// Written in the D programming language.
/**
* Mathematical Special Functions
*
* The technical term 'Special Functions' includes several families of
* transcendental functions, which have important applications in particular
* branches of mathematics and physics.
*
* The gamma and related functions, and the error function are crucial for
* mathematical statistics.
* The Bessel and related functions arise in problems involving wave propagation
* (especially in optics).
* Other major categories of special functions include the elliptic integrals
* (related to the arc length of an ellipse), and the hypergeometric functions.
*
* Status:
* Many more functions will be added to this module.
* The naming convention for the distribution functions (gammaIncomplete, etc)
* is not yet finalized and will probably change.
*
* Macros:
* TABLE_SV =
* SVH = $(TR $(TH $1) $(TH $2))
* SV = $(TR $(TD $1) $(TD $2))
*
* NAN = $(RED NAN)
* SUP = $0
* GAMMA = Γ
* THETA = θ
* INTEGRAL = ∫
* INTEGRATE = $(BIG ∫$(SMALL $1)$2)
* POWER = $1$2
* SUB = $1$2
* BIGSUM = $(BIG Σ $2$(SMALL $1))
* CHOOSE = $(BIG () $(SMALL $1)$(SMALL $2) $(BIG ))
* PLUSMN = ±
* INFIN = ∞
* PLUSMNINF = ±∞
* PI = π
* LT = <
* GT = >
* SQRT = √
* HALF = ½
*
*
* Copyright: Based on the CEPHES math library, which is
* Copyright (C) 1994 Stephen L. Moshier (moshier@world.std.com).
* License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
* Authors: Stephen L. Moshier (original C code). Conversion to D by Don Clugston
* Source: $(PHOBOSSRC std/mathspecial.d)
*/
module std.mathspecial;
import std.internal.math.errorfunction;
import std.internal.math.gammafunction;
public import std.math;
/* ***********************************************
* GAMMA AND RELATED FUNCTIONS *
* ***********************************************/
pure:
nothrow:
@safe:
@nogc:
/** The Gamma function, $(GAMMA)(x)
*
* $(GAMMA)(x) is a generalisation of the factorial function
* to real and complex numbers.
* Like x!, $(GAMMA)(x+1) = x * $(GAMMA)(x).
*
* Mathematically, if z.re > 0 then
* $(GAMMA)(z) = $(INTEGRATE 0, $(INFIN)) $(POWER t, z-1)$(POWER e, -t) dt
*
* $(TABLE_SV
* $(SVH x, $(GAMMA)(x) )
* $(SV $(NAN), $(NAN) )
* $(SV $(PLUSMN)0.0, $(PLUSMNINF))
* $(SV integer > 0, (x-1)! )
* $(SV integer < 0, $(NAN) )
* $(SV +$(INFIN), +$(INFIN) )
* $(SV -$(INFIN), $(NAN) )
* )
*/
real gamma(real x)
{
return std.internal.math.gammafunction.gamma(x);
}
/** Natural logarithm of the gamma function, $(GAMMA)(x)
*
* Returns the base e (2.718...) logarithm of the absolute
* value of the gamma function of the argument.
*
* For reals, logGamma is equivalent to log(fabs(gamma(x))).
*
* $(TABLE_SV
* $(SVH x, logGamma(x) )
* $(SV $(NAN), $(NAN) )
* $(SV integer <= 0, +$(INFIN) )
* $(SV $(PLUSMNINF), +$(INFIN) )
* )
*/
real logGamma(real x)
{
return std.internal.math.gammafunction.logGamma(x);
}
/** The sign of $(GAMMA)(x).
*
* Returns -1 if $(GAMMA)(x) < 0, +1 if $(GAMMA)(x) > 0,
* $(NAN) if sign is indeterminate.
*
* Note that this function can be used in conjunction with logGamma(x) to
* evaluate gamma for very large values of x.
*/
real sgnGamma(real x)
{
import core.math : rndtol;
/* Author: Don Clugston. */
if (isNaN(x)) return x;
if (x > 0) return 1.0;
if (x < -1/real.epsilon)
{
// Large negatives lose all precision
return real.nan;
}
long n = rndtol(x);
if (x == n)
{
return x == 0 ? copysign(1, x) : real.nan;
}
return n & 1 ? 1.0 : -1.0;
}
@safe unittest
{
assert(sgnGamma(5.0) == 1.0);
assert(isNaN(sgnGamma(-3.0)));
assert(sgnGamma(-0.1) == -1.0);
assert(sgnGamma(-55.1) == 1.0);
assert(isNaN(sgnGamma(-real.infinity)));
assert(isIdentical(sgnGamma(NaN(0xABC)), NaN(0xABC)));
}
/** Beta function
*
* The beta function is defined as
*
* beta(x, y) = ($(GAMMA)(x) * $(GAMMA)(y)) / $(GAMMA)(x + y)
*/
real beta(real x, real y)
{
if ((x+y)> MAXGAMMA)
{
return exp(logGamma(x) + logGamma(y) - logGamma(x+y));
} else return gamma(x) * gamma(y) / gamma(x+y);
}
@safe unittest
{
assert(isIdentical(beta(NaN(0xABC), 4), NaN(0xABC)));
assert(isIdentical(beta(2, NaN(0xABC)), NaN(0xABC)));
}
/** Digamma function
*
* The digamma function is the logarithmic derivative of the gamma function.
*
* digamma(x) = d/dx logGamma(x)
*
* See_Also: $(LREF logmdigamma), $(LREF logmdigammaInverse).
*/
real digamma(real x)
{
return std.internal.math.gammafunction.digamma(x);
}
/** Log Minus Digamma function
*
* logmdigamma(x) = log(x) - digamma(x)
*
* See_Also: $(LREF digamma), $(LREF logmdigammaInverse).
*/
real logmdigamma(real x)
{
return std.internal.math.gammafunction.logmdigamma(x);
}
/** Inverse of the Log Minus Digamma function
*
* Given y, the function finds x such log(x) - digamma(x) = y.
*
* See_Also: $(LREF logmdigamma), $(LREF digamma).
*/
real logmdigammaInverse(real x)
{
return std.internal.math.gammafunction.logmdigammaInverse(x);
}
/** Incomplete beta integral
*
* Returns regularized incomplete beta integral of the arguments, evaluated
* from zero to x. The regularized incomplete beta function is defined as
*
* betaIncomplete(a, b, x) = $(GAMMA)(a + b) / ( $(GAMMA)(a) $(GAMMA)(b) ) *
* $(INTEGRATE 0, x) $(POWER t, a-1)$(POWER (1-t), b-1) dt
*
* and is the same as the cumulative distribution function of the Beta
* distribution.
*
* The domain of definition is 0 <= x <= 1. In this
* implementation a and b are restricted to positive values.
* The integral from x to 1 may be obtained by the symmetry
* relation
*
* betaIncompleteCompl(a, b, x ) = betaIncomplete( b, a, 1-x )
*
* The integral is evaluated by a continued fraction expansion
* or, when b * x is small, by a power series.
*/
real betaIncomplete(real a, real b, real x )
{
return std.internal.math.gammafunction.betaIncomplete(a, b, x);
}
/** Inverse of incomplete beta integral
*
* Given y, the function finds x such that
*
* betaIncomplete(a, b, x) == y
*
* Newton iterations or interval halving is used.
*/
real betaIncompleteInverse(real a, real b, real y )
{
return std.internal.math.gammafunction.betaIncompleteInv(a, b, y);
}
/** Incomplete gamma integral and its complement
*
* These functions are defined by
*
* gammaIncomplete = ( $(INTEGRATE 0, x) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a)
*
* gammaIncompleteCompl(a,x) = 1 - gammaIncomplete(a,x)
* = ($(INTEGRATE x, $(INFIN)) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a)
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*/
real gammaIncomplete(real a, real x )
in
{
assert(x >= 0);
assert(a > 0);
}
do
{
return std.internal.math.gammafunction.gammaIncomplete(a, x);
}
/** ditto */
real gammaIncompleteCompl(real a, real x )
in
{
assert(x >= 0);
assert(a > 0);
}
do
{
return std.internal.math.gammafunction.gammaIncompleteCompl(a, x);
}
/** Inverse of complemented incomplete gamma integral
*
* Given a and p, the function finds x such that
*
* gammaIncompleteCompl( a, x ) = p.
*/
real gammaIncompleteComplInverse(real a, real p)
in
{
assert(p >= 0 && p <= 1);
assert(a > 0);
}
do
{
return std.internal.math.gammafunction.gammaIncompleteComplInv(a, p);
}
/* ***********************************************
* ERROR FUNCTIONS & NORMAL DISTRIBUTION *
* ***********************************************/
/** Error function
*
* The integral is
*
* erf(x) = 2/ $(SQRT)($(PI))
* $(INTEGRATE 0, x) exp( - $(POWER t, 2)) dt
*
* The magnitude of x is limited to about 106.56 for IEEE 80-bit
* arithmetic; 1 or -1 is returned outside this range.
*/
real erf(real x)
{
return std.internal.math.errorfunction.erf(x);
}
/** Complementary error function
*
* erfc(x) = 1 - erf(x)
* = 2/ $(SQRT)($(PI))
* $(INTEGRATE x, $(INFIN)) exp( - $(POWER t, 2)) dt
*
* This function has high relative accuracy for
* values of x far from zero. (For values near zero, use erf(x)).
*/
real erfc(real x)
{
return std.internal.math.errorfunction.erfc(x);
}
/** Standard normal distribution function.
*
* The normal (or Gaussian, or bell-shaped) distribution is
* defined as:
*
* normalDist(x) = 1/$(SQRT)(2$(PI)) $(INTEGRATE -$(INFIN), x) exp( - $(POWER t, 2)/2) dt
* = 0.5 + 0.5 * erf(x/sqrt(2))
* = 0.5 * erfc(- x/sqrt(2))
*
* To maintain accuracy at values of x near 1.0, use
* normalDistribution(x) = 1.0 - normalDistribution(-x).
*
* References:
* $(LINK http://www.netlib.org/cephes/ldoubdoc.html),
* G. Marsaglia, "Evaluating the Normal Distribution",
* Journal of Statistical Software 11, (July 2004).
*/
real normalDistribution(real x)
{
return std.internal.math.errorfunction.normalDistributionImpl(x);
}
/** Inverse of Standard normal distribution function
*
* Returns the argument, x, for which the area under the
* Normal probability density function (integrated from
* minus infinity to x) is equal to p.
*
* Note: This function is only implemented to 80 bit precision.
*/
real normalDistributionInverse(real p)
in
{
assert(p >= 0.0L && p <= 1.0L, "Domain error");
}
do
{
return std.internal.math.errorfunction.normalDistributionInvImpl(p);
}