/* ----------------------------------------------------------------------- sysv.S - Copyright (c) 2017 Anthony Green - Copyright (c) 2013 The Written Word, Inc. - Copyright (c) 1996,1998,2001-2003,2005,2008,2010 Red Hat, Inc. X86 Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #ifdef __i386__ #ifndef _MSC_VER #define LIBFFI_ASM #include #include #include "internal.h" #define C2(X, Y) X ## Y #define C1(X, Y) C2(X, Y) #ifdef __USER_LABEL_PREFIX__ # define C(X) C1(__USER_LABEL_PREFIX__, X) #else # define C(X) X #endif #ifdef X86_DARWIN # define L(X) C1(L, X) #else # define L(X) C1(.L, X) #endif #ifdef __ELF__ # define ENDF(X) .type X,@function; .size X, . - X #else # define ENDF(X) #endif /* Handle win32 fastcall name mangling. */ #ifdef X86_WIN32 # define ffi_call_i386 "@ffi_call_i386@8" # define ffi_closure_inner "@ffi_closure_inner@8" #else # define ffi_call_i386 C(ffi_call_i386) # define ffi_closure_inner C(ffi_closure_inner) #endif /* This macro allows the safe creation of jump tables without an actual table. The entry points into the table are all 8 bytes. The use of ORG asserts that we're at the correct location. */ /* ??? The clang assembler doesn't handle .org with symbolic expressions. */ #if defined(__clang__) || defined(__APPLE__) || (defined (__sun__) && defined(__svr4__)) # define E(BASE, X) .balign 8 #else # define E(BASE, X) .balign 8; .org BASE + X * 8 #endif .text .balign 16 .globl ffi_call_i386 FFI_HIDDEN(ffi_call_i386) /* This is declared as void ffi_call_i386(struct call_frame *frame, char *argp) __attribute__((fastcall)); Thus the arguments are present in ecx: frame edx: argp */ ffi_call_i386: L(UW0): # cfi_startproc _CET_ENDBR #if !HAVE_FASTCALL movl 4(%esp), %ecx movl 8(%esp), %edx #endif movl (%esp), %eax /* move the return address */ movl %ebp, (%ecx) /* store %ebp into local frame */ movl %eax, 4(%ecx) /* store retaddr into local frame */ /* New stack frame based off ebp. This is a itty bit of unwind trickery in that the CFA *has* changed. There is no easy way to describe it correctly on entry to the function. Fortunately, it doesn't matter too much since at all points we can correctly unwind back to ffi_call. Note that the location to which we moved the return address is (the new) CFA-4, so from the perspective of the unwind info, it hasn't moved. */ movl %ecx, %ebp L(UW1): # cfi_def_cfa(%ebp, 8) # cfi_rel_offset(%ebp, 0) movl %edx, %esp /* set outgoing argument stack */ movl 20+R_EAX*4(%ebp), %eax /* set register arguments */ movl 20+R_EDX*4(%ebp), %edx movl 20+R_ECX*4(%ebp), %ecx call *8(%ebp) movl 12(%ebp), %ecx /* load return type code */ movl %ebx, 8(%ebp) /* preserve %ebx */ L(UW2): # cfi_rel_offset(%ebx, 8) andl $X86_RET_TYPE_MASK, %ecx #ifdef __PIC__ call C(__x86.get_pc_thunk.bx) L(pc1): leal L(store_table)-L(pc1)(%ebx, %ecx, 8), %ebx #else leal L(store_table)(,%ecx, 8), %ebx #endif movl 16(%ebp), %ecx /* load result address */ _CET_NOTRACK jmp *%ebx .balign 8 L(store_table): E(L(store_table), X86_RET_FLOAT) fstps (%ecx) jmp L(e1) E(L(store_table), X86_RET_DOUBLE) fstpl (%ecx) jmp L(e1) E(L(store_table), X86_RET_LDOUBLE) fstpt (%ecx) jmp L(e1) E(L(store_table), X86_RET_SINT8) movsbl %al, %eax mov %eax, (%ecx) jmp L(e1) E(L(store_table), X86_RET_SINT16) movswl %ax, %eax mov %eax, (%ecx) jmp L(e1) E(L(store_table), X86_RET_UINT8) movzbl %al, %eax mov %eax, (%ecx) jmp L(e1) E(L(store_table), X86_RET_UINT16) movzwl %ax, %eax mov %eax, (%ecx) jmp L(e1) E(L(store_table), X86_RET_INT64) movl %edx, 4(%ecx) /* fallthru */ E(L(store_table), X86_RET_INT32) movl %eax, (%ecx) /* fallthru */ E(L(store_table), X86_RET_VOID) L(e1): movl 8(%ebp), %ebx movl %ebp, %esp popl %ebp L(UW3): # cfi_remember_state # cfi_def_cfa(%esp, 4) # cfi_restore(%ebx) # cfi_restore(%ebp) ret L(UW4): # cfi_restore_state E(L(store_table), X86_RET_STRUCTPOP) jmp L(e1) E(L(store_table), X86_RET_STRUCTARG) jmp L(e1) E(L(store_table), X86_RET_STRUCT_1B) movb %al, (%ecx) jmp L(e1) E(L(store_table), X86_RET_STRUCT_2B) movw %ax, (%ecx) jmp L(e1) /* Fill out the table so that bad values are predictable. */ E(L(store_table), X86_RET_UNUSED14) ud2 E(L(store_table), X86_RET_UNUSED15) ud2 L(UW5): # cfi_endproc ENDF(ffi_call_i386) /* The inner helper is declared as void ffi_closure_inner(struct closure_frame *frame, char *argp) __attribute_((fastcall)) Thus the arguments are placed in ecx: frame edx: argp */ /* Macros to help setting up the closure_data structure. */ #if HAVE_FASTCALL # define closure_FS (40 + 4) # define closure_CF 0 #else # define closure_FS (8 + 40 + 12) # define closure_CF 8 #endif #define FFI_CLOSURE_SAVE_REGS \ movl %eax, closure_CF+16+R_EAX*4(%esp); \ movl %edx, closure_CF+16+R_EDX*4(%esp); \ movl %ecx, closure_CF+16+R_ECX*4(%esp) #define FFI_CLOSURE_COPY_TRAMP_DATA \ movl FFI_TRAMPOLINE_SIZE(%eax), %edx; /* copy cif */ \ movl FFI_TRAMPOLINE_SIZE+4(%eax), %ecx; /* copy fun */ \ movl FFI_TRAMPOLINE_SIZE+8(%eax), %eax; /* copy user_data */ \ movl %edx, closure_CF+28(%esp); \ movl %ecx, closure_CF+32(%esp); \ movl %eax, closure_CF+36(%esp) #if HAVE_FASTCALL # define FFI_CLOSURE_PREP_CALL \ movl %esp, %ecx; /* load closure_data */ \ leal closure_FS+4(%esp), %edx; /* load incoming stack */ #else # define FFI_CLOSURE_PREP_CALL \ leal closure_CF(%esp), %ecx; /* load closure_data */ \ leal closure_FS+4(%esp), %edx; /* load incoming stack */ \ movl %ecx, (%esp); \ movl %edx, 4(%esp) #endif #define FFI_CLOSURE_CALL_INNER(UWN) \ call ffi_closure_inner #define FFI_CLOSURE_MASK_AND_JUMP(N, UW) \ andl $X86_RET_TYPE_MASK, %eax; \ leal L(C1(load_table,N))(, %eax, 8), %edx; \ movl closure_CF(%esp), %eax; /* optimiztic load */ \ _CET_NOTRACK jmp *%edx #ifdef __PIC__ # if defined X86_DARWIN || defined HAVE_HIDDEN_VISIBILITY_ATTRIBUTE # undef FFI_CLOSURE_MASK_AND_JUMP # define FFI_CLOSURE_MASK_AND_JUMP(N, UW) \ andl $X86_RET_TYPE_MASK, %eax; \ call C(__x86.get_pc_thunk.dx); \ L(C1(pc,N)): \ leal L(C1(load_table,N))-L(C1(pc,N))(%edx, %eax, 8), %edx; \ movl closure_CF(%esp), %eax; /* optimiztic load */ \ _CET_NOTRACK jmp *%edx # else # define FFI_CLOSURE_CALL_INNER_SAVE_EBX # undef FFI_CLOSURE_CALL_INNER # define FFI_CLOSURE_CALL_INNER(UWN) \ movl %ebx, 40(%esp); /* save ebx */ \ L(C1(UW,UWN)): \ /* cfi_rel_offset(%ebx, 40); */ \ call C(__x86.get_pc_thunk.bx); /* load got register */ \ addl $C(_GLOBAL_OFFSET_TABLE_), %ebx; \ call ffi_closure_inner@PLT # undef FFI_CLOSURE_MASK_AND_JUMP # define FFI_CLOSURE_MASK_AND_JUMP(N, UWN) \ andl $X86_RET_TYPE_MASK, %eax; \ leal L(C1(load_table,N))@GOTOFF(%ebx, %eax, 8), %edx; \ movl 40(%esp), %ebx; /* restore ebx */ \ L(C1(UW,UWN)): \ /* cfi_restore(%ebx); */ \ movl closure_CF(%esp), %eax; /* optimiztic load */ \ _CET_NOTRACK jmp *%edx # endif /* DARWIN || HIDDEN */ #endif /* __PIC__ */ .balign 16 .globl C(ffi_go_closure_EAX) FFI_HIDDEN(C(ffi_go_closure_EAX)) C(ffi_go_closure_EAX): L(UW6): # cfi_startproc _CET_ENDBR subl $closure_FS, %esp L(UW7): # cfi_def_cfa_offset(closure_FS + 4) FFI_CLOSURE_SAVE_REGS movl 4(%eax), %edx /* copy cif */ movl 8(%eax), %ecx /* copy fun */ movl %edx, closure_CF+28(%esp) movl %ecx, closure_CF+32(%esp) movl %eax, closure_CF+36(%esp) /* closure is user_data */ jmp L(do_closure_i386) L(UW8): # cfi_endproc ENDF(C(ffi_go_closure_EAX)) .balign 16 .globl C(ffi_go_closure_ECX) FFI_HIDDEN(C(ffi_go_closure_ECX)) C(ffi_go_closure_ECX): L(UW9): # cfi_startproc _CET_ENDBR subl $closure_FS, %esp L(UW10): # cfi_def_cfa_offset(closure_FS + 4) FFI_CLOSURE_SAVE_REGS movl 4(%ecx), %edx /* copy cif */ movl 8(%ecx), %eax /* copy fun */ movl %edx, closure_CF+28(%esp) movl %eax, closure_CF+32(%esp) movl %ecx, closure_CF+36(%esp) /* closure is user_data */ jmp L(do_closure_i386) L(UW11): # cfi_endproc ENDF(C(ffi_go_closure_ECX)) /* The closure entry points are reached from the ffi_closure trampoline. On entry, %eax contains the address of the ffi_closure. */ .balign 16 .globl C(ffi_closure_i386) FFI_HIDDEN(C(ffi_closure_i386)) C(ffi_closure_i386): L(UW12): # cfi_startproc _CET_ENDBR subl $closure_FS, %esp L(UW13): # cfi_def_cfa_offset(closure_FS + 4) FFI_CLOSURE_SAVE_REGS FFI_CLOSURE_COPY_TRAMP_DATA /* Entry point from preceeding Go closures. */ L(do_closure_i386): FFI_CLOSURE_PREP_CALL FFI_CLOSURE_CALL_INNER(14) FFI_CLOSURE_MASK_AND_JUMP(2, 15) .balign 8 L(load_table2): E(L(load_table2), X86_RET_FLOAT) flds closure_CF(%esp) jmp L(e2) E(L(load_table2), X86_RET_DOUBLE) fldl closure_CF(%esp) jmp L(e2) E(L(load_table2), X86_RET_LDOUBLE) fldt closure_CF(%esp) jmp L(e2) E(L(load_table2), X86_RET_SINT8) movsbl %al, %eax jmp L(e2) E(L(load_table2), X86_RET_SINT16) movswl %ax, %eax jmp L(e2) E(L(load_table2), X86_RET_UINT8) movzbl %al, %eax jmp L(e2) E(L(load_table2), X86_RET_UINT16) movzwl %ax, %eax jmp L(e2) E(L(load_table2), X86_RET_INT64) movl closure_CF+4(%esp), %edx jmp L(e2) E(L(load_table2), X86_RET_INT32) nop /* fallthru */ E(L(load_table2), X86_RET_VOID) L(e2): addl $closure_FS, %esp L(UW16): # cfi_adjust_cfa_offset(-closure_FS) ret L(UW17): # cfi_adjust_cfa_offset(closure_FS) E(L(load_table2), X86_RET_STRUCTPOP) addl $closure_FS, %esp L(UW18): # cfi_adjust_cfa_offset(-closure_FS) ret $4 L(UW19): # cfi_adjust_cfa_offset(closure_FS) E(L(load_table2), X86_RET_STRUCTARG) jmp L(e2) E(L(load_table2), X86_RET_STRUCT_1B) movzbl %al, %eax jmp L(e2) E(L(load_table2), X86_RET_STRUCT_2B) movzwl %ax, %eax jmp L(e2) /* Fill out the table so that bad values are predictable. */ E(L(load_table2), X86_RET_UNUSED14) ud2 E(L(load_table2), X86_RET_UNUSED15) ud2 L(UW20): # cfi_endproc ENDF(C(ffi_closure_i386)) .balign 16 .globl C(ffi_go_closure_STDCALL) FFI_HIDDEN(C(ffi_go_closure_STDCALL)) C(ffi_go_closure_STDCALL): L(UW21): # cfi_startproc _CET_ENDBR subl $closure_FS, %esp L(UW22): # cfi_def_cfa_offset(closure_FS + 4) FFI_CLOSURE_SAVE_REGS movl 4(%ecx), %edx /* copy cif */ movl 8(%ecx), %eax /* copy fun */ movl %edx, closure_CF+28(%esp) movl %eax, closure_CF+32(%esp) movl %ecx, closure_CF+36(%esp) /* closure is user_data */ jmp L(do_closure_STDCALL) L(UW23): # cfi_endproc ENDF(C(ffi_go_closure_STDCALL)) /* For REGISTER, we have no available parameter registers, and so we enter here having pushed the closure onto the stack. */ .balign 16 .globl C(ffi_closure_REGISTER) FFI_HIDDEN(C(ffi_closure_REGISTER)) C(ffi_closure_REGISTER): L(UW24): # cfi_startproc # cfi_def_cfa(%esp, 8) # cfi_offset(%eip, -8) _CET_ENDBR subl $closure_FS-4, %esp L(UW25): # cfi_def_cfa_offset(closure_FS + 4) FFI_CLOSURE_SAVE_REGS movl closure_FS-4(%esp), %ecx /* load retaddr */ movl closure_FS(%esp), %eax /* load closure */ movl %ecx, closure_FS(%esp) /* move retaddr */ jmp L(do_closure_REGISTER) L(UW26): # cfi_endproc ENDF(C(ffi_closure_REGISTER)) /* For STDCALL (and others), we need to pop N bytes of arguments off the stack following the closure. The amount needing to be popped is returned to us from ffi_closure_inner. */ .balign 16 .globl C(ffi_closure_STDCALL) FFI_HIDDEN(C(ffi_closure_STDCALL)) C(ffi_closure_STDCALL): L(UW27): # cfi_startproc _CET_ENDBR subl $closure_FS, %esp L(UW28): # cfi_def_cfa_offset(closure_FS + 4) FFI_CLOSURE_SAVE_REGS /* Entry point from ffi_closure_REGISTER. */ L(do_closure_REGISTER): FFI_CLOSURE_COPY_TRAMP_DATA /* Entry point from preceeding Go closure. */ L(do_closure_STDCALL): FFI_CLOSURE_PREP_CALL FFI_CLOSURE_CALL_INNER(29) movl %eax, %ecx shrl $X86_RET_POP_SHIFT, %ecx /* isolate pop count */ leal closure_FS(%esp, %ecx), %ecx /* compute popped esp */ movl closure_FS(%esp), %edx /* move return address */ movl %edx, (%ecx) /* From this point on, the value of %esp upon return is %ecx+4, and we've copied the return address to %ecx to make return easy. There's no point in representing this in the unwind info, as there is always a window between the mov and the ret which will be wrong from one point of view or another. */ FFI_CLOSURE_MASK_AND_JUMP(3, 30) .balign 8 L(load_table3): E(L(load_table3), X86_RET_FLOAT) flds closure_CF(%esp) movl %ecx, %esp ret E(L(load_table3), X86_RET_DOUBLE) fldl closure_CF(%esp) movl %ecx, %esp ret E(L(load_table3), X86_RET_LDOUBLE) fldt closure_CF(%esp) movl %ecx, %esp ret E(L(load_table3), X86_RET_SINT8) movsbl %al, %eax movl %ecx, %esp ret E(L(load_table3), X86_RET_SINT16) movswl %ax, %eax movl %ecx, %esp ret E(L(load_table3), X86_RET_UINT8) movzbl %al, %eax movl %ecx, %esp ret E(L(load_table3), X86_RET_UINT16) movzwl %ax, %eax movl %ecx, %esp ret E(L(load_table3), X86_RET_INT64) movl closure_CF+4(%esp), %edx movl %ecx, %esp ret E(L(load_table3), X86_RET_INT32) movl %ecx, %esp ret E(L(load_table3), X86_RET_VOID) movl %ecx, %esp ret E(L(load_table3), X86_RET_STRUCTPOP) movl %ecx, %esp ret E(L(load_table3), X86_RET_STRUCTARG) movl %ecx, %esp ret E(L(load_table3), X86_RET_STRUCT_1B) movzbl %al, %eax movl %ecx, %esp ret E(L(load_table3), X86_RET_STRUCT_2B) movzwl %ax, %eax movl %ecx, %esp ret /* Fill out the table so that bad values are predictable. */ E(L(load_table3), X86_RET_UNUSED14) ud2 E(L(load_table3), X86_RET_UNUSED15) ud2 L(UW31): # cfi_endproc ENDF(C(ffi_closure_STDCALL)) #if defined(FFI_EXEC_STATIC_TRAMP) .balign 16 .globl C(ffi_closure_i386_alt) FFI_HIDDEN(C(ffi_closure_i386_alt)) C(ffi_closure_i386_alt): /* See the comments above trampoline_code_table. */ _CET_ENDBR movl 4(%esp), %eax /* Load closure in eax */ add $8, %esp /* Restore the stack */ jmp C(ffi_closure_i386) ENDF(C(ffi_closure_i386_alt)) .balign 16 .globl C(ffi_closure_REGISTER_alt) FFI_HIDDEN(C(ffi_closure_REGISTER_alt)) C(ffi_closure_REGISTER_alt): /* See the comments above trampoline_code_table. */ _CET_ENDBR movl (%esp), %eax /* Restore eax */ add $4, %esp /* Leave closure on stack */ jmp C(ffi_closure_REGISTER) ENDF(C(ffi_closure_REGISTER_alt)) .balign 16 .globl C(ffi_closure_STDCALL_alt) FFI_HIDDEN(C(ffi_closure_STDCALL_alt)) C(ffi_closure_STDCALL_alt): /* See the comments above trampoline_code_table. */ _CET_ENDBR movl 4(%esp), %eax /* Load closure in eax */ add $8, %esp /* Restore the stack */ jmp C(ffi_closure_STDCALL) ENDF(C(ffi_closure_STDCALL_alt)) /* * Below is the definition of the trampoline code table. Each element in * the code table is a trampoline. * * Because we jump to the trampoline, we place a _CET_ENDBR at the * beginning of the trampoline to mark it as a valid branch target. This is * part of the the Intel CET (Control Flow Enforcement Technology). */ /* * The trampoline uses register eax. It saves the original value of eax on * the stack. * * The trampoline has two parameters - target code to jump to and data for * the target code. The trampoline extracts the parameters from its parameter * block (see tramp_table_map()). The trampoline saves the data address on * the stack. Finally, it jumps to the target code. * * The target code can choose to: * * - restore the value of eax * - load the data address in a register * - restore the stack pointer to what it was when the trampoline was invoked. */ #ifdef ENDBR_PRESENT #define X86_DATA_OFFSET 4081 #define X86_CODE_OFFSET 4070 #else #define X86_DATA_OFFSET 4085 #define X86_CODE_OFFSET 4074 #endif .align X86_TRAMP_MAP_SIZE .globl C(trampoline_code_table) FFI_HIDDEN(C(trampoline_code_table)) C(trampoline_code_table): .rept X86_TRAMP_MAP_SIZE / X86_TRAMP_SIZE _CET_ENDBR sub $8, %esp movl %eax, (%esp) /* Save %eax on stack */ call 1f /* Get next PC into %eax */ movl X86_DATA_OFFSET(%eax), %eax /* Copy data into %eax */ movl %eax, 4(%esp) /* Save data on stack */ call 1f /* Get next PC into %eax */ movl X86_CODE_OFFSET(%eax), %eax /* Copy code into %eax */ jmp *%eax /* Jump to code */ 1: mov (%esp), %eax ret .align 4 .endr ENDF(C(trampoline_code_table)) .align X86_TRAMP_MAP_SIZE #endif /* FFI_EXEC_STATIC_TRAMP */ #if !FFI_NO_RAW_API #define raw_closure_S_FS (16+16+12) .balign 16 .globl C(ffi_closure_raw_SYSV) FFI_HIDDEN(C(ffi_closure_raw_SYSV)) C(ffi_closure_raw_SYSV): L(UW32): # cfi_startproc _CET_ENDBR subl $raw_closure_S_FS, %esp L(UW33): # cfi_def_cfa_offset(raw_closure_S_FS + 4) movl %ebx, raw_closure_S_FS-4(%esp) L(UW34): # cfi_rel_offset(%ebx, raw_closure_S_FS-4) movl FFI_TRAMPOLINE_SIZE+8(%eax), %edx /* load cl->user_data */ movl %edx, 12(%esp) leal raw_closure_S_FS+4(%esp), %edx /* load raw_args */ movl %edx, 8(%esp) leal 16(%esp), %edx /* load &res */ movl %edx, 4(%esp) movl FFI_TRAMPOLINE_SIZE(%eax), %ebx /* load cl->cif */ movl %ebx, (%esp) call *FFI_TRAMPOLINE_SIZE+4(%eax) /* call cl->fun */ movl 20(%ebx), %eax /* load cif->flags */ andl $X86_RET_TYPE_MASK, %eax #ifdef __PIC__ call C(__x86.get_pc_thunk.bx) L(pc4): leal L(load_table4)-L(pc4)(%ebx, %eax, 8), %ecx #else leal L(load_table4)(,%eax, 8), %ecx #endif movl raw_closure_S_FS-4(%esp), %ebx L(UW35): # cfi_restore(%ebx) movl 16(%esp), %eax /* Optimistic load */ jmp *%ecx .balign 8 L(load_table4): E(L(load_table4), X86_RET_FLOAT) flds 16(%esp) jmp L(e4) E(L(load_table4), X86_RET_DOUBLE) fldl 16(%esp) jmp L(e4) E(L(load_table4), X86_RET_LDOUBLE) fldt 16(%esp) jmp L(e4) E(L(load_table4), X86_RET_SINT8) movsbl %al, %eax jmp L(e4) E(L(load_table4), X86_RET_SINT16) movswl %ax, %eax jmp L(e4) E(L(load_table4), X86_RET_UINT8) movzbl %al, %eax jmp L(e4) E(L(load_table4), X86_RET_UINT16) movzwl %ax, %eax jmp L(e4) E(L(load_table4), X86_RET_INT64) movl 16+4(%esp), %edx jmp L(e4) E(L(load_table4), X86_RET_INT32) nop /* fallthru */ E(L(load_table4), X86_RET_VOID) L(e4): addl $raw_closure_S_FS, %esp L(UW36): # cfi_adjust_cfa_offset(-raw_closure_S_FS) ret L(UW37): # cfi_adjust_cfa_offset(raw_closure_S_FS) E(L(load_table4), X86_RET_STRUCTPOP) addl $raw_closure_S_FS, %esp L(UW38): # cfi_adjust_cfa_offset(-raw_closure_S_FS) ret $4 L(UW39): # cfi_adjust_cfa_offset(raw_closure_S_FS) E(L(load_table4), X86_RET_STRUCTARG) jmp L(e4) E(L(load_table4), X86_RET_STRUCT_1B) movzbl %al, %eax jmp L(e4) E(L(load_table4), X86_RET_STRUCT_2B) movzwl %ax, %eax jmp L(e4) /* Fill out the table so that bad values are predictable. */ E(L(load_table4), X86_RET_UNUSED14) ud2 E(L(load_table4), X86_RET_UNUSED15) ud2 L(UW40): # cfi_endproc ENDF(C(ffi_closure_raw_SYSV)) #define raw_closure_T_FS (16+16+8) .balign 16 .globl C(ffi_closure_raw_THISCALL) FFI_HIDDEN(C(ffi_closure_raw_THISCALL)) C(ffi_closure_raw_THISCALL): L(UW41): # cfi_startproc _CET_ENDBR /* Rearrange the stack such that %ecx is the first argument. This means moving the return address. */ popl %edx L(UW42): # cfi_def_cfa_offset(0) # cfi_register(%eip, %edx) pushl %ecx L(UW43): # cfi_adjust_cfa_offset(4) pushl %edx L(UW44): # cfi_adjust_cfa_offset(4) # cfi_rel_offset(%eip, 0) subl $raw_closure_T_FS, %esp L(UW45): # cfi_adjust_cfa_offset(raw_closure_T_FS) movl %ebx, raw_closure_T_FS-4(%esp) L(UW46): # cfi_rel_offset(%ebx, raw_closure_T_FS-4) movl FFI_TRAMPOLINE_SIZE+8(%eax), %edx /* load cl->user_data */ movl %edx, 12(%esp) leal raw_closure_T_FS+4(%esp), %edx /* load raw_args */ movl %edx, 8(%esp) leal 16(%esp), %edx /* load &res */ movl %edx, 4(%esp) movl FFI_TRAMPOLINE_SIZE(%eax), %ebx /* load cl->cif */ movl %ebx, (%esp) call *FFI_TRAMPOLINE_SIZE+4(%eax) /* call cl->fun */ movl 20(%ebx), %eax /* load cif->flags */ andl $X86_RET_TYPE_MASK, %eax #ifdef __PIC__ call C(__x86.get_pc_thunk.bx) L(pc5): leal L(load_table5)-L(pc5)(%ebx, %eax, 8), %ecx #else leal L(load_table5)(,%eax, 8), %ecx #endif movl raw_closure_T_FS-4(%esp), %ebx L(UW47): # cfi_restore(%ebx) movl 16(%esp), %eax /* Optimistic load */ jmp *%ecx .balign 8 L(load_table5): E(L(load_table5), X86_RET_FLOAT) flds 16(%esp) jmp L(e5) E(L(load_table5), X86_RET_DOUBLE) fldl 16(%esp) jmp L(e5) E(L(load_table5), X86_RET_LDOUBLE) fldt 16(%esp) jmp L(e5) E(L(load_table5), X86_RET_SINT8) movsbl %al, %eax jmp L(e5) E(L(load_table5), X86_RET_SINT16) movswl %ax, %eax jmp L(e5) E(L(load_table5), X86_RET_UINT8) movzbl %al, %eax jmp L(e5) E(L(load_table5), X86_RET_UINT16) movzwl %ax, %eax jmp L(e5) E(L(load_table5), X86_RET_INT64) movl 16+4(%esp), %edx jmp L(e5) E(L(load_table5), X86_RET_INT32) nop /* fallthru */ E(L(load_table5), X86_RET_VOID) L(e5): addl $raw_closure_T_FS, %esp L(UW48): # cfi_adjust_cfa_offset(-raw_closure_T_FS) /* Remove the extra %ecx argument we pushed. */ ret $4 L(UW49): # cfi_adjust_cfa_offset(raw_closure_T_FS) E(L(load_table5), X86_RET_STRUCTPOP) addl $raw_closure_T_FS, %esp L(UW50): # cfi_adjust_cfa_offset(-raw_closure_T_FS) ret $8 L(UW51): # cfi_adjust_cfa_offset(raw_closure_T_FS) E(L(load_table5), X86_RET_STRUCTARG) jmp L(e5) E(L(load_table5), X86_RET_STRUCT_1B) movzbl %al, %eax jmp L(e5) E(L(load_table5), X86_RET_STRUCT_2B) movzwl %ax, %eax jmp L(e5) /* Fill out the table so that bad values are predictable. */ E(L(load_table5), X86_RET_UNUSED14) ud2 E(L(load_table5), X86_RET_UNUSED15) ud2 L(UW52): # cfi_endproc ENDF(C(ffi_closure_raw_THISCALL)) #endif /* !FFI_NO_RAW_API */ #ifdef X86_DARWIN # define COMDAT(X) \ .section __TEXT,__text,coalesced,pure_instructions; \ .weak_definition X; \ FFI_HIDDEN(X) #elif defined __ELF__ && !(defined(__sun__) && defined(__svr4__)) # define COMDAT(X) \ .section .text.X,"axG",@progbits,X,comdat; \ .globl X; \ FFI_HIDDEN(X) #else # define COMDAT(X) #endif #if defined(__PIC__) COMDAT(C(__x86.get_pc_thunk.bx)) C(__x86.get_pc_thunk.bx): movl (%esp), %ebx ret ENDF(C(__x86.get_pc_thunk.bx)) # if defined X86_DARWIN || defined HAVE_HIDDEN_VISIBILITY_ATTRIBUTE COMDAT(C(__x86.get_pc_thunk.dx)) C(__x86.get_pc_thunk.dx): movl (%esp), %edx ret ENDF(C(__x86.get_pc_thunk.dx)) #endif /* DARWIN || HIDDEN */ #endif /* __PIC__ */ /* Sadly, OSX cctools-as doesn't understand .cfi directives at all. */ #ifdef __APPLE__ .section __TEXT,__eh_frame,coalesced,no_toc+strip_static_syms+live_support EHFrame0: #elif defined(X86_WIN32) .section .eh_frame,"r" #elif defined(HAVE_AS_X86_64_UNWIND_SECTION_TYPE) .section .eh_frame,EH_FRAME_FLAGS,@unwind #else .section .eh_frame,EH_FRAME_FLAGS,@progbits #endif #ifdef HAVE_AS_X86_PCREL # define PCREL(X) X - . #else # define PCREL(X) X@rel #endif /* Simplify advancing between labels. Assume DW_CFA_advance_loc1 fits. */ #define ADV(N, P) .byte 2, L(N)-L(P) .balign 4 L(CIE): .set L(set0),L(ECIE)-L(SCIE) .long L(set0) /* CIE Length */ L(SCIE): .long 0 /* CIE Identifier Tag */ .byte 1 /* CIE Version */ .ascii "zR\0" /* CIE Augmentation */ .byte 1 /* CIE Code Alignment Factor */ .byte 0x7c /* CIE Data Alignment Factor */ .byte 0x8 /* CIE RA Column */ .byte 1 /* Augmentation size */ .byte 0x1b /* FDE Encoding (pcrel sdata4) */ .byte 0xc, 4, 4 /* DW_CFA_def_cfa, %esp offset 4 */ .byte 0x80+8, 1 /* DW_CFA_offset, %eip offset 1*-4 */ .balign 4 L(ECIE): .set L(set1),L(EFDE1)-L(SFDE1) .long L(set1) /* FDE Length */ L(SFDE1): .long L(SFDE1)-L(CIE) /* FDE CIE offset */ .long PCREL(L(UW0)) /* Initial location */ .long L(UW5)-L(UW0) /* Address range */ .byte 0 /* Augmentation size */ ADV(UW1, UW0) .byte 0xc, 5, 8 /* DW_CFA_def_cfa, %ebp 8 */ .byte 0x80+5, 2 /* DW_CFA_offset, %ebp 2*-4 */ ADV(UW2, UW1) .byte 0x80+3, 0 /* DW_CFA_offset, %ebx 0*-4 */ ADV(UW3, UW2) .byte 0xa /* DW_CFA_remember_state */ .byte 0xc, 4, 4 /* DW_CFA_def_cfa, %esp 4 */ .byte 0xc0+3 /* DW_CFA_restore, %ebx */ .byte 0xc0+5 /* DW_CFA_restore, %ebp */ ADV(UW4, UW3) .byte 0xb /* DW_CFA_restore_state */ .balign 4 L(EFDE1): .set L(set2),L(EFDE2)-L(SFDE2) .long L(set2) /* FDE Length */ L(SFDE2): .long L(SFDE2)-L(CIE) /* FDE CIE offset */ .long PCREL(L(UW6)) /* Initial location */ .long L(UW8)-L(UW6) /* Address range */ .byte 0 /* Augmentation size */ ADV(UW7, UW6) .byte 0xe, closure_FS+4 /* DW_CFA_def_cfa_offset */ .balign 4 L(EFDE2): .set L(set3),L(EFDE3)-L(SFDE3) .long L(set3) /* FDE Length */ L(SFDE3): .long L(SFDE3)-L(CIE) /* FDE CIE offset */ .long PCREL(L(UW9)) /* Initial location */ .long L(UW11)-L(UW9) /* Address range */ .byte 0 /* Augmentation size */ ADV(UW10, UW9) .byte 0xe, closure_FS+4 /* DW_CFA_def_cfa_offset */ .balign 4 L(EFDE3): .set L(set4),L(EFDE4)-L(SFDE4) .long L(set4) /* FDE Length */ L(SFDE4): .long L(SFDE4)-L(CIE) /* FDE CIE offset */ .long PCREL(L(UW12)) /* Initial location */ .long L(UW20)-L(UW12) /* Address range */ .byte 0 /* Augmentation size */ ADV(UW13, UW12) .byte 0xe, closure_FS+4 /* DW_CFA_def_cfa_offset */ #ifdef FFI_CLOSURE_CALL_INNER_SAVE_EBX ADV(UW14, UW13) .byte 0x80+3, (40-(closure_FS+4))/-4 /* DW_CFA_offset %ebx */ ADV(UW15, UW14) .byte 0xc0+3 /* DW_CFA_restore %ebx */ ADV(UW16, UW15) #else ADV(UW16, UW13) #endif .byte 0xe, 4 /* DW_CFA_def_cfa_offset */ ADV(UW17, UW16) .byte 0xe, closure_FS+4 /* DW_CFA_def_cfa_offset */ ADV(UW18, UW17) .byte 0xe, 4 /* DW_CFA_def_cfa_offset */ ADV(UW19, UW18) .byte 0xe, closure_FS+4 /* DW_CFA_def_cfa_offset */ .balign 4 L(EFDE4): .set L(set5),L(EFDE5)-L(SFDE5) .long L(set5) /* FDE Length */ L(SFDE5): .long L(SFDE5)-L(CIE) /* FDE CIE offset */ .long PCREL(L(UW21)) /* Initial location */ .long L(UW23)-L(UW21) /* Address range */ .byte 0 /* Augmentation size */ ADV(UW22, UW21) .byte 0xe, closure_FS+4 /* DW_CFA_def_cfa_offset */ .balign 4 L(EFDE5): .set L(set6),L(EFDE6)-L(SFDE6) .long L(set6) /* FDE Length */ L(SFDE6): .long L(SFDE6)-L(CIE) /* FDE CIE offset */ .long PCREL(L(UW24)) /* Initial location */ .long L(UW26)-L(UW24) /* Address range */ .byte 0 /* Augmentation size */ .byte 0xe, 8 /* DW_CFA_def_cfa_offset */ .byte 0x80+8, 2 /* DW_CFA_offset %eip, 2*-4 */ ADV(UW25, UW24) .byte 0xe, closure_FS+4 /* DW_CFA_def_cfa_offset */ .balign 4 L(EFDE6): .set L(set7),L(EFDE7)-L(SFDE7) .long L(set7) /* FDE Length */ L(SFDE7): .long L(SFDE7)-L(CIE) /* FDE CIE offset */ .long PCREL(L(UW27)) /* Initial location */ .long L(UW31)-L(UW27) /* Address range */ .byte 0 /* Augmentation size */ ADV(UW28, UW27) .byte 0xe, closure_FS+4 /* DW_CFA_def_cfa_offset */ #ifdef FFI_CLOSURE_CALL_INNER_SAVE_EBX ADV(UW29, UW28) .byte 0x80+3, (40-(closure_FS+4))/-4 /* DW_CFA_offset %ebx */ ADV(UW30, UW29) .byte 0xc0+3 /* DW_CFA_restore %ebx */ #endif .balign 4 L(EFDE7): #if !FFI_NO_RAW_API .set L(set8),L(EFDE8)-L(SFDE8) .long L(set8) /* FDE Length */ L(SFDE8): .long L(SFDE8)-L(CIE) /* FDE CIE offset */ .long PCREL(L(UW32)) /* Initial location */ .long L(UW40)-L(UW32) /* Address range */ .byte 0 /* Augmentation size */ ADV(UW33, UW32) .byte 0xe, raw_closure_S_FS+4 /* DW_CFA_def_cfa_offset */ ADV(UW34, UW33) .byte 0x80+3, 2 /* DW_CFA_offset %ebx 2*-4 */ ADV(UW35, UW34) .byte 0xc0+3 /* DW_CFA_restore %ebx */ ADV(UW36, UW35) .byte 0xe, 4 /* DW_CFA_def_cfa_offset */ ADV(UW37, UW36) .byte 0xe, raw_closure_S_FS+4 /* DW_CFA_def_cfa_offset */ ADV(UW38, UW37) .byte 0xe, 4 /* DW_CFA_def_cfa_offset */ ADV(UW39, UW38) .byte 0xe, raw_closure_S_FS+4 /* DW_CFA_def_cfa_offset */ .balign 4 L(EFDE8): .set L(set9),L(EFDE9)-L(SFDE9) .long L(set9) /* FDE Length */ L(SFDE9): .long L(SFDE9)-L(CIE) /* FDE CIE offset */ .long PCREL(L(UW41)) /* Initial location */ .long L(UW52)-L(UW41) /* Address range */ .byte 0 /* Augmentation size */ ADV(UW42, UW41) .byte 0xe, 0 /* DW_CFA_def_cfa_offset */ .byte 0x9, 8, 2 /* DW_CFA_register %eip, %edx */ ADV(UW43, UW42) .byte 0xe, 4 /* DW_CFA_def_cfa_offset */ ADV(UW44, UW43) .byte 0xe, 8 /* DW_CFA_def_cfa_offset */ .byte 0x80+8, 2 /* DW_CFA_offset %eip 2*-4 */ ADV(UW45, UW44) .byte 0xe, raw_closure_T_FS+8 /* DW_CFA_def_cfa_offset */ ADV(UW46, UW45) .byte 0x80+3, 3 /* DW_CFA_offset %ebx 3*-4 */ ADV(UW47, UW46) .byte 0xc0+3 /* DW_CFA_restore %ebx */ ADV(UW48, UW47) .byte 0xe, 8 /* DW_CFA_def_cfa_offset */ ADV(UW49, UW48) .byte 0xe, raw_closure_T_FS+8 /* DW_CFA_def_cfa_offset */ ADV(UW50, UW49) .byte 0xe, 8 /* DW_CFA_def_cfa_offset */ ADV(UW51, UW50) .byte 0xe, raw_closure_T_FS+8 /* DW_CFA_def_cfa_offset */ .balign 4 L(EFDE9): #endif /* !FFI_NO_RAW_API */ #ifdef _WIN32 .def @feat.00; .scl 3; .type 0; .endef .globl @feat.00 @feat.00 = 1 #endif #ifdef __APPLE__ .subsections_via_symbols .section __LD,__compact_unwind,regular,debug /* compact unwind for ffi_call_i386 */ .long C(ffi_call_i386) .set L1,L(UW5)-L(UW0) .long L1 .long 0x04000000 /* use dwarf unwind info */ .long 0 .long 0 /* compact unwind for ffi_go_closure_EAX */ .long C(ffi_go_closure_EAX) .set L2,L(UW8)-L(UW6) .long L2 .long 0x04000000 /* use dwarf unwind info */ .long 0 .long 0 /* compact unwind for ffi_go_closure_ECX */ .long C(ffi_go_closure_ECX) .set L3,L(UW11)-L(UW9) .long L3 .long 0x04000000 /* use dwarf unwind info */ .long 0 .long 0 /* compact unwind for ffi_closure_i386 */ .long C(ffi_closure_i386) .set L4,L(UW20)-L(UW12) .long L4 .long 0x04000000 /* use dwarf unwind info */ .long 0 .long 0 /* compact unwind for ffi_go_closure_STDCALL */ .long C(ffi_go_closure_STDCALL) .set L5,L(UW23)-L(UW21) .long L5 .long 0x04000000 /* use dwarf unwind info */ .long 0 .long 0 /* compact unwind for ffi_closure_REGISTER */ .long C(ffi_closure_REGISTER) .set L6,L(UW26)-L(UW24) .long L6 .long 0x04000000 /* use dwarf unwind info */ .long 0 .long 0 /* compact unwind for ffi_closure_STDCALL */ .long C(ffi_closure_STDCALL) .set L7,L(UW31)-L(UW27) .long L7 .long 0x04000000 /* use dwarf unwind info */ .long 0 .long 0 /* compact unwind for ffi_closure_raw_SYSV */ .long C(ffi_closure_raw_SYSV) .set L8,L(UW40)-L(UW32) .long L8 .long 0x04000000 /* use dwarf unwind info */ .long 0 .long 0 /* compact unwind for ffi_closure_raw_THISCALL */ .long C(ffi_closure_raw_THISCALL) .set L9,L(UW52)-L(UW41) .long L9 .long 0x04000000 /* use dwarf unwind info */ .long 0 .long 0 #endif /* __APPLE__ */ #endif /* ifndef _MSC_VER */ #endif /* ifdef __i386__ */ #if defined __ELF__ && defined __linux__ .section .note.GNU-stack,"",@progbits #endif