// SPDX-License-Identifier: GPL-2.0-or-later /* * dwmac-sun8i.c - Allwinner sun8i DWMAC specific glue layer * * Copyright (C) 2017 Corentin Labbe */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "stmmac.h" #include "stmmac_platform.h" /* General notes on dwmac-sun8i: * Locking: no locking is necessary in this file because all necessary locking * is done in the "stmmac files" */ /* struct emac_variant - Describe dwmac-sun8i hardware variant * @default_syscon_value: The default value of the EMAC register in syscon * This value is used for disabling properly EMAC * and used as a good starting value in case of the * boot process(uboot) leave some stuff. * @syscon_field reg_field for the syscon's gmac register * @soc_has_internal_phy: Does the MAC embed an internal PHY * @support_mii: Does the MAC handle MII * @support_rmii: Does the MAC handle RMII * @support_rgmii: Does the MAC handle RGMII * * @rx_delay_max: Maximum raw value for RX delay chain * @tx_delay_max: Maximum raw value for TX delay chain * These two also indicate the bitmask for * the RX and TX delay chain registers. A * value of zero indicates this is not supported. */ struct emac_variant { u32 default_syscon_value; const struct reg_field *syscon_field; bool soc_has_internal_phy; bool support_mii; bool support_rmii; bool support_rgmii; u8 rx_delay_max; u8 tx_delay_max; }; /* struct sunxi_priv_data - hold all sunxi private data * @tx_clk: reference to MAC TX clock * @ephy_clk: reference to the optional EPHY clock for the internal PHY * @regulator: reference to the optional regulator * @rst_ephy: reference to the optional EPHY reset for the internal PHY * @variant: reference to the current board variant * @regmap: regmap for using the syscon * @internal_phy_powered: Does the internal PHY is enabled * @use_internal_phy: Is the internal PHY selected for use * @mux_handle: Internal pointer used by mdio-mux lib */ struct sunxi_priv_data { struct clk *tx_clk; struct clk *ephy_clk; struct regulator *regulator; struct reset_control *rst_ephy; const struct emac_variant *variant; struct regmap_field *regmap_field; bool internal_phy_powered; bool use_internal_phy; void *mux_handle; }; /* EMAC clock register @ 0x30 in the "system control" address range */ static const struct reg_field sun8i_syscon_reg_field = { .reg = 0x30, .lsb = 0, .msb = 31, }; /* EMAC clock register @ 0x164 in the CCU address range */ static const struct reg_field sun8i_ccu_reg_field = { .reg = 0x164, .lsb = 0, .msb = 31, }; static const struct emac_variant emac_variant_h3 = { .default_syscon_value = 0x58000, .syscon_field = &sun8i_syscon_reg_field, .soc_has_internal_phy = true, .support_mii = true, .support_rmii = true, .support_rgmii = true, .rx_delay_max = 31, .tx_delay_max = 7, }; static const struct emac_variant emac_variant_v3s = { .default_syscon_value = 0x38000, .syscon_field = &sun8i_syscon_reg_field, .soc_has_internal_phy = true, .support_mii = true }; static const struct emac_variant emac_variant_a83t = { .default_syscon_value = 0, .syscon_field = &sun8i_syscon_reg_field, .soc_has_internal_phy = false, .support_mii = true, .support_rgmii = true, .rx_delay_max = 31, .tx_delay_max = 7, }; static const struct emac_variant emac_variant_r40 = { .default_syscon_value = 0, .syscon_field = &sun8i_ccu_reg_field, .support_mii = true, .support_rgmii = true, .rx_delay_max = 7, }; static const struct emac_variant emac_variant_a64 = { .default_syscon_value = 0, .syscon_field = &sun8i_syscon_reg_field, .soc_has_internal_phy = false, .support_mii = true, .support_rmii = true, .support_rgmii = true, .rx_delay_max = 31, .tx_delay_max = 7, }; static const struct emac_variant emac_variant_h6 = { .default_syscon_value = 0x50000, .syscon_field = &sun8i_syscon_reg_field, /* The "Internal PHY" of H6 is not on the die. It's on the * co-packaged AC200 chip instead. */ .soc_has_internal_phy = false, .support_mii = true, .support_rmii = true, .support_rgmii = true, .rx_delay_max = 31, .tx_delay_max = 7, }; #define EMAC_BASIC_CTL0 0x00 #define EMAC_BASIC_CTL1 0x04 #define EMAC_INT_STA 0x08 #define EMAC_INT_EN 0x0C #define EMAC_TX_CTL0 0x10 #define EMAC_TX_CTL1 0x14 #define EMAC_TX_FLOW_CTL 0x1C #define EMAC_TX_DESC_LIST 0x20 #define EMAC_RX_CTL0 0x24 #define EMAC_RX_CTL1 0x28 #define EMAC_RX_DESC_LIST 0x34 #define EMAC_RX_FRM_FLT 0x38 #define EMAC_MDIO_CMD 0x48 #define EMAC_MDIO_DATA 0x4C #define EMAC_MACADDR_HI(reg) (0x50 + (reg) * 8) #define EMAC_MACADDR_LO(reg) (0x54 + (reg) * 8) #define EMAC_TX_DMA_STA 0xB0 #define EMAC_TX_CUR_DESC 0xB4 #define EMAC_TX_CUR_BUF 0xB8 #define EMAC_RX_DMA_STA 0xC0 #define EMAC_RX_CUR_DESC 0xC4 #define EMAC_RX_CUR_BUF 0xC8 /* Use in EMAC_BASIC_CTL0 */ #define EMAC_DUPLEX_FULL BIT(0) #define EMAC_LOOPBACK BIT(1) #define EMAC_SPEED_1000 0 #define EMAC_SPEED_100 (0x03 << 2) #define EMAC_SPEED_10 (0x02 << 2) /* Use in EMAC_BASIC_CTL1 */ #define EMAC_BURSTLEN_SHIFT 24 /* Used in EMAC_RX_FRM_FLT */ #define EMAC_FRM_FLT_RXALL BIT(0) #define EMAC_FRM_FLT_CTL BIT(13) #define EMAC_FRM_FLT_MULTICAST BIT(16) /* Used in RX_CTL1*/ #define EMAC_RX_MD BIT(1) #define EMAC_RX_TH_MASK GENMASK(5, 4) #define EMAC_RX_TH_32 0 #define EMAC_RX_TH_64 (0x1 << 4) #define EMAC_RX_TH_96 (0x2 << 4) #define EMAC_RX_TH_128 (0x3 << 4) #define EMAC_RX_DMA_EN BIT(30) #define EMAC_RX_DMA_START BIT(31) /* Used in TX_CTL1*/ #define EMAC_TX_MD BIT(1) #define EMAC_TX_NEXT_FRM BIT(2) #define EMAC_TX_TH_MASK GENMASK(10, 8) #define EMAC_TX_TH_64 0 #define EMAC_TX_TH_128 (0x1 << 8) #define EMAC_TX_TH_192 (0x2 << 8) #define EMAC_TX_TH_256 (0x3 << 8) #define EMAC_TX_DMA_EN BIT(30) #define EMAC_TX_DMA_START BIT(31) /* Used in RX_CTL0 */ #define EMAC_RX_RECEIVER_EN BIT(31) #define EMAC_RX_DO_CRC BIT(27) #define EMAC_RX_FLOW_CTL_EN BIT(16) /* Used in TX_CTL0 */ #define EMAC_TX_TRANSMITTER_EN BIT(31) /* Used in EMAC_TX_FLOW_CTL */ #define EMAC_TX_FLOW_CTL_EN BIT(0) /* Used in EMAC_INT_STA */ #define EMAC_TX_INT BIT(0) #define EMAC_TX_DMA_STOP_INT BIT(1) #define EMAC_TX_BUF_UA_INT BIT(2) #define EMAC_TX_TIMEOUT_INT BIT(3) #define EMAC_TX_UNDERFLOW_INT BIT(4) #define EMAC_TX_EARLY_INT BIT(5) #define EMAC_RX_INT BIT(8) #define EMAC_RX_BUF_UA_INT BIT(9) #define EMAC_RX_DMA_STOP_INT BIT(10) #define EMAC_RX_TIMEOUT_INT BIT(11) #define EMAC_RX_OVERFLOW_INT BIT(12) #define EMAC_RX_EARLY_INT BIT(13) #define EMAC_RGMII_STA_INT BIT(16) #define EMAC_INT_MSK_COMMON EMAC_RGMII_STA_INT #define EMAC_INT_MSK_TX (EMAC_TX_INT | \ EMAC_TX_DMA_STOP_INT | \ EMAC_TX_BUF_UA_INT | \ EMAC_TX_TIMEOUT_INT | \ EMAC_TX_UNDERFLOW_INT | \ EMAC_TX_EARLY_INT |\ EMAC_INT_MSK_COMMON) #define EMAC_INT_MSK_RX (EMAC_RX_INT | \ EMAC_RX_BUF_UA_INT | \ EMAC_RX_DMA_STOP_INT | \ EMAC_RX_TIMEOUT_INT | \ EMAC_RX_OVERFLOW_INT | \ EMAC_RX_EARLY_INT | \ EMAC_INT_MSK_COMMON) #define MAC_ADDR_TYPE_DST BIT(31) /* H3 specific bits for EPHY */ #define H3_EPHY_ADDR_SHIFT 20 #define H3_EPHY_CLK_SEL BIT(18) /* 1: 24MHz, 0: 25MHz */ #define H3_EPHY_LED_POL BIT(17) /* 1: active low, 0: active high */ #define H3_EPHY_SHUTDOWN BIT(16) /* 1: shutdown, 0: power up */ #define H3_EPHY_SELECT BIT(15) /* 1: internal PHY, 0: external PHY */ #define H3_EPHY_MUX_MASK (H3_EPHY_SHUTDOWN | H3_EPHY_SELECT) #define DWMAC_SUN8I_MDIO_MUX_INTERNAL_ID 1 #define DWMAC_SUN8I_MDIO_MUX_EXTERNAL_ID 2 /* H3/A64 specific bits */ #define SYSCON_RMII_EN BIT(13) /* 1: enable RMII (overrides EPIT) */ /* Generic system control EMAC_CLK bits */ #define SYSCON_ETXDC_SHIFT 10 #define SYSCON_ERXDC_SHIFT 5 /* EMAC PHY Interface Type */ #define SYSCON_EPIT BIT(2) /* 1: RGMII, 0: MII */ #define SYSCON_ETCS_MASK GENMASK(1, 0) #define SYSCON_ETCS_MII 0x0 #define SYSCON_ETCS_EXT_GMII 0x1 #define SYSCON_ETCS_INT_GMII 0x2 /* sun8i_dwmac_dma_reset() - reset the EMAC * Called from stmmac via stmmac_dma_ops->reset */ static int sun8i_dwmac_dma_reset(void __iomem *ioaddr) { writel(0, ioaddr + EMAC_RX_CTL1); writel(0, ioaddr + EMAC_TX_CTL1); writel(0, ioaddr + EMAC_RX_FRM_FLT); writel(0, ioaddr + EMAC_RX_DESC_LIST); writel(0, ioaddr + EMAC_TX_DESC_LIST); writel(0, ioaddr + EMAC_INT_EN); writel(0x1FFFFFF, ioaddr + EMAC_INT_STA); return 0; } /* sun8i_dwmac_dma_init() - initialize the EMAC * Called from stmmac via stmmac_dma_ops->init */ static void sun8i_dwmac_dma_init(void __iomem *ioaddr, struct stmmac_dma_cfg *dma_cfg, int atds) { writel(EMAC_RX_INT | EMAC_TX_INT, ioaddr + EMAC_INT_EN); writel(0x1FFFFFF, ioaddr + EMAC_INT_STA); } static void sun8i_dwmac_dma_init_rx(void __iomem *ioaddr, struct stmmac_dma_cfg *dma_cfg, dma_addr_t dma_rx_phy, u32 chan) { /* Write RX descriptors address */ writel(lower_32_bits(dma_rx_phy), ioaddr + EMAC_RX_DESC_LIST); } static void sun8i_dwmac_dma_init_tx(void __iomem *ioaddr, struct stmmac_dma_cfg *dma_cfg, dma_addr_t dma_tx_phy, u32 chan) { /* Write TX descriptors address */ writel(lower_32_bits(dma_tx_phy), ioaddr + EMAC_TX_DESC_LIST); } /* sun8i_dwmac_dump_regs() - Dump EMAC address space * Called from stmmac_dma_ops->dump_regs * Used for ethtool */ static void sun8i_dwmac_dump_regs(void __iomem *ioaddr, u32 *reg_space) { int i; for (i = 0; i < 0xC8; i += 4) { if (i == 0x32 || i == 0x3C) continue; reg_space[i / 4] = readl(ioaddr + i); } } /* sun8i_dwmac_dump_mac_regs() - Dump EMAC address space * Called from stmmac_ops->dump_regs * Used for ethtool */ static void sun8i_dwmac_dump_mac_regs(struct mac_device_info *hw, u32 *reg_space) { int i; void __iomem *ioaddr = hw->pcsr; for (i = 0; i < 0xC8; i += 4) { if (i == 0x32 || i == 0x3C) continue; reg_space[i / 4] = readl(ioaddr + i); } } static void sun8i_dwmac_enable_dma_irq(void __iomem *ioaddr, u32 chan, bool rx, bool tx) { u32 value = readl(ioaddr + EMAC_INT_EN); if (rx) value |= EMAC_RX_INT; if (tx) value |= EMAC_TX_INT; writel(value, ioaddr + EMAC_INT_EN); } static void sun8i_dwmac_disable_dma_irq(void __iomem *ioaddr, u32 chan, bool rx, bool tx) { u32 value = readl(ioaddr + EMAC_INT_EN); if (rx) value &= ~EMAC_RX_INT; if (tx) value &= ~EMAC_TX_INT; writel(value, ioaddr + EMAC_INT_EN); } static void sun8i_dwmac_dma_start_tx(void __iomem *ioaddr, u32 chan) { u32 v; v = readl(ioaddr + EMAC_TX_CTL1); v |= EMAC_TX_DMA_START; v |= EMAC_TX_DMA_EN; writel(v, ioaddr + EMAC_TX_CTL1); } static void sun8i_dwmac_enable_dma_transmission(void __iomem *ioaddr) { u32 v; v = readl(ioaddr + EMAC_TX_CTL1); v |= EMAC_TX_DMA_START; v |= EMAC_TX_DMA_EN; writel(v, ioaddr + EMAC_TX_CTL1); } static void sun8i_dwmac_dma_stop_tx(void __iomem *ioaddr, u32 chan) { u32 v; v = readl(ioaddr + EMAC_TX_CTL1); v &= ~EMAC_TX_DMA_EN; writel(v, ioaddr + EMAC_TX_CTL1); } static void sun8i_dwmac_dma_start_rx(void __iomem *ioaddr, u32 chan) { u32 v; v = readl(ioaddr + EMAC_RX_CTL1); v |= EMAC_RX_DMA_START; v |= EMAC_RX_DMA_EN; writel(v, ioaddr + EMAC_RX_CTL1); } static void sun8i_dwmac_dma_stop_rx(void __iomem *ioaddr, u32 chan) { u32 v; v = readl(ioaddr + EMAC_RX_CTL1); v &= ~EMAC_RX_DMA_EN; writel(v, ioaddr + EMAC_RX_CTL1); } static int sun8i_dwmac_dma_interrupt(void __iomem *ioaddr, struct stmmac_extra_stats *x, u32 chan, u32 dir) { u32 v; int ret = 0; v = readl(ioaddr + EMAC_INT_STA); if (dir == DMA_DIR_RX) v &= EMAC_INT_MSK_RX; else if (dir == DMA_DIR_TX) v &= EMAC_INT_MSK_TX; if (v & EMAC_TX_INT) { ret |= handle_tx; x->tx_normal_irq_n++; } if (v & EMAC_TX_DMA_STOP_INT) x->tx_process_stopped_irq++; if (v & EMAC_TX_BUF_UA_INT) x->tx_process_stopped_irq++; if (v & EMAC_TX_TIMEOUT_INT) ret |= tx_hard_error; if (v & EMAC_TX_UNDERFLOW_INT) { ret |= tx_hard_error; x->tx_undeflow_irq++; } if (v & EMAC_TX_EARLY_INT) x->tx_early_irq++; if (v & EMAC_RX_INT) { ret |= handle_rx; x->rx_normal_irq_n++; } if (v & EMAC_RX_BUF_UA_INT) x->rx_buf_unav_irq++; if (v & EMAC_RX_DMA_STOP_INT) x->rx_process_stopped_irq++; if (v & EMAC_RX_TIMEOUT_INT) ret |= tx_hard_error; if (v & EMAC_RX_OVERFLOW_INT) { ret |= tx_hard_error; x->rx_overflow_irq++; } if (v & EMAC_RX_EARLY_INT) x->rx_early_irq++; if (v & EMAC_RGMII_STA_INT) x->irq_rgmii_n++; writel(v, ioaddr + EMAC_INT_STA); return ret; } static void sun8i_dwmac_dma_operation_mode_rx(void __iomem *ioaddr, int mode, u32 channel, int fifosz, u8 qmode) { u32 v; v = readl(ioaddr + EMAC_RX_CTL1); if (mode == SF_DMA_MODE) { v |= EMAC_RX_MD; } else { v &= ~EMAC_RX_MD; v &= ~EMAC_RX_TH_MASK; if (mode < 32) v |= EMAC_RX_TH_32; else if (mode < 64) v |= EMAC_RX_TH_64; else if (mode < 96) v |= EMAC_RX_TH_96; else if (mode < 128) v |= EMAC_RX_TH_128; } writel(v, ioaddr + EMAC_RX_CTL1); } static void sun8i_dwmac_dma_operation_mode_tx(void __iomem *ioaddr, int mode, u32 channel, int fifosz, u8 qmode) { u32 v; v = readl(ioaddr + EMAC_TX_CTL1); if (mode == SF_DMA_MODE) { v |= EMAC_TX_MD; /* Undocumented bit (called TX_NEXT_FRM in BSP), the original * comment is * "Operating on second frame increase the performance * especially when transmit store-and-forward is used." */ v |= EMAC_TX_NEXT_FRM; } else { v &= ~EMAC_TX_MD; v &= ~EMAC_TX_TH_MASK; if (mode < 64) v |= EMAC_TX_TH_64; else if (mode < 128) v |= EMAC_TX_TH_128; else if (mode < 192) v |= EMAC_TX_TH_192; else if (mode < 256) v |= EMAC_TX_TH_256; } writel(v, ioaddr + EMAC_TX_CTL1); } static const struct stmmac_dma_ops sun8i_dwmac_dma_ops = { .reset = sun8i_dwmac_dma_reset, .init = sun8i_dwmac_dma_init, .init_rx_chan = sun8i_dwmac_dma_init_rx, .init_tx_chan = sun8i_dwmac_dma_init_tx, .dump_regs = sun8i_dwmac_dump_regs, .dma_rx_mode = sun8i_dwmac_dma_operation_mode_rx, .dma_tx_mode = sun8i_dwmac_dma_operation_mode_tx, .enable_dma_transmission = sun8i_dwmac_enable_dma_transmission, .enable_dma_irq = sun8i_dwmac_enable_dma_irq, .disable_dma_irq = sun8i_dwmac_disable_dma_irq, .start_tx = sun8i_dwmac_dma_start_tx, .stop_tx = sun8i_dwmac_dma_stop_tx, .start_rx = sun8i_dwmac_dma_start_rx, .stop_rx = sun8i_dwmac_dma_stop_rx, .dma_interrupt = sun8i_dwmac_dma_interrupt, }; static int sun8i_dwmac_power_internal_phy(struct stmmac_priv *priv); static int sun8i_dwmac_init(struct platform_device *pdev, void *priv) { struct net_device *ndev = platform_get_drvdata(pdev); struct sunxi_priv_data *gmac = priv; int ret; if (gmac->regulator) { ret = regulator_enable(gmac->regulator); if (ret) { dev_err(&pdev->dev, "Fail to enable regulator\n"); return ret; } } ret = clk_prepare_enable(gmac->tx_clk); if (ret) { dev_err(&pdev->dev, "Could not enable AHB clock\n"); goto err_disable_regulator; } if (gmac->use_internal_phy) { ret = sun8i_dwmac_power_internal_phy(netdev_priv(ndev)); if (ret) goto err_disable_clk; } return 0; err_disable_clk: clk_disable_unprepare(gmac->tx_clk); err_disable_regulator: if (gmac->regulator) regulator_disable(gmac->regulator); return ret; } static void sun8i_dwmac_core_init(struct mac_device_info *hw, struct net_device *dev) { void __iomem *ioaddr = hw->pcsr; u32 v; v = (8 << EMAC_BURSTLEN_SHIFT); /* burst len */ writel(v, ioaddr + EMAC_BASIC_CTL1); } static void sun8i_dwmac_set_mac(void __iomem *ioaddr, bool enable) { u32 t, r; t = readl(ioaddr + EMAC_TX_CTL0); r = readl(ioaddr + EMAC_RX_CTL0); if (enable) { t |= EMAC_TX_TRANSMITTER_EN; r |= EMAC_RX_RECEIVER_EN; } else { t &= ~EMAC_TX_TRANSMITTER_EN; r &= ~EMAC_RX_RECEIVER_EN; } writel(t, ioaddr + EMAC_TX_CTL0); writel(r, ioaddr + EMAC_RX_CTL0); } /* Set MAC address at slot reg_n * All slot > 0 need to be enabled with MAC_ADDR_TYPE_DST * If addr is NULL, clear the slot */ static void sun8i_dwmac_set_umac_addr(struct mac_device_info *hw, const unsigned char *addr, unsigned int reg_n) { void __iomem *ioaddr = hw->pcsr; u32 v; if (!addr) { writel(0, ioaddr + EMAC_MACADDR_HI(reg_n)); return; } stmmac_set_mac_addr(ioaddr, addr, EMAC_MACADDR_HI(reg_n), EMAC_MACADDR_LO(reg_n)); if (reg_n > 0) { v = readl(ioaddr + EMAC_MACADDR_HI(reg_n)); v |= MAC_ADDR_TYPE_DST; writel(v, ioaddr + EMAC_MACADDR_HI(reg_n)); } } static void sun8i_dwmac_get_umac_addr(struct mac_device_info *hw, unsigned char *addr, unsigned int reg_n) { void __iomem *ioaddr = hw->pcsr; stmmac_get_mac_addr(ioaddr, addr, EMAC_MACADDR_HI(reg_n), EMAC_MACADDR_LO(reg_n)); } /* caution this function must return non 0 to work */ static int sun8i_dwmac_rx_ipc_enable(struct mac_device_info *hw) { void __iomem *ioaddr = hw->pcsr; u32 v; v = readl(ioaddr + EMAC_RX_CTL0); v |= EMAC_RX_DO_CRC; writel(v, ioaddr + EMAC_RX_CTL0); return 1; } static void sun8i_dwmac_set_filter(struct mac_device_info *hw, struct net_device *dev) { void __iomem *ioaddr = hw->pcsr; u32 v; int i = 1; struct netdev_hw_addr *ha; int macaddrs = netdev_uc_count(dev) + netdev_mc_count(dev) + 1; v = EMAC_FRM_FLT_CTL; if (dev->flags & IFF_PROMISC) { v = EMAC_FRM_FLT_RXALL; } else if (dev->flags & IFF_ALLMULTI) { v |= EMAC_FRM_FLT_MULTICAST; } else if (macaddrs <= hw->unicast_filter_entries) { if (!netdev_mc_empty(dev)) { netdev_for_each_mc_addr(ha, dev) { sun8i_dwmac_set_umac_addr(hw, ha->addr, i); i++; } } if (!netdev_uc_empty(dev)) { netdev_for_each_uc_addr(ha, dev) { sun8i_dwmac_set_umac_addr(hw, ha->addr, i); i++; } } } else { if (!(readl(ioaddr + EMAC_RX_FRM_FLT) & EMAC_FRM_FLT_RXALL)) netdev_info(dev, "Too many address, switching to promiscuous\n"); v = EMAC_FRM_FLT_RXALL; } /* Disable unused address filter slots */ while (i < hw->unicast_filter_entries) sun8i_dwmac_set_umac_addr(hw, NULL, i++); writel(v, ioaddr + EMAC_RX_FRM_FLT); } static void sun8i_dwmac_flow_ctrl(struct mac_device_info *hw, unsigned int duplex, unsigned int fc, unsigned int pause_time, u32 tx_cnt) { void __iomem *ioaddr = hw->pcsr; u32 v; v = readl(ioaddr + EMAC_RX_CTL0); if (fc == FLOW_AUTO) v |= EMAC_RX_FLOW_CTL_EN; else v &= ~EMAC_RX_FLOW_CTL_EN; writel(v, ioaddr + EMAC_RX_CTL0); v = readl(ioaddr + EMAC_TX_FLOW_CTL); if (fc == FLOW_AUTO) v |= EMAC_TX_FLOW_CTL_EN; else v &= ~EMAC_TX_FLOW_CTL_EN; writel(v, ioaddr + EMAC_TX_FLOW_CTL); } static int sun8i_dwmac_reset(struct stmmac_priv *priv) { u32 v; int err; v = readl(priv->ioaddr + EMAC_BASIC_CTL1); writel(v | 0x01, priv->ioaddr + EMAC_BASIC_CTL1); /* The timeout was previoulsy set to 10ms, but some board (OrangePI0) * need more if no cable plugged. 100ms seems OK */ err = readl_poll_timeout(priv->ioaddr + EMAC_BASIC_CTL1, v, !(v & 0x01), 100, 100000); if (err) { dev_err(priv->device, "EMAC reset timeout\n"); return err; } return 0; } /* Search in mdio-mux node for internal PHY node and get its clk/reset */ static int get_ephy_nodes(struct stmmac_priv *priv) { struct sunxi_priv_data *gmac = priv->plat->bsp_priv; struct device_node *mdio_mux, *iphynode; struct device_node *mdio_internal; int ret; mdio_mux = of_get_child_by_name(priv->device->of_node, "mdio-mux"); if (!mdio_mux) { dev_err(priv->device, "Cannot get mdio-mux node\n"); return -ENODEV; } mdio_internal = of_get_compatible_child(mdio_mux, "allwinner,sun8i-h3-mdio-internal"); of_node_put(mdio_mux); if (!mdio_internal) { dev_err(priv->device, "Cannot get internal_mdio node\n"); return -ENODEV; } /* Seek for internal PHY */ for_each_child_of_node(mdio_internal, iphynode) { gmac->ephy_clk = of_clk_get(iphynode, 0); if (IS_ERR(gmac->ephy_clk)) continue; gmac->rst_ephy = of_reset_control_get_exclusive(iphynode, NULL); if (IS_ERR(gmac->rst_ephy)) { ret = PTR_ERR(gmac->rst_ephy); if (ret == -EPROBE_DEFER) { of_node_put(iphynode); of_node_put(mdio_internal); return ret; } continue; } dev_info(priv->device, "Found internal PHY node\n"); of_node_put(iphynode); of_node_put(mdio_internal); return 0; } of_node_put(mdio_internal); return -ENODEV; } static int sun8i_dwmac_power_internal_phy(struct stmmac_priv *priv) { struct sunxi_priv_data *gmac = priv->plat->bsp_priv; int ret; if (gmac->internal_phy_powered) { dev_warn(priv->device, "Internal PHY already powered\n"); return 0; } dev_info(priv->device, "Powering internal PHY\n"); ret = clk_prepare_enable(gmac->ephy_clk); if (ret) { dev_err(priv->device, "Cannot enable internal PHY\n"); return ret; } /* Make sure the EPHY is properly reseted, as U-Boot may leave * it at deasserted state, and thus it may fail to reset EMAC. * * This assumes the driver has exclusive access to the EPHY reset. */ ret = reset_control_reset(gmac->rst_ephy); if (ret) { dev_err(priv->device, "Cannot reset internal PHY\n"); clk_disable_unprepare(gmac->ephy_clk); return ret; } gmac->internal_phy_powered = true; return 0; } static void sun8i_dwmac_unpower_internal_phy(struct sunxi_priv_data *gmac) { if (!gmac->internal_phy_powered) return; clk_disable_unprepare(gmac->ephy_clk); reset_control_assert(gmac->rst_ephy); gmac->internal_phy_powered = false; } /* MDIO multiplexing switch function * This function is called by the mdio-mux layer when it thinks the mdio bus * multiplexer needs to switch. * 'current_child' is the current value of the mux register * 'desired_child' is the value of the 'reg' property of the target child MDIO * node. * The first time this function is called, current_child == -1. * If current_child == desired_child, then the mux is already set to the * correct bus. */ static int mdio_mux_syscon_switch_fn(int current_child, int desired_child, void *data) { struct stmmac_priv *priv = data; struct sunxi_priv_data *gmac = priv->plat->bsp_priv; u32 reg, val; int ret = 0; if (current_child ^ desired_child) { regmap_field_read(gmac->regmap_field, ®); switch (desired_child) { case DWMAC_SUN8I_MDIO_MUX_INTERNAL_ID: dev_info(priv->device, "Switch mux to internal PHY"); val = (reg & ~H3_EPHY_MUX_MASK) | H3_EPHY_SELECT; gmac->use_internal_phy = true; break; case DWMAC_SUN8I_MDIO_MUX_EXTERNAL_ID: dev_info(priv->device, "Switch mux to external PHY"); val = (reg & ~H3_EPHY_MUX_MASK) | H3_EPHY_SHUTDOWN; gmac->use_internal_phy = false; break; default: dev_err(priv->device, "Invalid child ID %x\n", desired_child); return -EINVAL; } regmap_field_write(gmac->regmap_field, val); if (gmac->use_internal_phy) { ret = sun8i_dwmac_power_internal_phy(priv); if (ret) return ret; } else { sun8i_dwmac_unpower_internal_phy(gmac); } /* After changing syscon value, the MAC need reset or it will * use the last value (and so the last PHY set). */ ret = sun8i_dwmac_reset(priv); } return ret; } static int sun8i_dwmac_register_mdio_mux(struct stmmac_priv *priv) { int ret; struct device_node *mdio_mux; struct sunxi_priv_data *gmac = priv->plat->bsp_priv; mdio_mux = of_get_child_by_name(priv->device->of_node, "mdio-mux"); if (!mdio_mux) return -ENODEV; ret = mdio_mux_init(priv->device, mdio_mux, mdio_mux_syscon_switch_fn, &gmac->mux_handle, priv, priv->mii); of_node_put(mdio_mux); return ret; } static int sun8i_dwmac_set_syscon(struct device *dev, struct plat_stmmacenet_data *plat) { struct sunxi_priv_data *gmac = plat->bsp_priv; struct device_node *node = dev->of_node; int ret; u32 reg, val; ret = regmap_field_read(gmac->regmap_field, &val); if (ret) { dev_err(dev, "Fail to read from regmap field.\n"); return ret; } reg = gmac->variant->default_syscon_value; if (reg != val) dev_warn(dev, "Current syscon value is not the default %x (expect %x)\n", val, reg); if (gmac->variant->soc_has_internal_phy) { if (of_property_read_bool(node, "allwinner,leds-active-low")) reg |= H3_EPHY_LED_POL; else reg &= ~H3_EPHY_LED_POL; /* Force EPHY xtal frequency to 24MHz. */ reg |= H3_EPHY_CLK_SEL; ret = of_mdio_parse_addr(dev, plat->phy_node); if (ret < 0) { dev_err(dev, "Could not parse MDIO addr\n"); return ret; } /* of_mdio_parse_addr returns a valid (0 ~ 31) PHY * address. No need to mask it again. */ reg |= 1 << H3_EPHY_ADDR_SHIFT; } else { /* For SoCs without internal PHY the PHY selection bit should be * set to 0 (external PHY). */ reg &= ~H3_EPHY_SELECT; } if (!of_property_read_u32(node, "allwinner,tx-delay-ps", &val)) { if (val % 100) { dev_err(dev, "tx-delay must be a multiple of 100\n"); return -EINVAL; } val /= 100; dev_dbg(dev, "set tx-delay to %x\n", val); if (val <= gmac->variant->tx_delay_max) { reg &= ~(gmac->variant->tx_delay_max << SYSCON_ETXDC_SHIFT); reg |= (val << SYSCON_ETXDC_SHIFT); } else { dev_err(dev, "Invalid TX clock delay: %d\n", val); return -EINVAL; } } if (!of_property_read_u32(node, "allwinner,rx-delay-ps", &val)) { if (val % 100) { dev_err(dev, "rx-delay must be a multiple of 100\n"); return -EINVAL; } val /= 100; dev_dbg(dev, "set rx-delay to %x\n", val); if (val <= gmac->variant->rx_delay_max) { reg &= ~(gmac->variant->rx_delay_max << SYSCON_ERXDC_SHIFT); reg |= (val << SYSCON_ERXDC_SHIFT); } else { dev_err(dev, "Invalid RX clock delay: %d\n", val); return -EINVAL; } } /* Clear interface mode bits */ reg &= ~(SYSCON_ETCS_MASK | SYSCON_EPIT); if (gmac->variant->support_rmii) reg &= ~SYSCON_RMII_EN; switch (plat->interface) { case PHY_INTERFACE_MODE_MII: /* default */ break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: reg |= SYSCON_EPIT | SYSCON_ETCS_INT_GMII; break; case PHY_INTERFACE_MODE_RMII: reg |= SYSCON_RMII_EN | SYSCON_ETCS_EXT_GMII; break; default: dev_err(dev, "Unsupported interface mode: %s", phy_modes(plat->interface)); return -EINVAL; } regmap_field_write(gmac->regmap_field, reg); return 0; } static void sun8i_dwmac_unset_syscon(struct sunxi_priv_data *gmac) { u32 reg = gmac->variant->default_syscon_value; regmap_field_write(gmac->regmap_field, reg); } static void sun8i_dwmac_exit(struct platform_device *pdev, void *priv) { struct sunxi_priv_data *gmac = priv; if (gmac->variant->soc_has_internal_phy) sun8i_dwmac_unpower_internal_phy(gmac); clk_disable_unprepare(gmac->tx_clk); if (gmac->regulator) regulator_disable(gmac->regulator); } static void sun8i_dwmac_set_mac_loopback(void __iomem *ioaddr, bool enable) { u32 value = readl(ioaddr + EMAC_BASIC_CTL0); if (enable) value |= EMAC_LOOPBACK; else value &= ~EMAC_LOOPBACK; writel(value, ioaddr + EMAC_BASIC_CTL0); } static const struct stmmac_ops sun8i_dwmac_ops = { .core_init = sun8i_dwmac_core_init, .set_mac = sun8i_dwmac_set_mac, .dump_regs = sun8i_dwmac_dump_mac_regs, .rx_ipc = sun8i_dwmac_rx_ipc_enable, .set_filter = sun8i_dwmac_set_filter, .flow_ctrl = sun8i_dwmac_flow_ctrl, .set_umac_addr = sun8i_dwmac_set_umac_addr, .get_umac_addr = sun8i_dwmac_get_umac_addr, .set_mac_loopback = sun8i_dwmac_set_mac_loopback, }; static struct mac_device_info *sun8i_dwmac_setup(void *ppriv) { struct mac_device_info *mac; struct stmmac_priv *priv = ppriv; mac = devm_kzalloc(priv->device, sizeof(*mac), GFP_KERNEL); if (!mac) return NULL; mac->pcsr = priv->ioaddr; mac->mac = &sun8i_dwmac_ops; mac->dma = &sun8i_dwmac_dma_ops; priv->dev->priv_flags |= IFF_UNICAST_FLT; /* The loopback bit seems to be re-set when link change * Simply mask it each time * Speed 10/100/1000 are set in BIT(2)/BIT(3) */ mac->link.speed_mask = GENMASK(3, 2) | EMAC_LOOPBACK; mac->link.speed10 = EMAC_SPEED_10; mac->link.speed100 = EMAC_SPEED_100; mac->link.speed1000 = EMAC_SPEED_1000; mac->link.duplex = EMAC_DUPLEX_FULL; mac->mii.addr = EMAC_MDIO_CMD; mac->mii.data = EMAC_MDIO_DATA; mac->mii.reg_shift = 4; mac->mii.reg_mask = GENMASK(8, 4); mac->mii.addr_shift = 12; mac->mii.addr_mask = GENMASK(16, 12); mac->mii.clk_csr_shift = 20; mac->mii.clk_csr_mask = GENMASK(22, 20); mac->unicast_filter_entries = 8; /* Synopsys Id is not available */ priv->synopsys_id = 0; return mac; } static struct regmap *sun8i_dwmac_get_syscon_from_dev(struct device_node *node) { struct device_node *syscon_node; struct platform_device *syscon_pdev; struct regmap *regmap = NULL; syscon_node = of_parse_phandle(node, "syscon", 0); if (!syscon_node) return ERR_PTR(-ENODEV); syscon_pdev = of_find_device_by_node(syscon_node); if (!syscon_pdev) { /* platform device might not be probed yet */ regmap = ERR_PTR(-EPROBE_DEFER); goto out_put_node; } /* If no regmap is found then the other device driver is at fault */ regmap = dev_get_regmap(&syscon_pdev->dev, NULL); if (!regmap) regmap = ERR_PTR(-EINVAL); platform_device_put(syscon_pdev); out_put_node: of_node_put(syscon_node); return regmap; } static int sun8i_dwmac_probe(struct platform_device *pdev) { struct plat_stmmacenet_data *plat_dat; struct stmmac_resources stmmac_res; struct sunxi_priv_data *gmac; struct device *dev = &pdev->dev; phy_interface_t interface; int ret; struct stmmac_priv *priv; struct net_device *ndev; struct regmap *regmap; ret = stmmac_get_platform_resources(pdev, &stmmac_res); if (ret) return ret; gmac = devm_kzalloc(dev, sizeof(*gmac), GFP_KERNEL); if (!gmac) return -ENOMEM; gmac->variant = of_device_get_match_data(&pdev->dev); if (!gmac->variant) { dev_err(&pdev->dev, "Missing dwmac-sun8i variant\n"); return -EINVAL; } gmac->tx_clk = devm_clk_get(dev, "stmmaceth"); if (IS_ERR(gmac->tx_clk)) { dev_err(dev, "Could not get TX clock\n"); return PTR_ERR(gmac->tx_clk); } /* Optional regulator for PHY */ gmac->regulator = devm_regulator_get_optional(dev, "phy"); if (IS_ERR(gmac->regulator)) { if (PTR_ERR(gmac->regulator) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_info(dev, "No regulator found\n"); gmac->regulator = NULL; } /* The "GMAC clock control" register might be located in the * CCU address range (on the R40), or the system control address * range (on most other sun8i and later SoCs). * * The former controls most if not all clocks in the SoC. The * latter has an SoC identification register, and on some SoCs, * controls to map device specific SRAM to either the intended * peripheral, or the CPU address space. * * In either case, there should be a coordinated and restricted * method of accessing the register needed here. This is done by * having the device export a custom regmap, instead of a generic * syscon, which grants all access to all registers. * * To support old device trees, we fall back to using the syscon * interface if possible. */ regmap = sun8i_dwmac_get_syscon_from_dev(pdev->dev.of_node); if (IS_ERR(regmap)) regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "syscon"); if (IS_ERR(regmap)) { ret = PTR_ERR(regmap); dev_err(&pdev->dev, "Unable to map syscon: %d\n", ret); return ret; } gmac->regmap_field = devm_regmap_field_alloc(dev, regmap, *gmac->variant->syscon_field); if (IS_ERR(gmac->regmap_field)) { ret = PTR_ERR(gmac->regmap_field); dev_err(dev, "Unable to map syscon register: %d\n", ret); return ret; } ret = of_get_phy_mode(dev->of_node, &interface); if (ret) return -EINVAL; plat_dat = stmmac_probe_config_dt(pdev, stmmac_res.mac); if (IS_ERR(plat_dat)) return PTR_ERR(plat_dat); /* platform data specifying hardware features and callbacks. * hardware features were copied from Allwinner drivers. */ plat_dat->interface = interface; plat_dat->rx_coe = STMMAC_RX_COE_TYPE2; plat_dat->tx_coe = 1; plat_dat->has_sun8i = true; plat_dat->bsp_priv = gmac; plat_dat->init = sun8i_dwmac_init; plat_dat->exit = sun8i_dwmac_exit; plat_dat->setup = sun8i_dwmac_setup; plat_dat->tx_fifo_size = 4096; plat_dat->rx_fifo_size = 16384; ret = sun8i_dwmac_set_syscon(&pdev->dev, plat_dat); if (ret) goto dwmac_deconfig; ret = sun8i_dwmac_init(pdev, plat_dat->bsp_priv); if (ret) goto dwmac_syscon; ret = stmmac_dvr_probe(&pdev->dev, plat_dat, &stmmac_res); if (ret) goto dwmac_exit; ndev = dev_get_drvdata(&pdev->dev); priv = netdev_priv(ndev); /* The mux must be registered after parent MDIO * so after stmmac_dvr_probe() */ if (gmac->variant->soc_has_internal_phy) { ret = get_ephy_nodes(priv); if (ret) goto dwmac_remove; ret = sun8i_dwmac_register_mdio_mux(priv); if (ret) { dev_err(&pdev->dev, "Failed to register mux\n"); goto dwmac_mux; } } else { ret = sun8i_dwmac_reset(priv); if (ret) goto dwmac_remove; } return 0; dwmac_mux: reset_control_put(gmac->rst_ephy); clk_put(gmac->ephy_clk); dwmac_remove: stmmac_dvr_remove(&pdev->dev); dwmac_exit: sun8i_dwmac_exit(pdev, gmac); dwmac_syscon: sun8i_dwmac_unset_syscon(gmac); dwmac_deconfig: stmmac_remove_config_dt(pdev, plat_dat); return ret; } static int sun8i_dwmac_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct stmmac_priv *priv = netdev_priv(ndev); struct sunxi_priv_data *gmac = priv->plat->bsp_priv; if (gmac->variant->soc_has_internal_phy) { mdio_mux_uninit(gmac->mux_handle); sun8i_dwmac_unpower_internal_phy(gmac); reset_control_put(gmac->rst_ephy); clk_put(gmac->ephy_clk); } stmmac_pltfr_remove(pdev); sun8i_dwmac_unset_syscon(gmac); return 0; } static void sun8i_dwmac_shutdown(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct stmmac_priv *priv = netdev_priv(ndev); struct sunxi_priv_data *gmac = priv->plat->bsp_priv; sun8i_dwmac_exit(pdev, gmac); } static const struct of_device_id sun8i_dwmac_match[] = { { .compatible = "allwinner,sun8i-h3-emac", .data = &emac_variant_h3 }, { .compatible = "allwinner,sun8i-v3s-emac", .data = &emac_variant_v3s }, { .compatible = "allwinner,sun8i-a83t-emac", .data = &emac_variant_a83t }, { .compatible = "allwinner,sun8i-r40-gmac", .data = &emac_variant_r40 }, { .compatible = "allwinner,sun50i-a64-emac", .data = &emac_variant_a64 }, { .compatible = "allwinner,sun50i-h6-emac", .data = &emac_variant_h6 }, { } }; MODULE_DEVICE_TABLE(of, sun8i_dwmac_match); static struct platform_driver sun8i_dwmac_driver = { .probe = sun8i_dwmac_probe, .remove = sun8i_dwmac_remove, .shutdown = sun8i_dwmac_shutdown, .driver = { .name = "dwmac-sun8i", .pm = &stmmac_pltfr_pm_ops, .of_match_table = sun8i_dwmac_match, }, }; module_platform_driver(sun8i_dwmac_driver); MODULE_AUTHOR("Corentin Labbe "); MODULE_DESCRIPTION("Allwinner sun8i DWMAC specific glue layer"); MODULE_LICENSE("GPL");