// SPDX-License-Identifier: GPL-2.0 /* Realtek SMI subdriver for the Realtek RTL8366RB ethernet switch * * This is a sparsely documented chip, the only viable documentation seems * to be a patched up code drop from the vendor that appear in various * GPL source trees. * * Copyright (C) 2017 Linus Walleij * Copyright (C) 2009-2010 Gabor Juhos * Copyright (C) 2010 Antti Seppälä * Copyright (C) 2010 Roman Yeryomin * Copyright (C) 2011 Colin Leitner */ #include #include #include #include #include #include #include #include #include "realtek-smi-core.h" #define RTL8366RB_PORT_NUM_CPU 5 #define RTL8366RB_NUM_PORTS 6 #define RTL8366RB_PHY_NO_MAX 4 #define RTL8366RB_PHY_ADDR_MAX 31 /* Switch Global Configuration register */ #define RTL8366RB_SGCR 0x0000 #define RTL8366RB_SGCR_EN_BC_STORM_CTRL BIT(0) #define RTL8366RB_SGCR_MAX_LENGTH(a) ((a) << 4) #define RTL8366RB_SGCR_MAX_LENGTH_MASK RTL8366RB_SGCR_MAX_LENGTH(0x3) #define RTL8366RB_SGCR_MAX_LENGTH_1522 RTL8366RB_SGCR_MAX_LENGTH(0x0) #define RTL8366RB_SGCR_MAX_LENGTH_1536 RTL8366RB_SGCR_MAX_LENGTH(0x1) #define RTL8366RB_SGCR_MAX_LENGTH_1552 RTL8366RB_SGCR_MAX_LENGTH(0x2) #define RTL8366RB_SGCR_MAX_LENGTH_16000 RTL8366RB_SGCR_MAX_LENGTH(0x3) #define RTL8366RB_SGCR_EN_VLAN BIT(13) #define RTL8366RB_SGCR_EN_VLAN_4KTB BIT(14) /* Port Enable Control register */ #define RTL8366RB_PECR 0x0001 /* Switch per-port learning disablement register */ #define RTL8366RB_PORT_LEARNDIS_CTRL 0x0002 /* Security control, actually aging register */ #define RTL8366RB_SECURITY_CTRL 0x0003 #define RTL8366RB_SSCR2 0x0004 #define RTL8366RB_SSCR2_DROP_UNKNOWN_DA BIT(0) /* Port Mode Control registers */ #define RTL8366RB_PMC0 0x0005 #define RTL8366RB_PMC0_SPI BIT(0) #define RTL8366RB_PMC0_EN_AUTOLOAD BIT(1) #define RTL8366RB_PMC0_PROBE BIT(2) #define RTL8366RB_PMC0_DIS_BISR BIT(3) #define RTL8366RB_PMC0_ADCTEST BIT(4) #define RTL8366RB_PMC0_SRAM_DIAG BIT(5) #define RTL8366RB_PMC0_EN_SCAN BIT(6) #define RTL8366RB_PMC0_P4_IOMODE_SHIFT 7 #define RTL8366RB_PMC0_P4_IOMODE_MASK GENMASK(9, 7) #define RTL8366RB_PMC0_P5_IOMODE_SHIFT 10 #define RTL8366RB_PMC0_P5_IOMODE_MASK GENMASK(12, 10) #define RTL8366RB_PMC0_SDSMODE_SHIFT 13 #define RTL8366RB_PMC0_SDSMODE_MASK GENMASK(15, 13) #define RTL8366RB_PMC1 0x0006 /* Port Mirror Control Register */ #define RTL8366RB_PMCR 0x0007 #define RTL8366RB_PMCR_SOURCE_PORT(a) (a) #define RTL8366RB_PMCR_SOURCE_PORT_MASK 0x000f #define RTL8366RB_PMCR_MONITOR_PORT(a) ((a) << 4) #define RTL8366RB_PMCR_MONITOR_PORT_MASK 0x00f0 #define RTL8366RB_PMCR_MIRROR_RX BIT(8) #define RTL8366RB_PMCR_MIRROR_TX BIT(9) #define RTL8366RB_PMCR_MIRROR_SPC BIT(10) #define RTL8366RB_PMCR_MIRROR_ISO BIT(11) /* bits 0..7 = port 0, bits 8..15 = port 1 */ #define RTL8366RB_PAACR0 0x0010 /* bits 0..7 = port 2, bits 8..15 = port 3 */ #define RTL8366RB_PAACR1 0x0011 /* bits 0..7 = port 4, bits 8..15 = port 5 */ #define RTL8366RB_PAACR2 0x0012 #define RTL8366RB_PAACR_SPEED_10M 0 #define RTL8366RB_PAACR_SPEED_100M 1 #define RTL8366RB_PAACR_SPEED_1000M 2 #define RTL8366RB_PAACR_FULL_DUPLEX BIT(2) #define RTL8366RB_PAACR_LINK_UP BIT(4) #define RTL8366RB_PAACR_TX_PAUSE BIT(5) #define RTL8366RB_PAACR_RX_PAUSE BIT(6) #define RTL8366RB_PAACR_AN BIT(7) #define RTL8366RB_PAACR_CPU_PORT (RTL8366RB_PAACR_SPEED_1000M | \ RTL8366RB_PAACR_FULL_DUPLEX | \ RTL8366RB_PAACR_LINK_UP | \ RTL8366RB_PAACR_TX_PAUSE | \ RTL8366RB_PAACR_RX_PAUSE) /* bits 0..7 = port 0, bits 8..15 = port 1 */ #define RTL8366RB_PSTAT0 0x0014 /* bits 0..7 = port 2, bits 8..15 = port 3 */ #define RTL8366RB_PSTAT1 0x0015 /* bits 0..7 = port 4, bits 8..15 = port 5 */ #define RTL8366RB_PSTAT2 0x0016 #define RTL8366RB_POWER_SAVING_REG 0x0021 /* Spanning tree status (STP) control, two bits per port per FID */ #define RTL8366RB_STP_STATE_BASE 0x0050 /* 0x0050..0x0057 */ #define RTL8366RB_STP_STATE_DISABLED 0x0 #define RTL8366RB_STP_STATE_BLOCKING 0x1 #define RTL8366RB_STP_STATE_LEARNING 0x2 #define RTL8366RB_STP_STATE_FORWARDING 0x3 #define RTL8366RB_STP_MASK GENMASK(1, 0) #define RTL8366RB_STP_STATE(port, state) \ ((state) << ((port) * 2)) #define RTL8366RB_STP_STATE_MASK(port) \ RTL8366RB_STP_STATE((port), RTL8366RB_STP_MASK) /* CPU port control reg */ #define RTL8368RB_CPU_CTRL_REG 0x0061 #define RTL8368RB_CPU_PORTS_MSK 0x00FF /* Disables inserting custom tag length/type 0x8899 */ #define RTL8368RB_CPU_NO_TAG BIT(15) #define RTL8366RB_SMAR0 0x0070 /* bits 0..15 */ #define RTL8366RB_SMAR1 0x0071 /* bits 16..31 */ #define RTL8366RB_SMAR2 0x0072 /* bits 32..47 */ #define RTL8366RB_RESET_CTRL_REG 0x0100 #define RTL8366RB_CHIP_CTRL_RESET_HW BIT(0) #define RTL8366RB_CHIP_CTRL_RESET_SW BIT(1) #define RTL8366RB_CHIP_ID_REG 0x0509 #define RTL8366RB_CHIP_ID_8366 0x5937 #define RTL8366RB_CHIP_VERSION_CTRL_REG 0x050A #define RTL8366RB_CHIP_VERSION_MASK 0xf /* PHY registers control */ #define RTL8366RB_PHY_ACCESS_CTRL_REG 0x8000 #define RTL8366RB_PHY_CTRL_READ BIT(0) #define RTL8366RB_PHY_CTRL_WRITE 0 #define RTL8366RB_PHY_ACCESS_BUSY_REG 0x8001 #define RTL8366RB_PHY_INT_BUSY BIT(0) #define RTL8366RB_PHY_EXT_BUSY BIT(4) #define RTL8366RB_PHY_ACCESS_DATA_REG 0x8002 #define RTL8366RB_PHY_EXT_CTRL_REG 0x8010 #define RTL8366RB_PHY_EXT_WRDATA_REG 0x8011 #define RTL8366RB_PHY_EXT_RDDATA_REG 0x8012 #define RTL8366RB_PHY_REG_MASK 0x1f #define RTL8366RB_PHY_PAGE_OFFSET 5 #define RTL8366RB_PHY_PAGE_MASK (0xf << 5) #define RTL8366RB_PHY_NO_OFFSET 9 #define RTL8366RB_PHY_NO_MASK (0x1f << 9) /* VLAN Ingress Control Register 1, one bit per port. * bit 0 .. 5 will make the switch drop ingress frames without * VID such as untagged or priority-tagged frames for respective * port. * bit 6 .. 11 will make the switch drop ingress frames carrying * a C-tag with VID != 0 for respective port. */ #define RTL8366RB_VLAN_INGRESS_CTRL1_REG 0x037E #define RTL8366RB_VLAN_INGRESS_CTRL1_DROP(port) (BIT((port)) | BIT((port) + 6)) /* VLAN Ingress Control Register 2, one bit per port. * bit0 .. bit5 will make the switch drop all ingress frames with * a VLAN classification that does not include the port is in its * member set. */ #define RTL8366RB_VLAN_INGRESS_CTRL2_REG 0x037f /* LED control registers */ #define RTL8366RB_LED_BLINKRATE_REG 0x0430 #define RTL8366RB_LED_BLINKRATE_MASK 0x0007 #define RTL8366RB_LED_BLINKRATE_28MS 0x0000 #define RTL8366RB_LED_BLINKRATE_56MS 0x0001 #define RTL8366RB_LED_BLINKRATE_84MS 0x0002 #define RTL8366RB_LED_BLINKRATE_111MS 0x0003 #define RTL8366RB_LED_BLINKRATE_222MS 0x0004 #define RTL8366RB_LED_BLINKRATE_446MS 0x0005 #define RTL8366RB_LED_CTRL_REG 0x0431 #define RTL8366RB_LED_OFF 0x0 #define RTL8366RB_LED_DUP_COL 0x1 #define RTL8366RB_LED_LINK_ACT 0x2 #define RTL8366RB_LED_SPD1000 0x3 #define RTL8366RB_LED_SPD100 0x4 #define RTL8366RB_LED_SPD10 0x5 #define RTL8366RB_LED_SPD1000_ACT 0x6 #define RTL8366RB_LED_SPD100_ACT 0x7 #define RTL8366RB_LED_SPD10_ACT 0x8 #define RTL8366RB_LED_SPD100_10_ACT 0x9 #define RTL8366RB_LED_FIBER 0xa #define RTL8366RB_LED_AN_FAULT 0xb #define RTL8366RB_LED_LINK_RX 0xc #define RTL8366RB_LED_LINK_TX 0xd #define RTL8366RB_LED_MASTER 0xe #define RTL8366RB_LED_FORCE 0xf #define RTL8366RB_LED_0_1_CTRL_REG 0x0432 #define RTL8366RB_LED_1_OFFSET 6 #define RTL8366RB_LED_2_3_CTRL_REG 0x0433 #define RTL8366RB_LED_3_OFFSET 6 #define RTL8366RB_MIB_COUNT 33 #define RTL8366RB_GLOBAL_MIB_COUNT 1 #define RTL8366RB_MIB_COUNTER_PORT_OFFSET 0x0050 #define RTL8366RB_MIB_COUNTER_BASE 0x1000 #define RTL8366RB_MIB_CTRL_REG 0x13F0 #define RTL8366RB_MIB_CTRL_USER_MASK 0x0FFC #define RTL8366RB_MIB_CTRL_BUSY_MASK BIT(0) #define RTL8366RB_MIB_CTRL_RESET_MASK BIT(1) #define RTL8366RB_MIB_CTRL_PORT_RESET(_p) BIT(2 + (_p)) #define RTL8366RB_MIB_CTRL_GLOBAL_RESET BIT(11) #define RTL8366RB_PORT_VLAN_CTRL_BASE 0x0063 #define RTL8366RB_PORT_VLAN_CTRL_REG(_p) \ (RTL8366RB_PORT_VLAN_CTRL_BASE + (_p) / 4) #define RTL8366RB_PORT_VLAN_CTRL_MASK 0xf #define RTL8366RB_PORT_VLAN_CTRL_SHIFT(_p) (4 * ((_p) % 4)) #define RTL8366RB_VLAN_TABLE_READ_BASE 0x018C #define RTL8366RB_VLAN_TABLE_WRITE_BASE 0x0185 #define RTL8366RB_TABLE_ACCESS_CTRL_REG 0x0180 #define RTL8366RB_TABLE_VLAN_READ_CTRL 0x0E01 #define RTL8366RB_TABLE_VLAN_WRITE_CTRL 0x0F01 #define RTL8366RB_VLAN_MC_BASE(_x) (0x0020 + (_x) * 3) #define RTL8366RB_PORT_LINK_STATUS_BASE 0x0014 #define RTL8366RB_PORT_STATUS_SPEED_MASK 0x0003 #define RTL8366RB_PORT_STATUS_DUPLEX_MASK 0x0004 #define RTL8366RB_PORT_STATUS_LINK_MASK 0x0010 #define RTL8366RB_PORT_STATUS_TXPAUSE_MASK 0x0020 #define RTL8366RB_PORT_STATUS_RXPAUSE_MASK 0x0040 #define RTL8366RB_PORT_STATUS_AN_MASK 0x0080 #define RTL8366RB_NUM_VLANS 16 #define RTL8366RB_NUM_LEDGROUPS 4 #define RTL8366RB_NUM_VIDS 4096 #define RTL8366RB_PRIORITYMAX 7 #define RTL8366RB_NUM_FIDS 8 #define RTL8366RB_FIDMAX 7 #define RTL8366RB_PORT_1 BIT(0) /* In userspace port 0 */ #define RTL8366RB_PORT_2 BIT(1) /* In userspace port 1 */ #define RTL8366RB_PORT_3 BIT(2) /* In userspace port 2 */ #define RTL8366RB_PORT_4 BIT(3) /* In userspace port 3 */ #define RTL8366RB_PORT_5 BIT(4) /* In userspace port 4 */ #define RTL8366RB_PORT_CPU BIT(5) /* CPU port */ #define RTL8366RB_PORT_ALL (RTL8366RB_PORT_1 | \ RTL8366RB_PORT_2 | \ RTL8366RB_PORT_3 | \ RTL8366RB_PORT_4 | \ RTL8366RB_PORT_5 | \ RTL8366RB_PORT_CPU) #define RTL8366RB_PORT_ALL_BUT_CPU (RTL8366RB_PORT_1 | \ RTL8366RB_PORT_2 | \ RTL8366RB_PORT_3 | \ RTL8366RB_PORT_4 | \ RTL8366RB_PORT_5) #define RTL8366RB_PORT_ALL_EXTERNAL (RTL8366RB_PORT_1 | \ RTL8366RB_PORT_2 | \ RTL8366RB_PORT_3 | \ RTL8366RB_PORT_4) #define RTL8366RB_PORT_ALL_INTERNAL RTL8366RB_PORT_CPU /* First configuration word per member config, VID and prio */ #define RTL8366RB_VLAN_VID_MASK 0xfff #define RTL8366RB_VLAN_PRIORITY_SHIFT 12 #define RTL8366RB_VLAN_PRIORITY_MASK 0x7 /* Second configuration word per member config, member and untagged */ #define RTL8366RB_VLAN_UNTAG_SHIFT 8 #define RTL8366RB_VLAN_UNTAG_MASK 0xff #define RTL8366RB_VLAN_MEMBER_MASK 0xff /* Third config word per member config, STAG currently unused */ #define RTL8366RB_VLAN_STAG_MBR_MASK 0xff #define RTL8366RB_VLAN_STAG_MBR_SHIFT 8 #define RTL8366RB_VLAN_STAG_IDX_MASK 0x7 #define RTL8366RB_VLAN_STAG_IDX_SHIFT 5 #define RTL8366RB_VLAN_FID_MASK 0x7 /* Port ingress bandwidth control */ #define RTL8366RB_IB_BASE 0x0200 #define RTL8366RB_IB_REG(pnum) (RTL8366RB_IB_BASE + (pnum)) #define RTL8366RB_IB_BDTH_MASK 0x3fff #define RTL8366RB_IB_PREIFG BIT(14) /* Port egress bandwidth control */ #define RTL8366RB_EB_BASE 0x02d1 #define RTL8366RB_EB_REG(pnum) (RTL8366RB_EB_BASE + (pnum)) #define RTL8366RB_EB_BDTH_MASK 0x3fff #define RTL8366RB_EB_PREIFG_REG 0x02f8 #define RTL8366RB_EB_PREIFG BIT(9) #define RTL8366RB_BDTH_SW_MAX 1048512 /* 1048576? */ #define RTL8366RB_BDTH_UNIT 64 #define RTL8366RB_BDTH_REG_DEFAULT 16383 /* QOS */ #define RTL8366RB_QOS BIT(15) /* Include/Exclude Preamble and IFG (20 bytes). 0:Exclude, 1:Include. */ #define RTL8366RB_QOS_DEFAULT_PREIFG 1 /* Interrupt handling */ #define RTL8366RB_INTERRUPT_CONTROL_REG 0x0440 #define RTL8366RB_INTERRUPT_POLARITY BIT(0) #define RTL8366RB_P4_RGMII_LED BIT(2) #define RTL8366RB_INTERRUPT_MASK_REG 0x0441 #define RTL8366RB_INTERRUPT_LINK_CHGALL GENMASK(11, 0) #define RTL8366RB_INTERRUPT_ACLEXCEED BIT(8) #define RTL8366RB_INTERRUPT_STORMEXCEED BIT(9) #define RTL8366RB_INTERRUPT_P4_FIBER BIT(12) #define RTL8366RB_INTERRUPT_P4_UTP BIT(13) #define RTL8366RB_INTERRUPT_VALID (RTL8366RB_INTERRUPT_LINK_CHGALL | \ RTL8366RB_INTERRUPT_ACLEXCEED | \ RTL8366RB_INTERRUPT_STORMEXCEED | \ RTL8366RB_INTERRUPT_P4_FIBER | \ RTL8366RB_INTERRUPT_P4_UTP) #define RTL8366RB_INTERRUPT_STATUS_REG 0x0442 #define RTL8366RB_NUM_INTERRUPT 14 /* 0..13 */ /* Port isolation registers */ #define RTL8366RB_PORT_ISO_BASE 0x0F08 #define RTL8366RB_PORT_ISO(pnum) (RTL8366RB_PORT_ISO_BASE + (pnum)) #define RTL8366RB_PORT_ISO_EN BIT(0) #define RTL8366RB_PORT_ISO_PORTS_MASK GENMASK(7, 1) #define RTL8366RB_PORT_ISO_PORTS(pmask) ((pmask) << 1) /* bits 0..5 enable force when cleared */ #define RTL8366RB_MAC_FORCE_CTRL_REG 0x0F11 #define RTL8366RB_OAM_PARSER_REG 0x0F14 #define RTL8366RB_OAM_MULTIPLEXER_REG 0x0F15 #define RTL8366RB_GREEN_FEATURE_REG 0x0F51 #define RTL8366RB_GREEN_FEATURE_MSK 0x0007 #define RTL8366RB_GREEN_FEATURE_TX BIT(0) #define RTL8366RB_GREEN_FEATURE_RX BIT(2) /** * struct rtl8366rb - RTL8366RB-specific data * @max_mtu: per-port max MTU setting * @pvid_enabled: if PVID is set for respective port */ struct rtl8366rb { unsigned int max_mtu[RTL8366RB_NUM_PORTS]; bool pvid_enabled[RTL8366RB_NUM_PORTS]; }; static struct rtl8366_mib_counter rtl8366rb_mib_counters[] = { { 0, 0, 4, "IfInOctets" }, { 0, 4, 4, "EtherStatsOctets" }, { 0, 8, 2, "EtherStatsUnderSizePkts" }, { 0, 10, 2, "EtherFragments" }, { 0, 12, 2, "EtherStatsPkts64Octets" }, { 0, 14, 2, "EtherStatsPkts65to127Octets" }, { 0, 16, 2, "EtherStatsPkts128to255Octets" }, { 0, 18, 2, "EtherStatsPkts256to511Octets" }, { 0, 20, 2, "EtherStatsPkts512to1023Octets" }, { 0, 22, 2, "EtherStatsPkts1024to1518Octets" }, { 0, 24, 2, "EtherOversizeStats" }, { 0, 26, 2, "EtherStatsJabbers" }, { 0, 28, 2, "IfInUcastPkts" }, { 0, 30, 2, "EtherStatsMulticastPkts" }, { 0, 32, 2, "EtherStatsBroadcastPkts" }, { 0, 34, 2, "EtherStatsDropEvents" }, { 0, 36, 2, "Dot3StatsFCSErrors" }, { 0, 38, 2, "Dot3StatsSymbolErrors" }, { 0, 40, 2, "Dot3InPauseFrames" }, { 0, 42, 2, "Dot3ControlInUnknownOpcodes" }, { 0, 44, 4, "IfOutOctets" }, { 0, 48, 2, "Dot3StatsSingleCollisionFrames" }, { 0, 50, 2, "Dot3StatMultipleCollisionFrames" }, { 0, 52, 2, "Dot3sDeferredTransmissions" }, { 0, 54, 2, "Dot3StatsLateCollisions" }, { 0, 56, 2, "EtherStatsCollisions" }, { 0, 58, 2, "Dot3StatsExcessiveCollisions" }, { 0, 60, 2, "Dot3OutPauseFrames" }, { 0, 62, 2, "Dot1dBasePortDelayExceededDiscards" }, { 0, 64, 2, "Dot1dTpPortInDiscards" }, { 0, 66, 2, "IfOutUcastPkts" }, { 0, 68, 2, "IfOutMulticastPkts" }, { 0, 70, 2, "IfOutBroadcastPkts" }, }; static int rtl8366rb_get_mib_counter(struct realtek_smi *smi, int port, struct rtl8366_mib_counter *mib, u64 *mibvalue) { u32 addr, val; int ret; int i; addr = RTL8366RB_MIB_COUNTER_BASE + RTL8366RB_MIB_COUNTER_PORT_OFFSET * (port) + mib->offset; /* Writing access counter address first * then ASIC will prepare 64bits counter wait for being retrived */ ret = regmap_write(smi->map, addr, 0); /* Write whatever */ if (ret) return ret; /* Read MIB control register */ ret = regmap_read(smi->map, RTL8366RB_MIB_CTRL_REG, &val); if (ret) return -EIO; if (val & RTL8366RB_MIB_CTRL_BUSY_MASK) return -EBUSY; if (val & RTL8366RB_MIB_CTRL_RESET_MASK) return -EIO; /* Read each individual MIB 16 bits at the time */ *mibvalue = 0; for (i = mib->length; i > 0; i--) { ret = regmap_read(smi->map, addr + (i - 1), &val); if (ret) return ret; *mibvalue = (*mibvalue << 16) | (val & 0xFFFF); } return 0; } static u32 rtl8366rb_get_irqmask(struct irq_data *d) { int line = irqd_to_hwirq(d); u32 val; /* For line interrupts we combine link down in bits * 6..11 with link up in bits 0..5 into one interrupt. */ if (line < 12) val = BIT(line) | BIT(line + 6); else val = BIT(line); return val; } static void rtl8366rb_mask_irq(struct irq_data *d) { struct realtek_smi *smi = irq_data_get_irq_chip_data(d); int ret; ret = regmap_update_bits(smi->map, RTL8366RB_INTERRUPT_MASK_REG, rtl8366rb_get_irqmask(d), 0); if (ret) dev_err(smi->dev, "could not mask IRQ\n"); } static void rtl8366rb_unmask_irq(struct irq_data *d) { struct realtek_smi *smi = irq_data_get_irq_chip_data(d); int ret; ret = regmap_update_bits(smi->map, RTL8366RB_INTERRUPT_MASK_REG, rtl8366rb_get_irqmask(d), rtl8366rb_get_irqmask(d)); if (ret) dev_err(smi->dev, "could not unmask IRQ\n"); } static irqreturn_t rtl8366rb_irq(int irq, void *data) { struct realtek_smi *smi = data; u32 stat; int ret; /* This clears the IRQ status register */ ret = regmap_read(smi->map, RTL8366RB_INTERRUPT_STATUS_REG, &stat); if (ret) { dev_err(smi->dev, "can't read interrupt status\n"); return IRQ_NONE; } stat &= RTL8366RB_INTERRUPT_VALID; if (!stat) return IRQ_NONE; while (stat) { int line = __ffs(stat); int child_irq; stat &= ~BIT(line); /* For line interrupts we combine link down in bits * 6..11 with link up in bits 0..5 into one interrupt. */ if (line < 12 && line > 5) line -= 5; child_irq = irq_find_mapping(smi->irqdomain, line); handle_nested_irq(child_irq); } return IRQ_HANDLED; } static struct irq_chip rtl8366rb_irq_chip = { .name = "RTL8366RB", .irq_mask = rtl8366rb_mask_irq, .irq_unmask = rtl8366rb_unmask_irq, }; static int rtl8366rb_irq_map(struct irq_domain *domain, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_data(irq, domain->host_data); irq_set_chip_and_handler(irq, &rtl8366rb_irq_chip, handle_simple_irq); irq_set_nested_thread(irq, 1); irq_set_noprobe(irq); return 0; } static void rtl8366rb_irq_unmap(struct irq_domain *d, unsigned int irq) { irq_set_nested_thread(irq, 0); irq_set_chip_and_handler(irq, NULL, NULL); irq_set_chip_data(irq, NULL); } static const struct irq_domain_ops rtl8366rb_irqdomain_ops = { .map = rtl8366rb_irq_map, .unmap = rtl8366rb_irq_unmap, .xlate = irq_domain_xlate_onecell, }; static int rtl8366rb_setup_cascaded_irq(struct realtek_smi *smi) { struct device_node *intc; unsigned long irq_trig; int irq; int ret; u32 val; int i; intc = of_get_child_by_name(smi->dev->of_node, "interrupt-controller"); if (!intc) { dev_err(smi->dev, "missing child interrupt-controller node\n"); return -EINVAL; } /* RB8366RB IRQs cascade off this one */ irq = of_irq_get(intc, 0); if (irq <= 0) { dev_err(smi->dev, "failed to get parent IRQ\n"); ret = irq ? irq : -EINVAL; goto out_put_node; } /* This clears the IRQ status register */ ret = regmap_read(smi->map, RTL8366RB_INTERRUPT_STATUS_REG, &val); if (ret) { dev_err(smi->dev, "can't read interrupt status\n"); goto out_put_node; } /* Fetch IRQ edge information from the descriptor */ irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq)); switch (irq_trig) { case IRQF_TRIGGER_RISING: case IRQF_TRIGGER_HIGH: dev_info(smi->dev, "active high/rising IRQ\n"); val = 0; break; case IRQF_TRIGGER_FALLING: case IRQF_TRIGGER_LOW: dev_info(smi->dev, "active low/falling IRQ\n"); val = RTL8366RB_INTERRUPT_POLARITY; break; } ret = regmap_update_bits(smi->map, RTL8366RB_INTERRUPT_CONTROL_REG, RTL8366RB_INTERRUPT_POLARITY, val); if (ret) { dev_err(smi->dev, "could not configure IRQ polarity\n"); goto out_put_node; } ret = devm_request_threaded_irq(smi->dev, irq, NULL, rtl8366rb_irq, IRQF_ONESHOT, "RTL8366RB", smi); if (ret) { dev_err(smi->dev, "unable to request irq: %d\n", ret); goto out_put_node; } smi->irqdomain = irq_domain_add_linear(intc, RTL8366RB_NUM_INTERRUPT, &rtl8366rb_irqdomain_ops, smi); if (!smi->irqdomain) { dev_err(smi->dev, "failed to create IRQ domain\n"); ret = -EINVAL; goto out_put_node; } for (i = 0; i < smi->num_ports; i++) irq_set_parent(irq_create_mapping(smi->irqdomain, i), irq); out_put_node: of_node_put(intc); return ret; } static int rtl8366rb_set_addr(struct realtek_smi *smi) { u8 addr[ETH_ALEN]; u16 val; int ret; eth_random_addr(addr); dev_info(smi->dev, "set MAC: %02X:%02X:%02X:%02X:%02X:%02X\n", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); val = addr[0] << 8 | addr[1]; ret = regmap_write(smi->map, RTL8366RB_SMAR0, val); if (ret) return ret; val = addr[2] << 8 | addr[3]; ret = regmap_write(smi->map, RTL8366RB_SMAR1, val); if (ret) return ret; val = addr[4] << 8 | addr[5]; ret = regmap_write(smi->map, RTL8366RB_SMAR2, val); if (ret) return ret; return 0; } /* Found in a vendor driver */ /* Struct for handling the jam tables' entries */ struct rtl8366rb_jam_tbl_entry { u16 reg; u16 val; }; /* For the "version 0" early silicon, appear in most source releases */ static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_0[] = { {0x000B, 0x0001}, {0x03A6, 0x0100}, {0x03A7, 0x0001}, {0x02D1, 0x3FFF}, {0x02D2, 0x3FFF}, {0x02D3, 0x3FFF}, {0x02D4, 0x3FFF}, {0x02D5, 0x3FFF}, {0x02D6, 0x3FFF}, {0x02D7, 0x3FFF}, {0x02D8, 0x3FFF}, {0x022B, 0x0688}, {0x022C, 0x0FAC}, {0x03D0, 0x4688}, {0x03D1, 0x01F5}, {0x0000, 0x0830}, {0x02F9, 0x0200}, {0x02F7, 0x7FFF}, {0x02F8, 0x03FF}, {0x0080, 0x03E8}, {0x0081, 0x00CE}, {0x0082, 0x00DA}, {0x0083, 0x0230}, {0xBE0F, 0x2000}, {0x0231, 0x422A}, {0x0232, 0x422A}, {0x0233, 0x422A}, {0x0234, 0x422A}, {0x0235, 0x422A}, {0x0236, 0x422A}, {0x0237, 0x422A}, {0x0238, 0x422A}, {0x0239, 0x422A}, {0x023A, 0x422A}, {0x023B, 0x422A}, {0x023C, 0x422A}, {0x023D, 0x422A}, {0x023E, 0x422A}, {0x023F, 0x422A}, {0x0240, 0x422A}, {0x0241, 0x422A}, {0x0242, 0x422A}, {0x0243, 0x422A}, {0x0244, 0x422A}, {0x0245, 0x422A}, {0x0246, 0x422A}, {0x0247, 0x422A}, {0x0248, 0x422A}, {0x0249, 0x0146}, {0x024A, 0x0146}, {0x024B, 0x0146}, {0xBE03, 0xC961}, {0x024D, 0x0146}, {0x024E, 0x0146}, {0x024F, 0x0146}, {0x0250, 0x0146}, {0xBE64, 0x0226}, {0x0252, 0x0146}, {0x0253, 0x0146}, {0x024C, 0x0146}, {0x0251, 0x0146}, {0x0254, 0x0146}, {0xBE62, 0x3FD0}, {0x0084, 0x0320}, {0x0255, 0x0146}, {0x0256, 0x0146}, {0x0257, 0x0146}, {0x0258, 0x0146}, {0x0259, 0x0146}, {0x025A, 0x0146}, {0x025B, 0x0146}, {0x025C, 0x0146}, {0x025D, 0x0146}, {0x025E, 0x0146}, {0x025F, 0x0146}, {0x0260, 0x0146}, {0x0261, 0xA23F}, {0x0262, 0x0294}, {0x0263, 0xA23F}, {0x0264, 0x0294}, {0x0265, 0xA23F}, {0x0266, 0x0294}, {0x0267, 0xA23F}, {0x0268, 0x0294}, {0x0269, 0xA23F}, {0x026A, 0x0294}, {0x026B, 0xA23F}, {0x026C, 0x0294}, {0x026D, 0xA23F}, {0x026E, 0x0294}, {0x026F, 0xA23F}, {0x0270, 0x0294}, {0x02F5, 0x0048}, {0xBE09, 0x0E00}, {0xBE1E, 0x0FA0}, {0xBE14, 0x8448}, {0xBE15, 0x1007}, {0xBE4A, 0xA284}, {0xC454, 0x3F0B}, {0xC474, 0x3F0B}, {0xBE48, 0x3672}, {0xBE4B, 0x17A7}, {0xBE4C, 0x0B15}, {0xBE52, 0x0EDD}, {0xBE49, 0x8C00}, {0xBE5B, 0x785C}, {0xBE5C, 0x785C}, {0xBE5D, 0x785C}, {0xBE61, 0x368A}, {0xBE63, 0x9B84}, {0xC456, 0xCC13}, {0xC476, 0xCC13}, {0xBE65, 0x307D}, {0xBE6D, 0x0005}, {0xBE6E, 0xE120}, {0xBE2E, 0x7BAF}, }; /* This v1 init sequence is from Belkin F5D8235 U-Boot release */ static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_1[] = { {0x0000, 0x0830}, {0x0001, 0x8000}, {0x0400, 0x8130}, {0xBE78, 0x3C3C}, {0x0431, 0x5432}, {0xBE37, 0x0CE4}, {0x02FA, 0xFFDF}, {0x02FB, 0xFFE0}, {0xC44C, 0x1585}, {0xC44C, 0x1185}, {0xC44C, 0x1585}, {0xC46C, 0x1585}, {0xC46C, 0x1185}, {0xC46C, 0x1585}, {0xC451, 0x2135}, {0xC471, 0x2135}, {0xBE10, 0x8140}, {0xBE15, 0x0007}, {0xBE6E, 0xE120}, {0xBE69, 0xD20F}, {0xBE6B, 0x0320}, {0xBE24, 0xB000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF20}, {0xBE21, 0x0140}, {0xBE20, 0x00BB}, {0xBE24, 0xB800}, {0xBE24, 0x0000}, {0xBE24, 0x7000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF60}, {0xBE21, 0x0140}, {0xBE20, 0x0077}, {0xBE24, 0x7800}, {0xBE24, 0x0000}, {0xBE2E, 0x7B7A}, {0xBE36, 0x0CE4}, {0x02F5, 0x0048}, {0xBE77, 0x2940}, {0x000A, 0x83E0}, {0xBE79, 0x3C3C}, {0xBE00, 0x1340}, }; /* This v2 init sequence is from Belkin F5D8235 U-Boot release */ static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_2[] = { {0x0450, 0x0000}, {0x0400, 0x8130}, {0x000A, 0x83ED}, {0x0431, 0x5432}, {0xC44F, 0x6250}, {0xC46F, 0x6250}, {0xC456, 0x0C14}, {0xC476, 0x0C14}, {0xC44C, 0x1C85}, {0xC44C, 0x1885}, {0xC44C, 0x1C85}, {0xC46C, 0x1C85}, {0xC46C, 0x1885}, {0xC46C, 0x1C85}, {0xC44C, 0x0885}, {0xC44C, 0x0881}, {0xC44C, 0x0885}, {0xC46C, 0x0885}, {0xC46C, 0x0881}, {0xC46C, 0x0885}, {0xBE2E, 0x7BA7}, {0xBE36, 0x1000}, {0xBE37, 0x1000}, {0x8000, 0x0001}, {0xBE69, 0xD50F}, {0x8000, 0x0000}, {0xBE69, 0xD50F}, {0xBE6E, 0x0320}, {0xBE77, 0x2940}, {0xBE78, 0x3C3C}, {0xBE79, 0x3C3C}, {0xBE6E, 0xE120}, {0x8000, 0x0001}, {0xBE15, 0x1007}, {0x8000, 0x0000}, {0xBE15, 0x1007}, {0xBE14, 0x0448}, {0xBE1E, 0x00A0}, {0xBE10, 0x8160}, {0xBE10, 0x8140}, {0xBE00, 0x1340}, {0x0F51, 0x0010}, }; /* Appears in a DDWRT code dump */ static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_3[] = { {0x0000, 0x0830}, {0x0400, 0x8130}, {0x000A, 0x83ED}, {0x0431, 0x5432}, {0x0F51, 0x0017}, {0x02F5, 0x0048}, {0x02FA, 0xFFDF}, {0x02FB, 0xFFE0}, {0xC456, 0x0C14}, {0xC476, 0x0C14}, {0xC454, 0x3F8B}, {0xC474, 0x3F8B}, {0xC450, 0x2071}, {0xC470, 0x2071}, {0xC451, 0x226B}, {0xC471, 0x226B}, {0xC452, 0xA293}, {0xC472, 0xA293}, {0xC44C, 0x1585}, {0xC44C, 0x1185}, {0xC44C, 0x1585}, {0xC46C, 0x1585}, {0xC46C, 0x1185}, {0xC46C, 0x1585}, {0xC44C, 0x0185}, {0xC44C, 0x0181}, {0xC44C, 0x0185}, {0xC46C, 0x0185}, {0xC46C, 0x0181}, {0xC46C, 0x0185}, {0xBE24, 0xB000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF20}, {0xBE21, 0x0140}, {0xBE20, 0x00BB}, {0xBE24, 0xB800}, {0xBE24, 0x0000}, {0xBE24, 0x7000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF60}, {0xBE21, 0x0140}, {0xBE20, 0x0077}, {0xBE24, 0x7800}, {0xBE24, 0x0000}, {0xBE2E, 0x7BA7}, {0xBE36, 0x1000}, {0xBE37, 0x1000}, {0x8000, 0x0001}, {0xBE69, 0xD50F}, {0x8000, 0x0000}, {0xBE69, 0xD50F}, {0xBE6B, 0x0320}, {0xBE77, 0x2800}, {0xBE78, 0x3C3C}, {0xBE79, 0x3C3C}, {0xBE6E, 0xE120}, {0x8000, 0x0001}, {0xBE10, 0x8140}, {0x8000, 0x0000}, {0xBE10, 0x8140}, {0xBE15, 0x1007}, {0xBE14, 0x0448}, {0xBE1E, 0x00A0}, {0xBE10, 0x8160}, {0xBE10, 0x8140}, {0xBE00, 0x1340}, {0x0450, 0x0000}, {0x0401, 0x0000}, }; /* Belkin F5D8235 v1, "belkin,f5d8235-v1" */ static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_f5d8235[] = { {0x0242, 0x02BF}, {0x0245, 0x02BF}, {0x0248, 0x02BF}, {0x024B, 0x02BF}, {0x024E, 0x02BF}, {0x0251, 0x02BF}, {0x0254, 0x0A3F}, {0x0256, 0x0A3F}, {0x0258, 0x0A3F}, {0x025A, 0x0A3F}, {0x025C, 0x0A3F}, {0x025E, 0x0A3F}, {0x0263, 0x007C}, {0x0100, 0x0004}, {0xBE5B, 0x3500}, {0x800E, 0x200F}, {0xBE1D, 0x0F00}, {0x8001, 0x5011}, {0x800A, 0xA2F4}, {0x800B, 0x17A3}, {0xBE4B, 0x17A3}, {0xBE41, 0x5011}, {0xBE17, 0x2100}, {0x8000, 0x8304}, {0xBE40, 0x8304}, {0xBE4A, 0xA2F4}, {0x800C, 0xA8D5}, {0x8014, 0x5500}, {0x8015, 0x0004}, {0xBE4C, 0xA8D5}, {0xBE59, 0x0008}, {0xBE09, 0x0E00}, {0xBE36, 0x1036}, {0xBE37, 0x1036}, {0x800D, 0x00FF}, {0xBE4D, 0x00FF}, }; /* DGN3500, "netgear,dgn3500", "netgear,dgn3500b" */ static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_dgn3500[] = { {0x0000, 0x0830}, {0x0400, 0x8130}, {0x000A, 0x83ED}, {0x0F51, 0x0017}, {0x02F5, 0x0048}, {0x02FA, 0xFFDF}, {0x02FB, 0xFFE0}, {0x0450, 0x0000}, {0x0401, 0x0000}, {0x0431, 0x0960}, }; /* This jam table activates "green ethernet", which means low power mode * and is claimed to detect the cable length and not use more power than * necessary, and the ports should enter power saving mode 10 seconds after * a cable is disconnected. Seems to always be the same. */ static const struct rtl8366rb_jam_tbl_entry rtl8366rb_green_jam[] = { {0xBE78, 0x323C}, {0xBE77, 0x5000}, {0xBE2E, 0x7BA7}, {0xBE59, 0x3459}, {0xBE5A, 0x745A}, {0xBE5B, 0x785C}, {0xBE5C, 0x785C}, {0xBE6E, 0xE120}, {0xBE79, 0x323C}, }; /* Function that jams the tables in the proper registers */ static int rtl8366rb_jam_table(const struct rtl8366rb_jam_tbl_entry *jam_table, int jam_size, struct realtek_smi *smi, bool write_dbg) { u32 val; int ret; int i; for (i = 0; i < jam_size; i++) { if ((jam_table[i].reg & 0xBE00) == 0xBE00) { ret = regmap_read(smi->map, RTL8366RB_PHY_ACCESS_BUSY_REG, &val); if (ret) return ret; if (!(val & RTL8366RB_PHY_INT_BUSY)) { ret = regmap_write(smi->map, RTL8366RB_PHY_ACCESS_CTRL_REG, RTL8366RB_PHY_CTRL_WRITE); if (ret) return ret; } } if (write_dbg) dev_dbg(smi->dev, "jam %04x into register %04x\n", jam_table[i].val, jam_table[i].reg); ret = regmap_write(smi->map, jam_table[i].reg, jam_table[i].val); if (ret) return ret; } return 0; } static int rtl8366rb_setup(struct dsa_switch *ds) { struct realtek_smi *smi = ds->priv; const struct rtl8366rb_jam_tbl_entry *jam_table; struct rtl8366rb *rb; u32 chip_ver = 0; u32 chip_id = 0; int jam_size; u32 val; int ret; int i; rb = smi->chip_data; ret = regmap_read(smi->map, RTL8366RB_CHIP_ID_REG, &chip_id); if (ret) { dev_err(smi->dev, "unable to read chip id\n"); return ret; } switch (chip_id) { case RTL8366RB_CHIP_ID_8366: break; default: dev_err(smi->dev, "unknown chip id (%04x)\n", chip_id); return -ENODEV; } ret = regmap_read(smi->map, RTL8366RB_CHIP_VERSION_CTRL_REG, &chip_ver); if (ret) { dev_err(smi->dev, "unable to read chip version\n"); return ret; } dev_info(smi->dev, "RTL%04x ver %u chip found\n", chip_id, chip_ver & RTL8366RB_CHIP_VERSION_MASK); /* Do the init dance using the right jam table */ switch (chip_ver) { case 0: jam_table = rtl8366rb_init_jam_ver_0; jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_0); break; case 1: jam_table = rtl8366rb_init_jam_ver_1; jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_1); break; case 2: jam_table = rtl8366rb_init_jam_ver_2; jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_2); break; default: jam_table = rtl8366rb_init_jam_ver_3; jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_3); break; } /* Special jam tables for special routers * TODO: are these necessary? Maintainers, please test * without them, using just the off-the-shelf tables. */ if (of_machine_is_compatible("belkin,f5d8235-v1")) { jam_table = rtl8366rb_init_jam_f5d8235; jam_size = ARRAY_SIZE(rtl8366rb_init_jam_f5d8235); } if (of_machine_is_compatible("netgear,dgn3500") || of_machine_is_compatible("netgear,dgn3500b")) { jam_table = rtl8366rb_init_jam_dgn3500; jam_size = ARRAY_SIZE(rtl8366rb_init_jam_dgn3500); } ret = rtl8366rb_jam_table(jam_table, jam_size, smi, true); if (ret) return ret; /* Isolate all user ports so they can only send packets to itself and the CPU port */ for (i = 0; i < RTL8366RB_PORT_NUM_CPU; i++) { ret = regmap_write(smi->map, RTL8366RB_PORT_ISO(i), RTL8366RB_PORT_ISO_PORTS(BIT(RTL8366RB_PORT_NUM_CPU)) | RTL8366RB_PORT_ISO_EN); if (ret) return ret; } /* CPU port can send packets to all ports */ ret = regmap_write(smi->map, RTL8366RB_PORT_ISO(RTL8366RB_PORT_NUM_CPU), RTL8366RB_PORT_ISO_PORTS(dsa_user_ports(ds)) | RTL8366RB_PORT_ISO_EN); if (ret) return ret; /* Set up the "green ethernet" feature */ ret = rtl8366rb_jam_table(rtl8366rb_green_jam, ARRAY_SIZE(rtl8366rb_green_jam), smi, false); if (ret) return ret; ret = regmap_write(smi->map, RTL8366RB_GREEN_FEATURE_REG, (chip_ver == 1) ? 0x0007 : 0x0003); if (ret) return ret; /* Vendor driver sets 0x240 in registers 0xc and 0xd (undocumented) */ ret = regmap_write(smi->map, 0x0c, 0x240); if (ret) return ret; ret = regmap_write(smi->map, 0x0d, 0x240); if (ret) return ret; /* Set some random MAC address */ ret = rtl8366rb_set_addr(smi); if (ret) return ret; /* Enable CPU port with custom DSA tag 8899. * * If you set RTL8368RB_CPU_NO_TAG (bit 15) in this registers * the custom tag is turned off. */ ret = regmap_update_bits(smi->map, RTL8368RB_CPU_CTRL_REG, 0xFFFF, BIT(smi->cpu_port)); if (ret) return ret; /* Make sure we default-enable the fixed CPU port */ ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(smi->cpu_port), 0); if (ret) return ret; /* Set maximum packet length to 1536 bytes */ ret = regmap_update_bits(smi->map, RTL8366RB_SGCR, RTL8366RB_SGCR_MAX_LENGTH_MASK, RTL8366RB_SGCR_MAX_LENGTH_1536); if (ret) return ret; for (i = 0; i < RTL8366RB_NUM_PORTS; i++) /* layer 2 size, see rtl8366rb_change_mtu() */ rb->max_mtu[i] = 1532; /* Disable learning for all ports */ ret = regmap_write(smi->map, RTL8366RB_PORT_LEARNDIS_CTRL, RTL8366RB_PORT_ALL); if (ret) return ret; /* Enable auto ageing for all ports */ ret = regmap_write(smi->map, RTL8366RB_SECURITY_CTRL, 0); if (ret) return ret; /* Port 4 setup: this enables Port 4, usually the WAN port, * common PHY IO mode is apparently mode 0, and this is not what * the port is initialized to. There is no explanation of the * IO modes in the Realtek source code, if your WAN port is * connected to something exotic such as fiber, then this might * be worth experimenting with. */ ret = regmap_update_bits(smi->map, RTL8366RB_PMC0, RTL8366RB_PMC0_P4_IOMODE_MASK, 0 << RTL8366RB_PMC0_P4_IOMODE_SHIFT); if (ret) return ret; /* Accept all packets by default, we enable filtering on-demand */ ret = regmap_write(smi->map, RTL8366RB_VLAN_INGRESS_CTRL1_REG, 0); if (ret) return ret; ret = regmap_write(smi->map, RTL8366RB_VLAN_INGRESS_CTRL2_REG, 0); if (ret) return ret; /* Don't drop packets whose DA has not been learned */ ret = regmap_update_bits(smi->map, RTL8366RB_SSCR2, RTL8366RB_SSCR2_DROP_UNKNOWN_DA, 0); if (ret) return ret; /* Set blinking, TODO: make this configurable */ ret = regmap_update_bits(smi->map, RTL8366RB_LED_BLINKRATE_REG, RTL8366RB_LED_BLINKRATE_MASK, RTL8366RB_LED_BLINKRATE_56MS); if (ret) return ret; /* Set up LED activity: * Each port has 4 LEDs, we configure all ports to the same * behaviour (no individual config) but we can set up each * LED separately. */ if (smi->leds_disabled) { /* Turn everything off */ regmap_update_bits(smi->map, RTL8366RB_LED_0_1_CTRL_REG, 0x0FFF, 0); regmap_update_bits(smi->map, RTL8366RB_LED_2_3_CTRL_REG, 0x0FFF, 0); regmap_update_bits(smi->map, RTL8366RB_INTERRUPT_CONTROL_REG, RTL8366RB_P4_RGMII_LED, 0); val = RTL8366RB_LED_OFF; } else { /* TODO: make this configurable per LED */ val = RTL8366RB_LED_FORCE; } for (i = 0; i < 4; i++) { ret = regmap_update_bits(smi->map, RTL8366RB_LED_CTRL_REG, 0xf << (i * 4), val << (i * 4)); if (ret) return ret; } ret = rtl8366_reset_vlan(smi); if (ret) return ret; ret = rtl8366rb_setup_cascaded_irq(smi); if (ret) dev_info(smi->dev, "no interrupt support\n"); ret = realtek_smi_setup_mdio(smi); if (ret) { dev_info(smi->dev, "could not set up MDIO bus\n"); return -ENODEV; } return 0; } static enum dsa_tag_protocol rtl8366_get_tag_protocol(struct dsa_switch *ds, int port, enum dsa_tag_protocol mp) { /* This switch uses the 4 byte protocol A Realtek DSA tag */ return DSA_TAG_PROTO_RTL4_A; } static void rtl8366rb_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface, struct phy_device *phydev, int speed, int duplex, bool tx_pause, bool rx_pause) { struct realtek_smi *smi = ds->priv; int ret; if (port != smi->cpu_port) return; dev_dbg(smi->dev, "MAC link up on CPU port (%d)\n", port); /* Force the fixed CPU port into 1Gbit mode, no autonegotiation */ ret = regmap_update_bits(smi->map, RTL8366RB_MAC_FORCE_CTRL_REG, BIT(port), BIT(port)); if (ret) { dev_err(smi->dev, "failed to force 1Gbit on CPU port\n"); return; } ret = regmap_update_bits(smi->map, RTL8366RB_PAACR2, 0xFF00U, RTL8366RB_PAACR_CPU_PORT << 8); if (ret) { dev_err(smi->dev, "failed to set PAACR on CPU port\n"); return; } /* Enable the CPU port */ ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(port), 0); if (ret) { dev_err(smi->dev, "failed to enable the CPU port\n"); return; } } static void rtl8366rb_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { struct realtek_smi *smi = ds->priv; int ret; if (port != smi->cpu_port) return; dev_dbg(smi->dev, "MAC link down on CPU port (%d)\n", port); /* Disable the CPU port */ ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(port), BIT(port)); if (ret) { dev_err(smi->dev, "failed to disable the CPU port\n"); return; } } static void rb8366rb_set_port_led(struct realtek_smi *smi, int port, bool enable) { u16 val = enable ? 0x3f : 0; int ret; if (smi->leds_disabled) return; switch (port) { case 0: ret = regmap_update_bits(smi->map, RTL8366RB_LED_0_1_CTRL_REG, 0x3F, val); break; case 1: ret = regmap_update_bits(smi->map, RTL8366RB_LED_0_1_CTRL_REG, 0x3F << RTL8366RB_LED_1_OFFSET, val << RTL8366RB_LED_1_OFFSET); break; case 2: ret = regmap_update_bits(smi->map, RTL8366RB_LED_2_3_CTRL_REG, 0x3F, val); break; case 3: ret = regmap_update_bits(smi->map, RTL8366RB_LED_2_3_CTRL_REG, 0x3F << RTL8366RB_LED_3_OFFSET, val << RTL8366RB_LED_3_OFFSET); break; case 4: ret = regmap_update_bits(smi->map, RTL8366RB_INTERRUPT_CONTROL_REG, RTL8366RB_P4_RGMII_LED, enable ? RTL8366RB_P4_RGMII_LED : 0); break; default: dev_err(smi->dev, "no LED for port %d\n", port); return; } if (ret) dev_err(smi->dev, "error updating LED on port %d\n", port); } static int rtl8366rb_port_enable(struct dsa_switch *ds, int port, struct phy_device *phy) { struct realtek_smi *smi = ds->priv; int ret; dev_dbg(smi->dev, "enable port %d\n", port); ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(port), 0); if (ret) return ret; rb8366rb_set_port_led(smi, port, true); return 0; } static void rtl8366rb_port_disable(struct dsa_switch *ds, int port) { struct realtek_smi *smi = ds->priv; int ret; dev_dbg(smi->dev, "disable port %d\n", port); ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(port), BIT(port)); if (ret) return; rb8366rb_set_port_led(smi, port, false); } static int rtl8366rb_port_bridge_join(struct dsa_switch *ds, int port, struct net_device *bridge) { struct realtek_smi *smi = ds->priv; unsigned int port_bitmap = 0; int ret, i; /* Loop over all other ports than the current one */ for (i = 0; i < RTL8366RB_PORT_NUM_CPU; i++) { /* Current port handled last */ if (i == port) continue; /* Not on this bridge */ if (dsa_to_port(ds, i)->bridge_dev != bridge) continue; /* Join this port to each other port on the bridge */ ret = regmap_update_bits(smi->map, RTL8366RB_PORT_ISO(i), RTL8366RB_PORT_ISO_PORTS(BIT(port)), RTL8366RB_PORT_ISO_PORTS(BIT(port))); if (ret) dev_err(smi->dev, "failed to join port %d\n", port); port_bitmap |= BIT(i); } /* Set the bits for the ports we can access */ return regmap_update_bits(smi->map, RTL8366RB_PORT_ISO(port), RTL8366RB_PORT_ISO_PORTS(port_bitmap), RTL8366RB_PORT_ISO_PORTS(port_bitmap)); } static void rtl8366rb_port_bridge_leave(struct dsa_switch *ds, int port, struct net_device *bridge) { struct realtek_smi *smi = ds->priv; unsigned int port_bitmap = 0; int ret, i; /* Loop over all other ports than this one */ for (i = 0; i < RTL8366RB_PORT_NUM_CPU; i++) { /* Current port handled last */ if (i == port) continue; /* Not on this bridge */ if (dsa_to_port(ds, i)->bridge_dev != bridge) continue; /* Remove this port from any other port on the bridge */ ret = regmap_update_bits(smi->map, RTL8366RB_PORT_ISO(i), RTL8366RB_PORT_ISO_PORTS(BIT(port)), 0); if (ret) dev_err(smi->dev, "failed to leave port %d\n", port); port_bitmap |= BIT(i); } /* Clear the bits for the ports we can not access, leave ourselves */ regmap_update_bits(smi->map, RTL8366RB_PORT_ISO(port), RTL8366RB_PORT_ISO_PORTS(port_bitmap), 0); } /** * rtl8366rb_drop_untagged() - make the switch drop untagged and C-tagged frames * @smi: SMI state container * @port: the port to drop untagged and C-tagged frames on * @drop: whether to drop or pass untagged and C-tagged frames */ static int rtl8366rb_drop_untagged(struct realtek_smi *smi, int port, bool drop) { return regmap_update_bits(smi->map, RTL8366RB_VLAN_INGRESS_CTRL1_REG, RTL8366RB_VLAN_INGRESS_CTRL1_DROP(port), drop ? RTL8366RB_VLAN_INGRESS_CTRL1_DROP(port) : 0); } static int rtl8366rb_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering, struct netlink_ext_ack *extack) { struct realtek_smi *smi = ds->priv; struct rtl8366rb *rb; int ret; rb = smi->chip_data; dev_dbg(smi->dev, "port %d: %s VLAN filtering\n", port, vlan_filtering ? "enable" : "disable"); /* If the port is not in the member set, the frame will be dropped */ ret = regmap_update_bits(smi->map, RTL8366RB_VLAN_INGRESS_CTRL2_REG, BIT(port), vlan_filtering ? BIT(port) : 0); if (ret) return ret; /* If VLAN filtering is enabled and PVID is also enabled, we must * not drop any untagged or C-tagged frames. If we turn off VLAN * filtering on a port, we need to accept any frames. */ if (vlan_filtering) ret = rtl8366rb_drop_untagged(smi, port, !rb->pvid_enabled[port]); else ret = rtl8366rb_drop_untagged(smi, port, false); return ret; } static int rtl8366rb_port_pre_bridge_flags(struct dsa_switch *ds, int port, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { /* We support enabling/disabling learning */ if (flags.mask & ~(BR_LEARNING)) return -EINVAL; return 0; } static int rtl8366rb_port_bridge_flags(struct dsa_switch *ds, int port, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { struct realtek_smi *smi = ds->priv; int ret; if (flags.mask & BR_LEARNING) { ret = regmap_update_bits(smi->map, RTL8366RB_PORT_LEARNDIS_CTRL, BIT(port), (flags.val & BR_LEARNING) ? 0 : BIT(port)); if (ret) return ret; } return 0; } static void rtl8366rb_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct realtek_smi *smi = ds->priv; u32 val; int i; switch (state) { case BR_STATE_DISABLED: val = RTL8366RB_STP_STATE_DISABLED; break; case BR_STATE_BLOCKING: case BR_STATE_LISTENING: val = RTL8366RB_STP_STATE_BLOCKING; break; case BR_STATE_LEARNING: val = RTL8366RB_STP_STATE_LEARNING; break; case BR_STATE_FORWARDING: val = RTL8366RB_STP_STATE_FORWARDING; break; default: dev_err(smi->dev, "unknown bridge state requested\n"); return; }; /* Set the same status for the port on all the FIDs */ for (i = 0; i < RTL8366RB_NUM_FIDS; i++) { regmap_update_bits(smi->map, RTL8366RB_STP_STATE_BASE + i, RTL8366RB_STP_STATE_MASK(port), RTL8366RB_STP_STATE(port, val)); } } static void rtl8366rb_port_fast_age(struct dsa_switch *ds, int port) { struct realtek_smi *smi = ds->priv; /* This will age out any learned L2 entries */ regmap_update_bits(smi->map, RTL8366RB_SECURITY_CTRL, BIT(port), BIT(port)); /* Restore the normal state of things */ regmap_update_bits(smi->map, RTL8366RB_SECURITY_CTRL, BIT(port), 0); } static int rtl8366rb_change_mtu(struct dsa_switch *ds, int port, int new_mtu) { struct realtek_smi *smi = ds->priv; struct rtl8366rb *rb; unsigned int max_mtu; u32 len; int i; /* Cache the per-port MTU setting */ rb = smi->chip_data; rb->max_mtu[port] = new_mtu; /* Roof out the MTU for the entire switch to the greatest * common denominator: the biggest set for any one port will * be the biggest MTU for the switch. * * The first setting, 1522 bytes, is max IP packet 1500 bytes, * plus ethernet header, 1518 bytes, plus CPU tag, 4 bytes. * This function should consider the parameter an SDU, so the * MTU passed for this setting is 1518 bytes. The same logic * of subtracting the DSA tag of 4 bytes apply to the other * settings. */ max_mtu = 1518; for (i = 0; i < RTL8366RB_NUM_PORTS; i++) { if (rb->max_mtu[i] > max_mtu) max_mtu = rb->max_mtu[i]; } if (max_mtu <= 1518) len = RTL8366RB_SGCR_MAX_LENGTH_1522; else if (max_mtu > 1518 && max_mtu <= 1532) len = RTL8366RB_SGCR_MAX_LENGTH_1536; else if (max_mtu > 1532 && max_mtu <= 1548) len = RTL8366RB_SGCR_MAX_LENGTH_1552; else len = RTL8366RB_SGCR_MAX_LENGTH_16000; return regmap_update_bits(smi->map, RTL8366RB_SGCR, RTL8366RB_SGCR_MAX_LENGTH_MASK, len); } static int rtl8366rb_max_mtu(struct dsa_switch *ds, int port) { /* The max MTU is 16000 bytes, so we subtract the CPU tag * and the max presented to the system is 15996 bytes. */ return 15996; } static int rtl8366rb_get_vlan_4k(struct realtek_smi *smi, u32 vid, struct rtl8366_vlan_4k *vlan4k) { u32 data[3]; int ret; int i; memset(vlan4k, '\0', sizeof(struct rtl8366_vlan_4k)); if (vid >= RTL8366RB_NUM_VIDS) return -EINVAL; /* write VID */ ret = regmap_write(smi->map, RTL8366RB_VLAN_TABLE_WRITE_BASE, vid & RTL8366RB_VLAN_VID_MASK); if (ret) return ret; /* write table access control word */ ret = regmap_write(smi->map, RTL8366RB_TABLE_ACCESS_CTRL_REG, RTL8366RB_TABLE_VLAN_READ_CTRL); if (ret) return ret; for (i = 0; i < 3; i++) { ret = regmap_read(smi->map, RTL8366RB_VLAN_TABLE_READ_BASE + i, &data[i]); if (ret) return ret; } vlan4k->vid = vid; vlan4k->untag = (data[1] >> RTL8366RB_VLAN_UNTAG_SHIFT) & RTL8366RB_VLAN_UNTAG_MASK; vlan4k->member = data[1] & RTL8366RB_VLAN_MEMBER_MASK; vlan4k->fid = data[2] & RTL8366RB_VLAN_FID_MASK; return 0; } static int rtl8366rb_set_vlan_4k(struct realtek_smi *smi, const struct rtl8366_vlan_4k *vlan4k) { u32 data[3]; int ret; int i; if (vlan4k->vid >= RTL8366RB_NUM_VIDS || vlan4k->member > RTL8366RB_VLAN_MEMBER_MASK || vlan4k->untag > RTL8366RB_VLAN_UNTAG_MASK || vlan4k->fid > RTL8366RB_FIDMAX) return -EINVAL; data[0] = vlan4k->vid & RTL8366RB_VLAN_VID_MASK; data[1] = (vlan4k->member & RTL8366RB_VLAN_MEMBER_MASK) | ((vlan4k->untag & RTL8366RB_VLAN_UNTAG_MASK) << RTL8366RB_VLAN_UNTAG_SHIFT); data[2] = vlan4k->fid & RTL8366RB_VLAN_FID_MASK; for (i = 0; i < 3; i++) { ret = regmap_write(smi->map, RTL8366RB_VLAN_TABLE_WRITE_BASE + i, data[i]); if (ret) return ret; } /* write table access control word */ ret = regmap_write(smi->map, RTL8366RB_TABLE_ACCESS_CTRL_REG, RTL8366RB_TABLE_VLAN_WRITE_CTRL); return ret; } static int rtl8366rb_get_vlan_mc(struct realtek_smi *smi, u32 index, struct rtl8366_vlan_mc *vlanmc) { u32 data[3]; int ret; int i; memset(vlanmc, '\0', sizeof(struct rtl8366_vlan_mc)); if (index >= RTL8366RB_NUM_VLANS) return -EINVAL; for (i = 0; i < 3; i++) { ret = regmap_read(smi->map, RTL8366RB_VLAN_MC_BASE(index) + i, &data[i]); if (ret) return ret; } vlanmc->vid = data[0] & RTL8366RB_VLAN_VID_MASK; vlanmc->priority = (data[0] >> RTL8366RB_VLAN_PRIORITY_SHIFT) & RTL8366RB_VLAN_PRIORITY_MASK; vlanmc->untag = (data[1] >> RTL8366RB_VLAN_UNTAG_SHIFT) & RTL8366RB_VLAN_UNTAG_MASK; vlanmc->member = data[1] & RTL8366RB_VLAN_MEMBER_MASK; vlanmc->fid = data[2] & RTL8366RB_VLAN_FID_MASK; return 0; } static int rtl8366rb_set_vlan_mc(struct realtek_smi *smi, u32 index, const struct rtl8366_vlan_mc *vlanmc) { u32 data[3]; int ret; int i; if (index >= RTL8366RB_NUM_VLANS || vlanmc->vid >= RTL8366RB_NUM_VIDS || vlanmc->priority > RTL8366RB_PRIORITYMAX || vlanmc->member > RTL8366RB_VLAN_MEMBER_MASK || vlanmc->untag > RTL8366RB_VLAN_UNTAG_MASK || vlanmc->fid > RTL8366RB_FIDMAX) return -EINVAL; data[0] = (vlanmc->vid & RTL8366RB_VLAN_VID_MASK) | ((vlanmc->priority & RTL8366RB_VLAN_PRIORITY_MASK) << RTL8366RB_VLAN_PRIORITY_SHIFT); data[1] = (vlanmc->member & RTL8366RB_VLAN_MEMBER_MASK) | ((vlanmc->untag & RTL8366RB_VLAN_UNTAG_MASK) << RTL8366RB_VLAN_UNTAG_SHIFT); data[2] = vlanmc->fid & RTL8366RB_VLAN_FID_MASK; for (i = 0; i < 3; i++) { ret = regmap_write(smi->map, RTL8366RB_VLAN_MC_BASE(index) + i, data[i]); if (ret) return ret; } return 0; } static int rtl8366rb_get_mc_index(struct realtek_smi *smi, int port, int *val) { u32 data; int ret; if (port >= smi->num_ports) return -EINVAL; ret = regmap_read(smi->map, RTL8366RB_PORT_VLAN_CTRL_REG(port), &data); if (ret) return ret; *val = (data >> RTL8366RB_PORT_VLAN_CTRL_SHIFT(port)) & RTL8366RB_PORT_VLAN_CTRL_MASK; return 0; } static int rtl8366rb_set_mc_index(struct realtek_smi *smi, int port, int index) { struct rtl8366rb *rb; bool pvid_enabled; int ret; rb = smi->chip_data; pvid_enabled = !!index; if (port >= smi->num_ports || index >= RTL8366RB_NUM_VLANS) return -EINVAL; ret = regmap_update_bits(smi->map, RTL8366RB_PORT_VLAN_CTRL_REG(port), RTL8366RB_PORT_VLAN_CTRL_MASK << RTL8366RB_PORT_VLAN_CTRL_SHIFT(port), (index & RTL8366RB_PORT_VLAN_CTRL_MASK) << RTL8366RB_PORT_VLAN_CTRL_SHIFT(port)); if (ret) return ret; rb->pvid_enabled[port] = pvid_enabled; /* If VLAN filtering is enabled and PVID is also enabled, we must * not drop any untagged or C-tagged frames. Make sure to update the * filtering setting. */ if (dsa_port_is_vlan_filtering(dsa_to_port(smi->ds, port))) ret = rtl8366rb_drop_untagged(smi, port, !pvid_enabled); return ret; } static bool rtl8366rb_is_vlan_valid(struct realtek_smi *smi, unsigned int vlan) { unsigned int max = RTL8366RB_NUM_VLANS - 1; if (smi->vlan4k_enabled) max = RTL8366RB_NUM_VIDS - 1; if (vlan > max) return false; return true; } static int rtl8366rb_enable_vlan(struct realtek_smi *smi, bool enable) { dev_dbg(smi->dev, "%s VLAN\n", enable ? "enable" : "disable"); return regmap_update_bits(smi->map, RTL8366RB_SGCR, RTL8366RB_SGCR_EN_VLAN, enable ? RTL8366RB_SGCR_EN_VLAN : 0); } static int rtl8366rb_enable_vlan4k(struct realtek_smi *smi, bool enable) { dev_dbg(smi->dev, "%s VLAN 4k\n", enable ? "enable" : "disable"); return regmap_update_bits(smi->map, RTL8366RB_SGCR, RTL8366RB_SGCR_EN_VLAN_4KTB, enable ? RTL8366RB_SGCR_EN_VLAN_4KTB : 0); } static int rtl8366rb_phy_read(struct realtek_smi *smi, int phy, int regnum) { u32 val; u32 reg; int ret; if (phy > RTL8366RB_PHY_NO_MAX) return -EINVAL; ret = regmap_write(smi->map, RTL8366RB_PHY_ACCESS_CTRL_REG, RTL8366RB_PHY_CTRL_READ); if (ret) return ret; reg = 0x8000 | (1 << (phy + RTL8366RB_PHY_NO_OFFSET)) | regnum; ret = regmap_write(smi->map, reg, 0); if (ret) { dev_err(smi->dev, "failed to write PHY%d reg %04x @ %04x, ret %d\n", phy, regnum, reg, ret); return ret; } ret = regmap_read(smi->map, RTL8366RB_PHY_ACCESS_DATA_REG, &val); if (ret) return ret; dev_dbg(smi->dev, "read PHY%d register 0x%04x @ %08x, val <- %04x\n", phy, regnum, reg, val); return val; } static int rtl8366rb_phy_write(struct realtek_smi *smi, int phy, int regnum, u16 val) { u32 reg; int ret; if (phy > RTL8366RB_PHY_NO_MAX) return -EINVAL; ret = regmap_write(smi->map, RTL8366RB_PHY_ACCESS_CTRL_REG, RTL8366RB_PHY_CTRL_WRITE); if (ret) return ret; reg = 0x8000 | (1 << (phy + RTL8366RB_PHY_NO_OFFSET)) | regnum; dev_dbg(smi->dev, "write PHY%d register 0x%04x @ %04x, val -> %04x\n", phy, regnum, reg, val); ret = regmap_write(smi->map, reg, val); if (ret) return ret; return 0; } static int rtl8366rb_reset_chip(struct realtek_smi *smi) { int timeout = 10; u32 val; int ret; realtek_smi_write_reg_noack(smi, RTL8366RB_RESET_CTRL_REG, RTL8366RB_CHIP_CTRL_RESET_HW); do { usleep_range(20000, 25000); ret = regmap_read(smi->map, RTL8366RB_RESET_CTRL_REG, &val); if (ret) return ret; if (!(val & RTL8366RB_CHIP_CTRL_RESET_HW)) break; } while (--timeout); if (!timeout) { dev_err(smi->dev, "timeout waiting for the switch to reset\n"); return -EIO; } return 0; } static int rtl8366rb_detect(struct realtek_smi *smi) { struct device *dev = smi->dev; int ret; u32 val; /* Detect device */ ret = regmap_read(smi->map, 0x5c, &val); if (ret) { dev_err(dev, "can't get chip ID (%d)\n", ret); return ret; } switch (val) { case 0x6027: dev_info(dev, "found an RTL8366S switch\n"); dev_err(dev, "this switch is not yet supported, submit patches!\n"); return -ENODEV; case 0x5937: dev_info(dev, "found an RTL8366RB switch\n"); smi->cpu_port = RTL8366RB_PORT_NUM_CPU; smi->num_ports = RTL8366RB_NUM_PORTS; smi->num_vlan_mc = RTL8366RB_NUM_VLANS; smi->mib_counters = rtl8366rb_mib_counters; smi->num_mib_counters = ARRAY_SIZE(rtl8366rb_mib_counters); break; default: dev_info(dev, "found an Unknown Realtek switch (id=0x%04x)\n", val); break; } ret = rtl8366rb_reset_chip(smi); if (ret) return ret; return 0; } static const struct dsa_switch_ops rtl8366rb_switch_ops = { .get_tag_protocol = rtl8366_get_tag_protocol, .setup = rtl8366rb_setup, .phylink_mac_link_up = rtl8366rb_mac_link_up, .phylink_mac_link_down = rtl8366rb_mac_link_down, .get_strings = rtl8366_get_strings, .get_ethtool_stats = rtl8366_get_ethtool_stats, .get_sset_count = rtl8366_get_sset_count, .port_bridge_join = rtl8366rb_port_bridge_join, .port_bridge_leave = rtl8366rb_port_bridge_leave, .port_vlan_filtering = rtl8366rb_vlan_filtering, .port_vlan_add = rtl8366_vlan_add, .port_vlan_del = rtl8366_vlan_del, .port_enable = rtl8366rb_port_enable, .port_disable = rtl8366rb_port_disable, .port_pre_bridge_flags = rtl8366rb_port_pre_bridge_flags, .port_bridge_flags = rtl8366rb_port_bridge_flags, .port_stp_state_set = rtl8366rb_port_stp_state_set, .port_fast_age = rtl8366rb_port_fast_age, .port_change_mtu = rtl8366rb_change_mtu, .port_max_mtu = rtl8366rb_max_mtu, }; static const struct realtek_smi_ops rtl8366rb_smi_ops = { .detect = rtl8366rb_detect, .get_vlan_mc = rtl8366rb_get_vlan_mc, .set_vlan_mc = rtl8366rb_set_vlan_mc, .get_vlan_4k = rtl8366rb_get_vlan_4k, .set_vlan_4k = rtl8366rb_set_vlan_4k, .get_mc_index = rtl8366rb_get_mc_index, .set_mc_index = rtl8366rb_set_mc_index, .get_mib_counter = rtl8366rb_get_mib_counter, .is_vlan_valid = rtl8366rb_is_vlan_valid, .enable_vlan = rtl8366rb_enable_vlan, .enable_vlan4k = rtl8366rb_enable_vlan4k, .phy_read = rtl8366rb_phy_read, .phy_write = rtl8366rb_phy_write, }; const struct realtek_smi_variant rtl8366rb_variant = { .ds_ops = &rtl8366rb_switch_ops, .ops = &rtl8366rb_smi_ops, .clk_delay = 10, .cmd_read = 0xa9, .cmd_write = 0xa8, .chip_data_sz = sizeof(struct rtl8366rb), }; EXPORT_SYMBOL_GPL(rtl8366rb_variant);