; do { r += 1.0L; c *= x/r; ans += c; } while ( c/ans > real.epsilon ); return ans * ax/a; } /** ditto */ real gammaIncompleteCompl(real a, real x ) in { assert(x >= 0); assert(a > 0); } do { if (x == 0) return 1.0L; if ( (x < 1.0L) || (x < a) ) return 1.0L - gammaIncomplete(a,x); // DAC (Cephes bug fix): This is necessary to avoid // spurious nans, eg // log(x)-x = NaN when x = real.infinity const real MAXLOGL = 1.1356523406294143949492E4L; if (x > MAXLOGL) return igammaTemmeLarge(a, x); real ax = a * log(x) - x - logGamma(a); //const real MINLOGL = -1.1355137111933024058873E4L; // if ( ax < MINLOGL ) return 0; // underflow; ax = exp(ax); /* continued fraction */ real y = 1.0L - a; real z = x + y + 1.0L; real c = 0.0L; real pk, qk, t; real pkm2 = 1.0L; real qkm2 = x; real pkm1 = x + 1.0L; real qkm1 = z * x; real ans = pkm1/qkm1; do { c += 1.0L; y += 1.0L; z += 2.0L; real yc = y * c; pk = pkm1 * z - pkm2 * yc; qk = qkm1 * z - qkm2 * yc; if ( qk != 0.0L ) { real r = pk/qk; t = fabs( (ans - r)/r ); ans = r; } else { t = 1.0L; } pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; const real BIG = 9.223372036854775808e18L; if ( fabs(pk) > BIG ) { pkm2 /= BIG; pkm1 /= BIG; qkm2 /= BIG; qkm1 /= BIG; } } while ( t > real.epsilon ); return ans * ax; } /** Inverse of complemented incomplete gamma integral * * Given a and p, the function finds x such that * * gammaIncompleteCompl( a, x ) = p. * * Starting with the approximate value x = a $(POWER t, 3), where * t = 1 - d - normalDistributionInv(p) sqrt(d), * and d = 1/9a, * the routine performs up to 10 Newton iterations to find the * root of incompleteGammaCompl(a,x) - p = 0. */ real gammaIncompleteComplInv(real a, real p) in { assert(p >= 0 && p <= 1); assert(a>0); } do { if (p == 0) return real.infinity; real y0 = p; const real MAXLOGL = 1.1356523406294143949492E4L; real x0, x1, x, yl, yh, y, d, lgm, dithresh; int i, dir; /* bound the solution */ x0 = real.max; yl = 0.0L; x1 = 0.0L; yh = 1.0L; dithresh = 4.0 * real.epsilon; /* approximation to inverse function */ d = 1.0L/(9.0L*a); y = 1.0L - d - normalDistributionInvImpl(y0) * sqrt(d); x = a * y * y * y; lgm = logGamma(a); for ( i=0; i<10; i++ ) { if ( x > x0 || x < x1 ) goto ihalve; y = gammaIncompleteCompl(a,x); if ( y < yl || y > yh ) goto ihalve; if ( y < y0 ) { x0 = x; yl = y; } else { x1 = x; yh = y; } /* compute the derivative of the function at this point */ d = (a - 1.0L) * log(x0) - x0 - lgm; if ( d < -MAXLOGL ) goto ihalve; d = -exp(d); /* compute the step to the next approximation of x */ d = (y - y0)/d; x = x - d; if ( i < 3 ) continue; if ( fabs(d/x) < dithresh ) return x; } /* Resort to interval halving if Newton iteration did not converge. */ ihalve: d = 0.0625L; if ( x0 == real.max ) { if ( x <= 0.0L ) x = 1.0L; while ( x0 == real.max ) { x = (1.0L + d) * x; y = gammaIncompleteCompl( a, x ); if ( y < y0 ) { x0 = x; yl = y; break; } d = d + d; } } d = 0.5L; dir = 0; for ( i=0; i<400; i++ ) { x = x1 + d * (x0 - x1); y = gammaIncompleteCompl( a, x ); lgm = (x0 - x1)/(x1 + x0); if ( fabs(lgm) < dithresh ) break; lgm = (y - y0)/y0; if ( fabs(lgm) < dithresh ) break; if ( x <= 0.0L ) break; if ( y > y0 ) { x1 = x; yh = y; if ( dir < 0 ) { dir = 0; d = 0.5L; } else if ( dir > 1 ) d = 0.5L * d + 0.5L; else d = (y0 - yl)/(yh - yl); dir += 1; } else { x0 = x; yl = y; if ( dir > 0 ) { dir = 0; d = 0.5L; } else if ( dir < -1 ) d = 0.5L * d; else d = (y0 - yl)/(yh - yl); dir -= 1; } } /+ if ( x == 0.0L ) mtherr( "igamil", UNDERFLOW ); +/ return x; } @safe unittest { //Values from Excel's GammaInv(1-p, x, 1) assert(fabs(gammaIncompleteComplInv(1, 0.5L) - 0.693147188044814L) < 0.00000005L); assert(fabs(gammaIncompleteComplInv(12, 0.99L) - 5.42818075054289L) < 0.00000005L); assert(fabs(gammaIncompleteComplInv(100, 0.8L) - 91.5013985848288L) < 0.000005L); assert(gammaIncomplete(1, 0)==0); assert(gammaIncompleteCompl(1, 0)==1); assert(gammaIncomplete(4545, real.infinity)==1); // Values from Excel's (1-GammaDist(x, alpha, 1, TRUE)) assert(fabs(1.0L-gammaIncompleteCompl(0.5L, 2) - 0.954499729507309L) < 0.00000005L); assert(fabs(gammaIncomplete(0.5L, 2) - 0.954499729507309L) < 0.00000005L); // Fixed Cephes bug: assert(gammaIncompleteCompl(384, real.infinity)==0); assert(gammaIncompleteComplInv(3, 0)==real.infinity); // Fixed a bug that caused gammaIncompleteCompl to return a wrong value when // x was larger than a, but not by much, and both were large: // The value is from WolframAlpha (Gamma[100000, 100001, inf] / Gamma[100000]) static if (real.mant_dig >= 64) // incl. 80-bit reals assert(fabs(gammaIncompleteCompl(100000, 100001) - 0.49831792109L) < 0.000000000005L); else assert(fabs(gammaIncompleteCompl(100000, 100001) - 0.49831792109L) < 0.00000005L); } // DAC: These values are Bn / n for n=2,4,6,8,10,12,14. immutable real [7] Bn_n = [ 1.0L/(6*2), -1.0L/(30*4), 1.0L/(42*6), -1.0L/(30*8), 5.0L/(66*10), -691.0L/(2730*12), 7.0L/(6*14) ]; /** Digamma function * * The digamma function is the logarithmic derivative of the gamma function. * * digamma(x) = d/dx logGamma(x) * * References: * 1. Abramowitz, M., and Stegun, I. A. (1970). * Handbook of mathematical functions. Dover, New York, * pages 258-259, equations 6.3.6 and 6.3.18. */ real digamma(real x) { // Based on CEPHES, Stephen L. Moshier. real p, q, nz, s, w, y, z; long i, n; int negative; negative = 0; nz = 0.0; if ( x <= 0.0 ) { negative = 1; q = x; p = floor(q); if ( p == q ) { return real.nan; // singularity. } /* Remove the zeros of tan(PI x) * by subtracting the nearest integer from x */ nz = q - p; if ( nz != 0.5 ) { if ( nz > 0.5 ) { p += 1.0; nz = q - p; } nz = PI/tan(PI*nz); } else { nz = 0.0; } x = 1.0 - x; } // check for small positive integer if ((x <= 13.0) && (x == floor(x)) ) { y = 0.0; n = lrint(x); // DAC: CEPHES bugfix. Cephes did this in reverse order, which // created a larger roundoff error. for (i=n-1; i>0; --i) { y+=1.0L/i; } y -= EULERGAMMA; goto done; } s = x; w = 0.0; while ( s < 10.0 ) { w += 1.0/s; s += 1.0; } if ( s < 1.0e17L ) { z = 1.0/(s * s); y = z * poly(z, Bn_n); } else y = 0.0; y = log(s) - 0.5L/s - y - w; done: if ( negative ) { y -= nz; } return y; } @safe unittest { // Exact values assert(digamma(1.0)== -EULERGAMMA); assert(feqrel(digamma(0.25), -PI/2 - 3* LN2 - EULERGAMMA) >= real.mant_dig-7); assert(feqrel(digamma(1.0L/6), -PI/2 *sqrt(3.0L) - 2* LN2 -1.5*log(3.0L) - EULERGAMMA) >= real.mant_dig-7); assert(digamma(-5.0).isNaN()); assert(feqrel(digamma(2.5), -EULERGAMMA - 2*LN2 + 2.0 + 2.0L/3) >= real.mant_dig-9); assert(isIdentical(digamma(NaN(0xABC)), NaN(0xABC))); for (int k=1; k<40; ++k) { real y=0; for (int u=k; u >= 1; --u) { y += 1.0L/u; } assert(feqrel(digamma(k+1.0), -EULERGAMMA + y) >= real.mant_dig-2); } } /** Log Minus Digamma function * * logmdigamma(x) = log(x) - digamma(x) * * References: * 1. Abramowitz, M., and Stegun, I. A. (1970). * Handbook of mathematical functions. Dover, New York, * pages 258-259, equations 6.3.6 and 6.3.18. */ real logmdigamma(real x) { if (x <= 0.0) { if (x == 0.0) { return real.infinity; } return real.nan; } real s = x; real w = 0.0; while ( s < 10.0 ) { w += 1.0/s; s += 1.0; } real y; if ( s < 1.0e17L ) { immutable real z = 1.0/(s * s); y = z * poly(z, Bn_n); } else y = 0.0; return x == s ? y + 0.5L/s : (log(x/s) + 0.5L/s + y + w); } @safe unittest { assert(logmdigamma(-5.0).isNaN()); assert(isIdentical(logmdigamma(NaN(0xABC)), NaN(0xABC))); assert(logmdigamma(0.0) == real.infinity); for (auto x = 0.01; x < 1.0; x += 0.1) assert(isClose(digamma(x), log(x) - logmdigamma(x))); for (auto x = 1.0; x < 15.0; x += 1.0) assert(isClose(digamma(x), log(x) - logmdigamma(x))); } /** Inverse of the Log Minus Digamma function * * Returns x such $(D log(x) - digamma(x) == y). * * References: * 1. Abramowitz, M., and Stegun, I. A. (1970). * Handbook of mathematical functions. Dover, New York, * pages 258-259, equation 6.3.18. * * Authors: Ilya Yaroshenko */ real logmdigammaInverse(real y) { import std.numeric : findRoot; // FIXME: should be returned back to enum. // Fix requires CTFEable `log` on non-x86 targets (check both LDC and GDC). immutable maxY = logmdigamma(real.min_normal); assert(maxY > 0 && maxY <= real.max); if (y >= maxY) { //lim x->0 (log(x)-digamma(x))*x == 1 return 1 / y; } if (y < 0) { return real.nan; } if (y < real.min_normal) { //6.3.18 return 0.5 / y; } if (y > 0) { // x/2 <= logmdigamma(1 / x) <= x, x > 0 // calls logmdigamma ~6 times return 1 / findRoot((real x) => logmdigamma(1 / x) - y, y, 2*y); } return y; //NaN } @safe unittest { import std.typecons; //WolframAlpha, 22.02.2015 immutable Tuple!(real, real)[5] testData = [ tuple(1.0L, 0.615556766479594378978099158335549201923L), tuple(1.0L/8, 4.15937801516894947161054974029150730555L), tuple(1.0L/1024, 512.166612384991507850643277924243523243L), tuple(0.000500083333325000003968249801594877323784632117L, 1000.0L), tuple(1017.644138623741168814449776695062817947092468536L, 1.0L/1024), ]; foreach (test; testData) assert(isClose(logmdigammaInverse(test[0]), test[1], 2e-15L)); assert(isClose(logmdigamma(logmdigammaInverse(1)), 1, 1e-15L)); assert(isClose(logmdigamma(logmdigammaInverse(real.min_normal)), real.min_normal, 1e-15L)); assert(isClose(logmdigamma(logmdigammaInverse(real.max/2)), real.max/2, 1e-15L)); assert(isClose(logmdigammaInverse(logmdigamma(1)), 1, 1e-15L)); assert(isClose(logmdigammaInverse(logmdigamma(real.min_normal)), real.min_normal, 1e-15L)); assert(isClose(logmdigammaInverse(logmdigamma(real.max/2)), real.max/2, 1e-15L)); }