// Written in the D programming language.
/**
This is a submodule of $(MREF std, math).
It contains several versions of remainder calculation.
Copyright: Copyright The D Language Foundation 2000 - 2011.
License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston,
Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger
Source: $(PHOBOSSRC std/math/remainder.d)
Macros:
TABLE_SV =
NAN = $(RED NAN)
PLUSMN = ±
PLUSMNINF = ±∞
*/
module std.math.remainder;
static import core.stdc.math;
/************************************
* Calculates the remainder from the calculation x/y.
* Returns:
* The value of x - i * y, where i is the number of times that y can
* be completely subtracted from x. The result has the same sign as x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH fmod(x, y)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD yes))
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD !=$(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD no))
* )
*/
real fmod(real x, real y) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
return x % y;
}
else
return core.stdc.math.fmodl(x, y);
}
///
@safe unittest
{
import std.math.operations : feqrel;
import std.math.traits : isIdentical, isNaN;
assert(isIdentical(fmod(0.0, 1.0), 0.0));
assert(fmod(5.0, 3.0).feqrel(2.0) > 16);
assert(isNaN(fmod(5.0, 0.0)));
}
/************************************
* Breaks x into an integral part and a fractional part, each of which has
* the same sign as x. The integral part is stored in i.
* Returns:
* The fractional part of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH i (on input)) $(TH modf(x, i)) $(TH i (on return)))
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(PLUSMNINF)))
* )
*/
real modf(real x, ref real i) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
import std.math.traits : copysign, isInfinity;
import std.math.rounding : trunc;
i = trunc(x);
return copysign(isInfinity(x) ? 0.0 : x - i, x);
}
else
return core.stdc.math.modfl(x,&i);
}
///
@safe unittest
{
import std.math.operations : feqrel;
real frac;
real intpart;
frac = modf(3.14159, intpart);
assert(intpart.feqrel(3.0) > 16);
assert(frac.feqrel(0.14159) > 16);
}
/****************************************************
* Calculate the remainder x REM y, following IEC 60559.
*
* REM is the value of x - y * n, where n is the integer nearest the exact
* value of x / y.
* If |n - x / y| == 0.5, n is even.
* If the result is zero, it has the same sign as x.
* Otherwise, the sign of the result is the sign of x / y.
* Precision mode has no effect on the remainder functions.
*
* remquo returns `n` in the parameter `n`.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH remainder(x, y)) $(TH n) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD 0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD -$(NAN)) $(TD ?) $(TD yes))
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)$(NAN)) $(TD ?) $(TD yes))
* $(TR $(TD != $(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD ?) $(TD no))
* )
*/
real remainder(real x, real y) @trusted nothrow @nogc
{
return core.stdc.math.remainderl(x, y);
}
/// ditto
real remquo(real x, real y, out int n) @trusted nothrow @nogc /// ditto
{
return core.stdc.math.remquol(x, y, &n);
}
///
@safe @nogc nothrow unittest
{
import std.math.operations : feqrel;
import std.math.traits : isNaN;
assert(remainder(5.1, 3.0).feqrel(-0.9) > 16);
assert(remainder(-5.1, 3.0).feqrel(0.9) > 16);
assert(remainder(0.0, 3.0) == 0.0);
assert(isNaN(remainder(1.0, 0.0)));
assert(isNaN(remainder(-1.0, 0.0)));
}
///
@safe @nogc nothrow unittest
{
import std.math.operations : feqrel;
int n;
assert(remquo(5.1, 3.0, n).feqrel(-0.9) > 16 && n == 2);
assert(remquo(-5.1, 3.0, n).feqrel(0.9) > 16 && n == -2);
assert(remquo(0.0, 3.0, n) == 0.0 && n == 0);
}