// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2010 Red Hat, Inc. * Copyright (c) 2016-2021 Christoph Hellwig. */ #include #include #include #include #include #include #include #include "trace.h" #include "../internal.h" /* * Private flags for iomap_dio, must not overlap with the public ones in * iomap.h: */ #define IOMAP_DIO_WRITE_FUA (1 << 28) #define IOMAP_DIO_NEED_SYNC (1 << 29) #define IOMAP_DIO_WRITE (1 << 30) #define IOMAP_DIO_DIRTY (1 << 31) struct iomap_dio { struct kiocb *iocb; const struct iomap_dio_ops *dops; loff_t i_size; loff_t size; atomic_t ref; unsigned flags; int error; size_t done_before; bool wait_for_completion; union { /* used during submission and for synchronous completion: */ struct { struct iov_iter *iter; struct task_struct *waiter; struct request_queue *last_queue; blk_qc_t cookie; } submit; /* used for aio completion: */ struct { struct work_struct work; } aio; }; }; int iomap_dio_iopoll(struct kiocb *kiocb, bool spin) { struct request_queue *q = READ_ONCE(kiocb->private); if (!q) return 0; return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin); } EXPORT_SYMBOL_GPL(iomap_dio_iopoll); static void iomap_dio_submit_bio(const struct iomap_iter *iter, struct iomap_dio *dio, struct bio *bio, loff_t pos) { atomic_inc(&dio->ref); if (dio->iocb->ki_flags & IOCB_HIPRI) bio_set_polled(bio, dio->iocb); dio->submit.last_queue = bdev_get_queue(iter->iomap.bdev); if (dio->dops && dio->dops->submit_io) dio->submit.cookie = dio->dops->submit_io(iter, bio, pos); else dio->submit.cookie = submit_bio(bio); } ssize_t iomap_dio_complete(struct iomap_dio *dio) { const struct iomap_dio_ops *dops = dio->dops; struct kiocb *iocb = dio->iocb; struct inode *inode = file_inode(iocb->ki_filp); loff_t offset = iocb->ki_pos; ssize_t ret = dio->error; if (dops && dops->end_io) ret = dops->end_io(iocb, dio->size, ret, dio->flags); if (likely(!ret)) { ret = dio->size; /* check for short read */ if (offset + ret > dio->i_size && !(dio->flags & IOMAP_DIO_WRITE)) ret = dio->i_size - offset; } /* * Try again to invalidate clean pages which might have been cached by * non-direct readahead, or faulted in by get_user_pages() if the source * of the write was an mmap'ed region of the file we're writing. Either * one is a pretty crazy thing to do, so we don't support it 100%. If * this invalidation fails, tough, the write still worked... * * And this page cache invalidation has to be after ->end_io(), as some * filesystems convert unwritten extents to real allocations in * ->end_io() when necessary, otherwise a racing buffer read would cache * zeros from unwritten extents. */ if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) { int err; err = invalidate_inode_pages2_range(inode->i_mapping, offset >> PAGE_SHIFT, (offset + dio->size - 1) >> PAGE_SHIFT); if (err) dio_warn_stale_pagecache(iocb->ki_filp); } inode_dio_end(file_inode(iocb->ki_filp)); if (ret > 0) { iocb->ki_pos += ret; /* * If this is a DSYNC write, make sure we push it to stable * storage now that we've written data. */ if (dio->flags & IOMAP_DIO_NEED_SYNC) ret = generic_write_sync(iocb, ret); if (ret > 0) ret += dio->done_before; } kfree(dio); return ret; } EXPORT_SYMBOL_GPL(iomap_dio_complete); static void iomap_dio_complete_work(struct work_struct *work) { struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); struct kiocb *iocb = dio->iocb; iocb->ki_complete(iocb, iomap_dio_complete(dio), 0); } /* * Set an error in the dio if none is set yet. We have to use cmpxchg * as the submission context and the completion context(s) can race to * update the error. */ static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) { cmpxchg(&dio->error, 0, ret); } static void iomap_dio_bio_end_io(struct bio *bio) { struct iomap_dio *dio = bio->bi_private; bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); if (bio->bi_status) iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); if (atomic_dec_and_test(&dio->ref)) { if (dio->wait_for_completion) { struct task_struct *waiter = dio->submit.waiter; WRITE_ONCE(dio->submit.waiter, NULL); blk_wake_io_task(waiter); } else if (dio->flags & IOMAP_DIO_WRITE) { struct inode *inode = file_inode(dio->iocb->ki_filp); INIT_WORK(&dio->aio.work, iomap_dio_complete_work); queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work); } else { iomap_dio_complete_work(&dio->aio.work); } } if (should_dirty) { bio_check_pages_dirty(bio); } else { bio_release_pages(bio, false); bio_put(bio); } } static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, loff_t pos, unsigned len) { struct page *page = ZERO_PAGE(0); int flags = REQ_SYNC | REQ_IDLE; struct bio *bio; bio = bio_alloc(GFP_KERNEL, 1); bio_set_dev(bio, iter->iomap.bdev); bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); bio->bi_private = dio; bio->bi_end_io = iomap_dio_bio_end_io; get_page(page); __bio_add_page(bio, page, len, 0); bio_set_op_attrs(bio, REQ_OP_WRITE, flags); iomap_dio_submit_bio(iter, dio, bio, pos); } /* * Figure out the bio's operation flags from the dio request, the * mapping, and whether or not we want FUA. Note that we can end up * clearing the WRITE_FUA flag in the dio request. */ static inline unsigned int iomap_dio_bio_opflags(struct iomap_dio *dio, const struct iomap *iomap, bool use_fua) { unsigned int opflags = REQ_SYNC | REQ_IDLE; if (!(dio->flags & IOMAP_DIO_WRITE)) { WARN_ON_ONCE(iomap->flags & IOMAP_F_ZONE_APPEND); return REQ_OP_READ; } if (iomap->flags & IOMAP_F_ZONE_APPEND) opflags |= REQ_OP_ZONE_APPEND; else opflags |= REQ_OP_WRITE; if (use_fua) opflags |= REQ_FUA; else dio->flags &= ~IOMAP_DIO_WRITE_FUA; return opflags; } static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter, struct iomap_dio *dio) { const struct iomap *iomap = &iter->iomap; struct inode *inode = iter->inode; unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev)); unsigned int fs_block_size = i_blocksize(inode), pad; unsigned int align = iov_iter_alignment(dio->submit.iter); loff_t length = iomap_length(iter); loff_t pos = iter->pos; unsigned int bio_opf; struct bio *bio; bool need_zeroout = false; bool use_fua = false; int nr_pages, ret = 0; size_t copied = 0; size_t orig_count; if ((pos | length | align) & ((1 << blkbits) - 1)) return -EINVAL; if (iomap->type == IOMAP_UNWRITTEN) { dio->flags |= IOMAP_DIO_UNWRITTEN; need_zeroout = true; } if (iomap->flags & IOMAP_F_SHARED) dio->flags |= IOMAP_DIO_COW; if (iomap->flags & IOMAP_F_NEW) { need_zeroout = true; } else if (iomap->type == IOMAP_MAPPED) { /* * Use a FUA write if we need datasync semantics, this is a pure * data IO that doesn't require any metadata updates (including * after IO completion such as unwritten extent conversion) and * the underlying device supports FUA. This allows us to avoid * cache flushes on IO completion. */ if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && (dio->flags & IOMAP_DIO_WRITE_FUA) && blk_queue_fua(bdev_get_queue(iomap->bdev))) use_fua = true; } /* * Save the original count and trim the iter to just the extent we * are operating on right now. The iter will be re-expanded once * we are done. */ orig_count = iov_iter_count(dio->submit.iter); iov_iter_truncate(dio->submit.iter, length); if (!iov_iter_count(dio->submit.iter)) goto out; if (need_zeroout) { /* zero out from the start of the block to the write offset */ pad = pos & (fs_block_size - 1); if (pad) iomap_dio_zero(iter, dio, pos - pad, pad); } /* * Set the operation flags early so that bio_iov_iter_get_pages * can set up the page vector appropriately for a ZONE_APPEND * operation. */ bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua); nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); do { size_t n; if (dio->error) { iov_iter_revert(dio->submit.iter, copied); copied = ret = 0; goto out; } bio = bio_alloc(GFP_KERNEL, nr_pages); bio_set_dev(bio, iomap->bdev); bio->bi_iter.bi_sector = iomap_sector(iomap, pos); bio->bi_write_hint = dio->iocb->ki_hint; bio->bi_ioprio = dio->iocb->ki_ioprio; bio->bi_private = dio; bio->bi_end_io = iomap_dio_bio_end_io; bio->bi_opf = bio_opf; ret = bio_iov_iter_get_pages(bio, dio->submit.iter); if (unlikely(ret)) { /* * We have to stop part way through an IO. We must fall * through to the sub-block tail zeroing here, otherwise * this short IO may expose stale data in the tail of * the block we haven't written data to. */ bio_put(bio); goto zero_tail; } n = bio->bi_iter.bi_size; if (dio->flags & IOMAP_DIO_WRITE) { task_io_account_write(n); } else { if (dio->flags & IOMAP_DIO_DIRTY) bio_set_pages_dirty(bio); } dio->size += n; copied += n; nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); iomap_dio_submit_bio(iter, dio, bio, pos); pos += n; } while (nr_pages); /* * We need to zeroout the tail of a sub-block write if the extent type * requires zeroing or the write extends beyond EOF. If we don't zero * the block tail in the latter case, we can expose stale data via mmap * reads of the EOF block. */ zero_tail: if (need_zeroout || ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { /* zero out from the end of the write to the end of the block */ pad = pos & (fs_block_size - 1); if (pad) iomap_dio_zero(iter, dio, pos, fs_block_size - pad); } out: /* Undo iter limitation to current extent */ iov_iter_reexpand(dio->submit.iter, orig_count - copied); if (copied) return copied; return ret; } static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter, struct iomap_dio *dio) { loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); dio->size += length; if (!length) return -EFAULT; return length; } static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi, struct iomap_dio *dio) { const struct iomap *iomap = &iomi->iomap; struct iov_iter *iter = dio->submit.iter; void *inline_data = iomap_inline_data(iomap, iomi->pos); loff_t length = iomap_length(iomi); loff_t pos = iomi->pos; size_t copied; if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) return -EIO; if (dio->flags & IOMAP_DIO_WRITE) { loff_t size = iomi->inode->i_size; if (pos > size) memset(iomap_inline_data(iomap, size), 0, pos - size); copied = copy_from_iter(inline_data, length, iter); if (copied) { if (pos + copied > size) i_size_write(iomi->inode, pos + copied); mark_inode_dirty(iomi->inode); } } else { copied = copy_to_iter(inline_data, length, iter); } dio->size += copied; if (!copied) return -EFAULT; return copied; } static loff_t iomap_dio_iter(const struct iomap_iter *iter, struct iomap_dio *dio) { switch (iter->iomap.type) { case IOMAP_HOLE: if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) return -EIO; return iomap_dio_hole_iter(iter, dio); case IOMAP_UNWRITTEN: if (!(dio->flags & IOMAP_DIO_WRITE)) return iomap_dio_hole_iter(iter, dio); return iomap_dio_bio_iter(iter, dio); case IOMAP_MAPPED: return iomap_dio_bio_iter(iter, dio); case IOMAP_INLINE: return iomap_dio_inline_iter(iter, dio); case IOMAP_DELALLOC: /* * DIO is not serialised against mmap() access at all, and so * if the page_mkwrite occurs between the writeback and the * iomap_iter() call in the DIO path, then it will see the * DELALLOC block that the page-mkwrite allocated. */ pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", dio->iocb->ki_filp, current->comm); return -EIO; default: WARN_ON_ONCE(1); return -EIO; } } /* * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO * is being issued as AIO or not. This allows us to optimise pure data writes * to use REQ_FUA rather than requiring generic_write_sync() to issue a * REQ_FLUSH post write. This is slightly tricky because a single request here * can be mapped into multiple disjoint IOs and only a subset of the IOs issued * may be pure data writes. In that case, we still need to do a full data sync * completion. * * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, * __iomap_dio_rw can return a partial result if it encounters a non-resident * page in @iter after preparing a transfer. In that case, the non-resident * pages can be faulted in and the request resumed with @done_before set to the * number of bytes previously transferred. The request will then complete with * the correct total number of bytes transferred; this is essential for * completing partial requests asynchronously. * * Returns -ENOTBLK In case of a page invalidation invalidation failure for * writes. The callers needs to fall back to buffered I/O in this case. */ struct iomap_dio * __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, const struct iomap_ops *ops, const struct iomap_dio_ops *dops, unsigned int dio_flags, size_t done_before) { struct address_space *mapping = iocb->ki_filp->f_mapping; struct inode *inode = file_inode(iocb->ki_filp); struct iomap_iter iomi = { .inode = inode, .pos = iocb->ki_pos, .len = iov_iter_count(iter), .flags = IOMAP_DIRECT, }; loff_t end = iomi.pos + iomi.len - 1, ret = 0; bool wait_for_completion = is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); struct blk_plug plug; struct iomap_dio *dio; if (!iomi.len) return NULL; dio = kmalloc(sizeof(*dio), GFP_KERNEL); if (!dio) return ERR_PTR(-ENOMEM); dio->iocb = iocb; atomic_set(&dio->ref, 1); dio->size = 0; dio->i_size = i_size_read(inode); dio->dops = dops; dio->error = 0; dio->flags = 0; dio->done_before = done_before; dio->submit.iter = iter; dio->submit.waiter = current; dio->submit.cookie = BLK_QC_T_NONE; dio->submit.last_queue = NULL; if (iov_iter_rw(iter) == READ) { if (iomi.pos >= dio->i_size) goto out_free_dio; if (iocb->ki_flags & IOCB_NOWAIT) { if (filemap_range_needs_writeback(mapping, iomi.pos, end)) { ret = -EAGAIN; goto out_free_dio; } iomi.flags |= IOMAP_NOWAIT; } if (iter_is_iovec(iter)) dio->flags |= IOMAP_DIO_DIRTY; } else { iomi.flags |= IOMAP_WRITE; dio->flags |= IOMAP_DIO_WRITE; if (iocb->ki_flags & IOCB_NOWAIT) { if (filemap_range_has_page(mapping, iomi.pos, end)) { ret = -EAGAIN; goto out_free_dio; } iomi.flags |= IOMAP_NOWAIT; } /* for data sync or sync, we need sync completion processing */ if (iocb->ki_flags & IOCB_DSYNC) dio->flags |= IOMAP_DIO_NEED_SYNC; /* * For datasync only writes, we optimistically try using FUA for * this IO. Any non-FUA write that occurs will clear this flag, * hence we know before completion whether a cache flush is * necessary. */ if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC) dio->flags |= IOMAP_DIO_WRITE_FUA; } if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { ret = -EAGAIN; if (iomi.pos >= dio->i_size || iomi.pos + iomi.len > dio->i_size) goto out_free_dio; iomi.flags |= IOMAP_OVERWRITE_ONLY; } ret = filemap_write_and_wait_range(mapping, iomi.pos, end); if (ret) goto out_free_dio; if (iov_iter_rw(iter) == WRITE) { /* * Try to invalidate cache pages for the range we are writing. * If this invalidation fails, let the caller fall back to * buffered I/O. */ if (invalidate_inode_pages2_range(mapping, iomi.pos >> PAGE_SHIFT, end >> PAGE_SHIFT)) { trace_iomap_dio_invalidate_fail(inode, iomi.pos, iomi.len); ret = -ENOTBLK; goto out_free_dio; } if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { ret = sb_init_dio_done_wq(inode->i_sb); if (ret < 0) goto out_free_dio; } } inode_dio_begin(inode); blk_start_plug(&plug); while ((ret = iomap_iter(&iomi, ops)) > 0) iomi.processed = iomap_dio_iter(&iomi, dio); blk_finish_plug(&plug); /* * We only report that we've read data up to i_size. * Revert iter to a state corresponding to that as some callers (such * as the splice code) rely on it. */ if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) iov_iter_revert(iter, iomi.pos - dio->i_size); if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { if (!(iocb->ki_flags & IOCB_NOWAIT)) wait_for_completion = true; ret = 0; } /* magic error code to fall back to buffered I/O */ if (ret == -ENOTBLK) { wait_for_completion = true; ret = 0; } if (ret < 0) iomap_dio_set_error(dio, ret); /* * If all the writes we issued were FUA, we don't need to flush the * cache on IO completion. Clear the sync flag for this case. */ if (dio->flags & IOMAP_DIO_WRITE_FUA) dio->flags &= ~IOMAP_DIO_NEED_SYNC; WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie); WRITE_ONCE(iocb->private, dio->submit.last_queue); /* * We are about to drop our additional submission reference, which * might be the last reference to the dio. There are three different * ways we can progress here: * * (a) If this is the last reference we will always complete and free * the dio ourselves. * (b) If this is not the last reference, and we serve an asynchronous * iocb, we must never touch the dio after the decrement, the * I/O completion handler will complete and free it. * (c) If this is not the last reference, but we serve a synchronous * iocb, the I/O completion handler will wake us up on the drop * of the final reference, and we will complete and free it here * after we got woken by the I/O completion handler. */ dio->wait_for_completion = wait_for_completion; if (!atomic_dec_and_test(&dio->ref)) { if (!wait_for_completion) return ERR_PTR(-EIOCBQUEUED); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (!READ_ONCE(dio->submit.waiter)) break; if (!(iocb->ki_flags & IOCB_HIPRI) || !dio->submit.last_queue || !blk_poll(dio->submit.last_queue, dio->submit.cookie, true)) blk_io_schedule(); } __set_current_state(TASK_RUNNING); } return dio; out_free_dio: kfree(dio); if (ret) return ERR_PTR(ret); return NULL; } EXPORT_SYMBOL_GPL(__iomap_dio_rw); ssize_t iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, const struct iomap_ops *ops, const struct iomap_dio_ops *dops, unsigned int dio_flags, size_t done_before) { struct iomap_dio *dio; dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, done_before); if (IS_ERR_OR_NULL(dio)) return PTR_ERR_OR_ZERO(dio); return iomap_dio_complete(dio); } EXPORT_SYMBOL_GPL(iomap_dio_rw);