// Written in the D programming language. /** This is a submodule of $(MREF std, math). It contains several functions for work with floating point numbers. Copyright: Copyright The D Language Foundation 2000 - 2011. License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0). Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston, Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger Source: $(PHOBOSSRC std/math/operations.d) Macros: TABLE_SV = $0
Special Values
SVH = $(TR $(TH $1) $(TH $2)) SV = $(TR $(TD $1) $(TD $2)) NAN = $(RED NAN) PLUSMN = ± INFIN = ∞ LT = < GT = > */ module std.math.operations; import std.traits : CommonType, isFloatingPoint, isIntegral, Unqual; // Functions for NaN payloads /* * A 'payload' can be stored in the significand of a $(NAN). One bit is required * to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits * of payload for a float; 51 bits for a double; 62 bits for an 80-bit real; * and 111 bits for a 128-bit quad. */ /** * Create a quiet $(NAN), storing an integer inside the payload. * * For floats, the largest possible payload is 0x3F_FFFF. * For doubles, it is 0x3_FFFF_FFFF_FFFF. * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. */ real NaN(ulong payload) @trusted pure nothrow @nogc { import std.math : floatTraits, RealFormat; alias F = floatTraits!(real); static if (F.realFormat == RealFormat.ieeeExtended || F.realFormat == RealFormat.ieeeExtended53) { // real80 (in x86 real format, the implied bit is actually // not implied but a real bit which is stored in the real) ulong v = 3; // implied bit = 1, quiet bit = 1 } else { ulong v = 1; // no implied bit. quiet bit = 1 } if (__ctfe) { v = 1; // We use a double in CTFE. assert(payload >>> 51 == 0, "Cannot set more than 51 bits of NaN payload in CTFE."); } ulong a = payload; // 22 Float bits ulong w = a & 0x3F_FFFF; a -= w; v <<=22; v |= w; a >>=22; // 29 Double bits v <<=29; w = a & 0xFFF_FFFF; v |= w; a -= w; a >>=29; if (__ctfe) { v |= 0x7FF0_0000_0000_0000; return *cast(double*) &v; } else static if (F.realFormat == RealFormat.ieeeDouble) { v |= 0x7FF0_0000_0000_0000; real x; * cast(ulong *)(&x) = v; return x; } else { v <<=11; a &= 0x7FF; v |= a; real x = real.nan; // Extended real bits static if (F.realFormat == RealFormat.ieeeQuadruple) { v <<= 1; // there's no implicit bit version (LittleEndian) { *cast(ulong*)(6+cast(ubyte*)(&x)) = v; } else { *cast(ulong*)(2+cast(ubyte*)(&x)) = v; } } else { *cast(ulong *)(&x) = v; } return x; } } /// @safe @nogc pure nothrow unittest { import std.math.traits : isNaN; real a = NaN(1_000_000); assert(isNaN(a)); assert(getNaNPayload(a) == 1_000_000); } @system pure nothrow @nogc unittest // not @safe because taking address of local. { import std.math : floatTraits, RealFormat; static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) { auto x = NaN(1); auto xl = *cast(ulong*)&x; assert(xl & 0x8_0000_0000_0000UL); //non-signaling bit, bit 52 assert((xl & 0x7FF0_0000_0000_0000UL) == 0x7FF0_0000_0000_0000UL); //all exp bits set } } /** * Extract an integral payload from a $(NAN). * * Returns: * the integer payload as a ulong. * * For floats, the largest possible payload is 0x3F_FFFF. * For doubles, it is 0x3_FFFF_FFFF_FFFF. * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. */ ulong getNaNPayload(real x) @trusted pure nothrow @nogc { import std.math : floatTraits, RealFormat; // assert(isNaN(x)); alias F = floatTraits!(real); ulong m = void; if (__ctfe) { double y = x; m = *cast(ulong*) &y; // Make it look like an 80-bit significand. // Skip exponent, and quiet bit m &= 0x0007_FFFF_FFFF_FFFF; m <<= 11; } else static if (F.realFormat == RealFormat.ieeeDouble) { m = *cast(ulong*)(&x); // Make it look like an 80-bit significand. // Skip exponent, and quiet bit m &= 0x0007_FFFF_FFFF_FFFF; m <<= 11; } else static if (F.realFormat == RealFormat.ieeeQuadruple) { version (LittleEndian) { m = *cast(ulong*)(6+cast(ubyte*)(&x)); } else { m = *cast(ulong*)(2+cast(ubyte*)(&x)); } m >>= 1; // there's no implicit bit } else { m = *cast(ulong*)(&x); } // ignore implicit bit and quiet bit const ulong f = m & 0x3FFF_FF00_0000_0000L; ulong w = f >>> 40; w |= (m & 0x00FF_FFFF_F800L) << (22 - 11); w |= (m & 0x7FF) << 51; return w; } /// @safe @nogc pure nothrow unittest { import std.math.traits : isNaN; real a = NaN(1_000_000); assert(isNaN(a)); assert(getNaNPayload(a) == 1_000_000); } @safe @nogc pure nothrow unittest { import std.math.traits : isIdentical, isNaN; enum real a = NaN(1_000_000); static assert(isNaN(a)); static assert(getNaNPayload(a) == 1_000_000); real b = NaN(1_000_000); assert(isIdentical(b, a)); // The CTFE version of getNaNPayload relies on it being impossible // for a CTFE-constructed NaN to have more than 51 bits of payload. enum nanNaN = NaN(getNaNPayload(real.nan)); assert(isIdentical(real.nan, nanNaN)); static if (real.init != real.init) { enum initNaN = NaN(getNaNPayload(real.init)); assert(isIdentical(real.init, initNaN)); } } debug(UnitTest) { @safe pure nothrow @nogc unittest { real nan4 = NaN(0x789_ABCD_EF12_3456); static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended || floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) { assert(getNaNPayload(nan4) == 0x789_ABCD_EF12_3456); } else { assert(getNaNPayload(nan4) == 0x1_ABCD_EF12_3456); } double nan5 = nan4; assert(getNaNPayload(nan5) == 0x1_ABCD_EF12_3456); float nan6 = nan4; assert(getNaNPayload(nan6) == 0x12_3456); nan4 = NaN(0xFABCD); assert(getNaNPayload(nan4) == 0xFABCD); nan6 = nan4; assert(getNaNPayload(nan6) == 0xFABCD); nan5 = NaN(0x100_0000_0000_3456); assert(getNaNPayload(nan5) == 0x0000_0000_3456); } } /** * Calculate the next largest floating point value after x. * * Return the least number greater than x that is representable as a real; * thus, it gives the next point on the IEEE number line. * * $(TABLE_SV * $(SVH x, nextUp(x) ) * $(SV -$(INFIN), -real.max ) * $(SV $(PLUSMN)0.0, real.min_normal*real.epsilon ) * $(SV real.max, $(INFIN) ) * $(SV $(INFIN), $(INFIN) ) * $(SV $(NAN), $(NAN) ) * ) */ real nextUp(real x) @trusted pure nothrow @nogc { import std.math : floatTraits, RealFormat, MANTISSA_MSB, MANTISSA_LSB; alias F = floatTraits!(real); static if (F.realFormat != RealFormat.ieeeDouble) { if (__ctfe) { if (x == -real.infinity) return -real.max; if (!(x < real.infinity)) // Infinity or NaN. return x; real delta; // Start with a decent estimate of delta. if (x <= 0x1.ffffffffffffep+1023 && x >= -double.max) { const double d = cast(double) x; delta = (cast(real) nextUp(d) - cast(real) d) * 0x1p-11L; while (x + (delta * 0x1p-100L) > x) delta *= 0x1p-100L; } else { delta = 0x1p960L; while (!(x + delta > x) && delta < real.max * 0x1p-100L) delta *= 0x1p100L; } if (x + delta > x) { while (x + (delta / 2) > x) delta /= 2; } else { do { delta += delta; } while (!(x + delta > x)); } if (x < 0 && x + delta == 0) return -0.0L; return x + delta; } } static if (F.realFormat == RealFormat.ieeeDouble) { return nextUp(cast(double) x); } else static if (F.realFormat == RealFormat.ieeeQuadruple) { ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; if (e == F.EXPMASK) { // NaN or Infinity if (x == -real.infinity) return -real.max; return x; // +Inf and NaN are unchanged. } auto ps = cast(ulong *)&x; if (ps[MANTISSA_MSB] & 0x8000_0000_0000_0000) { // Negative number if (ps[MANTISSA_LSB] == 0 && ps[MANTISSA_MSB] == 0x8000_0000_0000_0000) { // it was negative zero, change to smallest subnormal ps[MANTISSA_LSB] = 1; ps[MANTISSA_MSB] = 0; return x; } if (ps[MANTISSA_LSB] == 0) --ps[MANTISSA_MSB]; --ps[MANTISSA_LSB]; } else { // Positive number ++ps[MANTISSA_LSB]; if (ps[MANTISSA_LSB] == 0) ++ps[MANTISSA_MSB]; } return x; } else static if (F.realFormat == RealFormat.ieeeExtended || F.realFormat == RealFormat.ieeeExtended53) { // For 80-bit reals, the "implied bit" is a nuisance... ushort *pe = cast(ushort *)&x; ulong *ps = cast(ulong *)&x; // EPSILON is 1 for 64-bit, and 2048 for 53-bit precision reals. enum ulong EPSILON = 2UL ^^ (64 - real.mant_dig); if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK) { // First, deal with NANs and infinity if (x == -real.infinity) return -real.max; return x; // +Inf and NaN are unchanged. } if (pe[F.EXPPOS_SHORT] & 0x8000) { // Negative number -- need to decrease the significand *ps -= EPSILON; // Need to mask with 0x7FFF... so subnormals are treated correctly. if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF) { if (pe[F.EXPPOS_SHORT] == 0x8000) // it was negative zero { *ps = 1; pe[F.EXPPOS_SHORT] = 0; // smallest subnormal. return x; } --pe[F.EXPPOS_SHORT]; if (pe[F.EXPPOS_SHORT] == 0x8000) return x; // it's become a subnormal, implied bit stays low. *ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit return x; } return x; } else { // Positive number -- need to increase the significand. // Works automatically for positive zero. *ps += EPSILON; if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0) { // change in exponent ++pe[F.EXPPOS_SHORT]; *ps = 0x8000_0000_0000_0000; // set the high bit } } return x; } else // static if (F.realFormat == RealFormat.ibmExtended) { assert(0, "nextUp not implemented"); } } /** ditto */ double nextUp(double x) @trusted pure nothrow @nogc { ulong s = *cast(ulong *)&x; if ((s & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) { // First, deal with NANs and infinity if (x == -x.infinity) return -x.max; return x; // +INF and NAN are unchanged. } if (s & 0x8000_0000_0000_0000) // Negative number { if (s == 0x8000_0000_0000_0000) // it was negative zero { s = 0x0000_0000_0000_0001; // change to smallest subnormal return *cast(double*) &s; } --s; } else { // Positive number ++s; } return *cast(double*) &s; } /** ditto */ float nextUp(float x) @trusted pure nothrow @nogc { uint s = *cast(uint *)&x; if ((s & 0x7F80_0000) == 0x7F80_0000) { // First, deal with NANs and infinity if (x == -x.infinity) return -x.max; return x; // +INF and NAN are unchanged. } if (s & 0x8000_0000) // Negative number { if (s == 0x8000_0000) // it was negative zero { s = 0x0000_0001; // change to smallest subnormal return *cast(float*) &s; } --s; } else { // Positive number ++s; } return *cast(float*) &s; } /// @safe @nogc pure nothrow unittest { assert(nextUp(1.0 - 1.0e-6).feqrel(0.999999) > 16); assert(nextUp(1.0 - real.epsilon).feqrel(1.0) > 16); } /** * Calculate the next smallest floating point value before x. * * Return the greatest number less than x that is representable as a real; * thus, it gives the previous point on the IEEE number line. * * $(TABLE_SV * $(SVH x, nextDown(x) ) * $(SV $(INFIN), real.max ) * $(SV $(PLUSMN)0.0, -real.min_normal*real.epsilon ) * $(SV -real.max, -$(INFIN) ) * $(SV -$(INFIN), -$(INFIN) ) * $(SV $(NAN), $(NAN) ) * ) */ real nextDown(real x) @safe pure nothrow @nogc { return -nextUp(-x); } /** ditto */ double nextDown(double x) @safe pure nothrow @nogc { return -nextUp(-x); } /** ditto */ float nextDown(float x) @safe pure nothrow @nogc { return -nextUp(-x); } /// @safe pure nothrow @nogc unittest { assert( nextDown(1.0 + real.epsilon) == 1.0); } @safe pure nothrow @nogc unittest { import std.math : floatTraits, RealFormat; import std.math.traits : isIdentical; static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended || floatTraits!(real).realFormat == RealFormat.ieeeDouble || floatTraits!(real).realFormat == RealFormat.ieeeExtended53 || floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) { // Tests for reals assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC))); //static assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC))); // negative numbers assert( nextUp(-real.infinity) == -real.max ); assert( nextUp(-1.0L-real.epsilon) == -1.0 ); assert( nextUp(-2.0L) == -2.0 + real.epsilon); static assert( nextUp(-real.infinity) == -real.max ); static assert( nextUp(-1.0L-real.epsilon) == -1.0 ); static assert( nextUp(-2.0L) == -2.0 + real.epsilon); // subnormals and zero assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) ); assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) ); assert( isIdentical(-0.0L, nextUp(-real.min_normal*real.epsilon)) ); assert( nextUp(-0.0L) == real.min_normal*real.epsilon ); assert( nextUp(0.0L) == real.min_normal*real.epsilon ); assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal ); assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) ); static assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) ); static assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) ); static assert( -0.0L is nextUp(-real.min_normal*real.epsilon) ); static assert( nextUp(-0.0L) == real.min_normal*real.epsilon ); static assert( nextUp(0.0L) == real.min_normal*real.epsilon ); static assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal ); static assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) ); // positive numbers assert( nextUp(1.0L) == 1.0 + real.epsilon ); assert( nextUp(2.0L-real.epsilon) == 2.0 ); assert( nextUp(real.max) == real.infinity ); assert( nextUp(real.infinity)==real.infinity ); static assert( nextUp(1.0L) == 1.0 + real.epsilon ); static assert( nextUp(2.0L-real.epsilon) == 2.0 ); static assert( nextUp(real.max) == real.infinity ); static assert( nextUp(real.infinity)==real.infinity ); // ctfe near double.max boundary static assert(nextUp(nextDown(cast(real) double.max)) == cast(real) double.max); } double n = NaN(0xABC); assert(isIdentical(nextUp(n), n)); // negative numbers assert( nextUp(-double.infinity) == -double.max ); assert( nextUp(-1-double.epsilon) == -1.0 ); assert( nextUp(-2.0) == -2.0 + double.epsilon); // subnormals and zero assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) ); assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) ); assert( isIdentical(-0.0, nextUp(-double.min_normal*double.epsilon)) ); assert( nextUp(0.0) == double.min_normal*double.epsilon ); assert( nextUp(-0.0) == double.min_normal*double.epsilon ); assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal ); assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) ); // positive numbers assert( nextUp(1.0) == 1.0 + double.epsilon ); assert( nextUp(2.0-double.epsilon) == 2.0 ); assert( nextUp(double.max) == double.infinity ); float fn = NaN(0xABC); assert(isIdentical(nextUp(fn), fn)); float f = -float.min_normal*(1-float.epsilon); float f1 = -float.min_normal; assert( nextUp(f1) == f); f = 1.0f+float.epsilon; f1 = 1.0f; assert( nextUp(f1) == f ); f1 = -0.0f; assert( nextUp(f1) == float.min_normal*float.epsilon); assert( nextUp(float.infinity)==float.infinity ); assert(nextDown(1.0L+real.epsilon)==1.0); assert(nextDown(1.0+double.epsilon)==1.0); f = 1.0f+float.epsilon; assert(nextDown(f)==1.0); assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0); // CTFE enum double ctfe_n = NaN(0xABC); //static assert(isIdentical(nextUp(ctfe_n), ctfe_n)); // FIXME: https://issues.dlang.org/show_bug.cgi?id=20197 static assert(nextUp(double.nan) is double.nan); // negative numbers static assert( nextUp(-double.infinity) == -double.max ); static assert( nextUp(-1-double.epsilon) == -1.0 ); static assert( nextUp(-2.0) == -2.0 + double.epsilon); // subnormals and zero static assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) ); static assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) ); static assert( -0.0 is nextUp(-double.min_normal*double.epsilon) ); static assert( nextUp(0.0) == double.min_normal*double.epsilon ); static assert( nextUp(-0.0) == double.min_normal*double.epsilon ); static assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal ); static assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) ); // positive numbers static assert( nextUp(1.0) == 1.0 + double.epsilon ); static assert( nextUp(2.0-double.epsilon) == 2.0 ); static assert( nextUp(double.max) == double.infinity ); enum float ctfe_fn = NaN(0xABC); //static assert(isIdentical(nextUp(ctfe_fn), ctfe_fn)); // FIXME: https://issues.dlang.org/show_bug.cgi?id=20197 static assert(nextUp(float.nan) is float.nan); static assert(nextUp(-float.min_normal) == -float.min_normal*(1-float.epsilon)); static assert(nextUp(1.0f) == 1.0f+float.epsilon); static assert(nextUp(-0.0f) == float.min_normal*float.epsilon); static assert(nextUp(float.infinity)==float.infinity); static assert(nextDown(1.0L+real.epsilon)==1.0); static assert(nextDown(1.0+double.epsilon)==1.0); static assert(nextDown(1.0f+float.epsilon)==1.0); static assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0); } /****************************************** * Calculates the next representable value after x in the direction of y. * * If y > x, the result will be the next largest floating-point value; * if y < x, the result will be the next smallest value. * If x == y, the result is y. * If x or y is a NaN, the result is a NaN. * * Remarks: * This function is not generally very useful; it's almost always better to use * the faster functions nextUp() or nextDown() instead. * * The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and * the function result is infinite. The FE_INEXACT and FE_UNDERFLOW * exceptions will be raised if the function value is subnormal, and x is * not equal to y. */ T nextafter(T)(const T x, const T y) @safe pure nothrow @nogc { import std.math.traits : isNaN; if (x == y || isNaN(y)) { return y; } if (isNaN(x)) { return x; } return ((y>x) ? nextUp(x) : nextDown(x)); } /// @safe pure nothrow @nogc unittest { import std.math.traits : isNaN; float a = 1; assert(is(typeof(nextafter(a, a)) == float)); assert(nextafter(a, a.infinity) > a); assert(isNaN(nextafter(a, a.nan))); assert(isNaN(nextafter(a.nan, a))); double b = 2; assert(is(typeof(nextafter(b, b)) == double)); assert(nextafter(b, b.infinity) > b); assert(isNaN(nextafter(b, b.nan))); assert(isNaN(nextafter(b.nan, b))); real c = 3; assert(is(typeof(nextafter(c, c)) == real)); assert(nextafter(c, c.infinity) > c); assert(isNaN(nextafter(c, c.nan))); assert(isNaN(nextafter(c.nan, c))); } @safe pure nothrow @nogc unittest { import std.math.traits : isNaN, signbit; // CTFE enum float a = 1; static assert(is(typeof(nextafter(a, a)) == float)); static assert(nextafter(a, a.infinity) > a); static assert(isNaN(nextafter(a, a.nan))); static assert(isNaN(nextafter(a.nan, a))); enum double b = 2; static assert(is(typeof(nextafter(b, b)) == double)); static assert(nextafter(b, b.infinity) > b); static assert(isNaN(nextafter(b, b.nan))); static assert(isNaN(nextafter(b.nan, b))); enum real c = 3; static assert(is(typeof(nextafter(c, c)) == real)); static assert(nextafter(c, c.infinity) > c); static assert(isNaN(nextafter(c, c.nan))); static assert(isNaN(nextafter(c.nan, c))); enum real negZero = nextafter(+0.0L, -0.0L); static assert(negZero == -0.0L); static assert(signbit(negZero)); static assert(nextafter(c, c) == c); } //real nexttoward(real x, real y) { return core.stdc.math.nexttowardl(x, y); } /** * Returns the positive difference between x and y. * * Equivalent to `fmax(x-y, 0)`. * * Returns: * $(TABLE_SV * $(TR $(TH x, y) $(TH fdim(x, y))) * $(TR $(TD x $(GT) y) $(TD x - y)) * $(TR $(TD x $(LT)= y) $(TD +0.0)) * ) */ real fdim(real x, real y) @safe pure nothrow @nogc { return (x < y) ? +0.0 : x - y; } /// @safe pure nothrow @nogc unittest { import std.math.traits : isNaN; assert(fdim(2.0, 0.0) == 2.0); assert(fdim(-2.0, 0.0) == 0.0); assert(fdim(real.infinity, 2.0) == real.infinity); assert(isNaN(fdim(real.nan, 2.0))); assert(isNaN(fdim(2.0, real.nan))); assert(isNaN(fdim(real.nan, real.nan))); } /** * Returns the larger of `x` and `y`. * * If one of the arguments is a `NaN`, the other is returned. * * See_Also: $(REF max, std,algorithm,comparison) is faster because it does not perform the `isNaN` test. */ F fmax(F)(const F x, const F y) @safe pure nothrow @nogc if (__traits(isFloating, F)) { import std.math.traits : isNaN; // Do the more predictable test first. Generates 0 branches with ldc and 1 branch with gdc. // See https://godbolt.org/z/erxrW9 if (isNaN(x)) return y; return y > x ? y : x; } /// @safe pure nothrow @nogc unittest { import std.meta : AliasSeq; static foreach (F; AliasSeq!(float, double, real)) { assert(fmax(F(0.0), F(2.0)) == 2.0); assert(fmax(F(-2.0), 0.0) == F(0.0)); assert(fmax(F.infinity, F(2.0)) == F.infinity); assert(fmax(F.nan, F(2.0)) == F(2.0)); assert(fmax(F(2.0), F.nan) == F(2.0)); } } /** * Returns the smaller of `x` and `y`. * * If one of the arguments is a `NaN`, the other is returned. * * See_Also: $(REF min, std,algorithm,comparison) is faster because it does not perform the `isNaN` test. */ F fmin(F)(const F x, const F y) @safe pure nothrow @nogc if (__traits(isFloating, F)) { import std.math.traits : isNaN; // Do the more predictable test first. Generates 0 branches with ldc and 1 branch with gdc. // See https://godbolt.org/z/erxrW9 if (isNaN(x)) return y; return y < x ? y : x; } /// @safe pure nothrow @nogc unittest { import std.meta : AliasSeq; static foreach (F; AliasSeq!(float, double, real)) { assert(fmin(F(0.0), F(2.0)) == 0.0); assert(fmin(F(-2.0), F(0.0)) == -2.0); assert(fmin(F.infinity, F(2.0)) == 2.0); assert(fmin(F.nan, F(2.0)) == 2.0); assert(fmin(F(2.0), F.nan) == 2.0); } } /************************************** * Returns (x * y) + z, rounding only once according to the * current rounding mode. * * BUGS: Not currently implemented - rounds twice. */ pragma(inline, true) real fma(real x, real y, real z) @safe pure nothrow @nogc { return (x * y) + z; } /// @safe pure nothrow @nogc unittest { assert(fma(0.0, 2.0, 2.0) == 2.0); assert(fma(2.0, 2.0, 2.0) == 6.0); assert(fma(real.infinity, 2.0, 2.0) == real.infinity); assert(fma(real.nan, 2.0, 2.0) is real.nan); assert(fma(2.0, 2.0, real.nan) is real.nan); } /************************************** * To what precision is x equal to y? * * Returns: the number of mantissa bits which are equal in x and y. * eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision. * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH feqrel(x, y))) * $(TR $(TD x) $(TD x) $(TD real.mant_dig)) * $(TR $(TD x) $(TD $(GT)= 2*x) $(TD 0)) * $(TR $(TD x) $(TD $(LT)= x/2) $(TD 0)) * $(TR $(TD $(NAN)) $(TD any) $(TD 0)) * $(TR $(TD any) $(TD $(NAN)) $(TD 0)) * ) */ int feqrel(X)(const X x, const X y) @trusted pure nothrow @nogc if (isFloatingPoint!(X)) { import std.math : floatTraits, RealFormat; import core.math : fabs; /* Public Domain. Author: Don Clugston, 18 Aug 2005. */ alias F = floatTraits!(X); static if (F.realFormat == RealFormat.ieeeSingle || F.realFormat == RealFormat.ieeeDouble || F.realFormat == RealFormat.ieeeExtended || F.realFormat == RealFormat.ieeeExtended53 || F.realFormat == RealFormat.ieeeQuadruple) { if (x == y) return X.mant_dig; // ensure diff != 0, cope with INF. Unqual!X diff = fabs(x - y); ushort *pa = cast(ushort *)(&x); ushort *pb = cast(ushort *)(&y); ushort *pd = cast(ushort *)(&diff); // The difference in abs(exponent) between x or y and abs(x-y) // is equal to the number of significand bits of x which are // equal to y. If negative, x and y have different exponents. // If positive, x and y are equal to 'bitsdiff' bits. // AND with 0x7FFF to form the absolute value. // To avoid out-by-1 errors, we subtract 1 so it rounds down // if the exponents were different. This means 'bitsdiff' is // always 1 lower than we want, except that if bitsdiff == 0, // they could have 0 or 1 bits in common. int bitsdiff = ((( (pa[F.EXPPOS_SHORT] & F.EXPMASK) + (pb[F.EXPPOS_SHORT] & F.EXPMASK) - (1 << F.EXPSHIFT)) >> 1) - (pd[F.EXPPOS_SHORT] & F.EXPMASK)) >> F.EXPSHIFT; if ( (pd[F.EXPPOS_SHORT] & F.EXPMASK) == 0) { // Difference is subnormal // For subnormals, we need to add the number of zeros that // lie at the start of diff's significand. // We do this by multiplying by 2^^real.mant_dig diff *= F.RECIP_EPSILON; return bitsdiff + X.mant_dig - ((pd[F.EXPPOS_SHORT] & F.EXPMASK) >> F.EXPSHIFT); } if (bitsdiff > 0) return bitsdiff + 1; // add the 1 we subtracted before // Avoid out-by-1 errors when factor is almost 2. if (bitsdiff == 0 && ((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT]) & F.EXPMASK) == 0) { return 1; } else return 0; } else { static assert(false, "Not implemented for this architecture"); } } /// @safe pure unittest { assert(feqrel(2.0, 2.0) == 53); assert(feqrel(2.0f, 2.0f) == 24); assert(feqrel(2.0, double.nan) == 0); // Test that numbers are within n digits of each // other by testing if feqrel > n * log2(10) // five digits assert(feqrel(2.0, 2.00001) > 16); // ten digits assert(feqrel(2.0, 2.00000000001) > 33); } @safe pure nothrow @nogc unittest { void testFeqrel(F)() { // Exact equality assert(feqrel(F.max, F.max) == F.mant_dig); assert(feqrel!(F)(0.0, 0.0) == F.mant_dig); assert(feqrel(F.infinity, F.infinity) == F.mant_dig); // a few bits away from exact equality F w=1; for (int i = 1; i < F.mant_dig - 1; ++i) { assert(feqrel!(F)(1.0 + w * F.epsilon, 1.0) == F.mant_dig-i); assert(feqrel!(F)(1.0 - w * F.epsilon, 1.0) == F.mant_dig-i); assert(feqrel!(F)(1.0, 1 + (w-1) * F.epsilon) == F.mant_dig - i + 1); w*=2; } assert(feqrel!(F)(1.5+F.epsilon, 1.5) == F.mant_dig-1); assert(feqrel!(F)(1.5-F.epsilon, 1.5) == F.mant_dig-1); assert(feqrel!(F)(1.5-F.epsilon, 1.5+F.epsilon) == F.mant_dig-2); // Numbers that are close assert(feqrel!(F)(0x1.Bp+84, 0x1.B8p+84) == 5); assert(feqrel!(F)(0x1.8p+10, 0x1.Cp+10) == 2); assert(feqrel!(F)(1.5 * (1 - F.epsilon), 1.0L) == 2); assert(feqrel!(F)(1.5, 1.0) == 1); assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1); // Factors of 2 assert(feqrel(F.max, F.infinity) == 0); assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1); assert(feqrel!(F)(1.0, 2.0) == 0); assert(feqrel!(F)(4.0, 1.0) == 0); // Extreme inequality assert(feqrel(F.nan, F.nan) == 0); assert(feqrel!(F)(0.0L, -F.nan) == 0); assert(feqrel(F.nan, F.infinity) == 0); assert(feqrel(F.infinity, -F.infinity) == 0); assert(feqrel(F.max, -F.max) == 0); assert(feqrel(F.min_normal / 8, F.min_normal / 17) == 3); const F Const = 2; immutable F Immutable = 2; auto Compiles = feqrel(Const, Immutable); } assert(feqrel(7.1824L, 7.1824L) == real.mant_dig); testFeqrel!(real)(); testFeqrel!(double)(); testFeqrel!(float)(); } /** Computes whether a values is approximately equal to a reference value, admitting a maximum relative difference, and a maximum absolute difference. Warning: This template is considered out-dated. It will be removed from Phobos in 2.106.0. Please use $(LREF isClose) instead. To achieve a similar behaviour to `approxEqual(a, b)` use `isClose(a, b, 1e-2, 1e-5)`. In case of comparing to 0.0, `isClose(a, b, 0.0, eps)` should be used, where `eps` represents the accepted deviation from 0.0." Params: value = Value to compare. reference = Reference value. maxRelDiff = Maximum allowable difference relative to `reference`. Setting to 0.0 disables this check. Defaults to `1e-2`. maxAbsDiff = Maximum absolute difference. This is mainly usefull for comparing values to zero. Setting to 0.0 disables this check. Defaults to `1e-5`. Returns: `true` if `value` is approximately equal to `reference` under either criterium. It is sufficient, when `value ` satisfies one of the two criteria. If one item is a range, and the other is a single value, then the result is the logical and-ing of calling `approxEqual` on each element of the ranged item against the single item. If both items are ranges, then `approxEqual` returns `true` if and only if the ranges have the same number of elements and if `approxEqual` evaluates to `true` for each pair of elements. See_Also: Use $(LREF feqrel) to get the number of equal bits in the mantissa. */ deprecated("approxEqual will be removed in 2.106.0. Please use isClose instead.") bool approxEqual(T, U, V)(T value, U reference, V maxRelDiff = 1e-2, V maxAbsDiff = 1e-5) { import core.math : fabs; import std.range.primitives : empty, front, isInputRange, popFront; static if (isInputRange!T) { static if (isInputRange!U) { // Two ranges for (;; value.popFront(), reference.popFront()) { if (value.empty) return reference.empty; if (reference.empty) return value.empty; if (!approxEqual(value.front, reference.front, maxRelDiff, maxAbsDiff)) return false; } } else static if (isIntegral!U) { // convert reference to real return approxEqual(value, real(reference), maxRelDiff, maxAbsDiff); } else { // value is range, reference is number for (; !value.empty; value.popFront()) { if (!approxEqual(value.front, reference, maxRelDiff, maxAbsDiff)) return false; } return true; } } else { static if (isInputRange!U) { // value is number, reference is range for (; !reference.empty; reference.popFront()) { if (!approxEqual(value, reference.front, maxRelDiff, maxAbsDiff)) return false; } return true; } else static if (isIntegral!T || isIntegral!U) { // convert both value and reference to real return approxEqual(real(value), real(reference), maxRelDiff, maxAbsDiff); } else { // two numbers //static assert(is(T : real) && is(U : real)); if (reference == 0) { return fabs(value) <= maxAbsDiff; } static if (is(typeof(value.infinity)) && is(typeof(reference.infinity))) { if (value == value.infinity && reference == reference.infinity || value == -value.infinity && reference == -reference.infinity) return true; } return fabs((value - reference) / reference) <= maxRelDiff || maxAbsDiff != 0 && fabs(value - reference) <= maxAbsDiff; } } } deprecated @safe pure nothrow unittest { assert(approxEqual(1.0, 1.0099)); assert(!approxEqual(1.0, 1.011)); assert(approxEqual(0.00001, 0.0)); assert(!approxEqual(0.00002, 0.0)); assert(approxEqual(3.0, [3, 3.01, 2.99])); // several reference values is strange assert(approxEqual([3, 3.01, 2.99], 3.0)); // better float[] arr1 = [ 1.0, 2.0, 3.0 ]; double[] arr2 = [ 1.001, 1.999, 3 ]; assert(approxEqual(arr1, arr2)); } deprecated @safe pure nothrow unittest { // relative comparison depends on reference, make sure proper // side is used when comparing range to single value. Based on // https://issues.dlang.org/show_bug.cgi?id=15763 auto a = [2e-3 - 1e-5]; auto b = 2e-3 + 1e-5; assert(a[0].approxEqual(b)); assert(!b.approxEqual(a[0])); assert(a.approxEqual(b)); assert(!b.approxEqual(a)); } deprecated @safe pure nothrow @nogc unittest { assert(!approxEqual(0.0,1e-15,1e-9,0.0)); assert(approxEqual(0.0,1e-15,1e-9,1e-9)); assert(!approxEqual(1.0,3.0,0.0,1.0)); assert(approxEqual(1.00000000099,1.0,1e-9,0.0)); assert(!approxEqual(1.0000000011,1.0,1e-9,0.0)); } deprecated @safe pure nothrow @nogc unittest { // maybe unintuitive behavior assert(approxEqual(1000.0,1010.0)); assert(approxEqual(9_090_000_000.0,9_000_000_000.0)); assert(approxEqual(0.0,1e30,1.0)); assert(approxEqual(0.00001,1e-30)); assert(!approxEqual(-1e-30,1e-30,1e-2,0.0)); } deprecated @safe pure nothrow @nogc unittest { int a = 10; assert(approxEqual(10, a)); assert(!approxEqual(3, 0)); assert(approxEqual(3, 3)); assert(approxEqual(3.0, 3)); assert(approxEqual(3, 3.0)); assert(approxEqual(0.0,0.0)); assert(approxEqual(-0.0,0.0)); assert(approxEqual(0.0f,0.0)); } deprecated @safe pure nothrow @nogc unittest { real num = real.infinity; assert(num == real.infinity); assert(approxEqual(num, real.infinity)); num = -real.infinity; assert(num == -real.infinity); assert(approxEqual(num, -real.infinity)); assert(!approxEqual(1,real.nan)); assert(!approxEqual(real.nan,real.max)); assert(!approxEqual(real.nan,real.nan)); } deprecated @safe pure nothrow unittest { assert(!approxEqual([1.0,2.0,3.0],[1.0,2.0])); assert(!approxEqual([1.0,2.0],[1.0,2.0,3.0])); assert(approxEqual!(real[],real[])([],[])); assert(approxEqual(cast(real[])[],cast(real[])[])); } /** Computes whether two values are approximately equal, admitting a maximum relative difference, and a maximum absolute difference. Params: lhs = First item to compare. rhs = Second item to compare. maxRelDiff = Maximum allowable relative difference. Setting to 0.0 disables this check. Default depends on the type of `lhs` and `rhs`: It is approximately half the number of decimal digits of precision of the smaller type. maxAbsDiff = Maximum absolute difference. This is mainly usefull for comparing values to zero. Setting to 0.0 disables this check. Defaults to `0.0`. Returns: `true` if the two items are approximately equal under either criterium. It is sufficient, when `value ` satisfies one of the two criteria. If one item is a range, and the other is a single value, then the result is the logical and-ing of calling `isClose` on each element of the ranged item against the single item. If both items are ranges, then `isClose` returns `true` if and only if the ranges have the same number of elements and if `isClose` evaluates to `true` for each pair of elements. See_Also: Use $(LREF feqrel) to get the number of equal bits in the mantissa. */ bool isClose(T, U, V = CommonType!(FloatingPointBaseType!T,FloatingPointBaseType!U)) (T lhs, U rhs, V maxRelDiff = CommonDefaultFor!(T,U), V maxAbsDiff = 0.0) { import std.range.primitives : empty, front, isInputRange, popFront; import std.complex : Complex; static if (isInputRange!T) { static if (isInputRange!U) { // Two ranges for (;; lhs.popFront(), rhs.popFront()) { if (lhs.empty) return rhs.empty; if (rhs.empty) return lhs.empty; if (!isClose(lhs.front, rhs.front, maxRelDiff, maxAbsDiff)) return false; } } else { // lhs is range, rhs is number for (; !lhs.empty; lhs.popFront()) { if (!isClose(lhs.front, rhs, maxRelDiff, maxAbsDiff)) return false; } return true; } } else static if (isInputRange!U) { // lhs is number, rhs is range for (; !rhs.empty; rhs.popFront()) { if (!isClose(lhs, rhs.front, maxRelDiff, maxAbsDiff)) return false; } return true; } else static if (is(T TE == Complex!TE)) { static if (is(U UE == Complex!UE)) { // Two complex numbers return isClose(lhs.re, rhs.re, maxRelDiff, maxAbsDiff) && isClose(lhs.im, rhs.im, maxRelDiff, maxAbsDiff); } else { // lhs is complex, rhs is number return isClose(lhs.re, rhs, maxRelDiff, maxAbsDiff) && isClose(lhs.im, 0.0, maxRelDiff, maxAbsDiff); } } else static if (is(U UE == Complex!UE)) { // lhs is number, rhs is complex return isClose(lhs, rhs.re, maxRelDiff, maxAbsDiff) && isClose(0.0, rhs.im, maxRelDiff, maxAbsDiff); } else { // two numbers if (lhs == rhs) return true; static if (is(typeof(lhs.infinity)) && is(typeof(rhs.infinity))) { if (lhs == lhs.infinity || rhs == rhs.infinity || lhs == -lhs.infinity || rhs == -rhs.infinity) return false; } import std.math.algebraic : abs; auto diff = abs(lhs - rhs); return diff <= maxRelDiff*abs(lhs) || diff <= maxRelDiff*abs(rhs) || diff <= maxAbsDiff; } } /// @safe pure nothrow @nogc unittest { assert(isClose(1.0,0.999_999_999)); assert(isClose(0.001, 0.000_999_999_999)); assert(isClose(1_000_000_000.0,999_999_999.0)); assert(isClose(17.123_456_789, 17.123_456_78)); assert(!isClose(17.123_456_789, 17.123_45)); // use explicit 3rd parameter for less (or more) accuracy assert(isClose(17.123_456_789, 17.123_45, 1e-6)); assert(!isClose(17.123_456_789, 17.123_45, 1e-7)); // use 4th parameter when comparing close to zero assert(!isClose(1e-100, 0.0)); assert(isClose(1e-100, 0.0, 0.0, 1e-90)); assert(!isClose(1e-10, -1e-10)); assert(isClose(1e-10, -1e-10, 0.0, 1e-9)); assert(!isClose(1e-300, 1e-298)); assert(isClose(1e-300, 1e-298, 0.0, 1e-200)); // different default limits for different floating point types assert(isClose(1.0f, 0.999_99f)); assert(!isClose(1.0, 0.999_99)); static if (real.sizeof > double.sizeof) assert(!isClose(1.0L, 0.999_999_999L)); } /// @safe pure nothrow unittest { assert(isClose([1.0, 2.0, 3.0], [0.999_999_999, 2.000_000_001, 3.0])); assert(!isClose([1.0, 2.0], [0.999_999_999, 2.000_000_001, 3.0])); assert(!isClose([1.0, 2.0, 3.0], [0.999_999_999, 2.000_000_001])); assert(isClose([2.0, 1.999_999_999, 2.000_000_001], 2.0)); assert(isClose(2.0, [2.0, 1.999_999_999, 2.000_000_001])); } @safe pure nothrow unittest { assert(!isClose([1.0, 2.0, 3.0], [0.999_999_999, 3.0, 3.0])); assert(!isClose([2.0, 1.999_999, 2.000_000_001], 2.0)); assert(!isClose(2.0, [2.0, 1.999_999_999, 2.000_000_999])); } @safe pure nothrow @nogc unittest { immutable a = 1.00001f; const b = 1.000019; assert(isClose(a,b)); assert(isClose(1.00001f,1.000019f)); assert(isClose(1.00001f,1.000019)); assert(isClose(1.00001,1.000019f)); assert(!isClose(1.00001,1.000019)); real a1 = 1e-300L; real a2 = a1.nextUp; assert(isClose(a1,a2)); } @safe pure nothrow unittest { float[] arr1 = [ 1.0, 2.0, 3.0 ]; double[] arr2 = [ 1.00001, 1.99999, 3 ]; assert(isClose(arr1, arr2)); } @safe pure nothrow @nogc unittest { assert(!isClose(1000.0,1010.0)); assert(!isClose(9_090_000_000.0,9_000_000_000.0)); assert(isClose(0.0,1e30,1.0)); assert(!isClose(0.00001,1e-30)); assert(!isClose(-1e-30,1e-30,1e-2,0.0)); } @safe pure nothrow @nogc unittest { assert(!isClose(3, 0)); assert(isClose(3, 3)); assert(isClose(3.0, 3)); assert(isClose(3, 3.0)); assert(isClose(0.0,0.0)); assert(isClose(-0.0,0.0)); assert(isClose(0.0f,0.0)); } @safe pure nothrow @nogc unittest { real num = real.infinity; assert(num == real.infinity); assert(isClose(num, real.infinity)); num = -real.infinity; assert(num == -real.infinity); assert(isClose(num, -real.infinity)); assert(!isClose(1,real.nan)); assert(!isClose(real.nan,real.max)); assert(!isClose(real.nan,real.nan)); } @safe pure nothrow @nogc unittest { assert(isClose!(real[],real[],real)([],[])); assert(isClose(cast(real[])[],cast(real[])[])); } @safe pure nothrow @nogc unittest { import std.conv : to; float f = 31.79f; double d = 31.79; double f2d = f.to!double; assert(isClose(f,f2d)); assert(!isClose(d,f2d)); } @safe pure nothrow @nogc unittest { import std.conv : to; double d = 31.79; float f = d.to!float; double f2d = f.to!double; assert(isClose(f,f2d)); assert(!isClose(d,f2d)); assert(isClose(d,f2d,1e-4)); } package(std.math) template CommonDefaultFor(T,U) { import std.algorithm.comparison : min; alias baseT = FloatingPointBaseType!T; alias baseU = FloatingPointBaseType!U; enum CommonType!(baseT, baseU) CommonDefaultFor = 10.0L ^^ -((min(baseT.dig, baseU.dig) + 1) / 2 + 1); } private template FloatingPointBaseType(T) { import std.range.primitives : ElementType; static if (isFloatingPoint!T) { alias FloatingPointBaseType = Unqual!T; } else static if (isFloatingPoint!(ElementType!(Unqual!T))) { alias FloatingPointBaseType = Unqual!(ElementType!(Unqual!T)); } else { alias FloatingPointBaseType = real; } } /*********************************** * Defines a total order on all floating-point numbers. * * The order is defined as follows: * $(UL * $(LI All numbers in [-$(INFIN), +$(INFIN)] are ordered * the same way as by built-in comparison, with the exception of * -0.0, which is less than +0.0;) * $(LI If the sign bit is set (that is, it's 'negative'), $(NAN) is less * than any number; if the sign bit is not set (it is 'positive'), * $(NAN) is greater than any number;) * $(LI $(NAN)s of the same sign are ordered by the payload ('negative' * ones - in reverse order).) * ) * * Returns: * negative value if `x` precedes `y` in the order specified above; * 0 if `x` and `y` are identical, and positive value otherwise. * * See_Also: * $(MYREF isIdentical) * Standards: Conforms to IEEE 754-2008 */ int cmp(T)(const(T) x, const(T) y) @nogc @trusted pure nothrow if (isFloatingPoint!T) { import std.math : floatTraits, RealFormat; alias F = floatTraits!T; static if (F.realFormat == RealFormat.ieeeSingle || F.realFormat == RealFormat.ieeeDouble) { static if (T.sizeof == 4) alias UInt = uint; else alias UInt = ulong; union Repainter { T number; UInt bits; } enum msb = ~(UInt.max >>> 1); import std.typecons : Tuple; Tuple!(Repainter, Repainter) vars = void; vars[0].number = x; vars[1].number = y; foreach (ref var; vars) if (var.bits & msb) var.bits = ~var.bits; else var.bits |= msb; if (vars[0].bits < vars[1].bits) return -1; else if (vars[0].bits > vars[1].bits) return 1; else return 0; } else static if (F.realFormat == RealFormat.ieeeExtended53 || F.realFormat == RealFormat.ieeeExtended || F.realFormat == RealFormat.ieeeQuadruple) { static if (F.realFormat == RealFormat.ieeeQuadruple) alias RemT = ulong; else alias RemT = ushort; struct Bits { ulong bulk; RemT rem; } union Repainter { T number; Bits bits; ubyte[T.sizeof] bytes; } import std.typecons : Tuple; Tuple!(Repainter, Repainter) vars = void; vars[0].number = x; vars[1].number = y; foreach (ref var; vars) if (var.bytes[F.SIGNPOS_BYTE] & 0x80) { var.bits.bulk = ~var.bits.bulk; var.bits.rem = cast(typeof(var.bits.rem))(-1 - var.bits.rem); // ~var.bits.rem } else { var.bytes[F.SIGNPOS_BYTE] |= 0x80; } version (LittleEndian) { if (vars[0].bits.rem < vars[1].bits.rem) return -1; else if (vars[0].bits.rem > vars[1].bits.rem) return 1; else if (vars[0].bits.bulk < vars[1].bits.bulk) return -1; else if (vars[0].bits.bulk > vars[1].bits.bulk) return 1; else return 0; } else { if (vars[0].bits.bulk < vars[1].bits.bulk) return -1; else if (vars[0].bits.bulk > vars[1].bits.bulk) return 1; else if (vars[0].bits.rem < vars[1].bits.rem) return -1; else if (vars[0].bits.rem > vars[1].bits.rem) return 1; else return 0; } } else { // IBM Extended doubledouble does not follow the general // sign-exponent-significand layout, so has to be handled generically import std.math.traits : signbit, isNaN; const int xSign = signbit(x), ySign = signbit(y); if (xSign == 1 && ySign == 1) return cmp(-y, -x); else if (xSign == 1) return -1; else if (ySign == 1) return 1; else if (x < y) return -1; else if (x == y) return 0; else if (x > y) return 1; else if (isNaN(x) && !isNaN(y)) return 1; else if (isNaN(y) && !isNaN(x)) return -1; else if (getNaNPayload(x) < getNaNPayload(y)) return -1; else if (getNaNPayload(x) > getNaNPayload(y)) return 1; else return 0; } } /// Most numbers are ordered naturally. @safe unittest { assert(cmp(-double.infinity, -double.max) < 0); assert(cmp(-double.max, -100.0) < 0); assert(cmp(-100.0, -0.5) < 0); assert(cmp(-0.5, 0.0) < 0); assert(cmp(0.0, 0.5) < 0); assert(cmp(0.5, 100.0) < 0); assert(cmp(100.0, double.max) < 0); assert(cmp(double.max, double.infinity) < 0); assert(cmp(1.0, 1.0) == 0); } /// Positive and negative zeroes are distinct. @safe unittest { assert(cmp(-0.0, +0.0) < 0); assert(cmp(+0.0, -0.0) > 0); } /// Depending on the sign, $(NAN)s go to either end of the spectrum. @safe unittest { assert(cmp(-double.nan, -double.infinity) < 0); assert(cmp(double.infinity, double.nan) < 0); assert(cmp(-double.nan, double.nan) < 0); } /// $(NAN)s of the same sign are ordered by the payload. @safe unittest { assert(cmp(NaN(10), NaN(20)) < 0); assert(cmp(-NaN(20), -NaN(10)) < 0); } @safe unittest { import std.meta : AliasSeq; static foreach (T; AliasSeq!(float, double, real)) {{ T[] values = [-cast(T) NaN(20), -cast(T) NaN(10), -T.nan, -T.infinity, -T.max, -T.max / 2, T(-16.0), T(-1.0).nextDown, T(-1.0), T(-1.0).nextUp, T(-0.5), -T.min_normal, (-T.min_normal).nextUp, -2 * T.min_normal * T.epsilon, -T.min_normal * T.epsilon, T(-0.0), T(0.0), T.min_normal * T.epsilon, 2 * T.min_normal * T.epsilon, T.min_normal.nextDown, T.min_normal, T(0.5), T(1.0).nextDown, T(1.0), T(1.0).nextUp, T(16.0), T.max / 2, T.max, T.infinity, T.nan, cast(T) NaN(10), cast(T) NaN(20)]; foreach (i, x; values) { foreach (y; values[i + 1 .. $]) { assert(cmp(x, y) < 0); assert(cmp(y, x) > 0); } assert(cmp(x, x) == 0); } }} } package(std): // not yet public struct FloatingPointBitpattern(T) if (isFloatingPoint!T) { static if (T.mant_dig <= 64) { ulong mantissa; } else { ulong mantissa_lsb; ulong mantissa_msb; } int exponent; bool negative; } FloatingPointBitpattern!T extractBitpattern(T)(const(T) value) @trusted if (isFloatingPoint!T) { import std.math : floatTraits, RealFormat; T val = value; FloatingPointBitpattern!T ret; alias F = floatTraits!T; static if (F.realFormat == RealFormat.ieeeExtended) { if (__ctfe) { import core.math : fabs, ldexp; import std.math.rounding : floor; import std.math.traits : isInfinity, isNaN, signbit; import std.math.exponential : log2; if (isNaN(val) || isInfinity(val)) ret.exponent = 32767; else if (fabs(val) < real.min_normal) ret.exponent = 0; else if (fabs(val) >= nextUp(real.max / 2)) ret.exponent = 32766; else ret.exponent = cast(int) (val.fabs.log2.floor() + 16383); if (ret.exponent == 32767) { // NaN or infinity ret.mantissa = isNaN(val) ? ((1L << 63) - 1) : 0; } else { auto delta = 16382 + 64 // bias + bits of ulong - (ret.exponent == 0 ? 1 : ret.exponent); // -1 in case of subnormals val = ldexp(val, delta); // val *= 2^^delta ulong tmp = cast(ulong) fabs(val); if (ret.exponent != 32767 && ret.exponent > 0 && tmp <= ulong.max / 2) { // correction, due to log2(val) being rounded up: ret.exponent--; val *= 2; tmp = cast(ulong) fabs(val); } ret.mantissa = tmp & long.max; } ret.negative = (signbit(val) == 1); } else { ushort* vs = cast(ushort*) &val; ret.mantissa = (cast(ulong*) vs)[0] & long.max; ret.exponent = vs[4] & short.max; ret.negative = (vs[4] >> 15) & 1; } } else { static if (F.realFormat == RealFormat.ieeeSingle) { ulong ival = *cast(uint*) &val; } else static if (F.realFormat == RealFormat.ieeeDouble) { ulong ival = *cast(ulong*) &val; } else { static assert(false, "Floating point type `" ~ F.realFormat ~ "` not supported."); } import std.math.exponential : log2; enum log2_max_exp = cast(int) log2(T.max_exp); ret.mantissa = ival & ((1L << (T.mant_dig - 1)) - 1); ret.exponent = (ival >> (T.mant_dig - 1)) & ((1L << (log2_max_exp + 1)) - 1); ret.negative = (ival >> (T.mant_dig + log2_max_exp)) & 1; } // add leading 1 for normalized values and correct exponent for denormalied values if (ret.exponent != 0 && ret.exponent != 2 * T.max_exp - 1) ret.mantissa |= 1L << (T.mant_dig - 1); else if (ret.exponent == 0) ret.exponent = 1; ret.exponent -= T.max_exp - 1; return ret; } @safe pure unittest { float f = 1.0f; auto bp = extractBitpattern(f); assert(bp.mantissa == 0x80_0000); assert(bp.exponent == 0); assert(bp.negative == false); f = float.max; bp = extractBitpattern(f); assert(bp.mantissa == 0xff_ffff); assert(bp.exponent == 127); assert(bp.negative == false); f = -1.5432e-17f; bp = extractBitpattern(f); assert(bp.mantissa == 0x8e_55c8); assert(bp.exponent == -56); assert(bp.negative == true); // using double literal due to https://issues.dlang.org/show_bug.cgi?id=20361 f = 2.3822073893521890206e-44; bp = extractBitpattern(f); assert(bp.mantissa == 0x00_0011); assert(bp.exponent == -126); assert(bp.negative == false); f = -float.infinity; bp = extractBitpattern(f); assert(bp.mantissa == 0); assert(bp.exponent == 128); assert(bp.negative == true); f = float.nan; bp = extractBitpattern(f); assert(bp.mantissa != 0); // we don't guarantee payloads assert(bp.exponent == 128); assert(bp.negative == false); } @safe pure unittest { double d = 1.0; auto bp = extractBitpattern(d); assert(bp.mantissa == 0x10_0000_0000_0000L); assert(bp.exponent == 0); assert(bp.negative == false); d = double.max; bp = extractBitpattern(d); assert(bp.mantissa == 0x1f_ffff_ffff_ffffL); assert(bp.exponent == 1023); assert(bp.negative == false); d = -1.5432e-222; bp = extractBitpattern(d); assert(bp.mantissa == 0x11_d9b6_a401_3b04L); assert(bp.exponent == -737); assert(bp.negative == true); d = 0.0.nextUp; bp = extractBitpattern(d); assert(bp.mantissa == 0x00_0000_0000_0001L); assert(bp.exponent == -1022); assert(bp.negative == false); d = -double.infinity; bp = extractBitpattern(d); assert(bp.mantissa == 0); assert(bp.exponent == 1024); assert(bp.negative == true); d = double.nan; bp = extractBitpattern(d); assert(bp.mantissa != 0); // we don't guarantee payloads assert(bp.exponent == 1024); assert(bp.negative == false); } @safe pure unittest { import std.math : floatTraits, RealFormat; alias F = floatTraits!real; static if (F.realFormat == RealFormat.ieeeExtended) { real r = 1.0L; auto bp = extractBitpattern(r); assert(bp.mantissa == 0x8000_0000_0000_0000L); assert(bp.exponent == 0); assert(bp.negative == false); r = real.max; bp = extractBitpattern(r); assert(bp.mantissa == 0xffff_ffff_ffff_ffffL); assert(bp.exponent == 16383); assert(bp.negative == false); r = -1.5432e-3333L; bp = extractBitpattern(r); assert(bp.mantissa == 0xc768_a2c7_a616_cc22L); assert(bp.exponent == -11072); assert(bp.negative == true); r = 0.0L.nextUp; bp = extractBitpattern(r); assert(bp.mantissa == 0x0000_0000_0000_0001L); assert(bp.exponent == -16382); assert(bp.negative == false); r = -float.infinity; bp = extractBitpattern(r); assert(bp.mantissa == 0); assert(bp.exponent == 16384); assert(bp.negative == true); r = float.nan; bp = extractBitpattern(r); assert(bp.mantissa != 0); // we don't guarantee payloads assert(bp.exponent == 16384); assert(bp.negative == false); r = nextDown(0x1p+16383L); bp = extractBitpattern(r); assert(bp.mantissa == 0xffff_ffff_ffff_ffffL); assert(bp.exponent == 16382); assert(bp.negative == false); } } @safe pure unittest { import std.math : floatTraits, RealFormat; import std.math.exponential : log2; alias F = floatTraits!real; // log2 is broken for x87-reals on some computers in CTFE // the following test excludes these computers from the test // (issue 21757) enum test = cast(int) log2(3.05e2312L); static if (F.realFormat == RealFormat.ieeeExtended && test == 7681) { enum r1 = 1.0L; enum bp1 = extractBitpattern(r1); static assert(bp1.mantissa == 0x8000_0000_0000_0000L); static assert(bp1.exponent == 0); static assert(bp1.negative == false); enum r2 = real.max; enum bp2 = extractBitpattern(r2); static assert(bp2.mantissa == 0xffff_ffff_ffff_ffffL); static assert(bp2.exponent == 16383); static assert(bp2.negative == false); enum r3 = -1.5432e-3333L; enum bp3 = extractBitpattern(r3); static assert(bp3.mantissa == 0xc768_a2c7_a616_cc22L); static assert(bp3.exponent == -11072); static assert(bp3.negative == true); enum r4 = 0.0L.nextUp; enum bp4 = extractBitpattern(r4); static assert(bp4.mantissa == 0x0000_0000_0000_0001L); static assert(bp4.exponent == -16382); static assert(bp4.negative == false); enum r5 = -real.infinity; enum bp5 = extractBitpattern(r5); static assert(bp5.mantissa == 0); static assert(bp5.exponent == 16384); static assert(bp5.negative == true); enum r6 = real.nan; enum bp6 = extractBitpattern(r6); static assert(bp6.mantissa != 0); // we don't guarantee payloads static assert(bp6.exponent == 16384); static assert(bp6.negative == false); enum r7 = nextDown(0x1p+16383L); enum bp7 = extractBitpattern(r7); static assert(bp7.mantissa == 0xffff_ffff_ffff_ffffL); static assert(bp7.exponent == 16382); static assert(bp7.negative == false); } }