/****************************************************************************** * This software may be used and distributed according to the terms of * the GNU General Public License (GPL), incorporated herein by reference. * Drivers based on or derived from this code fall under the GPL and must * retain the authorship, copyright and license notice. This file is not * a complete program and may only be used when the entire operating * system is licensed under the GPL. * See the file COPYING in this distribution for more information. * * vxge-config.h: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O * Virtualized Server Adapter. * Copyright(c) 2002-2010 Exar Corp. ******************************************************************************/ #ifndef VXGE_CONFIG_H #define VXGE_CONFIG_H #include #include #include #include #ifndef VXGE_CACHE_LINE_SIZE #define VXGE_CACHE_LINE_SIZE 128 #endif #ifndef VXGE_ALIGN #define VXGE_ALIGN(adrs, size) \ (((size) - (((u64)adrs) & ((size)-1))) & ((size)-1)) #endif #define VXGE_HW_MIN_MTU ETH_MIN_MTU #define VXGE_HW_MAX_MTU 9600 #define VXGE_HW_DEFAULT_MTU 1500 #define VXGE_HW_MAX_ROM_IMAGES 8 struct eprom_image { u8 is_valid:1; u8 index; u8 type; u16 version; }; #ifdef VXGE_DEBUG_ASSERT /** * vxge_assert * @test: C-condition to check * @fmt: printf like format string * * This function implements traditional assert. By default assertions * are enabled. It can be disabled by undefining VXGE_DEBUG_ASSERT macro in * compilation * time. */ #define vxge_assert(test) BUG_ON(!(test)) #else #define vxge_assert(test) #endif /* end of VXGE_DEBUG_ASSERT */ /** * enum vxge_debug_level * @VXGE_NONE: debug disabled * @VXGE_ERR: all errors going to be logged out * @VXGE_TRACE: all errors plus all kind of verbose tracing print outs * going to be logged out. Very noisy. * * This enumeration going to be used to switch between different * debug levels during runtime if DEBUG macro defined during * compilation. If DEBUG macro not defined than code will be * compiled out. */ enum vxge_debug_level { VXGE_NONE = 0, VXGE_TRACE = 1, VXGE_ERR = 2 }; #define NULL_VPID 0xFFFFFFFF #ifdef CONFIG_VXGE_DEBUG_TRACE_ALL #define VXGE_DEBUG_MODULE_MASK 0xffffffff #define VXGE_DEBUG_TRACE_MASK 0xffffffff #define VXGE_DEBUG_ERR_MASK 0xffffffff #define VXGE_DEBUG_MASK 0x000001ff #else #define VXGE_DEBUG_MODULE_MASK 0x20000000 #define VXGE_DEBUG_TRACE_MASK 0x20000000 #define VXGE_DEBUG_ERR_MASK 0x20000000 #define VXGE_DEBUG_MASK 0x00000001 #endif /* * @VXGE_COMPONENT_LL: do debug for vxge link layer module * @VXGE_COMPONENT_ALL: activate debug for all modules with no exceptions * * This enumeration going to be used to distinguish modules * or libraries during compilation and runtime. Makefile must declare * VXGE_DEBUG_MODULE_MASK macro and set it to proper value. */ #define VXGE_COMPONENT_LL 0x20000000 #define VXGE_COMPONENT_ALL 0xffffffff #define VXGE_HW_BASE_INF 100 #define VXGE_HW_BASE_ERR 200 #define VXGE_HW_BASE_BADCFG 300 enum vxge_hw_status { VXGE_HW_OK = 0, VXGE_HW_FAIL = 1, VXGE_HW_PENDING = 2, VXGE_HW_COMPLETIONS_REMAIN = 3, VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS = VXGE_HW_BASE_INF + 1, VXGE_HW_INF_OUT_OF_DESCRIPTORS = VXGE_HW_BASE_INF + 2, VXGE_HW_ERR_INVALID_HANDLE = VXGE_HW_BASE_ERR + 1, VXGE_HW_ERR_OUT_OF_MEMORY = VXGE_HW_BASE_ERR + 2, VXGE_HW_ERR_VPATH_NOT_AVAILABLE = VXGE_HW_BASE_ERR + 3, VXGE_HW_ERR_VPATH_NOT_OPEN = VXGE_HW_BASE_ERR + 4, VXGE_HW_ERR_WRONG_IRQ = VXGE_HW_BASE_ERR + 5, VXGE_HW_ERR_SWAPPER_CTRL = VXGE_HW_BASE_ERR + 6, VXGE_HW_ERR_INVALID_MTU_SIZE = VXGE_HW_BASE_ERR + 7, VXGE_HW_ERR_INVALID_INDEX = VXGE_HW_BASE_ERR + 8, VXGE_HW_ERR_INVALID_TYPE = VXGE_HW_BASE_ERR + 9, VXGE_HW_ERR_INVALID_OFFSET = VXGE_HW_BASE_ERR + 10, VXGE_HW_ERR_INVALID_DEVICE = VXGE_HW_BASE_ERR + 11, VXGE_HW_ERR_VERSION_CONFLICT = VXGE_HW_BASE_ERR + 12, VXGE_HW_ERR_INVALID_PCI_INFO = VXGE_HW_BASE_ERR + 13, VXGE_HW_ERR_INVALID_TCODE = VXGE_HW_BASE_ERR + 14, VXGE_HW_ERR_INVALID_BLOCK_SIZE = VXGE_HW_BASE_ERR + 15, VXGE_HW_ERR_INVALID_STATE = VXGE_HW_BASE_ERR + 16, VXGE_HW_ERR_PRIVILEGED_OPERATION = VXGE_HW_BASE_ERR + 17, VXGE_HW_ERR_INVALID_PORT = VXGE_HW_BASE_ERR + 18, VXGE_HW_ERR_FIFO = VXGE_HW_BASE_ERR + 19, VXGE_HW_ERR_VPATH = VXGE_HW_BASE_ERR + 20, VXGE_HW_ERR_CRITICAL = VXGE_HW_BASE_ERR + 21, VXGE_HW_ERR_SLOT_FREEZE = VXGE_HW_BASE_ERR + 22, VXGE_HW_BADCFG_RING_INDICATE_MAX_PKTS = VXGE_HW_BASE_BADCFG + 1, VXGE_HW_BADCFG_FIFO_BLOCKS = VXGE_HW_BASE_BADCFG + 2, VXGE_HW_BADCFG_VPATH_MTU = VXGE_HW_BASE_BADCFG + 3, VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG = VXGE_HW_BASE_BADCFG + 4, VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH = VXGE_HW_BASE_BADCFG + 5, VXGE_HW_BADCFG_INTR_MODE = VXGE_HW_BASE_BADCFG + 6, VXGE_HW_BADCFG_RTS_MAC_EN = VXGE_HW_BASE_BADCFG + 7, VXGE_HW_EOF_TRACE_BUF = -1 }; /** * enum enum vxge_hw_device_link_state - Link state enumeration. * @VXGE_HW_LINK_NONE: Invalid link state. * @VXGE_HW_LINK_DOWN: Link is down. * @VXGE_HW_LINK_UP: Link is up. * */ enum vxge_hw_device_link_state { VXGE_HW_LINK_NONE, VXGE_HW_LINK_DOWN, VXGE_HW_LINK_UP }; /** * enum enum vxge_hw_fw_upgrade_code - FW upgrade return codes. * @VXGE_HW_FW_UPGRADE_OK: All OK send next 16 bytes * @VXGE_HW_FW_UPGRADE_DONE: upload completed * @VXGE_HW_FW_UPGRADE_ERR: upload error * @VXGE_FW_UPGRADE_BYTES2SKIP: skip bytes in the stream * */ enum vxge_hw_fw_upgrade_code { VXGE_HW_FW_UPGRADE_OK = 0, VXGE_HW_FW_UPGRADE_DONE = 1, VXGE_HW_FW_UPGRADE_ERR = 2, VXGE_FW_UPGRADE_BYTES2SKIP = 3 }; /** * enum enum vxge_hw_fw_upgrade_err_code - FW upgrade error codes. * @VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1: corrupt data * @VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW: buffer overflow * @VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3: invalid .ncf file * @VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4: invalid .ncf file * @VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5: invalid .ncf file * @VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6: invalid .ncf file * @VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7: corrupt data * @VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8: invalid .ncf file * @VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN: generic error unknown type * @VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH: failed to flash image check failed */ enum vxge_hw_fw_upgrade_err_code { VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1 = 1, VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW = 2, VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3 = 3, VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4 = 4, VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5 = 5, VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6 = 6, VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7 = 7, VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8 = 8, VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN = 9, VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH = 10 }; /** * struct vxge_hw_device_date - Date Format * @day: Day * @month: Month * @year: Year * @date: Date in string format * * Structure for returning date */ #define VXGE_HW_FW_STRLEN 32 struct vxge_hw_device_date { u32 day; u32 month; u32 year; char date[VXGE_HW_FW_STRLEN]; }; struct vxge_hw_device_version { u32 major; u32 minor; u32 build; char version[VXGE_HW_FW_STRLEN]; }; /** * struct vxge_hw_fifo_config - Configuration of fifo. * @enable: Is this fifo to be commissioned * @fifo_blocks: Numbers of TxDL (that is, lists of Tx descriptors) * blocks per queue. * @max_frags: Max number of Tx buffers per TxDL (that is, per single * transmit operation). * No more than 256 transmit buffers can be specified. * @memblock_size: Fifo descriptors are allocated in blocks of @mem_block_size * bytes. Setting @memblock_size to page size ensures * by-page allocation of descriptors. 128K bytes is the * maximum supported block size. * @alignment_size: per Tx fragment DMA-able memory used to align transmit data * (e.g., to align on a cache line). * @intr: Boolean. Use 1 to generate interrupt for each completed TxDL. * Use 0 otherwise. * @no_snoop_bits: If non-zero, specifies no-snoop PCI operation, * which generally improves latency of the host bridge operation * (see PCI specification). For valid values please refer * to struct vxge_hw_fifo_config{} in the driver sources. * Configuration of all Titan fifos. * Note: Valid (min, max) range for each attribute is specified in the body of * the struct vxge_hw_fifo_config{} structure. */ struct vxge_hw_fifo_config { u32 enable; #define VXGE_HW_FIFO_ENABLE 1 #define VXGE_HW_FIFO_DISABLE 0 u32 fifo_blocks; #define VXGE_HW_MIN_FIFO_BLOCKS 2 #define VXGE_HW_MAX_FIFO_BLOCKS 128 u32 max_frags; #define VXGE_HW_MIN_FIFO_FRAGS 1 #define VXGE_HW_MAX_FIFO_FRAGS 256 u32 memblock_size; #define VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE VXGE_HW_BLOCK_SIZE #define VXGE_HW_MAX_FIFO_MEMBLOCK_SIZE 131072 #define VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE 8096 u32 alignment_size; #define VXGE_HW_MIN_FIFO_ALIGNMENT_SIZE 0 #define VXGE_HW_MAX_FIFO_ALIGNMENT_SIZE 65536 #define VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE VXGE_CACHE_LINE_SIZE u32 intr; #define VXGE_HW_FIFO_QUEUE_INTR_ENABLE 1 #define VXGE_HW_FIFO_QUEUE_INTR_DISABLE 0 #define VXGE_HW_FIFO_QUEUE_INTR_DEFAULT 0 u32 no_snoop_bits; #define VXGE_HW_FIFO_NO_SNOOP_DISABLED 0 #define VXGE_HW_FIFO_NO_SNOOP_TXD 1 #define VXGE_HW_FIFO_NO_SNOOP_FRM 2 #define VXGE_HW_FIFO_NO_SNOOP_ALL 3 #define VXGE_HW_FIFO_NO_SNOOP_DEFAULT 0 }; /** * struct vxge_hw_ring_config - Ring configurations. * @enable: Is this ring to be commissioned * @ring_blocks: Numbers of RxD blocks in the ring * @buffer_mode: Receive buffer mode (1, 2, 3, or 5); for details please refer * to Titan User Guide. * @scatter_mode: Titan supports two receive scatter modes: A and B. * For details please refer to Titan User Guide. * @rx_timer_val: The number of 32ns periods that would be counted between two * timer interrupts. * @greedy_return: If Set it forces the device to return absolutely all RxD * that are consumed and still on board when a timer interrupt * triggers. If Clear, then if the device has already returned * RxD before current timer interrupt triggered and after the * previous timer interrupt triggered, then the device is not * forced to returned the rest of the consumed RxD that it has * on board which account for a byte count less than the one * programmed into PRC_CFG6.RXD_CRXDT field * @rx_timer_ci: TBD * @backoff_interval_us: Time (in microseconds), after which Titan * tries to download RxDs posted by the host. * Note that the "backoff" does not happen if host posts receive * descriptors in the timely fashion. * Ring configuration. */ struct vxge_hw_ring_config { u32 enable; #define VXGE_HW_RING_ENABLE 1 #define VXGE_HW_RING_DISABLE 0 #define VXGE_HW_RING_DEFAULT 1 u32 ring_blocks; #define VXGE_HW_MIN_RING_BLOCKS 1 #define VXGE_HW_MAX_RING_BLOCKS 128 #define VXGE_HW_DEF_RING_BLOCKS 2 u32 buffer_mode; #define VXGE_HW_RING_RXD_BUFFER_MODE_1 1 #define VXGE_HW_RING_RXD_BUFFER_MODE_3 3 #define VXGE_HW_RING_RXD_BUFFER_MODE_5 5 #define VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT 1 u32 scatter_mode; #define VXGE_HW_RING_SCATTER_MODE_A 0 #define VXGE_HW_RING_SCATTER_MODE_B 1 #define VXGE_HW_RING_SCATTER_MODE_C 2 #define VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT 0xffffffff u64 rxds_limit; #define VXGE_HW_DEF_RING_RXDS_LIMIT 44 }; /** * struct vxge_hw_vp_config - Configuration of virtual path * @vp_id: Virtual Path Id * @min_bandwidth: Minimum Guaranteed bandwidth * @ring: See struct vxge_hw_ring_config{}. * @fifo: See struct vxge_hw_fifo_config{}. * @tti: Configuration of interrupt associated with Transmit. * see struct vxge_hw_tim_intr_config(); * @rti: Configuration of interrupt associated with Receive. * see struct vxge_hw_tim_intr_config(); * @mtu: mtu size used on this port. * @rpa_strip_vlan_tag: Strip VLAN Tag enable/disable. Instructs the device to * remove the VLAN tag from all received tagged frames that are not * replicated at the internal L2 switch. * 0 - Do not strip the VLAN tag. * 1 - Strip the VLAN tag. Regardless of this setting, VLAN tags are * always placed into the RxDMA descriptor. * * This structure is used by the driver to pass the configuration parameters to * configure Virtual Path. */ struct vxge_hw_vp_config { u32 vp_id; #define VXGE_HW_VPATH_PRIORITY_MIN 0 #define VXGE_HW_VPATH_PRIORITY_MAX 16 #define VXGE_HW_VPATH_PRIORITY_DEFAULT 0 u32 min_bandwidth; #define VXGE_HW_VPATH_BANDWIDTH_MIN 0 #define VXGE_HW_VPATH_BANDWIDTH_MAX 100 #define VXGE_HW_VPATH_BANDWIDTH_DEFAULT 0 struct vxge_hw_ring_config ring; struct vxge_hw_fifo_config fifo; struct vxge_hw_tim_intr_config tti; struct vxge_hw_tim_intr_config rti; u32 mtu; #define VXGE_HW_VPATH_MIN_INITIAL_MTU VXGE_HW_MIN_MTU #define VXGE_HW_VPATH_MAX_INITIAL_MTU VXGE_HW_MAX_MTU #define VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU 0xffffffff u32 rpa_strip_vlan_tag; #define VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE 1 #define VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE 0 #define VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT 0xffffffff }; /** * struct vxge_hw_device_config - Device configuration. * @dma_blockpool_initial: Initial size of DMA Pool * @dma_blockpool_max: Maximum blocks in DMA pool * @intr_mode: Line, or MSI-X interrupt. * * @rth_en: Enable Receive Traffic Hashing(RTH) using IT(Indirection Table). * @rth_it_type: RTH IT table programming type * @rts_mac_en: Enable Receive Traffic Steering using MAC destination address * @vp_config: Configuration for virtual paths * @device_poll_millis: Specify the interval (in mulliseconds) * to wait for register reads * * Titan configuration. * Contains per-device configuration parameters, including: * - stats sampling interval, etc. * * In addition, struct vxge_hw_device_config{} includes "subordinate" * configurations, including: * - fifos and rings; * - MAC (done at firmware level). * * See Titan User Guide for more details. * Note: Valid (min, max) range for each attribute is specified in the body of * the struct vxge_hw_device_config{} structure. Please refer to the * corresponding include file. * See also: struct vxge_hw_tim_intr_config{}. */ struct vxge_hw_device_config { u32 device_poll_millis; #define VXGE_HW_MIN_DEVICE_POLL_MILLIS 1 #define VXGE_HW_MAX_DEVICE_POLL_MILLIS 100000 #define VXGE_HW_DEF_DEVICE_POLL_MILLIS 1000 u32 dma_blockpool_initial; u32 dma_blockpool_max; #define VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE 0 #define VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE 0 #define VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE 4 #define VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE 4096 #define VXGE_HW_MAX_PAYLOAD_SIZE_512 2 u32 intr_mode:2, #define VXGE_HW_INTR_MODE_IRQLINE 0 #define VXGE_HW_INTR_MODE_MSIX 1 #define VXGE_HW_INTR_MODE_MSIX_ONE_SHOT 2 #define VXGE_HW_INTR_MODE_DEF 0 rth_en:1, #define VXGE_HW_RTH_DISABLE 0 #define VXGE_HW_RTH_ENABLE 1 #define VXGE_HW_RTH_DEFAULT 0 rth_it_type:1, #define VXGE_HW_RTH_IT_TYPE_SOLO_IT 0 #define VXGE_HW_RTH_IT_TYPE_MULTI_IT 1 #define VXGE_HW_RTH_IT_TYPE_DEFAULT 0 rts_mac_en:1, #define VXGE_HW_RTS_MAC_DISABLE 0 #define VXGE_HW_RTS_MAC_ENABLE 1 #define VXGE_HW_RTS_MAC_DEFAULT 0 hwts_en:1; #define VXGE_HW_HWTS_DISABLE 0 #define VXGE_HW_HWTS_ENABLE 1 #define VXGE_HW_HWTS_DEFAULT 1 struct vxge_hw_vp_config vp_config[VXGE_HW_MAX_VIRTUAL_PATHS]; }; /** * function vxge_uld_link_up_f - Link-Up callback provided by driver. * @devh: HW device handle. * Link-up notification callback provided by the driver. * This is one of the per-driver callbacks, see struct vxge_hw_uld_cbs{}. * * See also: struct vxge_hw_uld_cbs{}, vxge_uld_link_down_f{}, * vxge_hw_driver_initialize(). */ /** * function vxge_uld_link_down_f - Link-Down callback provided by * driver. * @devh: HW device handle. * * Link-Down notification callback provided by the driver. * This is one of the per-driver callbacks, see struct vxge_hw_uld_cbs{}. * * See also: struct vxge_hw_uld_cbs{}, vxge_uld_link_up_f{}, * vxge_hw_driver_initialize(). */ /** * function vxge_uld_crit_err_f - Critical Error notification callback. * @devh: HW device handle. * (typically - at HW device iinitialization time). * @type: Enumerated hw error, e.g.: double ECC. * @serr_data: Titan status. * @ext_data: Extended data. The contents depends on the @type. * * Link-Down notification callback provided by the driver. * This is one of the per-driver callbacks, see struct vxge_hw_uld_cbs{}. * * See also: struct vxge_hw_uld_cbs{}, enum vxge_hw_event{}, * vxge_hw_driver_initialize(). */ /** * struct vxge_hw_uld_cbs - driver "slow-path" callbacks. * @link_up: See vxge_uld_link_up_f{}. * @link_down: See vxge_uld_link_down_f{}. * @crit_err: See vxge_uld_crit_err_f{}. * * Driver slow-path (per-driver) callbacks. * Implemented by driver and provided to HW via * vxge_hw_driver_initialize(). * Note that these callbacks are not mandatory: HW will not invoke * a callback if NULL is specified. * * See also: vxge_hw_driver_initialize(). */ struct vxge_hw_uld_cbs { void (*link_up)(struct __vxge_hw_device *devh); void (*link_down)(struct __vxge_hw_device *devh); void (*crit_err)(struct __vxge_hw_device *devh, enum vxge_hw_event type, u64 ext_data); }; /* * struct __vxge_hw_blockpool_entry - Block private data structure * @item: List header used to link. * @length: Length of the block * @memblock: Virtual address block * @dma_addr: DMA Address of the block. * @dma_handle: DMA handle of the block. * @acc_handle: DMA acc handle * * Block is allocated with a header to put the blocks into list. * */ struct __vxge_hw_blockpool_entry { struct list_head item; u32 length; void *memblock; dma_addr_t dma_addr; struct pci_dev *dma_handle; struct pci_dev *acc_handle; }; /* * struct __vxge_hw_blockpool - Block Pool * @hldev: HW device * @block_size: size of each block. * @Pool_size: Number of blocks in the pool * @pool_max: Maximum number of blocks above which to free additional blocks * @req_out: Number of block requests with OS out standing * @free_block_list: List of free blocks * * Block pool contains the DMA blocks preallocated. * */ struct __vxge_hw_blockpool { struct __vxge_hw_device *hldev; u32 block_size; u32 pool_size; u32 pool_max; u32 req_out; struct list_head free_block_list; struct list_head free_entry_list; }; /* * enum enum __vxge_hw_channel_type - Enumerated channel types. * @VXGE_HW_CHANNEL_TYPE_UNKNOWN: Unknown channel. * @VXGE_HW_CHANNEL_TYPE_FIFO: fifo. * @VXGE_HW_CHANNEL_TYPE_RING: ring. * @VXGE_HW_CHANNEL_TYPE_MAX: Maximum number of HW-supported * (and recognized) channel types. Currently: 2. * * Enumerated channel types. Currently there are only two link-layer * channels - Titan fifo and Titan ring. In the future the list will grow. */ enum __vxge_hw_channel_type { VXGE_HW_CHANNEL_TYPE_UNKNOWN = 0, VXGE_HW_CHANNEL_TYPE_FIFO = 1, VXGE_HW_CHANNEL_TYPE_RING = 2, VXGE_HW_CHANNEL_TYPE_MAX = 3 }; /* * struct __vxge_hw_channel * @item: List item; used to maintain a list of open channels. * @type: Channel type. See enum vxge_hw_channel_type{}. * @devh: Device handle. HW device object that contains _this_ channel. * @vph: Virtual path handle. Virtual Path Object that contains _this_ channel. * @length: Channel length. Currently allocated number of descriptors. * The channel length "grows" when more descriptors get allocated. * See _hw_mempool_grow. * @reserve_arr: Reserve array. Contains descriptors that can be reserved * by driver for the subsequent send or receive operation. * See vxge_hw_fifo_txdl_reserve(), * vxge_hw_ring_rxd_reserve(). * @reserve_ptr: Current pointer in the resrve array * @reserve_top: Reserve top gives the maximum number of dtrs available in * reserve array. * @work_arr: Work array. Contains descriptors posted to the channel. * Note that at any point in time @work_arr contains 3 types of * descriptors: * 1) posted but not yet consumed by Titan device; * 2) consumed but not yet completed; * 3) completed but not yet freed * (via vxge_hw_fifo_txdl_free() or vxge_hw_ring_rxd_free()) * @post_index: Post index. At any point in time points on the * position in the channel, which'll contain next to-be-posted * descriptor. * @compl_index: Completion index. At any point in time points on the * position in the channel, which will contain next * to-be-completed descriptor. * @free_arr: Free array. Contains completed descriptors that were freed * (i.e., handed over back to HW) by driver. * See vxge_hw_fifo_txdl_free(), vxge_hw_ring_rxd_free(). * @free_ptr: current pointer in free array * @per_dtr_space: Per-descriptor space (in bytes) that channel user can utilize * to store per-operation control information. * @stats: Pointer to common statistics * @userdata: Per-channel opaque (void*) user-defined context, which may be * driver object, ULP connection, etc. * Once channel is open, @userdata is passed back to user via * vxge_hw_channel_callback_f. * * HW channel object. * * See also: enum vxge_hw_channel_type{}, enum vxge_hw_channel_flag */ struct __vxge_hw_channel { struct list_head item; enum __vxge_hw_channel_type type; struct __vxge_hw_device *devh; struct __vxge_hw_vpath_handle *vph; u32 length; u32 vp_id; void **reserve_arr; u32 reserve_ptr; u32 reserve_top; void **work_arr; u32 post_index ____cacheline_aligned; u32 compl_index ____cacheline_aligned; void **free_arr; u32 free_ptr; void **orig_arr; u32 per_dtr_space; void *userdata; struct vxge_hw_common_reg __iomem *common_reg; u32 first_vp_id; struct vxge_hw_vpath_stats_sw_common_info *stats; } ____cacheline_aligned; /* * struct __vxge_hw_virtualpath - Virtual Path * * @vp_id: Virtual path id * @vp_open: This flag specifies if vxge_hw_vp_open is called from LL Driver * @hldev: Hal device * @vp_config: Virtual Path Config * @vp_reg: VPATH Register map address in BAR0 * @vpmgmt_reg: VPATH_MGMT register map address * @max_mtu: Max mtu that can be supported * @vsport_number: vsport attached to this vpath * @max_kdfc_db: Maximum kernel mode doorbells * @max_nofl_db: Maximum non offload doorbells * @tx_intr_num: Interrupt Number associated with the TX * @ringh: Ring Queue * @fifoh: FIFO Queue * @vpath_handles: Virtual Path handles list * @stats_block: Memory for DMAing stats * @stats: Vpath statistics * * Virtual path structure to encapsulate the data related to a virtual path. * Virtual paths are allocated by the HW upon getting configuration from the * driver and inserted into the list of virtual paths. */ struct __vxge_hw_virtualpath { u32 vp_id; u32 vp_open; #define VXGE_HW_VP_NOT_OPEN 0 #define VXGE_HW_VP_OPEN 1 struct __vxge_hw_device *hldev; struct vxge_hw_vp_config *vp_config; struct vxge_hw_vpath_reg __iomem *vp_reg; struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg; struct __vxge_hw_non_offload_db_wrapper __iomem *nofl_db; u32 max_mtu; u32 vsport_number; u32 max_kdfc_db; u32 max_nofl_db; u64 tim_tti_cfg1_saved; u64 tim_tti_cfg3_saved; u64 tim_rti_cfg1_saved; u64 tim_rti_cfg3_saved; struct __vxge_hw_ring *____cacheline_aligned ringh; struct __vxge_hw_fifo *____cacheline_aligned fifoh; struct list_head vpath_handles; struct __vxge_hw_blockpool_entry *stats_block; struct vxge_hw_vpath_stats_hw_info *hw_stats; struct vxge_hw_vpath_stats_hw_info *hw_stats_sav; struct vxge_hw_vpath_stats_sw_info *sw_stats; spinlock_t lock; }; /* * struct __vxge_hw_vpath_handle - List item to store callback information * @item: List head to keep the item in linked list * @vpath: Virtual path to which this item belongs * * This structure is used to store the callback information. */ struct __vxge_hw_vpath_handle { struct list_head item; struct __vxge_hw_virtualpath *vpath; }; /* * struct __vxge_hw_device * * HW device object. */ /** * struct __vxge_hw_device - Hal device object * @magic: Magic Number * @bar0: BAR0 virtual address. * @pdev: Physical device handle * @config: Confguration passed by the LL driver at initialization * @link_state: Link state * * HW device object. Represents Titan adapter */ struct __vxge_hw_device { u32 magic; #define VXGE_HW_DEVICE_MAGIC 0x12345678 #define VXGE_HW_DEVICE_DEAD 0xDEADDEAD void __iomem *bar0; struct pci_dev *pdev; struct net_device *ndev; struct vxge_hw_device_config config; enum vxge_hw_device_link_state link_state; const struct vxge_hw_uld_cbs *uld_callbacks; u32 host_type; u32 func_id; u32 access_rights; #define VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH 0x1 #define VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM 0x2 #define VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM 0x4 struct vxge_hw_legacy_reg __iomem *legacy_reg; struct vxge_hw_toc_reg __iomem *toc_reg; struct vxge_hw_common_reg __iomem *common_reg; struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg; struct vxge_hw_srpcim_reg __iomem *srpcim_reg \ [VXGE_HW_TITAN_SRPCIM_REG_SPACES]; struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg \ [VXGE_HW_TITAN_VPMGMT_REG_SPACES]; struct vxge_hw_vpath_reg __iomem *vpath_reg \ [VXGE_HW_TITAN_VPATH_REG_SPACES]; u8 __iomem *kdfc; u8 __iomem *usdc; struct __vxge_hw_virtualpath virtual_paths \ [VXGE_HW_MAX_VIRTUAL_PATHS]; u64 vpath_assignments; u64 vpaths_deployed; u32 first_vp_id; u64 tim_int_mask0[4]; u32 tim_int_mask1[4]; struct __vxge_hw_blockpool block_pool; struct vxge_hw_device_stats stats; u32 debug_module_mask; u32 debug_level; u32 level_err; u32 level_trace; u16 eprom_versions[VXGE_HW_MAX_ROM_IMAGES]; }; #define VXGE_HW_INFO_LEN 64 /** * struct vxge_hw_device_hw_info - Device information * @host_type: Host Type * @func_id: Function Id * @vpath_mask: vpath bit mask * @fw_version: Firmware version * @fw_date: Firmware Date * @flash_version: Firmware version * @flash_date: Firmware Date * @mac_addrs: Mac addresses for each vpath * @mac_addr_masks: Mac address masks for each vpath * * Returns the vpath mask that has the bits set for each vpath allocated * for the driver and the first mac address for each vpath */ struct vxge_hw_device_hw_info { u32 host_type; #define VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION 0 #define VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION 1 #define VXGE_HW_NO_MR_SR_VH0_FUNCTION0 2 #define VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION 3 #define VXGE_HW_MR_SR_VH0_INVALID_CONFIG 4 #define VXGE_HW_SR_VH_FUNCTION0 5 #define VXGE_HW_SR_VH_VIRTUAL_FUNCTION 6 #define VXGE_HW_VH_NORMAL_FUNCTION 7 u64 function_mode; #define VXGE_HW_FUNCTION_MODE_SINGLE_FUNCTION 0 #define VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION 1 #define VXGE_HW_FUNCTION_MODE_SRIOV 2 #define VXGE_HW_FUNCTION_MODE_MRIOV 3 #define VXGE_HW_FUNCTION_MODE_MRIOV_8 4 #define VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION_17 5 #define VXGE_HW_FUNCTION_MODE_SRIOV_8 6 #define VXGE_HW_FUNCTION_MODE_SRIOV_4 7 #define VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION_2 8 #define VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION_4 9 #define VXGE_HW_FUNCTION_MODE_MRIOV_4 10 u32 func_id; u64 vpath_mask; struct vxge_hw_device_version fw_version; struct vxge_hw_device_date fw_date; struct vxge_hw_device_version flash_version; struct vxge_hw_device_date flash_date; u8 serial_number[VXGE_HW_INFO_LEN]; u8 part_number[VXGE_HW_INFO_LEN]; u8 product_desc[VXGE_HW_INFO_LEN]; u8 mac_addrs[VXGE_HW_MAX_VIRTUAL_PATHS][ETH_ALEN]; u8 mac_addr_masks[VXGE_HW_MAX_VIRTUAL_PATHS][ETH_ALEN]; }; /** * struct vxge_hw_device_attr - Device memory spaces. * @bar0: BAR0 virtual address. * @pdev: PCI device object. * * Device memory spaces. Includes configuration, BAR0 etc. per device * mapped memories. Also, includes a pointer to OS-specific PCI device object. */ struct vxge_hw_device_attr { void __iomem *bar0; struct pci_dev *pdev; const struct vxge_hw_uld_cbs *uld_callbacks; }; #define VXGE_HW_DEVICE_LINK_STATE_SET(hldev, ls) (hldev->link_state = ls) #define VXGE_HW_DEVICE_TIM_INT_MASK_SET(m0, m1, i) { \ if (i < 16) { \ m0[0] |= vxge_vBIT(0x8, (i*4), 4); \ m0[1] |= vxge_vBIT(0x4, (i*4), 4); \ } \ else { \ m1[0] = 0x80000000; \ m1[1] = 0x40000000; \ } \ } #define VXGE_HW_DEVICE_TIM_INT_MASK_RESET(m0, m1, i) { \ if (i < 16) { \ m0[0] &= ~vxge_vBIT(0x8, (i*4), 4); \ m0[1] &= ~vxge_vBIT(0x4, (i*4), 4); \ } \ else { \ m1[0] = 0; \ m1[1] = 0; \ } \ } #define VXGE_HW_DEVICE_STATS_PIO_READ(loc, offset) { \ status = vxge_hw_mrpcim_stats_access(hldev, \ VXGE_HW_STATS_OP_READ, \ loc, \ offset, \ &val64); \ if (status != VXGE_HW_OK) \ return status; \ } /* * struct __vxge_hw_ring - Ring channel. * @channel: Channel "base" of this ring, the common part of all HW * channels. * @mempool: Memory pool, the pool from which descriptors get allocated. * (See vxge_hw_mm.h). * @config: Ring configuration, part of device configuration * (see struct vxge_hw_device_config{}). * @ring_length: Length of the ring * @buffer_mode: 1, 3, or 5. The value specifies a receive buffer mode, * as per Titan User Guide. * @rxd_size: RxD sizes for 1-, 3- or 5- buffer modes. As per Titan spec, * 1-buffer mode descriptor is 32 byte long, etc. * @rxd_priv_size: Per RxD size reserved (by HW) for driver to keep * per-descriptor data (e.g., DMA handle for Solaris) * @per_rxd_space: Per rxd space requested by driver * @rxds_per_block: Number of descriptors per hardware-defined RxD * block. Depends on the (1-, 3-, 5-) buffer mode. * @rxdblock_priv_size: Reserved at the end of each RxD block. HW internal * usage. Not to confuse with @rxd_priv_size. * @cmpl_cnt: Completion counter. Is reset to zero upon entering the ISR. * @callback: Channel completion callback. HW invokes the callback when there * are new completions on that channel. In many implementations * the @callback executes in the hw interrupt context. * @rxd_init: Channel's descriptor-initialize callback. * See vxge_hw_ring_rxd_init_f{}. * If not NULL, HW invokes the callback when opening * the ring. * @rxd_term: Channel's descriptor-terminate callback. If not NULL, * HW invokes the callback when closing the corresponding channel. * See also vxge_hw_channel_rxd_term_f{}. * @stats: Statistics for ring * Ring channel. * * Note: The structure is cache line aligned to better utilize * CPU cache performance. */ struct __vxge_hw_ring { struct __vxge_hw_channel channel; struct vxge_hw_mempool *mempool; struct vxge_hw_vpath_reg __iomem *vp_reg; struct vxge_hw_common_reg __iomem *common_reg; u32 ring_length; u32 buffer_mode; u32 rxd_size; u32 rxd_priv_size; u32 per_rxd_space; u32 rxds_per_block; u32 rxdblock_priv_size; u32 cmpl_cnt; u32 vp_id; u32 doorbell_cnt; u32 total_db_cnt; u64 rxds_limit; u32 rtimer; u64 tim_rti_cfg1_saved; u64 tim_rti_cfg3_saved; enum vxge_hw_status (*callback)( struct __vxge_hw_ring *ringh, void *rxdh, u8 t_code, void *userdata); enum vxge_hw_status (*rxd_init)( void *rxdh, void *userdata); void (*rxd_term)( void *rxdh, enum vxge_hw_rxd_state state, void *userdata); struct vxge_hw_vpath_stats_sw_ring_info *stats ____cacheline_aligned; struct vxge_hw_ring_config *config; } ____cacheline_aligned; /** * enum enum vxge_hw_txdl_state - Descriptor (TXDL) state. * @VXGE_HW_TXDL_STATE_NONE: Invalid state. * @VXGE_HW_TXDL_STATE_AVAIL: Descriptor is available for reservation. * @VXGE_HW_TXDL_STATE_POSTED: Descriptor is posted for processing by the * device. * @VXGE_HW_TXDL_STATE_FREED: Descriptor is free and can be reused for * filling-in and posting later. * * Titan/HW descriptor states. * */ enum vxge_hw_txdl_state { VXGE_HW_TXDL_STATE_NONE = 0, VXGE_HW_TXDL_STATE_AVAIL = 1, VXGE_HW_TXDL_STATE_POSTED = 2, VXGE_HW_TXDL_STATE_FREED = 3 }; /* * struct __vxge_hw_fifo - Fifo. * @channel: Channel "base" of this fifo, the common part of all HW * channels. * @mempool: Memory pool, from which descriptors get allocated. * @config: Fifo configuration, part of device configuration * (see struct vxge_hw_device_config{}). * @interrupt_type: Interrupt type to be used * @no_snoop_bits: See struct vxge_hw_fifo_config{}. * @txdl_per_memblock: Number of TxDLs (TxD lists) per memblock. * on TxDL please refer to Titan UG. * @txdl_size: Configured TxDL size (i.e., number of TxDs in a list), plus * per-TxDL HW private space (struct __vxge_hw_fifo_txdl_priv). * @priv_size: Per-Tx descriptor space reserved for driver * usage. * @per_txdl_space: Per txdl private space for the driver * @callback: Fifo completion callback. HW invokes the callback when there * are new completions on that fifo. In many implementations * the @callback executes in the hw interrupt context. * @txdl_term: Fifo's descriptor-terminate callback. If not NULL, * HW invokes the callback when closing the corresponding fifo. * See also vxge_hw_fifo_txdl_term_f{}. * @stats: Statistics of this fifo * * Fifo channel. * Note: The structure is cache line aligned. */ struct __vxge_hw_fifo { struct __vxge_hw_channel channel; struct vxge_hw_mempool *mempool; struct vxge_hw_fifo_config *config; struct vxge_hw_vpath_reg __iomem *vp_reg; struct __vxge_hw_non_offload_db_wrapper __iomem *nofl_db; u64 interrupt_type; u32 no_snoop_bits; u32 txdl_per_memblock; u32 txdl_size; u32 priv_size; u32 per_txdl_space; u32 vp_id; u32 tx_intr_num; u32 rtimer; u64 tim_tti_cfg1_saved; u64 tim_tti_cfg3_saved; enum vxge_hw_status (*callback)( struct __vxge_hw_fifo *fifo_handle, void *txdlh, enum vxge_hw_fifo_tcode t_code, void *userdata, struct sk_buff ***skb_ptr, int nr_skb, int *more); void (*txdl_term)( void *txdlh, enum vxge_hw_txdl_state state, void *userdata); struct vxge_hw_vpath_stats_sw_fifo_info *stats ____cacheline_aligned; } ____cacheline_aligned; /* * struct __vxge_hw_fifo_txdl_priv - Transmit descriptor HW-private data. * @dma_addr: DMA (mapped) address of _this_ descriptor. * @dma_handle: DMA handle used to map the descriptor onto device. * @dma_offset: Descriptor's offset in the memory block. HW allocates * descriptors in memory blocks (see struct vxge_hw_fifo_config{}) * Each memblock is a contiguous block of DMA-able memory. * @frags: Total number of fragments (that is, contiguous data buffers) * carried by this TxDL. * @align_vaddr_start: Aligned virtual address start * @align_vaddr: Virtual address of the per-TxDL area in memory used for * alignement. Used to place one or more mis-aligned fragments * @align_dma_addr: DMA address translated from the @align_vaddr. * @align_dma_handle: DMA handle that corresponds to @align_dma_addr. * @align_dma_acch: DMA access handle corresponds to @align_dma_addr. * @align_dma_offset: The current offset into the @align_vaddr area. * Grows while filling the descriptor, gets reset. * @align_used_frags: Number of fragments used. * @alloc_frags: Total number of fragments allocated. * @unused: TODO * @next_txdl_priv: (TODO). * @first_txdp: (TODO). * @linked_txdl_priv: Pointer to any linked TxDL for creating contiguous * TxDL list. * @txdlh: Corresponding txdlh to this TxDL. * @memblock: Pointer to the TxDL memory block or memory page. * on the next send operation. * @dma_object: DMA address and handle of the memory block that contains * the descriptor. This member is used only in the "checked" * version of the HW (to enforce certain assertions); * otherwise it gets compiled out. * @allocated: True if the descriptor is reserved, 0 otherwise. Internal usage. * * Per-transmit decsriptor HW-private data. HW uses the space to keep DMA * information associated with the descriptor. Note that driver can ask HW * to allocate additional per-descriptor space for its own (driver-specific) * purposes. * * See also: struct vxge_hw_ring_rxd_priv{}. */ struct __vxge_hw_fifo_txdl_priv { dma_addr_t dma_addr; struct pci_dev *dma_handle; ptrdiff_t dma_offset; u32 frags; u8 *align_vaddr_start; u8 *align_vaddr; dma_addr_t align_dma_addr; struct pci_dev *align_dma_handle; struct pci_dev *align_dma_acch; ptrdiff_t align_dma_offset; u32 align_used_frags; u32 alloc_frags; u32 unused; struct __vxge_hw_fifo_txdl_priv *next_txdl_priv; struct vxge_hw_fifo_txd *first_txdp; void *memblock; }; /* * struct __vxge_hw_non_offload_db_wrapper - Non-offload Doorbell Wrapper * @control_0: Bits 0 to 7 - Doorbell type. * Bits 8 to 31 - Reserved. * Bits 32 to 39 - The highest TxD in this TxDL. * Bits 40 to 47 - Reserved. * Bits 48 to 55 - Reserved. * Bits 56 to 63 - No snoop flags. * @txdl_ptr: The starting location of the TxDL in host memory. * * Created by the host and written to the adapter via PIO to a Kernel Doorbell * FIFO. All non-offload doorbell wrapper fields must be written by the host as * part of a doorbell write. Consumed by the adapter but is not written by the * adapter. */ struct __vxge_hw_non_offload_db_wrapper { u64 control_0; #define VXGE_HW_NODBW_GET_TYPE(ctrl0) vxge_bVALn(ctrl0, 0, 8) #define VXGE_HW_NODBW_TYPE(val) vxge_vBIT(val, 0, 8) #define VXGE_HW_NODBW_TYPE_NODBW 0 #define VXGE_HW_NODBW_GET_LAST_TXD_NUMBER(ctrl0) vxge_bVALn(ctrl0, 32, 8) #define VXGE_HW_NODBW_LAST_TXD_NUMBER(val) vxge_vBIT(val, 32, 8) #define VXGE_HW_NODBW_GET_NO_SNOOP(ctrl0) vxge_bVALn(ctrl0, 56, 8) #define VXGE_HW_NODBW_LIST_NO_SNOOP(val) vxge_vBIT(val, 56, 8) #define VXGE_HW_NODBW_LIST_NO_SNOOP_TXD_READ_TXD0_WRITE 0x2 #define VXGE_HW_NODBW_LIST_NO_SNOOP_TX_FRAME_DATA_READ 0x1 u64 txdl_ptr; }; /* * TX Descriptor */ /** * struct vxge_hw_fifo_txd - Transmit Descriptor * @control_0: Bits 0 to 6 - Reserved. * Bit 7 - List Ownership. This field should be initialized * to '1' by the driver before the transmit list pointer is * written to the adapter. This field will be set to '0' by the * adapter once it has completed transmitting the frame or frames in * the list. Note - This field is only valid in TxD0. Additionally, * for multi-list sequences, the driver should not release any * buffers until the ownership of the last list in the multi-list * sequence has been returned to the host. * Bits 8 to 11 - Reserved * Bits 12 to 15 - Transfer_Code. This field is only valid in * TxD0. It is used to describe the status of the transmit data * buffer transfer. This field is always overwritten by the * adapter, so this field may be initialized to any value. * Bits 16 to 17 - Host steering. This field allows the host to * override the selection of the physical transmit port. * Attention: * Normal sounds as if learned from the switch rather than from * the aggregation algorythms. * 00: Normal. Use Destination/MAC Address * lookup to determine the transmit port. * 01: Send on physical Port1. * 10: Send on physical Port0. * 11: Send on both ports. * Bits 18 to 21 - Reserved * Bits 22 to 23 - Gather_Code. This field is set by the host and * is used to describe how individual buffers comprise a frame. * 10: First descriptor of a frame. * 00: Middle of a multi-descriptor frame. * 01: Last descriptor of a frame. * 11: First and last descriptor of a frame (the entire frame * resides in a single buffer). * For multi-descriptor frames, the only valid gather code sequence * is {10, [00], 01}. In other words, the descriptors must be placed * in the list in the correct order. * Bits 24 to 27 - Reserved * Bits 28 to 29 - LSO_Frm_Encap. LSO Frame Encapsulation * definition. Only valid in TxD0. This field allows the host to * indicate the Ethernet encapsulation of an outbound LSO packet. * 00 - classic mode (best guess) * 01 - LLC * 10 - SNAP * 11 - DIX * If "classic mode" is selected, the adapter will attempt to * decode the frame's Ethernet encapsulation by examining the L/T * field as follows: * <= 0x05DC LLC/SNAP encoding; must examine DSAP/SSAP to determine * if packet is IPv4 or IPv6. * 0x8870 Jumbo-SNAP encoding. * 0x0800 IPv4 DIX encoding * 0x86DD IPv6 DIX encoding * others illegal encapsulation * Bits 30 - LSO_ Flag. Large Send Offload (LSO) flag. * Set to 1 to perform segmentation offload for TCP/UDP. * This field is valid only in TxD0. * Bits 31 to 33 - Reserved. * Bits 34 to 47 - LSO_MSS. TCP/UDP LSO Maximum Segment Size * This field is meaningful only when LSO_Control is non-zero. * When LSO_Control is set to TCP_LSO, the single (possibly large) * TCP segment described by this TxDL will be sent as a series of * TCP segments each of which contains no more than LSO_MSS * payload bytes. * When LSO_Control is set to UDP_LSO, the single (possibly large) * UDP datagram described by this TxDL will be sent as a series of * UDP datagrams each of which contains no more than LSO_MSS * payload bytes. * All outgoing frames from this TxDL will have LSO_MSS bytes of UDP * or TCP payload, with the exception of the last, which will have * <= LSO_MSS bytes of payload. * Bits 48 to 63 - Buffer_Size. Number of valid bytes in the * buffer to be read by the adapter. This field is written by the * host. A value of 0 is illegal. * Bits 32 to 63 - This value is written by the adapter upon * completion of a UDP or TCP LSO operation and indicates the number * of UDP or TCP payload bytes that were transmitted. 0x0000 will be * returned for any non-LSO operation. * @control_1: Bits 0 to 4 - Reserved. * Bit 5 - Tx_CKO_IPv4 Set to a '1' to enable IPv4 header checksum * offload. This field is only valid in the first TxD of a frame. * Bit 6 - Tx_CKO_TCP Set to a '1' to enable TCP checksum offload. * This field is only valid in the first TxD of a frame (the TxD's * gather code must be 10 or 11). The driver should only set this * bit if it can guarantee that TCP is present. * Bit 7 - Tx_CKO_UDP Set to a '1' to enable UDP checksum offload. * This field is only valid in the first TxD of a frame (the TxD's * gather code must be 10 or 11). The driver should only set this * bit if it can guarantee that UDP is present. * Bits 8 to 14 - Reserved. * Bit 15 - Tx_VLAN_Enable VLAN tag insertion flag. Set to a '1' to * instruct the adapter to insert the VLAN tag specified by the * Tx_VLAN_Tag field. This field is only valid in the first TxD of * a frame. * Bits 16 to 31 - Tx_VLAN_Tag. Variable portion of the VLAN tag * to be inserted into the frame by the adapter (the first two bytes * of a VLAN tag are always 0x8100). This field is only valid if the * Tx_VLAN_Enable field is set to '1'. * Bits 32 to 33 - Reserved. * Bits 34 to 39 - Tx_Int_Number. Indicates which Tx interrupt * number the frame associated with. This field is written by the * host. It is only valid in the first TxD of a frame. * Bits 40 to 42 - Reserved. * Bit 43 - Set to 1 to exclude the frame from bandwidth metering * functions. This field is valid only in the first TxD * of a frame. * Bits 44 to 45 - Reserved. * Bit 46 - Tx_Int_Per_List Set to a '1' to instruct the adapter to * generate an interrupt as soon as all of the frames in the list * have been transmitted. In order to have per-frame interrupts, * the driver should place a maximum of one frame per list. This * field is only valid in the first TxD of a frame. * Bit 47 - Tx_Int_Utilization Set to a '1' to instruct the adapter * to count the frame toward the utilization interrupt specified in * the Tx_Int_Number field. This field is only valid in the first * TxD of a frame. * Bits 48 to 63 - Reserved. * @buffer_pointer: Buffer start address. * @host_control: Host_Control.Opaque 64bit data stored by driver inside the * Titan descriptor prior to posting the latter on the fifo * via vxge_hw_fifo_txdl_post().The %host_control is returned as is * to the driver with each completed descriptor. * * Transmit descriptor (TxD).Fifo descriptor contains configured number * (list) of TxDs. * For more details please refer to Titan User Guide, * Section 5.4.2 "Transmit Descriptor (TxD) Format". */ struct vxge_hw_fifo_txd { u64 control_0; #define VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER vxge_mBIT(7) #define VXGE_HW_FIFO_TXD_T_CODE_GET(ctrl0) vxge_bVALn(ctrl0, 12, 4) #define VXGE_HW_FIFO_TXD_T_CODE(val) vxge_vBIT(val, 12, 4) #define VXGE_HW_FIFO_TXD_T_CODE_UNUSED VXGE_HW_FIFO_T_CODE_UNUSED #define VXGE_HW_FIFO_TXD_GATHER_CODE(val) vxge_vBIT(val, 22, 2) #define VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST VXGE_HW_FIFO_GATHER_CODE_FIRST #define VXGE_HW_FIFO_TXD_GATHER_CODE_LAST VXGE_HW_FIFO_GATHER_CODE_LAST #define VXGE_HW_FIFO_TXD_LSO_EN vxge_mBIT(30) #define VXGE_HW_FIFO_TXD_LSO_MSS(val) vxge_vBIT(val, 34, 14) #define VXGE_HW_FIFO_TXD_BUFFER_SIZE(val) vxge_vBIT(val, 48, 16) u64 control_1; #define VXGE_HW_FIFO_TXD_TX_CKO_IPV4_EN vxge_mBIT(5) #define VXGE_HW_FIFO_TXD_TX_CKO_TCP_EN vxge_mBIT(6) #define VXGE_HW_FIFO_TXD_TX_CKO_UDP_EN vxge_mBIT(7) #define VXGE_HW_FIFO_TXD_VLAN_ENABLE vxge_mBIT(15) #define VXGE_HW_FIFO_TXD_VLAN_TAG(val) vxge_vBIT(val, 16, 16) #define VXGE_HW_FIFO_TXD_INT_NUMBER(val) vxge_vBIT(val, 34, 6) #define VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST vxge_mBIT(46) #define VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ vxge_mBIT(47) u64 buffer_pointer; u64 host_control; }; /** * struct vxge_hw_ring_rxd_1 - One buffer mode RxD for ring * @host_control: This field is exclusively for host use and is "readonly" * from the adapter's perspective. * @control_0:Bits 0 to 6 - RTH_Bucket get * Bit 7 - Own Descriptor ownership bit. This bit is set to 1 * by the host, and is set to 0 by the adapter. * 0 - Host owns RxD and buffer. * 1 - The adapter owns RxD and buffer. * Bit 8 - Fast_Path_Eligible When set, indicates that the * received frame meets all of the criteria for fast path processing. * The required criteria are as follows: * !SYN & * (Transfer_Code == "Transfer OK") & * (!Is_IP_Fragment) & * ((Is_IPv4 & computed_L3_checksum == 0xFFFF) | * (Is_IPv6)) & * ((Is_TCP & computed_L4_checksum == 0xFFFF) | * (Is_UDP & (computed_L4_checksum == 0xFFFF | * computed _L4_checksum == 0x0000))) * (same meaning for all RxD buffer modes) * Bit 9 - L3 Checksum Correct * Bit 10 - L4 Checksum Correct * Bit 11 - Reserved * Bit 12 to 15 - This field is written by the adapter. It is * used to report the status of the frame transfer to the host. * 0x0 - Transfer OK * 0x4 - RDA Failure During Transfer * 0x5 - Unparseable Packet, such as unknown IPv6 header. * 0x6 - Frame integrity error (FCS or ECC). * 0x7 - Buffer Size Error. The provided buffer(s) were not * appropriately sized and data loss occurred. * 0x8 - Internal ECC Error. RxD corrupted. * 0x9 - IPv4 Checksum error * 0xA - TCP/UDP Checksum error * 0xF - Unknown Error or Multiple Error. Indicates an * unknown problem or that more than one of transfer codes is set. * Bit 16 - SYN The adapter sets this field to indicate that * the incoming frame contained a TCP segment with its SYN bit * set and its ACK bit NOT set. (same meaning for all RxD buffer * modes) * Bit 17 - Is ICMP * Bit 18 - RTH_SPDM_HIT Set to 1 if there was a match in the * Socket Pair Direct Match Table and the frame was steered based * on SPDM. * Bit 19 - RTH_IT_HIT Set to 1 if there was a match in the * Indirection Table and the frame was steered based on hash * indirection. * Bit 20 to 23 - RTH_HASH_TYPE Indicates the function (hash * type) that was used to calculate the hash. * Bit 19 - IS_VLAN Set to '1' if the frame was/is VLAN * tagged. * Bit 25 to 26 - ETHER_ENCAP Reflects the Ethernet encapsulation * of the received frame. * 0x0 - Ethernet DIX * 0x1 - LLC * 0x2 - SNAP (includes Jumbo-SNAP) * 0x3 - IPX * Bit 27 - IS_IPV4 Set to '1' if the frame contains an IPv4 packet. * Bit 28 - IS_IPV6 Set to '1' if the frame contains an IPv6 packet. * Bit 29 - IS_IP_FRAG Set to '1' if the frame contains a fragmented * IP packet. * Bit 30 - IS_TCP Set to '1' if the frame contains a TCP segment. * Bit 31 - IS_UDP Set to '1' if the frame contains a UDP message. * Bit 32 to 47 - L3_Checksum[0:15] The IPv4 checksum value that * arrived with the frame. If the resulting computed IPv4 header * checksum for the frame did not produce the expected 0xFFFF value, * then the transfer code would be set to 0x9. * Bit 48 to 63 - L4_Checksum[0:15] The TCP/UDP checksum value that * arrived with the frame. If the resulting computed TCP/UDP checksum * for the frame did not produce the expected 0xFFFF value, then the * transfer code would be set to 0xA. * @control_1:Bits 0 to 1 - Reserved * Bits 2 to 15 - Buffer0_Size.This field is set by the host and * eventually overwritten by the adapter. The host writes the * available buffer size in bytes when it passes the descriptor to * the adapter. When a frame is delivered the host, the adapter * populates this field with the number of bytes written into the * buffer. The largest supported buffer is 16, 383 bytes. * Bit 16 to 47 - RTH Hash Value 32-bit RTH hash value. Only valid if * RTH_HASH_TYPE (Control_0, bits 20:23) is nonzero. * Bit 48 to 63 - VLAN_Tag[0:15] The contents of the variable portion * of the VLAN tag, if one was detected by the adapter. This field is * populated even if VLAN-tag stripping is enabled. * @buffer0_ptr: Pointer to buffer. This field is populated by the driver. * * One buffer mode RxD for ring structure */ struct vxge_hw_ring_rxd_1 { u64 host_control; u64 control_0; #define VXGE_HW_RING_RXD_RTH_BUCKET_GET(ctrl0) vxge_bVALn(ctrl0, 0, 7) #define VXGE_HW_RING_RXD_LIST_OWN_ADAPTER vxge_mBIT(7) #define VXGE_HW_RING_RXD_FAST_PATH_ELIGIBLE_GET(ctrl0) vxge_bVALn(ctrl0, 8, 1) #define VXGE_HW_RING_RXD_L3_CKSUM_CORRECT_GET(ctrl0) vxge_bVALn(ctrl0, 9, 1) #define VXGE_HW_RING_RXD_L4_CKSUM_CORRECT_GET(ctrl0) vxge_bVALn(ctrl0, 10, 1) #define VXGE_HW_RING_RXD_T_CODE_GET(ctrl0) vxge_bVALn(ctrl0, 12, 4) #define VXGE_HW_RING_RXD_T_CODE(val) vxge_vBIT(val, 12, 4) #define VXGE_HW_RING_RXD_T_CODE_UNUSED VXGE_HW_RING_T_CODE_UNUSED #define VXGE_HW_RING_RXD_SYN_GET(ctrl0) vxge_bVALn(ctrl0, 16, 1) #define VXGE_HW_RING_RXD_IS_ICMP_GET(ctrl0) vxge_bVALn(ctrl0, 17, 1) #define VXGE_HW_RING_RXD_RTH_SPDM_HIT_GET(ctrl0) vxge_bVALn(ctrl0, 18, 1) #define VXGE_HW_RING_RXD_RTH_IT_HIT_GET(ctrl0) vxge_bVALn(ctrl0, 19, 1) #define VXGE_HW_RING_RXD_RTH_HASH_TYPE_GET(ctrl0) vxge_bVALn(ctrl0, 20, 4) #define VXGE_HW_RING_RXD_IS_VLAN_GET(ctrl0) vxge_bVALn(ctrl0, 24, 1) #define VXGE_HW_RING_RXD_ETHER_ENCAP_GET(ctrl0) vxge_bVALn(ctrl0, 25, 2) #define VXGE_HW_RING_RXD_FRAME_PROTO_GET(ctrl0) vxge_bVALn(ctrl0, 27, 5) #define VXGE_HW_RING_RXD_L3_CKSUM_GET(ctrl0) vxge_bVALn(ctrl0, 32, 16) #define VXGE_HW_RING_RXD_L4_CKSUM_GET(ctrl0) vxge_bVALn(ctrl0, 48, 16) u64 control_1; #define VXGE_HW_RING_RXD_1_BUFFER0_SIZE_GET(ctrl1) vxge_bVALn(ctrl1, 2, 14) #define VXGE_HW_RING_RXD_1_BUFFER0_SIZE(val) vxge_vBIT(val, 2, 14) #define VXGE_HW_RING_RXD_1_BUFFER0_SIZE_MASK vxge_vBIT(0x3FFF, 2, 14) #define VXGE_HW_RING_RXD_1_RTH_HASH_VAL_GET(ctrl1) vxge_bVALn(ctrl1, 16, 32) #define VXGE_HW_RING_RXD_VLAN_TAG_GET(ctrl1) vxge_bVALn(ctrl1, 48, 16) u64 buffer0_ptr; }; enum vxge_hw_rth_algoritms { RTH_ALG_JENKINS = 0, RTH_ALG_MS_RSS = 1, RTH_ALG_CRC32C = 2 }; /** * struct vxge_hw_rth_hash_types - RTH hash types. * @hash_type_tcpipv4_en: Enables RTH field type HashTypeTcpIPv4 * @hash_type_ipv4_en: Enables RTH field type HashTypeIPv4 * @hash_type_tcpipv6_en: Enables RTH field type HashTypeTcpIPv6 * @hash_type_ipv6_en: Enables RTH field type HashTypeIPv6 * @hash_type_tcpipv6ex_en: Enables RTH field type HashTypeTcpIPv6Ex * @hash_type_ipv6ex_en: Enables RTH field type HashTypeIPv6Ex * * Used to pass RTH hash types to rts_rts_set. * * See also: vxge_hw_vpath_rts_rth_set(), vxge_hw_vpath_rts_rth_get(). */ struct vxge_hw_rth_hash_types { u8 hash_type_tcpipv4_en:1, hash_type_ipv4_en:1, hash_type_tcpipv6_en:1, hash_type_ipv6_en:1, hash_type_tcpipv6ex_en:1, hash_type_ipv6ex_en:1; }; void vxge_hw_device_debug_set( struct __vxge_hw_device *devh, enum vxge_debug_level level, u32 mask); u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *devh); u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *devh); /** * vxge_hw_ring_rxd_size_get - Get the size of ring descriptor. * @buf_mode: Buffer mode (1, 3 or 5) * * This function returns the size of RxD for given buffer mode */ static inline u32 vxge_hw_ring_rxd_size_get(u32 buf_mode) { return sizeof(struct vxge_hw_ring_rxd_1); } /** * vxge_hw_ring_rxds_per_block_get - Get the number of rxds per block. * @buf_mode: Buffer mode (1 buffer mode only) * * This function returns the number of RxD for RxD block for given buffer mode */ static inline u32 vxge_hw_ring_rxds_per_block_get(u32 buf_mode) { return (u32)((VXGE_HW_BLOCK_SIZE-16) / sizeof(struct vxge_hw_ring_rxd_1)); } /** * vxge_hw_ring_rxd_1b_set - Prepare 1-buffer-mode descriptor. * @rxdh: Descriptor handle. * @dma_pointer: DMA address of a single receive buffer this descriptor * should carry. Note that by the time vxge_hw_ring_rxd_1b_set is called, * the receive buffer should be already mapped to the device * @size: Size of the receive @dma_pointer buffer. * * Prepare 1-buffer-mode Rx descriptor for posting * (via vxge_hw_ring_rxd_post()). * * This inline helper-function does not return any parameters and always * succeeds. * */ static inline void vxge_hw_ring_rxd_1b_set( void *rxdh, dma_addr_t dma_pointer, u32 size) { struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh; rxdp->buffer0_ptr = dma_pointer; rxdp->control_1 &= ~VXGE_HW_RING_RXD_1_BUFFER0_SIZE_MASK; rxdp->control_1 |= VXGE_HW_RING_RXD_1_BUFFER0_SIZE(size); } /** * vxge_hw_ring_rxd_1b_get - Get data from the completed 1-buf * descriptor. * @vpath_handle: Virtual Path handle. * @rxdh: Descriptor handle. * @dma_pointer: DMA address of a single receive buffer this descriptor * carries. Returned by HW. * @pkt_length: Length (in bytes) of the data in the buffer pointed by * * Retrieve protocol data from the completed 1-buffer-mode Rx descriptor. * This inline helper-function uses completed descriptor to populate receive * buffer pointer and other "out" parameters. The function always succeeds. * */ static inline void vxge_hw_ring_rxd_1b_get( struct __vxge_hw_ring *ring_handle, void *rxdh, u32 *pkt_length) { struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh; *pkt_length = (u32)VXGE_HW_RING_RXD_1_BUFFER0_SIZE_GET(rxdp->control_1); } /** * vxge_hw_ring_rxd_1b_info_get - Get extended information associated with * a completed receive descriptor for 1b mode. * @vpath_handle: Virtual Path handle. * @rxdh: Descriptor handle. * @rxd_info: Descriptor information * * Retrieve extended information associated with a completed receive descriptor. * */ static inline void vxge_hw_ring_rxd_1b_info_get( struct __vxge_hw_ring *ring_handle, void *rxdh, struct vxge_hw_ring_rxd_info *rxd_info) { struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh; rxd_info->syn_flag = (u32)VXGE_HW_RING_RXD_SYN_GET(rxdp->control_0); rxd_info->is_icmp = (u32)VXGE_HW_RING_RXD_IS_ICMP_GET(rxdp->control_0); rxd_info->fast_path_eligible = (u32)VXGE_HW_RING_RXD_FAST_PATH_ELIGIBLE_GET(rxdp->control_0); rxd_info->l3_cksum_valid = (u32)VXGE_HW_RING_RXD_L3_CKSUM_CORRECT_GET(rxdp->control_0); rxd_info->l3_cksum = (u32)VXGE_HW_RING_RXD_L3_CKSUM_GET(rxdp->control_0); rxd_info->l4_cksum_valid = (u32)VXGE_HW_RING_RXD_L4_CKSUM_CORRECT_GET(rxdp->control_0); rxd_info->l4_cksum = (u32)VXGE_HW_RING_RXD_L4_CKSUM_GET(rxdp->control_0); rxd_info->frame = (u32)VXGE_HW_RING_RXD_ETHER_ENCAP_GET(rxdp->control_0); rxd_info->proto = (u32)VXGE_HW_RING_RXD_FRAME_PROTO_GET(rxdp->control_0); rxd_info->is_vlan = (u32)VXGE_HW_RING_RXD_IS_VLAN_GET(rxdp->control_0); rxd_info->vlan = (u32)VXGE_HW_RING_RXD_VLAN_TAG_GET(rxdp->control_1); rxd_info->rth_bucket = (u32)VXGE_HW_RING_RXD_RTH_BUCKET_GET(rxdp->control_0); rxd_info->rth_it_hit = (u32)VXGE_HW_RING_RXD_RTH_IT_HIT_GET(rxdp->control_0); rxd_info->rth_spdm_hit = (u32)VXGE_HW_RING_RXD_RTH_SPDM_HIT_GET(rxdp->control_0); rxd_info->rth_hash_type = (u32)VXGE_HW_RING_RXD_RTH_HASH_TYPE_GET(rxdp->control_0); rxd_info->rth_value = (u32)VXGE_HW_RING_RXD_1_RTH_HASH_VAL_GET(rxdp->control_1); } /** * vxge_hw_ring_rxd_private_get - Get driver private per-descriptor data * of 1b mode 3b mode ring. * @rxdh: Descriptor handle. * * Returns: private driver info associated with the descriptor. * driver requests per-descriptor space via vxge_hw_ring_attr. * */ static inline void *vxge_hw_ring_rxd_private_get(void *rxdh) { struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh; return (void *)(size_t)rxdp->host_control; } /** * vxge_hw_fifo_txdl_cksum_set_bits - Offload checksum. * @txdlh: Descriptor handle. * @cksum_bits: Specifies which checksums are to be offloaded: IPv4, * and/or TCP and/or UDP. * * Ask Titan to calculate IPv4 & transport checksums for _this_ transmit * descriptor. * This API is part of the preparation of the transmit descriptor for posting * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include * vxge_hw_fifo_txdl_mss_set(), vxge_hw_fifo_txdl_buffer_set_aligned(), * and vxge_hw_fifo_txdl_buffer_set(). * All these APIs fill in the fields of the fifo descriptor, * in accordance with the Titan specification. * */ static inline void vxge_hw_fifo_txdl_cksum_set_bits(void *txdlh, u64 cksum_bits) { struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)txdlh; txdp->control_1 |= cksum_bits; } /** * vxge_hw_fifo_txdl_mss_set - Set MSS. * @txdlh: Descriptor handle. * @mss: MSS size for _this_ TCP connection. Passed by TCP stack down to the * driver, which in turn inserts the MSS into the @txdlh. * * This API is part of the preparation of the transmit descriptor for posting * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include * vxge_hw_fifo_txdl_buffer_set(), vxge_hw_fifo_txdl_buffer_set_aligned(), * and vxge_hw_fifo_txdl_cksum_set_bits(). * All these APIs fill in the fields of the fifo descriptor, * in accordance with the Titan specification. * */ static inline void vxge_hw_fifo_txdl_mss_set(void *txdlh, int mss) { struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)txdlh; txdp->control_0 |= VXGE_HW_FIFO_TXD_LSO_EN; txdp->control_0 |= VXGE_HW_FIFO_TXD_LSO_MSS(mss); } /** * vxge_hw_fifo_txdl_vlan_set - Set VLAN tag. * @txdlh: Descriptor handle. * @vlan_tag: 16bit VLAN tag. * * Insert VLAN tag into specified transmit descriptor. * The actual insertion of the tag into outgoing frame is done by the hardware. */ static inline void vxge_hw_fifo_txdl_vlan_set(void *txdlh, u16 vlan_tag) { struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)txdlh; txdp->control_1 |= VXGE_HW_FIFO_TXD_VLAN_ENABLE; txdp->control_1 |= VXGE_HW_FIFO_TXD_VLAN_TAG(vlan_tag); } /** * vxge_hw_fifo_txdl_private_get - Retrieve per-descriptor private data. * @txdlh: Descriptor handle. * * Retrieve per-descriptor private data. * Note that driver requests per-descriptor space via * struct vxge_hw_fifo_attr passed to * vxge_hw_vpath_open(). * * Returns: private driver data associated with the descriptor. */ static inline void *vxge_hw_fifo_txdl_private_get(void *txdlh) { struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)txdlh; return (void *)(size_t)txdp->host_control; } /** * struct vxge_hw_ring_attr - Ring open "template". * @callback: Ring completion callback. HW invokes the callback when there * are new completions on that ring. In many implementations * the @callback executes in the hw interrupt context. * @rxd_init: Ring's descriptor-initialize callback. * See vxge_hw_ring_rxd_init_f{}. * If not NULL, HW invokes the callback when opening * the ring. * @rxd_term: Ring's descriptor-terminate callback. If not NULL, * HW invokes the callback when closing the corresponding ring. * See also vxge_hw_ring_rxd_term_f{}. * @userdata: User-defined "context" of _that_ ring. Passed back to the * user as one of the @callback, @rxd_init, and @rxd_term arguments. * @per_rxd_space: If specified (i.e., greater than zero): extra space * reserved by HW per each receive descriptor. * Can be used to store * and retrieve on completion, information specific * to the driver. * * Ring open "template". User fills the structure with ring * attributes and passes it to vxge_hw_vpath_open(). */ struct vxge_hw_ring_attr { enum vxge_hw_status (*callback)( struct __vxge_hw_ring *ringh, void *rxdh, u8 t_code, void *userdata); enum vxge_hw_status (*rxd_init)( void *rxdh, void *userdata); void (*rxd_term)( void *rxdh, enum vxge_hw_rxd_state state, void *userdata); void *userdata; u32 per_rxd_space; }; /** * function vxge_hw_fifo_callback_f - FIFO callback. * @vpath_handle: Virtual path whose Fifo "containing" 1 or more completed * descriptors. * @txdlh: First completed descriptor. * @txdl_priv: Pointer to per txdl space allocated * @t_code: Transfer code, as per Titan User Guide. * Returned by HW. * @host_control: Opaque 64bit data stored by driver inside the Titan * descriptor prior to posting the latter on the fifo * via vxge_hw_fifo_txdl_post(). The @host_control is returned * as is to the driver with each completed descriptor. * @userdata: Opaque per-fifo data specified at fifo open * time, via vxge_hw_vpath_open(). * * Fifo completion callback (type declaration). A single per-fifo * callback is specified at fifo open time, via * vxge_hw_vpath_open(). Typically gets called as part of the processing * of the Interrupt Service Routine. * * Fifo callback gets called by HW if, and only if, there is at least * one new completion on a given fifo. Upon processing the first @txdlh driver * is _supposed_ to continue consuming completions using: * - vxge_hw_fifo_txdl_next_completed() * * Note that failure to process new completions in a timely fashion * leads to VXGE_HW_INF_OUT_OF_DESCRIPTORS condition. * * Non-zero @t_code means failure to process transmit descriptor. * * In the "transmit" case the failure could happen, for instance, when the * link is down, in which case Titan completes the descriptor because it * is not able to send the data out. * * For details please refer to Titan User Guide. * * See also: vxge_hw_fifo_txdl_next_completed(), vxge_hw_fifo_txdl_term_f{}. */ /** * function vxge_hw_fifo_txdl_term_f - Terminate descriptor callback. * @txdlh: First completed descriptor. * @txdl_priv: Pointer to per txdl space allocated * @state: One of the enum vxge_hw_txdl_state{} enumerated states. * @userdata: Per-fifo user data (a.k.a. context) specified at * fifo open time, via vxge_hw_vpath_open(). * * Terminate descriptor callback. Unless NULL is specified in the * struct vxge_hw_fifo_attr{} structure passed to vxge_hw_vpath_open()), * HW invokes the callback as part of closing fifo, prior to * de-allocating the ring and associated data structures * (including descriptors). * driver should utilize the callback to (for instance) unmap * and free DMA data buffers associated with the posted (state = * VXGE_HW_TXDL_STATE_POSTED) descriptors, * as well as other relevant cleanup functions. * * See also: struct vxge_hw_fifo_attr{} */ /** * struct vxge_hw_fifo_attr - Fifo open "template". * @callback: Fifo completion callback. HW invokes the callback when there * are new completions on that fifo. In many implementations * the @callback executes in the hw interrupt context. * @txdl_term: Fifo's descriptor-terminate callback. If not NULL, * HW invokes the callback when closing the corresponding fifo. * See also vxge_hw_fifo_txdl_term_f{}. * @userdata: User-defined "context" of _that_ fifo. Passed back to the * user as one of the @callback, and @txdl_term arguments. * @per_txdl_space: If specified (i.e., greater than zero): extra space * reserved by HW per each transmit descriptor. Can be used to * store, and retrieve on completion, information specific * to the driver. * * Fifo open "template". User fills the structure with fifo * attributes and passes it to vxge_hw_vpath_open(). */ struct vxge_hw_fifo_attr { enum vxge_hw_status (*callback)( struct __vxge_hw_fifo *fifo_handle, void *txdlh, enum vxge_hw_fifo_tcode t_code, void *userdata, struct sk_buff ***skb_ptr, int nr_skb, int *more); void (*txdl_term)( void *txdlh, enum vxge_hw_txdl_state state, void *userdata); void *userdata; u32 per_txdl_space; }; /** * struct vxge_hw_vpath_attr - Attributes of virtual path * @vp_id: Identifier of Virtual Path * @ring_attr: Attributes of ring for non-offload receive * @fifo_attr: Attributes of fifo for non-offload transmit * * Attributes of virtual path. This structure is passed as parameter * to the vxge_hw_vpath_open() routine to set the attributes of ring and fifo. */ struct vxge_hw_vpath_attr { u32 vp_id; struct vxge_hw_ring_attr ring_attr; struct vxge_hw_fifo_attr fifo_attr; }; enum vxge_hw_status vxge_hw_device_hw_info_get( void __iomem *bar0, struct vxge_hw_device_hw_info *hw_info); enum vxge_hw_status vxge_hw_device_config_default_get( struct vxge_hw_device_config *device_config); /** * vxge_hw_device_link_state_get - Get link state. * @devh: HW device handle. * * Get link state. * Returns: link state. */ static inline enum vxge_hw_device_link_state vxge_hw_device_link_state_get( struct __vxge_hw_device *devh) { return devh->link_state; } void vxge_hw_device_terminate(struct __vxge_hw_device *devh); const u8 * vxge_hw_device_serial_number_get(struct __vxge_hw_device *devh); u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *devh); const u8 * vxge_hw_device_product_name_get(struct __vxge_hw_device *devh); enum vxge_hw_status vxge_hw_device_initialize( struct __vxge_hw_device **devh, struct vxge_hw_device_attr *attr, struct vxge_hw_device_config *device_config); enum vxge_hw_status vxge_hw_device_getpause_data( struct __vxge_hw_device *devh, u32 port, u32 *tx, u32 *rx); enum vxge_hw_status vxge_hw_device_setpause_data( struct __vxge_hw_device *devh, u32 port, u32 tx, u32 rx); static inline void *vxge_os_dma_malloc(struct pci_dev *pdev, unsigned long size, struct pci_dev **p_dmah, struct pci_dev **p_dma_acch) { void *vaddr; unsigned long misaligned = 0; int realloc_flag = 0; *p_dma_acch = *p_dmah = NULL; realloc: vaddr = kmalloc(size, GFP_KERNEL | GFP_DMA); if (vaddr == NULL) return vaddr; misaligned = (unsigned long)VXGE_ALIGN((unsigned long)vaddr, VXGE_CACHE_LINE_SIZE); if (realloc_flag) goto out; if (misaligned) { /* misaligned, free current one and try allocating * size + VXGE_CACHE_LINE_SIZE memory */ kfree(vaddr); size += VXGE_CACHE_LINE_SIZE; realloc_flag = 1; goto realloc; } out: *(unsigned long *)p_dma_acch = misaligned; vaddr = (void *)((u8 *)vaddr + misaligned); return vaddr; } static inline void vxge_os_dma_free(struct pci_dev *pdev, const void *vaddr, struct pci_dev **p_dma_acch) { unsigned long misaligned = *(unsigned long *)p_dma_acch; u8 *tmp = (u8 *)vaddr; tmp -= misaligned; kfree((void *)tmp); } /* * __vxge_hw_mempool_item_priv - will return pointer on per item private space */ static inline void* __vxge_hw_mempool_item_priv( struct vxge_hw_mempool *mempool, u32 memblock_idx, void *item, u32 *memblock_item_idx) { ptrdiff_t offset; void *memblock = mempool->memblocks_arr[memblock_idx]; offset = (u32)((u8 *)item - (u8 *)memblock); vxge_assert(offset >= 0 && (u32)offset < mempool->memblock_size); (*memblock_item_idx) = (u32) offset / mempool->item_size; vxge_assert((*memblock_item_idx) < mempool->items_per_memblock); return (u8 *)mempool->memblocks_priv_arr[memblock_idx] + (*memblock_item_idx) * mempool->items_priv_size; } /* * __vxge_hw_fifo_txdl_priv - Return the max fragments allocated * for the fifo. * @fifo: Fifo * @txdp: Poniter to a TxD */ static inline struct __vxge_hw_fifo_txdl_priv * __vxge_hw_fifo_txdl_priv( struct __vxge_hw_fifo *fifo, struct vxge_hw_fifo_txd *txdp) { return (struct __vxge_hw_fifo_txdl_priv *) (((char *)((ulong)txdp->host_control)) + fifo->per_txdl_space); } enum vxge_hw_status vxge_hw_vpath_open( struct __vxge_hw_device *devh, struct vxge_hw_vpath_attr *attr, struct __vxge_hw_vpath_handle **vpath_handle); enum vxge_hw_status vxge_hw_vpath_close( struct __vxge_hw_vpath_handle *vpath_handle); enum vxge_hw_status vxge_hw_vpath_reset( struct __vxge_hw_vpath_handle *vpath_handle); enum vxge_hw_status vxge_hw_vpath_recover_from_reset( struct __vxge_hw_vpath_handle *vpath_handle); void vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp); enum vxge_hw_status vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ringh); enum vxge_hw_status vxge_hw_vpath_mtu_set( struct __vxge_hw_vpath_handle *vpath_handle, u32 new_mtu); void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp); static inline void __vxge_hw_pio_mem_write32_upper(u32 val, void __iomem *addr) { writel(val, addr + 4); } static inline void __vxge_hw_pio_mem_write32_lower(u32 val, void __iomem *addr) { writel(val, addr); } enum vxge_hw_status vxge_hw_device_flick_link_led(struct __vxge_hw_device *devh, u64 on_off); enum vxge_hw_status vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask); /** * vxge_debug_ll * @level: level of debug verbosity. * @mask: mask for the debug * @buf: Circular buffer for tracing * @fmt: printf like format string * * Provides logging facilities. Can be customized on per-module * basis or/and with debug levels. Input parameters, except * module and level, are the same as posix printf. This function * may be compiled out if DEBUG macro was never defined. * See also: enum vxge_debug_level{}. */ #if (VXGE_COMPONENT_LL & VXGE_DEBUG_MODULE_MASK) #define vxge_debug_ll(level, mask, fmt, ...) do { \ if ((level >= VXGE_ERR && VXGE_COMPONENT_LL & VXGE_DEBUG_ERR_MASK) || \ (level >= VXGE_TRACE && VXGE_COMPONENT_LL & VXGE_DEBUG_TRACE_MASK))\ if ((mask & VXGE_DEBUG_MASK) == mask) \ printk(fmt "\n", ##__VA_ARGS__); \ } while (0) #else #define vxge_debug_ll(level, mask, fmt, ...) #endif enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set( struct __vxge_hw_vpath_handle **vpath_handles, u32 vpath_count, u8 *mtable, u8 *itable, u32 itable_size); enum vxge_hw_status vxge_hw_vpath_rts_rth_set( struct __vxge_hw_vpath_handle *vpath_handle, enum vxge_hw_rth_algoritms algorithm, struct vxge_hw_rth_hash_types *hash_type, u16 bucket_size); enum vxge_hw_status __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id); #define VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT 5 #define VXGE_HW_MAX_POLLING_COUNT 100 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev); enum vxge_hw_status vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major, u32 *minor, u32 *build); enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev); enum vxge_hw_status vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *filebuf, int size); enum vxge_hw_status vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev, struct eprom_image *eprom_image_data); int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id); #endif