// SPDX-License-Identifier: GPL-2.0 /* $Date: 2006/04/28 19:20:06 $ $RCSfile: vsc7326.c,v $ $Revision: 1.19 $ */ /* Driver for Vitesse VSC7326 (Schaumburg) MAC */ #include "gmac.h" #include "elmer0.h" #include "vsc7326_reg.h" /* Update fast changing statistics every 15 seconds */ #define STATS_TICK_SECS 15 /* 30 minutes for full statistics update */ #define MAJOR_UPDATE_TICKS (1800 / STATS_TICK_SECS) /* The egress WM value 0x01a01fff should be used only when the * interface is down (MAC port disabled). This is a workaround * for disabling the T2/MAC flow-control. When the interface is * enabled, the WM value should be set to 0x014a03F0. */ #define WM_DISABLE 0x01a01fff #define WM_ENABLE 0x014a03F0 struct init_table { u32 addr; u32 data; }; struct _cmac_instance { u32 index; u32 ticks; }; #define INITBLOCK_SLEEP 0xffffffff static void vsc_read(adapter_t *adapter, u32 addr, u32 *val) { u32 status, vlo, vhi; int i; spin_lock_bh(&adapter->mac_lock); t1_tpi_read(adapter, (addr << 2) + 4, &vlo); i = 0; do { t1_tpi_read(adapter, (REG_LOCAL_STATUS << 2) + 4, &vlo); t1_tpi_read(adapter, REG_LOCAL_STATUS << 2, &vhi); status = (vhi << 16) | vlo; i++; } while (((status & 1) == 0) && (i < 50)); if (i == 50) pr_err("Invalid tpi read from MAC, breaking loop.\n"); t1_tpi_read(adapter, (REG_LOCAL_DATA << 2) + 4, &vlo); t1_tpi_read(adapter, REG_LOCAL_DATA << 2, &vhi); *val = (vhi << 16) | vlo; /* pr_err("rd: block: 0x%x sublock: 0x%x reg: 0x%x data: 0x%x\n", ((addr&0xe000)>>13), ((addr&0x1e00)>>9), ((addr&0x01fe)>>1), *val); */ spin_unlock_bh(&adapter->mac_lock); } static void vsc_write(adapter_t *adapter, u32 addr, u32 data) { spin_lock_bh(&adapter->mac_lock); t1_tpi_write(adapter, (addr << 2) + 4, data & 0xFFFF); t1_tpi_write(adapter, addr << 2, (data >> 16) & 0xFFFF); /* pr_err("wr: block: 0x%x sublock: 0x%x reg: 0x%x data: 0x%x\n", ((addr&0xe000)>>13), ((addr&0x1e00)>>9), ((addr&0x01fe)>>1), data); */ spin_unlock_bh(&adapter->mac_lock); } /* Hard reset the MAC. This wipes out *all* configuration. */ static void vsc7326_full_reset(adapter_t* adapter) { u32 val; u32 result = 0xffff; t1_tpi_read(adapter, A_ELMER0_GPO, &val); val &= ~1; t1_tpi_write(adapter, A_ELMER0_GPO, val); udelay(2); val |= 0x1; /* Enable mac MAC itself */ val |= 0x800; /* Turn off the red LED */ t1_tpi_write(adapter, A_ELMER0_GPO, val); mdelay(1); vsc_write(adapter, REG_SW_RESET, 0x80000001); do { mdelay(1); vsc_read(adapter, REG_SW_RESET, &result); } while (result != 0x0); } static struct init_table vsc7326_reset[] = { { REG_IFACE_MODE, 0x00000000 }, { REG_CRC_CFG, 0x00000020 }, { REG_PLL_CLK_SPEED, 0x00050c00 }, { REG_PLL_CLK_SPEED, 0x00050c00 }, { REG_MSCH, 0x00002f14 }, { REG_SPI4_MISC, 0x00040409 }, { REG_SPI4_DESKEW, 0x00080000 }, { REG_SPI4_ING_SETUP2, 0x08080004 }, { REG_SPI4_ING_SETUP0, 0x04111004 }, { REG_SPI4_EGR_SETUP0, 0x80001a04 }, { REG_SPI4_ING_SETUP1, 0x02010000 }, { REG_AGE_INC(0), 0x00000000 }, { REG_AGE_INC(1), 0x00000000 }, { REG_ING_CONTROL, 0x0a200011 }, { REG_EGR_CONTROL, 0xa0010091 }, }; static struct init_table vsc7326_portinit[4][22] = { { /* Port 0 */ /* FIFO setup */ { REG_DBG(0), 0x000004f0 }, { REG_HDX(0), 0x00073101 }, { REG_TEST(0,0), 0x00000022 }, { REG_TEST(1,0), 0x00000022 }, { REG_TOP_BOTTOM(0,0), 0x003f0000 }, { REG_TOP_BOTTOM(1,0), 0x00120000 }, { REG_HIGH_LOW_WM(0,0), 0x07460757 }, { REG_HIGH_LOW_WM(1,0), WM_DISABLE }, { REG_CT_THRHLD(0,0), 0x00000000 }, { REG_CT_THRHLD(1,0), 0x00000000 }, { REG_BUCKE(0), 0x0002ffff }, { REG_BUCKI(0), 0x0002ffff }, { REG_TEST(0,0), 0x00000020 }, { REG_TEST(1,0), 0x00000020 }, /* Port config */ { REG_MAX_LEN(0), 0x00002710 }, { REG_PORT_FAIL(0), 0x00000002 }, { REG_NORMALIZER(0), 0x00000a64 }, { REG_DENORM(0), 0x00000010 }, { REG_STICK_BIT(0), 0x03baa370 }, { REG_DEV_SETUP(0), 0x00000083 }, { REG_DEV_SETUP(0), 0x00000082 }, { REG_MODE_CFG(0), 0x0200259f }, }, { /* Port 1 */ /* FIFO setup */ { REG_DBG(1), 0x000004f0 }, { REG_HDX(1), 0x00073101 }, { REG_TEST(0,1), 0x00000022 }, { REG_TEST(1,1), 0x00000022 }, { REG_TOP_BOTTOM(0,1), 0x007e003f }, { REG_TOP_BOTTOM(1,1), 0x00240012 }, { REG_HIGH_LOW_WM(0,1), 0x07460757 }, { REG_HIGH_LOW_WM(1,1), WM_DISABLE }, { REG_CT_THRHLD(0,1), 0x00000000 }, { REG_CT_THRHLD(1,1), 0x00000000 }, { REG_BUCKE(1), 0x0002ffff }, { REG_BUCKI(1), 0x0002ffff }, { REG_TEST(0,1), 0x00000020 }, { REG_TEST(1,1), 0x00000020 }, /* Port config */ { REG_MAX_LEN(1), 0x00002710 }, { REG_PORT_FAIL(1), 0x00000002 }, { REG_NORMALIZER(1), 0x00000a64 }, { REG_DENORM(1), 0x00000010 }, { REG_STICK_BIT(1), 0x03baa370 }, { REG_DEV_SETUP(1), 0x00000083 }, { REG_DEV_SETUP(1), 0x00000082 }, { REG_MODE_CFG(1), 0x0200259f }, }, { /* Port 2 */ /* FIFO setup */ { REG_DBG(2), 0x000004f0 }, { REG_HDX(2), 0x00073101 }, { REG_TEST(0,2), 0x00000022 }, { REG_TEST(1,2), 0x00000022 }, { REG_TOP_BOTTOM(0,2), 0x00bd007e }, { REG_TOP_BOTTOM(1,2), 0x00360024 }, { REG_HIGH_LOW_WM(0,2), 0x07460757 }, { REG_HIGH_LOW_WM(1,2), WM_DISABLE }, { REG_CT_THRHLD(0,2), 0x00000000 }, { REG_CT_THRHLD(1,2), 0x00000000 }, { REG_BUCKE(2), 0x0002ffff }, { REG_BUCKI(2), 0x0002ffff }, { REG_TEST(0,2), 0x00000020 }, { REG_TEST(1,2), 0x00000020 }, /* Port config */ { REG_MAX_LEN(2), 0x00002710 }, { REG_PORT_FAIL(2), 0x00000002 }, { REG_NORMALIZER(2), 0x00000a64 }, { REG_DENORM(2), 0x00000010 }, { REG_STICK_BIT(2), 0x03baa370 }, { REG_DEV_SETUP(2), 0x00000083 }, { REG_DEV_SETUP(2), 0x00000082 }, { REG_MODE_CFG(2), 0x0200259f }, }, { /* Port 3 */ /* FIFO setup */ { REG_DBG(3), 0x000004f0 }, { REG_HDX(3), 0x00073101 }, { REG_TEST(0,3), 0x00000022 }, { REG_TEST(1,3), 0x00000022 }, { REG_TOP_BOTTOM(0,3), 0x00fc00bd }, { REG_TOP_BOTTOM(1,3), 0x00480036 }, { REG_HIGH_LOW_WM(0,3), 0x07460757 }, { REG_HIGH_LOW_WM(1,3), WM_DISABLE }, { REG_CT_THRHLD(0,3), 0x00000000 }, { REG_CT_THRHLD(1,3), 0x00000000 }, { REG_BUCKE(3), 0x0002ffff }, { REG_BUCKI(3), 0x0002ffff }, { REG_TEST(0,3), 0x00000020 }, { REG_TEST(1,3), 0x00000020 }, /* Port config */ { REG_MAX_LEN(3), 0x00002710 }, { REG_PORT_FAIL(3), 0x00000002 }, { REG_NORMALIZER(3), 0x00000a64 }, { REG_DENORM(3), 0x00000010 }, { REG_STICK_BIT(3), 0x03baa370 }, { REG_DEV_SETUP(3), 0x00000083 }, { REG_DEV_SETUP(3), 0x00000082 }, { REG_MODE_CFG(3), 0x0200259f }, }, }; static void run_table(adapter_t *adapter, struct init_table *ib, int len) { int i; for (i = 0; i < len; i++) { if (ib[i].addr == INITBLOCK_SLEEP) { udelay( ib[i].data ); pr_err("sleep %d us\n",ib[i].data); } else vsc_write( adapter, ib[i].addr, ib[i].data ); } } static int bist_rd(adapter_t *adapter, int moduleid, int address) { int data = 0; u32 result = 0; if ((address != 0x0) && (address != 0x1) && (address != 0x2) && (address != 0xd) && (address != 0xe)) pr_err("No bist address: 0x%x\n", address); data = ((0x00 << 24) | ((address & 0xff) << 16) | (0x00 << 8) | ((moduleid & 0xff) << 0)); vsc_write(adapter, REG_RAM_BIST_CMD, data); udelay(10); vsc_read(adapter, REG_RAM_BIST_RESULT, &result); if ((result & (1 << 9)) != 0x0) pr_err("Still in bist read: 0x%x\n", result); else if ((result & (1 << 8)) != 0x0) pr_err("bist read error: 0x%x\n", result); return result & 0xff; } static int bist_wr(adapter_t *adapter, int moduleid, int address, int value) { int data = 0; u32 result = 0; if ((address != 0x0) && (address != 0x1) && (address != 0x2) && (address != 0xd) && (address != 0xe)) pr_err("No bist address: 0x%x\n", address); if (value > 255) pr_err("Suspicious write out of range value: 0x%x\n", value); data = ((0x01 << 24) | ((address & 0xff) << 16) | (value << 8) | ((moduleid & 0xff) << 0)); vsc_write(adapter, REG_RAM_BIST_CMD, data); udelay(5); vsc_read(adapter, REG_RAM_BIST_CMD, &result); if ((result & (1 << 27)) != 0x0) pr_err("Still in bist write: 0x%x\n", result); else if ((result & (1 << 26)) != 0x0) pr_err("bist write error: 0x%x\n", result); return 0; } static int run_bist(adapter_t *adapter, int moduleid) { /*run bist*/ (void) bist_wr(adapter,moduleid, 0x00, 0x02); (void) bist_wr(adapter,moduleid, 0x01, 0x01); return 0; } static int check_bist(adapter_t *adapter, int moduleid) { int result=0; int column=0; /*check bist*/ result = bist_rd(adapter,moduleid, 0x02); column = ((bist_rd(adapter,moduleid, 0x0e)<<8) + (bist_rd(adapter,moduleid, 0x0d))); if ((result & 3) != 0x3) pr_err("Result: 0x%x BIST error in ram %d, column: 0x%04x\n", result, moduleid, column); return 0; } static int enable_mem(adapter_t *adapter, int moduleid) { /*enable mem*/ (void) bist_wr(adapter,moduleid, 0x00, 0x00); return 0; } static int run_bist_all(adapter_t *adapter) { int port = 0; u32 val = 0; vsc_write(adapter, REG_MEM_BIST, 0x5); vsc_read(adapter, REG_MEM_BIST, &val); for (port = 0; port < 12; port++) vsc_write(adapter, REG_DEV_SETUP(port), 0x0); udelay(300); vsc_write(adapter, REG_SPI4_MISC, 0x00040409); udelay(300); (void) run_bist(adapter,13); (void) run_bist(adapter,14); (void) run_bist(adapter,20); (void) run_bist(adapter,21); mdelay(200); (void) check_bist(adapter,13); (void) check_bist(adapter,14); (void) check_bist(adapter,20); (void) check_bist(adapter,21); udelay(100); (void) enable_mem(adapter,13); (void) enable_mem(adapter,14); (void) enable_mem(adapter,20); (void) enable_mem(adapter,21); udelay(300); vsc_write(adapter, REG_SPI4_MISC, 0x60040400); udelay(300); for (port = 0; port < 12; port++) vsc_write(adapter, REG_DEV_SETUP(port), 0x1); udelay(300); vsc_write(adapter, REG_MEM_BIST, 0x0); mdelay(10); return 0; } static int mac_intr_handler(struct cmac *mac) { return 0; } static int mac_intr_enable(struct cmac *mac) { return 0; } static int mac_intr_disable(struct cmac *mac) { return 0; } static int mac_intr_clear(struct cmac *mac) { return 0; } /* Expect MAC address to be in network byte order. */ static int mac_set_address(struct cmac* mac, const u8 addr[6]) { u32 val; int port = mac->instance->index; vsc_write(mac->adapter, REG_MAC_LOW_ADDR(port), (addr[3] << 16) | (addr[4] << 8) | addr[5]); vsc_write(mac->adapter, REG_MAC_HIGH_ADDR(port), (addr[0] << 16) | (addr[1] << 8) | addr[2]); vsc_read(mac->adapter, REG_ING_FFILT_UM_EN, &val); val &= ~0xf0000000; vsc_write(mac->adapter, REG_ING_FFILT_UM_EN, val | (port << 28)); vsc_write(mac->adapter, REG_ING_FFILT_MASK0, 0xffff0000 | (addr[4] << 8) | addr[5]); vsc_write(mac->adapter, REG_ING_FFILT_MASK1, 0xffff0000 | (addr[2] << 8) | addr[3]); vsc_write(mac->adapter, REG_ING_FFILT_MASK2, 0xffff0000 | (addr[0] << 8) | addr[1]); return 0; } static int mac_get_address(struct cmac *mac, u8 addr[6]) { u32 addr_lo, addr_hi; int port = mac->instance->index; vsc_read(mac->adapter, REG_MAC_LOW_ADDR(port), &addr_lo); vsc_read(mac->adapter, REG_MAC_HIGH_ADDR(port), &addr_hi); addr[0] = (u8) (addr_hi >> 16); addr[1] = (u8) (addr_hi >> 8); addr[2] = (u8) addr_hi; addr[3] = (u8) (addr_lo >> 16); addr[4] = (u8) (addr_lo >> 8); addr[5] = (u8) addr_lo; return 0; } /* This is intended to reset a port, not the whole MAC */ static int mac_reset(struct cmac *mac) { int index = mac->instance->index; run_table(mac->adapter, vsc7326_portinit[index], ARRAY_SIZE(vsc7326_portinit[index])); return 0; } static int mac_set_rx_mode(struct cmac *mac, struct t1_rx_mode *rm) { u32 v; int port = mac->instance->index; vsc_read(mac->adapter, REG_ING_FFILT_UM_EN, &v); v |= 1 << 12; if (t1_rx_mode_promisc(rm)) v &= ~(1 << (port + 16)); else v |= 1 << (port + 16); vsc_write(mac->adapter, REG_ING_FFILT_UM_EN, v); return 0; } static int mac_set_mtu(struct cmac *mac, int mtu) { int port = mac->instance->index; /* max_len includes header and FCS */ vsc_write(mac->adapter, REG_MAX_LEN(port), mtu + 14 + 4); return 0; } static int mac_set_speed_duplex_fc(struct cmac *mac, int speed, int duplex, int fc) { u32 v; int enable, port = mac->instance->index; if (speed >= 0 && speed != SPEED_10 && speed != SPEED_100 && speed != SPEED_1000) return -1; if (duplex > 0 && duplex != DUPLEX_FULL) return -1; if (speed >= 0) { vsc_read(mac->adapter, REG_MODE_CFG(port), &v); enable = v & 3; /* save tx/rx enables */ v &= ~0xf; v |= 4; /* full duplex */ if (speed == SPEED_1000) v |= 8; /* GigE */ enable |= v; vsc_write(mac->adapter, REG_MODE_CFG(port), v); if (speed == SPEED_1000) v = 0x82; else if (speed == SPEED_100) v = 0x84; else /* SPEED_10 */ v = 0x86; vsc_write(mac->adapter, REG_DEV_SETUP(port), v | 1); /* reset */ vsc_write(mac->adapter, REG_DEV_SETUP(port), v); vsc_read(mac->adapter, REG_DBG(port), &v); v &= ~0xff00; if (speed == SPEED_1000) v |= 0x400; else if (speed == SPEED_100) v |= 0x2000; else /* SPEED_10 */ v |= 0xff00; vsc_write(mac->adapter, REG_DBG(port), v); vsc_write(mac->adapter, REG_TX_IFG(port), speed == SPEED_1000 ? 5 : 0x11); if (duplex == DUPLEX_HALF) enable = 0x0; /* 100 or 10 */ else if (speed == SPEED_1000) enable = 0xc; else /* SPEED_100 or 10 */ enable = 0x4; enable |= 0x9 << 10; /* IFG1 */ enable |= 0x6 << 6; /* IFG2 */ enable |= 0x1 << 4; /* VLAN */ enable |= 0x3; /* RX/TX EN */ vsc_write(mac->adapter, REG_MODE_CFG(port), enable); } vsc_read(mac->adapter, REG_PAUSE_CFG(port), &v); v &= 0xfff0ffff; v |= 0x20000; /* xon/xoff */ if (fc & PAUSE_RX) v |= 0x40000; if (fc & PAUSE_TX) v |= 0x80000; if (fc == (PAUSE_RX | PAUSE_TX)) v |= 0x10000; vsc_write(mac->adapter, REG_PAUSE_CFG(port), v); return 0; } static int mac_enable(struct cmac *mac, int which) { u32 val; int port = mac->instance->index; /* Write the correct WM value when the port is enabled. */ vsc_write(mac->adapter, REG_HIGH_LOW_WM(1,port), WM_ENABLE); vsc_read(mac->adapter, REG_MODE_CFG(port), &val); if (which & MAC_DIRECTION_RX) val |= 0x2; if (which & MAC_DIRECTION_TX) val |= 1; vsc_write(mac->adapter, REG_MODE_CFG(port), val); return 0; } static int mac_disable(struct cmac *mac, int which) { u32 val; int i, port = mac->instance->index; /* Reset the port, this also writes the correct WM value */ mac_reset(mac); vsc_read(mac->adapter, REG_MODE_CFG(port), &val); if (which & MAC_DIRECTION_RX) val &= ~0x2; if (which & MAC_DIRECTION_TX) val &= ~0x1; vsc_write(mac->adapter, REG_MODE_CFG(port), val); vsc_read(mac->adapter, REG_MODE_CFG(port), &val); /* Clear stats */ for (i = 0; i <= 0x3a; ++i) vsc_write(mac->adapter, CRA(4, port, i), 0); /* Clear software counters */ memset(&mac->stats, 0, sizeof(struct cmac_statistics)); return 0; } static void rmon_update(struct cmac *mac, unsigned int addr, u64 *stat) { u32 v, lo; vsc_read(mac->adapter, addr, &v); lo = *stat; *stat = *stat - lo + v; if (v == 0) return; if (v < lo) *stat += (1ULL << 32); } static void port_stats_update(struct cmac *mac) { struct { unsigned int reg; unsigned int offset; } hw_stats[] = { #define HW_STAT(reg, stat_name) \ { reg, (&((struct cmac_statistics *)NULL)->stat_name) - (u64 *)NULL } /* Rx stats */ HW_STAT(RxUnicast, RxUnicastFramesOK), HW_STAT(RxMulticast, RxMulticastFramesOK), HW_STAT(RxBroadcast, RxBroadcastFramesOK), HW_STAT(Crc, RxFCSErrors), HW_STAT(RxAlignment, RxAlignErrors), HW_STAT(RxOversize, RxFrameTooLongErrors), HW_STAT(RxPause, RxPauseFrames), HW_STAT(RxJabbers, RxJabberErrors), HW_STAT(RxFragments, RxRuntErrors), HW_STAT(RxUndersize, RxRuntErrors), HW_STAT(RxSymbolCarrier, RxSymbolErrors), HW_STAT(RxSize1519ToMax, RxJumboFramesOK), /* Tx stats (skip collision stats as we are full-duplex only) */ HW_STAT(TxUnicast, TxUnicastFramesOK), HW_STAT(TxMulticast, TxMulticastFramesOK), HW_STAT(TxBroadcast, TxBroadcastFramesOK), HW_STAT(TxPause, TxPauseFrames), HW_STAT(TxUnderrun, TxUnderrun), HW_STAT(TxSize1519ToMax, TxJumboFramesOK), }, *p = hw_stats; unsigned int port = mac->instance->index; u64 *stats = (u64 *)&mac->stats; unsigned int i; for (i = 0; i < ARRAY_SIZE(hw_stats); i++) rmon_update(mac, CRA(0x4, port, p->reg), stats + p->offset); rmon_update(mac, REG_TX_OK_BYTES(port), &mac->stats.TxOctetsOK); rmon_update(mac, REG_RX_OK_BYTES(port), &mac->stats.RxOctetsOK); rmon_update(mac, REG_RX_BAD_BYTES(port), &mac->stats.RxOctetsBad); } /* * This function is called periodically to accumulate the current values of the * RMON counters into the port statistics. Since the counters are only 32 bits * some of them can overflow in less than a minute at GigE speeds, so this * function should be called every 30 seconds or so. * * To cut down on reading costs we update only the octet counters at each tick * and do a full update at major ticks, which can be every 30 minutes or more. */ static const struct cmac_statistics *mac_update_statistics(struct cmac *mac, int flag) { if (flag == MAC_STATS_UPDATE_FULL || mac->instance->ticks >= MAJOR_UPDATE_TICKS) { port_stats_update(mac); mac->instance->ticks = 0; } else { int port = mac->instance->index; rmon_update(mac, REG_RX_OK_BYTES(port), &mac->stats.RxOctetsOK); rmon_update(mac, REG_RX_BAD_BYTES(port), &mac->stats.RxOctetsBad); rmon_update(mac, REG_TX_OK_BYTES(port), &mac->stats.TxOctetsOK); mac->instance->ticks++; } return &mac->stats; } static void mac_destroy(struct cmac *mac) { kfree(mac); } static const struct cmac_ops vsc7326_ops = { .destroy = mac_destroy, .reset = mac_reset, .interrupt_handler = mac_intr_handler, .interrupt_enable = mac_intr_enable, .interrupt_disable = mac_intr_disable, .interrupt_clear = mac_intr_clear, .enable = mac_enable, .disable = mac_disable, .set_mtu = mac_set_mtu, .set_rx_mode = mac_set_rx_mode, .set_speed_duplex_fc = mac_set_speed_duplex_fc, .statistics_update = mac_update_statistics, .macaddress_get = mac_get_address, .macaddress_set = mac_set_address, }; static struct cmac *vsc7326_mac_create(adapter_t *adapter, int index) { struct cmac *mac; u32 val; int i; mac = kzalloc(sizeof(*mac) + sizeof(cmac_instance), GFP_KERNEL); if (!mac) return NULL; mac->ops = &vsc7326_ops; mac->instance = (cmac_instance *)(mac + 1); mac->adapter = adapter; mac->instance->index = index; mac->instance->ticks = 0; i = 0; do { u32 vhi, vlo; vhi = vlo = 0; t1_tpi_read(adapter, (REG_LOCAL_STATUS << 2) + 4, &vlo); udelay(1); t1_tpi_read(adapter, REG_LOCAL_STATUS << 2, &vhi); udelay(5); val = (vhi << 16) | vlo; } while ((++i < 10000) && (val == 0xffffffff)); return mac; } static int vsc7326_mac_reset(adapter_t *adapter) { vsc7326_full_reset(adapter); (void) run_bist_all(adapter); run_table(adapter, vsc7326_reset, ARRAY_SIZE(vsc7326_reset)); return 0; } const struct gmac t1_vsc7326_ops = { .stats_update_period = STATS_TICK_SECS, .create = vsc7326_mac_create, .reset = vsc7326_mac_reset, };