// SPDX-License-Identifier: GPL-2.0+ /* * drivers/net/phy/at803x.c * * Driver for Qualcomm Atheros AR803x PHY * * Author: Matus Ujhelyi */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define AT803X_SPECIFIC_FUNCTION_CONTROL 0x10 #define AT803X_SFC_ASSERT_CRS BIT(11) #define AT803X_SFC_FORCE_LINK BIT(10) #define AT803X_SFC_MDI_CROSSOVER_MODE_M GENMASK(6, 5) #define AT803X_SFC_AUTOMATIC_CROSSOVER 0x3 #define AT803X_SFC_MANUAL_MDIX 0x1 #define AT803X_SFC_MANUAL_MDI 0x0 #define AT803X_SFC_SQE_TEST BIT(2) #define AT803X_SFC_POLARITY_REVERSAL BIT(1) #define AT803X_SFC_DISABLE_JABBER BIT(0) #define AT803X_SPECIFIC_STATUS 0x11 #define AT803X_SS_SPEED_MASK (3 << 14) #define AT803X_SS_SPEED_1000 (2 << 14) #define AT803X_SS_SPEED_100 (1 << 14) #define AT803X_SS_SPEED_10 (0 << 14) #define AT803X_SS_DUPLEX BIT(13) #define AT803X_SS_SPEED_DUPLEX_RESOLVED BIT(11) #define AT803X_SS_MDIX BIT(6) #define AT803X_INTR_ENABLE 0x12 #define AT803X_INTR_ENABLE_AUTONEG_ERR BIT(15) #define AT803X_INTR_ENABLE_SPEED_CHANGED BIT(14) #define AT803X_INTR_ENABLE_DUPLEX_CHANGED BIT(13) #define AT803X_INTR_ENABLE_PAGE_RECEIVED BIT(12) #define AT803X_INTR_ENABLE_LINK_FAIL BIT(11) #define AT803X_INTR_ENABLE_LINK_SUCCESS BIT(10) #define AT803X_INTR_ENABLE_LINK_FAIL_BX BIT(8) #define AT803X_INTR_ENABLE_LINK_SUCCESS_BX BIT(7) #define AT803X_INTR_ENABLE_WIRESPEED_DOWNGRADE BIT(5) #define AT803X_INTR_ENABLE_POLARITY_CHANGED BIT(1) #define AT803X_INTR_ENABLE_WOL BIT(0) #define AT803X_INTR_STATUS 0x13 #define AT803X_SMART_SPEED 0x14 #define AT803X_SMART_SPEED_ENABLE BIT(5) #define AT803X_SMART_SPEED_RETRY_LIMIT_MASK GENMASK(4, 2) #define AT803X_SMART_SPEED_BYPASS_TIMER BIT(1) #define AT803X_CDT 0x16 #define AT803X_CDT_MDI_PAIR_MASK GENMASK(9, 8) #define AT803X_CDT_ENABLE_TEST BIT(0) #define AT803X_CDT_STATUS 0x1c #define AT803X_CDT_STATUS_STAT_NORMAL 0 #define AT803X_CDT_STATUS_STAT_SHORT 1 #define AT803X_CDT_STATUS_STAT_OPEN 2 #define AT803X_CDT_STATUS_STAT_FAIL 3 #define AT803X_CDT_STATUS_STAT_MASK GENMASK(9, 8) #define AT803X_CDT_STATUS_DELTA_TIME_MASK GENMASK(7, 0) #define AT803X_LED_CONTROL 0x18 #define AT803X_DEVICE_ADDR 0x03 #define AT803X_LOC_MAC_ADDR_0_15_OFFSET 0x804C #define AT803X_LOC_MAC_ADDR_16_31_OFFSET 0x804B #define AT803X_LOC_MAC_ADDR_32_47_OFFSET 0x804A #define AT803X_REG_CHIP_CONFIG 0x1f #define AT803X_BT_BX_REG_SEL 0x8000 #define AT803X_DEBUG_ADDR 0x1D #define AT803X_DEBUG_DATA 0x1E #define AT803X_MODE_CFG_MASK 0x0F #define AT803X_MODE_CFG_SGMII 0x01 #define AT803X_MODE_CFG_BASET_RGMII 0x00 #define AT803X_MODE_CFG_BASET_SGMII 0x01 #define AT803X_MODE_CFG_BX1000_RGMII_50OHM 0x02 #define AT803X_MODE_CFG_BX1000_RGMII_75OHM 0x03 #define AT803X_MODE_CFG_BX1000_CONV_50OHM 0x04 #define AT803X_MODE_CFG_BX1000_CONV_75OHM 0x05 #define AT803X_MODE_CFG_FX100_RGMII_50OHM 0x06 #define AT803X_MODE_CFG_FX100_CONV_50OHM 0x07 #define AT803X_MODE_CFG_RGMII_AUTO_MDET 0x0B #define AT803X_MODE_CFG_FX100_RGMII_75OHM 0x0E #define AT803X_MODE_CFG_FX100_CONV_75OHM 0x0F #define AT803X_PSSR 0x11 /*PHY-Specific Status Register*/ #define AT803X_PSSR_MR_AN_COMPLETE 0x0200 #define AT803X_DEBUG_ANALOG_TEST_CTRL 0x00 #define QCA8327_DEBUG_MANU_CTRL_EN BIT(2) #define QCA8337_DEBUG_MANU_CTRL_EN GENMASK(3, 2) #define AT803X_DEBUG_RX_CLK_DLY_EN BIT(15) #define AT803X_DEBUG_SYSTEM_CTRL_MODE 0x05 #define AT803X_DEBUG_TX_CLK_DLY_EN BIT(8) #define AT803X_DEBUG_REG_HIB_CTRL 0x0b #define AT803X_DEBUG_HIB_CTRL_SEL_RST_80U BIT(10) #define AT803X_DEBUG_HIB_CTRL_EN_ANY_CHANGE BIT(13) #define AT803X_DEBUG_REG_3C 0x3C #define AT803X_DEBUG_REG_GREEN 0x3D #define AT803X_DEBUG_GATE_CLK_IN1000 BIT(6) #define AT803X_DEBUG_REG_1F 0x1F #define AT803X_DEBUG_PLL_ON BIT(2) #define AT803X_DEBUG_RGMII_1V8 BIT(3) #define MDIO_AZ_DEBUG 0x800D /* AT803x supports either the XTAL input pad, an internal PLL or the * DSP as clock reference for the clock output pad. The XTAL reference * is only used for 25 MHz output, all other frequencies need the PLL. * The DSP as a clock reference is used in synchronous ethernet * applications. * * By default the PLL is only enabled if there is a link. Otherwise * the PHY will go into low power state and disabled the PLL. You can * set the PLL_ON bit (see debug register 0x1f) to keep the PLL always * enabled. */ #define AT803X_MMD7_CLK25M 0x8016 #define AT803X_CLK_OUT_MASK GENMASK(4, 2) #define AT803X_CLK_OUT_25MHZ_XTAL 0 #define AT803X_CLK_OUT_25MHZ_DSP 1 #define AT803X_CLK_OUT_50MHZ_PLL 2 #define AT803X_CLK_OUT_50MHZ_DSP 3 #define AT803X_CLK_OUT_62_5MHZ_PLL 4 #define AT803X_CLK_OUT_62_5MHZ_DSP 5 #define AT803X_CLK_OUT_125MHZ_PLL 6 #define AT803X_CLK_OUT_125MHZ_DSP 7 /* The AR8035 has another mask which is compatible with the AR8031/AR8033 mask * but doesn't support choosing between XTAL/PLL and DSP. */ #define AT8035_CLK_OUT_MASK GENMASK(4, 3) #define AT803X_CLK_OUT_STRENGTH_MASK GENMASK(8, 7) #define AT803X_CLK_OUT_STRENGTH_FULL 0 #define AT803X_CLK_OUT_STRENGTH_HALF 1 #define AT803X_CLK_OUT_STRENGTH_QUARTER 2 #define AT803X_DEFAULT_DOWNSHIFT 5 #define AT803X_MIN_DOWNSHIFT 2 #define AT803X_MAX_DOWNSHIFT 9 #define AT803X_MMD3_SMARTEEE_CTL1 0x805b #define AT803X_MMD3_SMARTEEE_CTL2 0x805c #define AT803X_MMD3_SMARTEEE_CTL3 0x805d #define AT803X_MMD3_SMARTEEE_CTL3_LPI_EN BIT(8) #define ATH9331_PHY_ID 0x004dd041 #define ATH8030_PHY_ID 0x004dd076 #define ATH8031_PHY_ID 0x004dd074 #define ATH8032_PHY_ID 0x004dd023 #define ATH8035_PHY_ID 0x004dd072 #define AT8030_PHY_ID_MASK 0xffffffef #define QCA8327_A_PHY_ID 0x004dd033 #define QCA8327_B_PHY_ID 0x004dd034 #define QCA8337_PHY_ID 0x004dd036 #define QCA8K_PHY_ID_MASK 0xffffffff #define QCA8K_DEVFLAGS_REVISION_MASK GENMASK(2, 0) #define AT803X_PAGE_FIBER 0 #define AT803X_PAGE_COPPER 1 /* don't turn off internal PLL */ #define AT803X_KEEP_PLL_ENABLED BIT(0) #define AT803X_DISABLE_SMARTEEE BIT(1) MODULE_DESCRIPTION("Qualcomm Atheros AR803x PHY driver"); MODULE_AUTHOR("Matus Ujhelyi"); MODULE_LICENSE("GPL"); enum stat_access_type { PHY, MMD }; struct at803x_hw_stat { const char *string; u8 reg; u32 mask; enum stat_access_type access_type; }; static struct at803x_hw_stat at803x_hw_stats[] = { { "phy_idle_errors", 0xa, GENMASK(7, 0), PHY}, { "phy_receive_errors", 0x15, GENMASK(15, 0), PHY}, { "eee_wake_errors", 0x16, GENMASK(15, 0), MMD}, }; struct at803x_priv { int flags; u16 clk_25m_reg; u16 clk_25m_mask; u8 smarteee_lpi_tw_1g; u8 smarteee_lpi_tw_100m; bool is_fiber; bool is_1000basex; struct regulator_dev *vddio_rdev; struct regulator_dev *vddh_rdev; struct regulator *vddio; u64 stats[ARRAY_SIZE(at803x_hw_stats)]; }; struct at803x_context { u16 bmcr; u16 advertise; u16 control1000; u16 int_enable; u16 smart_speed; u16 led_control; }; static int at803x_debug_reg_write(struct phy_device *phydev, u16 reg, u16 data) { int ret; ret = phy_write(phydev, AT803X_DEBUG_ADDR, reg); if (ret < 0) return ret; return phy_write(phydev, AT803X_DEBUG_DATA, data); } static int at803x_debug_reg_read(struct phy_device *phydev, u16 reg) { int ret; ret = phy_write(phydev, AT803X_DEBUG_ADDR, reg); if (ret < 0) return ret; return phy_read(phydev, AT803X_DEBUG_DATA); } static int at803x_debug_reg_mask(struct phy_device *phydev, u16 reg, u16 clear, u16 set) { u16 val; int ret; ret = at803x_debug_reg_read(phydev, reg); if (ret < 0) return ret; val = ret & 0xffff; val &= ~clear; val |= set; return phy_write(phydev, AT803X_DEBUG_DATA, val); } static int at803x_write_page(struct phy_device *phydev, int page) { int mask; int set; if (page == AT803X_PAGE_COPPER) { set = AT803X_BT_BX_REG_SEL; mask = 0; } else { set = 0; mask = AT803X_BT_BX_REG_SEL; } return __phy_modify(phydev, AT803X_REG_CHIP_CONFIG, mask, set); } static int at803x_read_page(struct phy_device *phydev) { int ccr = __phy_read(phydev, AT803X_REG_CHIP_CONFIG); if (ccr < 0) return ccr; if (ccr & AT803X_BT_BX_REG_SEL) return AT803X_PAGE_COPPER; return AT803X_PAGE_FIBER; } static int at803x_enable_rx_delay(struct phy_device *phydev) { return at803x_debug_reg_mask(phydev, AT803X_DEBUG_ANALOG_TEST_CTRL, 0, AT803X_DEBUG_RX_CLK_DLY_EN); } static int at803x_enable_tx_delay(struct phy_device *phydev) { return at803x_debug_reg_mask(phydev, AT803X_DEBUG_SYSTEM_CTRL_MODE, 0, AT803X_DEBUG_TX_CLK_DLY_EN); } static int at803x_disable_rx_delay(struct phy_device *phydev) { return at803x_debug_reg_mask(phydev, AT803X_DEBUG_ANALOG_TEST_CTRL, AT803X_DEBUG_RX_CLK_DLY_EN, 0); } static int at803x_disable_tx_delay(struct phy_device *phydev) { return at803x_debug_reg_mask(phydev, AT803X_DEBUG_SYSTEM_CTRL_MODE, AT803X_DEBUG_TX_CLK_DLY_EN, 0); } /* save relevant PHY registers to private copy */ static void at803x_context_save(struct phy_device *phydev, struct at803x_context *context) { context->bmcr = phy_read(phydev, MII_BMCR); context->advertise = phy_read(phydev, MII_ADVERTISE); context->control1000 = phy_read(phydev, MII_CTRL1000); context->int_enable = phy_read(phydev, AT803X_INTR_ENABLE); context->smart_speed = phy_read(phydev, AT803X_SMART_SPEED); context->led_control = phy_read(phydev, AT803X_LED_CONTROL); } /* restore relevant PHY registers from private copy */ static void at803x_context_restore(struct phy_device *phydev, const struct at803x_context *context) { phy_write(phydev, MII_BMCR, context->bmcr); phy_write(phydev, MII_ADVERTISE, context->advertise); phy_write(phydev, MII_CTRL1000, context->control1000); phy_write(phydev, AT803X_INTR_ENABLE, context->int_enable); phy_write(phydev, AT803X_SMART_SPEED, context->smart_speed); phy_write(phydev, AT803X_LED_CONTROL, context->led_control); } static int at803x_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) { struct net_device *ndev = phydev->attached_dev; const u8 *mac; int ret; u32 value; unsigned int i, offsets[] = { AT803X_LOC_MAC_ADDR_32_47_OFFSET, AT803X_LOC_MAC_ADDR_16_31_OFFSET, AT803X_LOC_MAC_ADDR_0_15_OFFSET, }; if (!ndev) return -ENODEV; if (wol->wolopts & WAKE_MAGIC) { mac = (const u8 *) ndev->dev_addr; if (!is_valid_ether_addr(mac)) return -EINVAL; for (i = 0; i < 3; i++) phy_write_mmd(phydev, AT803X_DEVICE_ADDR, offsets[i], mac[(i * 2) + 1] | (mac[(i * 2)] << 8)); value = phy_read(phydev, AT803X_INTR_ENABLE); value |= AT803X_INTR_ENABLE_WOL; ret = phy_write(phydev, AT803X_INTR_ENABLE, value); if (ret) return ret; value = phy_read(phydev, AT803X_INTR_STATUS); } else { value = phy_read(phydev, AT803X_INTR_ENABLE); value &= (~AT803X_INTR_ENABLE_WOL); ret = phy_write(phydev, AT803X_INTR_ENABLE, value); if (ret) return ret; value = phy_read(phydev, AT803X_INTR_STATUS); } return ret; } static void at803x_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) { u32 value; wol->supported = WAKE_MAGIC; wol->wolopts = 0; value = phy_read(phydev, AT803X_INTR_ENABLE); if (value & AT803X_INTR_ENABLE_WOL) wol->wolopts |= WAKE_MAGIC; } static int at803x_get_sset_count(struct phy_device *phydev) { return ARRAY_SIZE(at803x_hw_stats); } static void at803x_get_strings(struct phy_device *phydev, u8 *data) { int i; for (i = 0; i < ARRAY_SIZE(at803x_hw_stats); i++) { strscpy(data + i * ETH_GSTRING_LEN, at803x_hw_stats[i].string, ETH_GSTRING_LEN); } } static u64 at803x_get_stat(struct phy_device *phydev, int i) { struct at803x_hw_stat stat = at803x_hw_stats[i]; struct at803x_priv *priv = phydev->priv; int val; u64 ret; if (stat.access_type == MMD) val = phy_read_mmd(phydev, MDIO_MMD_PCS, stat.reg); else val = phy_read(phydev, stat.reg); if (val < 0) { ret = U64_MAX; } else { val = val & stat.mask; priv->stats[i] += val; ret = priv->stats[i]; } return ret; } static void at803x_get_stats(struct phy_device *phydev, struct ethtool_stats *stats, u64 *data) { int i; for (i = 0; i < ARRAY_SIZE(at803x_hw_stats); i++) data[i] = at803x_get_stat(phydev, i); } static int at803x_suspend(struct phy_device *phydev) { int value; int wol_enabled; value = phy_read(phydev, AT803X_INTR_ENABLE); wol_enabled = value & AT803X_INTR_ENABLE_WOL; if (wol_enabled) value = BMCR_ISOLATE; else value = BMCR_PDOWN; phy_modify(phydev, MII_BMCR, 0, value); return 0; } static int at803x_resume(struct phy_device *phydev) { return phy_modify(phydev, MII_BMCR, BMCR_PDOWN | BMCR_ISOLATE, 0); } static int at803x_rgmii_reg_set_voltage_sel(struct regulator_dev *rdev, unsigned int selector) { struct phy_device *phydev = rdev_get_drvdata(rdev); if (selector) return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_1F, 0, AT803X_DEBUG_RGMII_1V8); else return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_1F, AT803X_DEBUG_RGMII_1V8, 0); } static int at803x_rgmii_reg_get_voltage_sel(struct regulator_dev *rdev) { struct phy_device *phydev = rdev_get_drvdata(rdev); int val; val = at803x_debug_reg_read(phydev, AT803X_DEBUG_REG_1F); if (val < 0) return val; return (val & AT803X_DEBUG_RGMII_1V8) ? 1 : 0; } static const struct regulator_ops vddio_regulator_ops = { .list_voltage = regulator_list_voltage_table, .set_voltage_sel = at803x_rgmii_reg_set_voltage_sel, .get_voltage_sel = at803x_rgmii_reg_get_voltage_sel, }; static const unsigned int vddio_voltage_table[] = { 1500000, 1800000, }; static const struct regulator_desc vddio_desc = { .name = "vddio", .of_match = of_match_ptr("vddio-regulator"), .n_voltages = ARRAY_SIZE(vddio_voltage_table), .volt_table = vddio_voltage_table, .ops = &vddio_regulator_ops, .type = REGULATOR_VOLTAGE, .owner = THIS_MODULE, }; static const struct regulator_ops vddh_regulator_ops = { }; static const struct regulator_desc vddh_desc = { .name = "vddh", .of_match = of_match_ptr("vddh-regulator"), .n_voltages = 1, .fixed_uV = 2500000, .ops = &vddh_regulator_ops, .type = REGULATOR_VOLTAGE, .owner = THIS_MODULE, }; static int at8031_register_regulators(struct phy_device *phydev) { struct at803x_priv *priv = phydev->priv; struct device *dev = &phydev->mdio.dev; struct regulator_config config = { }; config.dev = dev; config.driver_data = phydev; priv->vddio_rdev = devm_regulator_register(dev, &vddio_desc, &config); if (IS_ERR(priv->vddio_rdev)) { phydev_err(phydev, "failed to register VDDIO regulator\n"); return PTR_ERR(priv->vddio_rdev); } priv->vddh_rdev = devm_regulator_register(dev, &vddh_desc, &config); if (IS_ERR(priv->vddh_rdev)) { phydev_err(phydev, "failed to register VDDH regulator\n"); return PTR_ERR(priv->vddh_rdev); } return 0; } static int at803x_sfp_insert(void *upstream, const struct sfp_eeprom_id *id) { struct phy_device *phydev = upstream; __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_support); __ETHTOOL_DECLARE_LINK_MODE_MASK(sfp_support); phy_interface_t iface; linkmode_zero(phy_support); phylink_set(phy_support, 1000baseX_Full); phylink_set(phy_support, 1000baseT_Full); phylink_set(phy_support, Autoneg); phylink_set(phy_support, Pause); phylink_set(phy_support, Asym_Pause); linkmode_zero(sfp_support); sfp_parse_support(phydev->sfp_bus, id, sfp_support); /* Some modules support 10G modes as well as others we support. * Mask out non-supported modes so the correct interface is picked. */ linkmode_and(sfp_support, phy_support, sfp_support); if (linkmode_empty(sfp_support)) { dev_err(&phydev->mdio.dev, "incompatible SFP module inserted\n"); return -EINVAL; } iface = sfp_select_interface(phydev->sfp_bus, sfp_support); /* Only 1000Base-X is supported by AR8031/8033 as the downstream SerDes * interface for use with SFP modules. * However, some copper modules detected as having a preferred SGMII * interface do default to and function in 1000Base-X mode, so just * print a warning and allow such modules, as they may have some chance * of working. */ if (iface == PHY_INTERFACE_MODE_SGMII) dev_warn(&phydev->mdio.dev, "module may not function if 1000Base-X not supported\n"); else if (iface != PHY_INTERFACE_MODE_1000BASEX) return -EINVAL; return 0; } static const struct sfp_upstream_ops at803x_sfp_ops = { .attach = phy_sfp_attach, .detach = phy_sfp_detach, .module_insert = at803x_sfp_insert, }; static int at803x_parse_dt(struct phy_device *phydev) { struct device_node *node = phydev->mdio.dev.of_node; struct at803x_priv *priv = phydev->priv; u32 freq, strength, tw; unsigned int sel; int ret; if (!IS_ENABLED(CONFIG_OF_MDIO)) return 0; if (of_property_read_bool(node, "qca,disable-smarteee")) priv->flags |= AT803X_DISABLE_SMARTEEE; if (!of_property_read_u32(node, "qca,smarteee-tw-us-1g", &tw)) { if (!tw || tw > 255) { phydev_err(phydev, "invalid qca,smarteee-tw-us-1g\n"); return -EINVAL; } priv->smarteee_lpi_tw_1g = tw; } if (!of_property_read_u32(node, "qca,smarteee-tw-us-100m", &tw)) { if (!tw || tw > 255) { phydev_err(phydev, "invalid qca,smarteee-tw-us-100m\n"); return -EINVAL; } priv->smarteee_lpi_tw_100m = tw; } ret = of_property_read_u32(node, "qca,clk-out-frequency", &freq); if (!ret) { switch (freq) { case 25000000: sel = AT803X_CLK_OUT_25MHZ_XTAL; break; case 50000000: sel = AT803X_CLK_OUT_50MHZ_PLL; break; case 62500000: sel = AT803X_CLK_OUT_62_5MHZ_PLL; break; case 125000000: sel = AT803X_CLK_OUT_125MHZ_PLL; break; default: phydev_err(phydev, "invalid qca,clk-out-frequency\n"); return -EINVAL; } priv->clk_25m_reg |= FIELD_PREP(AT803X_CLK_OUT_MASK, sel); priv->clk_25m_mask |= AT803X_CLK_OUT_MASK; /* Fixup for the AR8030/AR8035. This chip has another mask and * doesn't support the DSP reference. Eg. the lowest bit of the * mask. The upper two bits select the same frequencies. Mask * the lowest bit here. * * Warning: * There was no datasheet for the AR8030 available so this is * just a guess. But the AR8035 is listed as pin compatible * to the AR8030 so there might be a good chance it works on * the AR8030 too. */ if (phydev->drv->phy_id == ATH8030_PHY_ID || phydev->drv->phy_id == ATH8035_PHY_ID) { priv->clk_25m_reg &= AT8035_CLK_OUT_MASK; priv->clk_25m_mask &= AT8035_CLK_OUT_MASK; } } ret = of_property_read_u32(node, "qca,clk-out-strength", &strength); if (!ret) { priv->clk_25m_mask |= AT803X_CLK_OUT_STRENGTH_MASK; switch (strength) { case AR803X_STRENGTH_FULL: priv->clk_25m_reg |= AT803X_CLK_OUT_STRENGTH_FULL; break; case AR803X_STRENGTH_HALF: priv->clk_25m_reg |= AT803X_CLK_OUT_STRENGTH_HALF; break; case AR803X_STRENGTH_QUARTER: priv->clk_25m_reg |= AT803X_CLK_OUT_STRENGTH_QUARTER; break; default: phydev_err(phydev, "invalid qca,clk-out-strength\n"); return -EINVAL; } } /* Only supported on AR8031/AR8033, the AR8030/AR8035 use strapping * options. */ if (phydev->drv->phy_id == ATH8031_PHY_ID) { if (of_property_read_bool(node, "qca,keep-pll-enabled")) priv->flags |= AT803X_KEEP_PLL_ENABLED; ret = at8031_register_regulators(phydev); if (ret < 0) return ret; priv->vddio = devm_regulator_get_optional(&phydev->mdio.dev, "vddio"); if (IS_ERR(priv->vddio)) { phydev_err(phydev, "failed to get VDDIO regulator\n"); return PTR_ERR(priv->vddio); } /* Only AR8031/8033 support 1000Base-X for SFP modules */ ret = phy_sfp_probe(phydev, &at803x_sfp_ops); if (ret < 0) return ret; } return 0; } static int at803x_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct at803x_priv *priv; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; phydev->priv = priv; ret = at803x_parse_dt(phydev); if (ret) return ret; if (priv->vddio) { ret = regulator_enable(priv->vddio); if (ret < 0) return ret; } if (phydev->drv->phy_id == ATH8031_PHY_ID) { int ccr = phy_read(phydev, AT803X_REG_CHIP_CONFIG); int mode_cfg; if (ccr < 0) { ret = ccr; goto err; } mode_cfg = ccr & AT803X_MODE_CFG_MASK; switch (mode_cfg) { case AT803X_MODE_CFG_BX1000_RGMII_50OHM: case AT803X_MODE_CFG_BX1000_RGMII_75OHM: priv->is_1000basex = true; fallthrough; case AT803X_MODE_CFG_FX100_RGMII_50OHM: case AT803X_MODE_CFG_FX100_RGMII_75OHM: priv->is_fiber = true; break; } } return 0; err: if (priv->vddio) regulator_disable(priv->vddio); return ret; } static void at803x_remove(struct phy_device *phydev) { struct at803x_priv *priv = phydev->priv; if (priv->vddio) regulator_disable(priv->vddio); } static int at803x_get_features(struct phy_device *phydev) { struct at803x_priv *priv = phydev->priv; int err; err = genphy_read_abilities(phydev); if (err) return err; if (phydev->drv->phy_id != ATH8031_PHY_ID) return 0; /* AR8031/AR8033 have different status registers * for copper and fiber operation. However, the * extended status register is the same for both * operation modes. * * As a result of that, ESTATUS_1000_XFULL is set * to 1 even when operating in copper TP mode. * * Remove this mode from the supported link modes * when not operating in 1000BaseX mode. */ if (!priv->is_1000basex) linkmode_clear_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, phydev->supported); return 0; } static int at803x_smarteee_config(struct phy_device *phydev) { struct at803x_priv *priv = phydev->priv; u16 mask = 0, val = 0; int ret; if (priv->flags & AT803X_DISABLE_SMARTEEE) return phy_modify_mmd(phydev, MDIO_MMD_PCS, AT803X_MMD3_SMARTEEE_CTL3, AT803X_MMD3_SMARTEEE_CTL3_LPI_EN, 0); if (priv->smarteee_lpi_tw_1g) { mask |= 0xff00; val |= priv->smarteee_lpi_tw_1g << 8; } if (priv->smarteee_lpi_tw_100m) { mask |= 0x00ff; val |= priv->smarteee_lpi_tw_100m; } if (!mask) return 0; ret = phy_modify_mmd(phydev, MDIO_MMD_PCS, AT803X_MMD3_SMARTEEE_CTL1, mask, val); if (ret) return ret; return phy_modify_mmd(phydev, MDIO_MMD_PCS, AT803X_MMD3_SMARTEEE_CTL3, AT803X_MMD3_SMARTEEE_CTL3_LPI_EN, AT803X_MMD3_SMARTEEE_CTL3_LPI_EN); } static int at803x_clk_out_config(struct phy_device *phydev) { struct at803x_priv *priv = phydev->priv; if (!priv->clk_25m_mask) return 0; return phy_modify_mmd(phydev, MDIO_MMD_AN, AT803X_MMD7_CLK25M, priv->clk_25m_mask, priv->clk_25m_reg); } static int at8031_pll_config(struct phy_device *phydev) { struct at803x_priv *priv = phydev->priv; /* The default after hardware reset is PLL OFF. After a soft reset, the * values are retained. */ if (priv->flags & AT803X_KEEP_PLL_ENABLED) return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_1F, 0, AT803X_DEBUG_PLL_ON); else return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_1F, AT803X_DEBUG_PLL_ON, 0); } static int at803x_config_init(struct phy_device *phydev) { struct at803x_priv *priv = phydev->priv; int ret; if (phydev->drv->phy_id == ATH8031_PHY_ID) { /* Some bootloaders leave the fiber page selected. * Switch to the appropriate page (fiber or copper), as otherwise we * read the PHY capabilities from the wrong page. */ phy_lock_mdio_bus(phydev); ret = at803x_write_page(phydev, priv->is_fiber ? AT803X_PAGE_FIBER : AT803X_PAGE_COPPER); phy_unlock_mdio_bus(phydev); if (ret) return ret; ret = at8031_pll_config(phydev); if (ret < 0) return ret; } /* The RX and TX delay default is: * after HW reset: RX delay enabled and TX delay disabled * after SW reset: RX delay enabled, while TX delay retains the * value before reset. */ if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) ret = at803x_enable_rx_delay(phydev); else ret = at803x_disable_rx_delay(phydev); if (ret < 0) return ret; if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) ret = at803x_enable_tx_delay(phydev); else ret = at803x_disable_tx_delay(phydev); if (ret < 0) return ret; ret = at803x_smarteee_config(phydev); if (ret < 0) return ret; ret = at803x_clk_out_config(phydev); if (ret < 0) return ret; /* Ar803x extended next page bit is enabled by default. Cisco * multigig switches read this bit and attempt to negotiate 10Gbps * rates even if the next page bit is disabled. This is incorrect * behaviour but we still need to accommodate it. XNP is only needed * for 10Gbps support, so disable XNP. */ return phy_modify(phydev, MII_ADVERTISE, MDIO_AN_CTRL1_XNP, 0); } static int at803x_ack_interrupt(struct phy_device *phydev) { int err; err = phy_read(phydev, AT803X_INTR_STATUS); return (err < 0) ? err : 0; } static int at803x_config_intr(struct phy_device *phydev) { struct at803x_priv *priv = phydev->priv; int err; int value; value = phy_read(phydev, AT803X_INTR_ENABLE); if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { /* Clear any pending interrupts */ err = at803x_ack_interrupt(phydev); if (err) return err; value |= AT803X_INTR_ENABLE_AUTONEG_ERR; value |= AT803X_INTR_ENABLE_SPEED_CHANGED; value |= AT803X_INTR_ENABLE_DUPLEX_CHANGED; value |= AT803X_INTR_ENABLE_LINK_FAIL; value |= AT803X_INTR_ENABLE_LINK_SUCCESS; if (priv->is_fiber) { value |= AT803X_INTR_ENABLE_LINK_FAIL_BX; value |= AT803X_INTR_ENABLE_LINK_SUCCESS_BX; } err = phy_write(phydev, AT803X_INTR_ENABLE, value); } else { err = phy_write(phydev, AT803X_INTR_ENABLE, 0); if (err) return err; /* Clear any pending interrupts */ err = at803x_ack_interrupt(phydev); } return err; } static irqreturn_t at803x_handle_interrupt(struct phy_device *phydev) { int irq_status, int_enabled; irq_status = phy_read(phydev, AT803X_INTR_STATUS); if (irq_status < 0) { phy_error(phydev); return IRQ_NONE; } /* Read the current enabled interrupts */ int_enabled = phy_read(phydev, AT803X_INTR_ENABLE); if (int_enabled < 0) { phy_error(phydev); return IRQ_NONE; } /* See if this was one of our enabled interrupts */ if (!(irq_status & int_enabled)) return IRQ_NONE; phy_trigger_machine(phydev); return IRQ_HANDLED; } static void at803x_link_change_notify(struct phy_device *phydev) { /* * Conduct a hardware reset for AT8030 every time a link loss is * signalled. This is necessary to circumvent a hardware bug that * occurs when the cable is unplugged while TX packets are pending * in the FIFO. In such cases, the FIFO enters an error mode it * cannot recover from by software. */ if (phydev->state == PHY_NOLINK && phydev->mdio.reset_gpio) { struct at803x_context context; at803x_context_save(phydev, &context); phy_device_reset(phydev, 1); msleep(1); phy_device_reset(phydev, 0); msleep(1); at803x_context_restore(phydev, &context); phydev_dbg(phydev, "%s(): phy was reset\n", __func__); } } static int at803x_read_status(struct phy_device *phydev) { struct at803x_priv *priv = phydev->priv; int ss, err, old_link = phydev->link; if (priv->is_1000basex) return genphy_c37_read_status(phydev); /* Update the link, but return if there was an error */ err = genphy_update_link(phydev); if (err) return err; /* why bother the PHY if nothing can have changed */ if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) return 0; phydev->speed = SPEED_UNKNOWN; phydev->duplex = DUPLEX_UNKNOWN; phydev->pause = 0; phydev->asym_pause = 0; err = genphy_read_lpa(phydev); if (err < 0) return err; /* Read the AT8035 PHY-Specific Status register, which indicates the * speed and duplex that the PHY is actually using, irrespective of * whether we are in autoneg mode or not. */ ss = phy_read(phydev, AT803X_SPECIFIC_STATUS); if (ss < 0) return ss; if (ss & AT803X_SS_SPEED_DUPLEX_RESOLVED) { int sfc; sfc = phy_read(phydev, AT803X_SPECIFIC_FUNCTION_CONTROL); if (sfc < 0) return sfc; switch (ss & AT803X_SS_SPEED_MASK) { case AT803X_SS_SPEED_10: phydev->speed = SPEED_10; break; case AT803X_SS_SPEED_100: phydev->speed = SPEED_100; break; case AT803X_SS_SPEED_1000: phydev->speed = SPEED_1000; break; } if (ss & AT803X_SS_DUPLEX) phydev->duplex = DUPLEX_FULL; else phydev->duplex = DUPLEX_HALF; if (ss & AT803X_SS_MDIX) phydev->mdix = ETH_TP_MDI_X; else phydev->mdix = ETH_TP_MDI; switch (FIELD_GET(AT803X_SFC_MDI_CROSSOVER_MODE_M, sfc)) { case AT803X_SFC_MANUAL_MDI: phydev->mdix_ctrl = ETH_TP_MDI; break; case AT803X_SFC_MANUAL_MDIX: phydev->mdix_ctrl = ETH_TP_MDI_X; break; case AT803X_SFC_AUTOMATIC_CROSSOVER: phydev->mdix_ctrl = ETH_TP_MDI_AUTO; break; } } if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) phy_resolve_aneg_pause(phydev); return 0; } static int at803x_config_mdix(struct phy_device *phydev, u8 ctrl) { u16 val; switch (ctrl) { case ETH_TP_MDI: val = AT803X_SFC_MANUAL_MDI; break; case ETH_TP_MDI_X: val = AT803X_SFC_MANUAL_MDIX; break; case ETH_TP_MDI_AUTO: val = AT803X_SFC_AUTOMATIC_CROSSOVER; break; default: return 0; } return phy_modify_changed(phydev, AT803X_SPECIFIC_FUNCTION_CONTROL, AT803X_SFC_MDI_CROSSOVER_MODE_M, FIELD_PREP(AT803X_SFC_MDI_CROSSOVER_MODE_M, val)); } static int at803x_config_aneg(struct phy_device *phydev) { struct at803x_priv *priv = phydev->priv; int ret; ret = at803x_config_mdix(phydev, phydev->mdix_ctrl); if (ret < 0) return ret; /* Changes of the midx bits are disruptive to the normal operation; * therefore any changes to these registers must be followed by a * software reset to take effect. */ if (ret == 1) { ret = genphy_soft_reset(phydev); if (ret < 0) return ret; } if (priv->is_1000basex) return genphy_c37_config_aneg(phydev); return genphy_config_aneg(phydev); } static int at803x_get_downshift(struct phy_device *phydev, u8 *d) { int val; val = phy_read(phydev, AT803X_SMART_SPEED); if (val < 0) return val; if (val & AT803X_SMART_SPEED_ENABLE) *d = FIELD_GET(AT803X_SMART_SPEED_RETRY_LIMIT_MASK, val) + 2; else *d = DOWNSHIFT_DEV_DISABLE; return 0; } static int at803x_set_downshift(struct phy_device *phydev, u8 cnt) { u16 mask, set; int ret; switch (cnt) { case DOWNSHIFT_DEV_DEFAULT_COUNT: cnt = AT803X_DEFAULT_DOWNSHIFT; fallthrough; case AT803X_MIN_DOWNSHIFT ... AT803X_MAX_DOWNSHIFT: set = AT803X_SMART_SPEED_ENABLE | AT803X_SMART_SPEED_BYPASS_TIMER | FIELD_PREP(AT803X_SMART_SPEED_RETRY_LIMIT_MASK, cnt - 2); mask = AT803X_SMART_SPEED_RETRY_LIMIT_MASK; break; case DOWNSHIFT_DEV_DISABLE: set = 0; mask = AT803X_SMART_SPEED_ENABLE | AT803X_SMART_SPEED_BYPASS_TIMER; break; default: return -EINVAL; } ret = phy_modify_changed(phydev, AT803X_SMART_SPEED, mask, set); /* After changing the smart speed settings, we need to perform a * software reset, use phy_init_hw() to make sure we set the * reapply any values which might got lost during software reset. */ if (ret == 1) ret = phy_init_hw(phydev); return ret; } static int at803x_get_tunable(struct phy_device *phydev, struct ethtool_tunable *tuna, void *data) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: return at803x_get_downshift(phydev, data); default: return -EOPNOTSUPP; } } static int at803x_set_tunable(struct phy_device *phydev, struct ethtool_tunable *tuna, const void *data) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: return at803x_set_downshift(phydev, *(const u8 *)data); default: return -EOPNOTSUPP; } } static int at803x_cable_test_result_trans(u16 status) { switch (FIELD_GET(AT803X_CDT_STATUS_STAT_MASK, status)) { case AT803X_CDT_STATUS_STAT_NORMAL: return ETHTOOL_A_CABLE_RESULT_CODE_OK; case AT803X_CDT_STATUS_STAT_SHORT: return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; case AT803X_CDT_STATUS_STAT_OPEN: return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; case AT803X_CDT_STATUS_STAT_FAIL: default: return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; } } static bool at803x_cdt_test_failed(u16 status) { return FIELD_GET(AT803X_CDT_STATUS_STAT_MASK, status) == AT803X_CDT_STATUS_STAT_FAIL; } static bool at803x_cdt_fault_length_valid(u16 status) { switch (FIELD_GET(AT803X_CDT_STATUS_STAT_MASK, status)) { case AT803X_CDT_STATUS_STAT_OPEN: case AT803X_CDT_STATUS_STAT_SHORT: return true; } return false; } static int at803x_cdt_fault_length(u16 status) { int dt; /* According to the datasheet the distance to the fault is * DELTA_TIME * 0.824 meters. * * The author suspect the correct formula is: * * fault_distance = DELTA_TIME * (c * VF) / 125MHz / 2 * * where c is the speed of light, VF is the velocity factor of * the twisted pair cable, 125MHz the counter frequency and * we need to divide by 2 because the hardware will measure the * round trip time to the fault and back to the PHY. * * With a VF of 0.69 we get the factor 0.824 mentioned in the * datasheet. */ dt = FIELD_GET(AT803X_CDT_STATUS_DELTA_TIME_MASK, status); return (dt * 824) / 10; } static int at803x_cdt_start(struct phy_device *phydev, int pair) { u16 cdt; cdt = FIELD_PREP(AT803X_CDT_MDI_PAIR_MASK, pair) | AT803X_CDT_ENABLE_TEST; return phy_write(phydev, AT803X_CDT, cdt); } static int at803x_cdt_wait_for_completion(struct phy_device *phydev) { int val, ret; /* One test run takes about 25ms */ ret = phy_read_poll_timeout(phydev, AT803X_CDT, val, !(val & AT803X_CDT_ENABLE_TEST), 30000, 100000, true); return ret < 0 ? ret : 0; } static int at803x_cable_test_one_pair(struct phy_device *phydev, int pair) { static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, ETHTOOL_A_CABLE_PAIR_B, ETHTOOL_A_CABLE_PAIR_C, ETHTOOL_A_CABLE_PAIR_D, }; int ret, val; ret = at803x_cdt_start(phydev, pair); if (ret) return ret; ret = at803x_cdt_wait_for_completion(phydev); if (ret) return ret; val = phy_read(phydev, AT803X_CDT_STATUS); if (val < 0) return val; if (at803x_cdt_test_failed(val)) return 0; ethnl_cable_test_result(phydev, ethtool_pair[pair], at803x_cable_test_result_trans(val)); if (at803x_cdt_fault_length_valid(val)) ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], at803x_cdt_fault_length(val)); return 1; } static int at803x_cable_test_get_status(struct phy_device *phydev, bool *finished) { unsigned long pair_mask; int retries = 20; int pair, ret; if (phydev->phy_id == ATH9331_PHY_ID || phydev->phy_id == ATH8032_PHY_ID) pair_mask = 0x3; else pair_mask = 0xf; *finished = false; /* According to the datasheet the CDT can be performed when * there is no link partner or when the link partner is * auto-negotiating. Starting the test will restart the AN * automatically. It seems that doing this repeatedly we will * get a slot where our link partner won't disturb our * measurement. */ while (pair_mask && retries--) { for_each_set_bit(pair, &pair_mask, 4) { ret = at803x_cable_test_one_pair(phydev, pair); if (ret < 0) return ret; if (ret) clear_bit(pair, &pair_mask); } if (pair_mask) msleep(250); } *finished = true; return 0; } static int at803x_cable_test_start(struct phy_device *phydev) { /* Enable auto-negotiation, but advertise no capabilities, no link * will be established. A restart of the auto-negotiation is not * required, because the cable test will automatically break the link. */ phy_write(phydev, MII_BMCR, BMCR_ANENABLE); phy_write(phydev, MII_ADVERTISE, ADVERTISE_CSMA); if (phydev->phy_id != ATH9331_PHY_ID && phydev->phy_id != ATH8032_PHY_ID) phy_write(phydev, MII_CTRL1000, 0); /* we do all the (time consuming) work later */ return 0; } static int qca83xx_config_init(struct phy_device *phydev) { u8 switch_revision; switch_revision = phydev->dev_flags & QCA8K_DEVFLAGS_REVISION_MASK; switch (switch_revision) { case 1: /* For 100M waveform */ at803x_debug_reg_write(phydev, AT803X_DEBUG_ANALOG_TEST_CTRL, 0x02ea); /* Turn on Gigabit clock */ at803x_debug_reg_write(phydev, AT803X_DEBUG_REG_GREEN, 0x68a0); break; case 2: phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 0x0); fallthrough; case 4: phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_AZ_DEBUG, 0x803f); at803x_debug_reg_write(phydev, AT803X_DEBUG_REG_GREEN, 0x6860); at803x_debug_reg_write(phydev, AT803X_DEBUG_SYSTEM_CTRL_MODE, 0x2c46); at803x_debug_reg_write(phydev, AT803X_DEBUG_REG_3C, 0x6000); break; } /* QCA8327 require DAC amplitude adjustment for 100m set to +6%. * Disable on init and enable only with 100m speed following * qca original source code. */ if (phydev->drv->phy_id == QCA8327_A_PHY_ID || phydev->drv->phy_id == QCA8327_B_PHY_ID) at803x_debug_reg_mask(phydev, AT803X_DEBUG_ANALOG_TEST_CTRL, QCA8327_DEBUG_MANU_CTRL_EN, 0); /* Following original QCA sourcecode set port to prefer master */ phy_set_bits(phydev, MII_CTRL1000, CTL1000_PREFER_MASTER); return 0; } static void qca83xx_link_change_notify(struct phy_device *phydev) { /* QCA8337 doesn't require DAC Amplitude adjustement */ if (phydev->drv->phy_id == QCA8337_PHY_ID) return; /* Set DAC Amplitude adjustment to +6% for 100m on link running */ if (phydev->state == PHY_RUNNING) { if (phydev->speed == SPEED_100) at803x_debug_reg_mask(phydev, AT803X_DEBUG_ANALOG_TEST_CTRL, QCA8327_DEBUG_MANU_CTRL_EN, QCA8327_DEBUG_MANU_CTRL_EN); } else { /* Reset DAC Amplitude adjustment */ at803x_debug_reg_mask(phydev, AT803X_DEBUG_ANALOG_TEST_CTRL, QCA8327_DEBUG_MANU_CTRL_EN, 0); } } static int qca83xx_resume(struct phy_device *phydev) { int ret, val; /* Skip reset if not suspended */ if (!phydev->suspended) return 0; /* Reinit the port, reset values set by suspend */ qca83xx_config_init(phydev); /* Reset the port on port resume */ phy_set_bits(phydev, MII_BMCR, BMCR_RESET | BMCR_ANENABLE); /* On resume from suspend the switch execute a reset and * restart auto-negotiation. Wait for reset to complete. */ ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 50000, 600000, true); if (ret) return ret; msleep(1); return 0; } static int qca83xx_suspend(struct phy_device *phydev) { u16 mask = 0; /* Only QCA8337 support actual suspend. * QCA8327 cause port unreliability when phy suspend * is set. */ if (phydev->drv->phy_id == QCA8337_PHY_ID) { genphy_suspend(phydev); } else { mask |= ~(BMCR_SPEED1000 | BMCR_FULLDPLX); phy_modify(phydev, MII_BMCR, mask, 0); } at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_GREEN, AT803X_DEBUG_GATE_CLK_IN1000, 0); at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_HIB_CTRL, AT803X_DEBUG_HIB_CTRL_EN_ANY_CHANGE | AT803X_DEBUG_HIB_CTRL_SEL_RST_80U, 0); return 0; } static struct phy_driver at803x_driver[] = { { /* Qualcomm Atheros AR8035 */ PHY_ID_MATCH_EXACT(ATH8035_PHY_ID), .name = "Qualcomm Atheros AR8035", .flags = PHY_POLL_CABLE_TEST, .probe = at803x_probe, .remove = at803x_remove, .config_aneg = at803x_config_aneg, .config_init = at803x_config_init, .soft_reset = genphy_soft_reset, .set_wol = at803x_set_wol, .get_wol = at803x_get_wol, .suspend = at803x_suspend, .resume = at803x_resume, /* PHY_GBIT_FEATURES */ .read_status = at803x_read_status, .config_intr = at803x_config_intr, .handle_interrupt = at803x_handle_interrupt, .get_tunable = at803x_get_tunable, .set_tunable = at803x_set_tunable, .cable_test_start = at803x_cable_test_start, .cable_test_get_status = at803x_cable_test_get_status, }, { /* Qualcomm Atheros AR8030 */ .phy_id = ATH8030_PHY_ID, .name = "Qualcomm Atheros AR8030", .phy_id_mask = AT8030_PHY_ID_MASK, .probe = at803x_probe, .remove = at803x_remove, .config_init = at803x_config_init, .link_change_notify = at803x_link_change_notify, .set_wol = at803x_set_wol, .get_wol = at803x_get_wol, .suspend = at803x_suspend, .resume = at803x_resume, /* PHY_BASIC_FEATURES */ .config_intr = at803x_config_intr, .handle_interrupt = at803x_handle_interrupt, }, { /* Qualcomm Atheros AR8031/AR8033 */ PHY_ID_MATCH_EXACT(ATH8031_PHY_ID), .name = "Qualcomm Atheros AR8031/AR8033", .flags = PHY_POLL_CABLE_TEST, .probe = at803x_probe, .remove = at803x_remove, .config_init = at803x_config_init, .config_aneg = at803x_config_aneg, .soft_reset = genphy_soft_reset, .set_wol = at803x_set_wol, .get_wol = at803x_get_wol, .suspend = at803x_suspend, .resume = at803x_resume, .read_page = at803x_read_page, .write_page = at803x_write_page, .get_features = at803x_get_features, .read_status = at803x_read_status, .config_intr = &at803x_config_intr, .handle_interrupt = at803x_handle_interrupt, .get_tunable = at803x_get_tunable, .set_tunable = at803x_set_tunable, .cable_test_start = at803x_cable_test_start, .cable_test_get_status = at803x_cable_test_get_status, }, { /* Qualcomm Atheros AR8032 */ PHY_ID_MATCH_EXACT(ATH8032_PHY_ID), .name = "Qualcomm Atheros AR8032", .probe = at803x_probe, .remove = at803x_remove, .flags = PHY_POLL_CABLE_TEST, .config_init = at803x_config_init, .link_change_notify = at803x_link_change_notify, .suspend = at803x_suspend, .resume = at803x_resume, /* PHY_BASIC_FEATURES */ .config_intr = at803x_config_intr, .handle_interrupt = at803x_handle_interrupt, .cable_test_start = at803x_cable_test_start, .cable_test_get_status = at803x_cable_test_get_status, }, { /* ATHEROS AR9331 */ PHY_ID_MATCH_EXACT(ATH9331_PHY_ID), .name = "Qualcomm Atheros AR9331 built-in PHY", .probe = at803x_probe, .remove = at803x_remove, .suspend = at803x_suspend, .resume = at803x_resume, .flags = PHY_POLL_CABLE_TEST, /* PHY_BASIC_FEATURES */ .config_intr = &at803x_config_intr, .handle_interrupt = at803x_handle_interrupt, .cable_test_start = at803x_cable_test_start, .cable_test_get_status = at803x_cable_test_get_status, .read_status = at803x_read_status, .soft_reset = genphy_soft_reset, .config_aneg = at803x_config_aneg, }, { /* QCA8337 */ .phy_id = QCA8337_PHY_ID, .phy_id_mask = QCA8K_PHY_ID_MASK, .name = "Qualcomm Atheros 8337 internal PHY", /* PHY_GBIT_FEATURES */ .link_change_notify = qca83xx_link_change_notify, .probe = at803x_probe, .flags = PHY_IS_INTERNAL, .config_init = qca83xx_config_init, .soft_reset = genphy_soft_reset, .get_sset_count = at803x_get_sset_count, .get_strings = at803x_get_strings, .get_stats = at803x_get_stats, .suspend = qca83xx_suspend, .resume = qca83xx_resume, }, { /* QCA8327-A from switch QCA8327-AL1A */ .phy_id = QCA8327_A_PHY_ID, .phy_id_mask = QCA8K_PHY_ID_MASK, .name = "Qualcomm Atheros 8327-A internal PHY", /* PHY_GBIT_FEATURES */ .link_change_notify = qca83xx_link_change_notify, .probe = at803x_probe, .flags = PHY_IS_INTERNAL, .config_init = qca83xx_config_init, .soft_reset = genphy_soft_reset, .get_sset_count = at803x_get_sset_count, .get_strings = at803x_get_strings, .get_stats = at803x_get_stats, .suspend = qca83xx_suspend, .resume = qca83xx_resume, }, { /* QCA8327-B from switch QCA8327-BL1A */ .phy_id = QCA8327_B_PHY_ID, .phy_id_mask = QCA8K_PHY_ID_MASK, .name = "Qualcomm Atheros 8327-B internal PHY", /* PHY_GBIT_FEATURES */ .link_change_notify = qca83xx_link_change_notify, .probe = at803x_probe, .flags = PHY_IS_INTERNAL, .config_init = qca83xx_config_init, .soft_reset = genphy_soft_reset, .get_sset_count = at803x_get_sset_count, .get_strings = at803x_get_strings, .get_stats = at803x_get_stats, .suspend = qca83xx_suspend, .resume = qca83xx_resume, }, }; module_phy_driver(at803x_driver); static struct mdio_device_id __maybe_unused atheros_tbl[] = { { ATH8030_PHY_ID, AT8030_PHY_ID_MASK }, { PHY_ID_MATCH_EXACT(ATH8031_PHY_ID) }, { PHY_ID_MATCH_EXACT(ATH8032_PHY_ID) }, { PHY_ID_MATCH_EXACT(ATH8035_PHY_ID) }, { PHY_ID_MATCH_EXACT(ATH9331_PHY_ID) }, { PHY_ID_MATCH_EXACT(QCA8337_PHY_ID) }, { PHY_ID_MATCH_EXACT(QCA8327_A_PHY_ID) }, { PHY_ID_MATCH_EXACT(QCA8327_B_PHY_ID) }, { } }; MODULE_DEVICE_TABLE(mdio, atheros_tbl);