//===-- sanitizer_coverage_fuchsia.cpp ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Sanitizer Coverage Controller for Trace PC Guard, Fuchsia-specific version. // // This Fuchsia-specific implementation uses the same basic scheme and the // same simple '.sancov' file format as the generic implementation. The // difference is that we just produce a single blob of output for the whole // program, not a separate one per DSO. We do not sort the PC table and do // not prune the zeros, so the resulting file is always as large as it // would be to report 100% coverage. Implicit tracing information about // the address ranges of DSOs allows offline tools to split the one big // blob into separate files that the 'sancov' tool can understand. // // Unlike the traditional implementation that uses an atexit hook to write // out data files at the end, the results on Fuchsia do not go into a file // per se. The 'coverage_dir' option is ignored. Instead, they are stored // directly into a shared memory object (a Zircon VMO). At exit, that VMO // is handed over to a system service that's responsible for getting the // data out to somewhere that it can be fed into the sancov tool (where and // how is not our problem). #include "sanitizer_platform.h" #if SANITIZER_FUCHSIA #include #include #include #include "sanitizer_atomic.h" #include "sanitizer_common.h" #include "sanitizer_internal_defs.h" #include "sanitizer_symbolizer_fuchsia.h" using namespace __sanitizer; namespace __sancov { namespace { // TODO(mcgrathr): Move the constant into a header shared with other impls. constexpr u64 Magic64 = 0xC0BFFFFFFFFFFF64ULL; static_assert(SANITIZER_WORDSIZE == 64, "Fuchsia is always LP64"); constexpr const char kSancovSinkName[] = "sancov"; // Collects trace-pc guard coverage. // This class relies on zero-initialization. class TracePcGuardController final { public: constexpr TracePcGuardController() {} // For each PC location being tracked, there is a u32 reserved in global // data called the "guard". At startup, we assign each guard slot a // unique index into the big results array. Later during runtime, the // first call to TracePcGuard (below) will store the corresponding PC at // that index in the array. (Each later call with the same guard slot is // presumed to be from the same PC.) Then it clears the guard slot back // to zero, which tells the compiler not to bother calling in again. At // the end of the run, we have a big array where each element is either // zero or is a tracked PC location that was hit in the trace. // This is called from global constructors. Each translation unit has a // contiguous array of guard slots, and a constructor that calls here // with the bounds of its array. Those constructors are allowed to call // here more than once for the same array. Usually all of these // constructors run in the initial thread, but it's possible that a // dlopen call on a secondary thread will run constructors that get here. void InitTracePcGuard(u32 *start, u32 *end) { if (end > start && *start == 0 && common_flags()->coverage) { // Complete the setup before filling in any guards with indices. // This avoids the possibility of code called from Setup reentering // TracePcGuard. u32 idx = Setup(end - start); for (u32 *p = start; p < end; ++p) { *p = idx++; } } } void TracePcGuard(u32 *guard, uptr pc) { atomic_uint32_t *guard_ptr = reinterpret_cast(guard); u32 idx = atomic_exchange(guard_ptr, 0, memory_order_relaxed); if (idx > 0) array_[idx] = pc; } void Dump() { Lock locked(&setup_lock_); if (array_) { CHECK_NE(vmo_, ZX_HANDLE_INVALID); // Publish the VMO to the system, where it can be collected and // analyzed after this process exits. This always consumes the VMO // handle. Any failure is just logged and not indicated to us. __sanitizer_publish_data(kSancovSinkName, vmo_); vmo_ = ZX_HANDLE_INVALID; // This will route to __sanitizer_log_write, which will ensure that // information about shared libraries is written out. This message // uses the `dumpfile` symbolizer markup element to highlight the // dump. See the explanation for this in: // https://fuchsia.googlesource.com/zircon/+/master/docs/symbolizer_markup.md Printf("SanitizerCoverage: " FORMAT_DUMPFILE " with up to %u PCs\n", kSancovSinkName, vmo_name_, next_index_ - 1); } } private: // We map in the largest possible view into the VMO: one word // for every possible 32-bit index value. This avoids the need // to change the mapping when increasing the size of the VMO. // We can always spare the 32G of address space. static constexpr size_t MappingSize = sizeof(uptr) << 32; Mutex setup_lock_; uptr *array_ = nullptr; u32 next_index_ = 0; zx_handle_t vmo_ = {}; char vmo_name_[ZX_MAX_NAME_LEN] = {}; size_t DataSize() const { return next_index_ * sizeof(uintptr_t); } u32 Setup(u32 num_guards) { Lock locked(&setup_lock_); DCHECK(common_flags()->coverage); if (next_index_ == 0) { CHECK_EQ(vmo_, ZX_HANDLE_INVALID); CHECK_EQ(array_, nullptr); // The first sample goes at [1] to reserve [0] for the magic number. next_index_ = 1 + num_guards; zx_status_t status = _zx_vmo_create(DataSize(), ZX_VMO_RESIZABLE, &vmo_); CHECK_EQ(status, ZX_OK); // Give the VMO a name including our process KOID so it's easy to spot. internal_snprintf(vmo_name_, sizeof(vmo_name_), "%s.%zu", kSancovSinkName, internal_getpid()); _zx_object_set_property(vmo_, ZX_PROP_NAME, vmo_name_, internal_strlen(vmo_name_)); uint64_t size = DataSize(); status = _zx_object_set_property(vmo_, ZX_PROP_VMO_CONTENT_SIZE, &size, sizeof(size)); CHECK_EQ(status, ZX_OK); // Map the largest possible view we might need into the VMO. Later // we might need to increase the VMO's size before we can use larger // indices, but we'll never move the mapping address so we don't have // any multi-thread synchronization issues with that. uintptr_t mapping; status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, vmo_, 0, MappingSize, &mapping); CHECK_EQ(status, ZX_OK); // Hereafter other threads are free to start storing into // elements [1, next_index_) of the big array. array_ = reinterpret_cast(mapping); // Store the magic number. // Hereafter, the VMO serves as the contents of the '.sancov' file. array_[0] = Magic64; return 1; } else { // The VMO is already mapped in, but it's not big enough to use the // new indices. So increase the size to cover the new maximum index. CHECK_NE(vmo_, ZX_HANDLE_INVALID); CHECK_NE(array_, nullptr); uint32_t first_index = next_index_; next_index_ += num_guards; zx_status_t status = _zx_vmo_set_size(vmo_, DataSize()); CHECK_EQ(status, ZX_OK); uint64_t size = DataSize(); status = _zx_object_set_property(vmo_, ZX_PROP_VMO_CONTENT_SIZE, &size, sizeof(size)); CHECK_EQ(status, ZX_OK); return first_index; } } }; static TracePcGuardController pc_guard_controller; } // namespace } // namespace __sancov namespace __sanitizer { void InitializeCoverage(bool enabled, const char *dir) { CHECK_EQ(enabled, common_flags()->coverage); CHECK_EQ(dir, common_flags()->coverage_dir); static bool coverage_enabled = false; if (!coverage_enabled) { coverage_enabled = enabled; Atexit(__sanitizer_cov_dump); AddDieCallback(__sanitizer_cov_dump); } } } // namespace __sanitizer extern "C" { SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_coverage(const uptr *pcs, uptr len) { UNIMPLEMENTED(); } SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard, u32 *guard) { if (!*guard) return; __sancov::pc_guard_controller.TracePcGuard(guard, GET_CALLER_PC() - 1); } SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard_init, u32 *start, u32 *end) { if (start == end || *start) return; __sancov::pc_guard_controller.InitTracePcGuard(start, end); } SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_trace_pc_guard_coverage() { __sancov::pc_guard_controller.Dump(); } SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() { __sanitizer_dump_trace_pc_guard_coverage(); } // Default empty implementations (weak). Users should redefine them. SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp1, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp2, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp4, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp8, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp1, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp2, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp4, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp8, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_switch, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div4, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div8, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_gep, void) {} SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_indir, void) {} } // extern "C" #endif // !SANITIZER_FUCHSIA