/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include "timer-of.h" #define RTTM_DATA 0x0 #define RTTM_CNT 0x4 #define RTTM_CTRL 0x8 #define RTTM_INT 0xc #define RTTM_CTRL_ENABLE BIT(28) #define RTTM_INT_PENDING BIT(16) #define RTTM_INT_ENABLE BIT(20) /* * The Otto platform provides multiple 28 bit timers/counters with the following * operating logic. If enabled the timer counts up. Per timer one can set a * maximum counter value as an end marker. If end marker is reached the timer * fires an interrupt. If the timer "overflows" by reaching the end marker or * by adding 1 to 0x0fffffff the counter is reset to 0. When this happens and * the timer is in operating mode COUNTER it stops. In mode TIMER it will * continue to count up. */ #define RTTM_CTRL_COUNTER 0 #define RTTM_CTRL_TIMER BIT(24) #define RTTM_BIT_COUNT 28 #define RTTM_MIN_DELTA 8 #define RTTM_MAX_DELTA CLOCKSOURCE_MASK(28) /* * Timers are derived from the LXB clock frequency. Usually this is a fixed * multiple of the 25 MHz oscillator. The 930X SOC is an exception from that. * Its LXB clock has only dividers and uses the switch PLL of 2.45 GHz as its * base. The only meaningful frequencies we can achieve from that are 175.000 * MHz and 153.125 MHz. The greatest common divisor of all explained possible * speeds is 3125000. Pin the timers to this 3.125 MHz reference frequency. */ #define RTTM_TICKS_PER_SEC 3125000 struct rttm_cs { struct timer_of to; struct clocksource cs; }; /* Simple internal register functions */ static inline void rttm_set_counter(void __iomem *base, unsigned int counter) { iowrite32(counter, base + RTTM_CNT); } static inline unsigned int rttm_get_counter(void __iomem *base) { return ioread32(base + RTTM_CNT); } static inline void rttm_set_period(void __iomem *base, unsigned int period) { iowrite32(period, base + RTTM_DATA); } static inline void rttm_disable_timer(void __iomem *base) { iowrite32(0, base + RTTM_CTRL); } static inline void rttm_enable_timer(void __iomem *base, u32 mode, u32 divisor) { iowrite32(RTTM_CTRL_ENABLE | mode | divisor, base + RTTM_CTRL); } static inline void rttm_ack_irq(void __iomem *base) { iowrite32(ioread32(base + RTTM_INT) | RTTM_INT_PENDING, base + RTTM_INT); } static inline void rttm_enable_irq(void __iomem *base) { iowrite32(RTTM_INT_ENABLE, base + RTTM_INT); } static inline void rttm_disable_irq(void __iomem *base) { iowrite32(0, base + RTTM_INT); } /* Aggregated control functions for kernel clock framework */ #define RTTM_DEBUG(base) \ pr_debug("------------- %s %d %08x\n", __func__, \ smp_processor_id(), (u32)base) static irqreturn_t rttm_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *clkevt = dev_id; struct timer_of *to = to_timer_of(clkevt); rttm_ack_irq(to->of_base.base); RTTM_DEBUG(to->of_base.base); clkevt->event_handler(clkevt); return IRQ_HANDLED; } static void rttm_stop_timer(void __iomem *base) { rttm_disable_timer(base); rttm_ack_irq(base); } static void rttm_start_timer(struct timer_of *to, u32 mode) { rttm_set_counter(to->of_base.base, 0); rttm_enable_timer(to->of_base.base, mode, to->of_clk.rate / RTTM_TICKS_PER_SEC); } static int rttm_next_event(unsigned long delta, struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); RTTM_DEBUG(to->of_base.base); rttm_stop_timer(to->of_base.base); rttm_set_period(to->of_base.base, delta); rttm_start_timer(to, RTTM_CTRL_COUNTER); return 0; } static int rttm_state_oneshot(struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); RTTM_DEBUG(to->of_base.base); rttm_stop_timer(to->of_base.base); rttm_set_period(to->of_base.base, RTTM_TICKS_PER_SEC / HZ); rttm_start_timer(to, RTTM_CTRL_COUNTER); return 0; } static int rttm_state_periodic(struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); RTTM_DEBUG(to->of_base.base); rttm_stop_timer(to->of_base.base); rttm_set_period(to->of_base.base, RTTM_TICKS_PER_SEC / HZ); rttm_start_timer(to, RTTM_CTRL_TIMER); return 0; } static int rttm_state_shutdown(struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); RTTM_DEBUG(to->of_base.base); rttm_stop_timer(to->of_base.base); return 0; } static void rttm_setup_timer(void __iomem *base) { RTTM_DEBUG(base); rttm_stop_timer(base); rttm_set_period(base, 0); } static u64 rttm_read_clocksource(struct clocksource *cs) { struct rttm_cs *rcs = container_of(cs, struct rttm_cs, cs); return (u64)rttm_get_counter(rcs->to.of_base.base); } /* Module initialization part. */ static DEFINE_PER_CPU(struct timer_of, rttm_to) = { .flags = TIMER_OF_BASE | TIMER_OF_CLOCK | TIMER_OF_IRQ, .of_irq = { .flags = IRQF_PERCPU | IRQF_TIMER, .handler = rttm_timer_interrupt, }, .clkevt = { .rating = 400, .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_periodic = rttm_state_periodic, .set_state_shutdown = rttm_state_shutdown, .set_state_oneshot = rttm_state_oneshot, .set_next_event = rttm_next_event }, }; static int rttm_enable_clocksource(struct clocksource *cs) { struct rttm_cs *rcs = container_of(cs, struct rttm_cs, cs); rttm_disable_irq(rcs->to.of_base.base); rttm_setup_timer(rcs->to.of_base.base); rttm_enable_timer(rcs->to.of_base.base, RTTM_CTRL_TIMER, rcs->to.of_clk.rate / RTTM_TICKS_PER_SEC); return 0; } struct rttm_cs rttm_cs = { .to = { .flags = TIMER_OF_BASE | TIMER_OF_CLOCK, }, .cs = { .name = "realtek_otto_timer", .rating = 400, .mask = CLOCKSOURCE_MASK(RTTM_BIT_COUNT), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .read = rttm_read_clocksource, } }; static u64 notrace rttm_read_clock(void) { return (u64)rttm_get_counter(rttm_cs.to.of_base.base); } static int rttm_cpu_starting(unsigned int cpu) { struct timer_of *to = per_cpu_ptr(&rttm_to, cpu); RTTM_DEBUG(to->of_base.base); to->clkevt.cpumask = cpumask_of(cpu); irq_force_affinity(to->of_irq.irq, to->clkevt.cpumask); clockevents_config_and_register(&to->clkevt, RTTM_TICKS_PER_SEC, RTTM_MIN_DELTA, RTTM_MAX_DELTA); rttm_enable_irq(to->of_base.base); return 0; } static int __init rttm_probe(struct device_node *np) { int cpu, cpu_rollback; struct timer_of *to; int clkidx = num_possible_cpus(); /* Use the first n timers as per CPU clock event generators */ for_each_possible_cpu(cpu) { to = per_cpu_ptr(&rttm_to, cpu); to->of_irq.index = to->of_base.index = cpu; if (timer_of_init(np, to)) { pr_err("%s: setup of timer %d failed\n", __func__, cpu); goto rollback; } rttm_setup_timer(to->of_base.base); } /* Activate the n'th + 1 timer as a stable CPU clocksource. */ to = &rttm_cs.to; to->of_base.index = clkidx; timer_of_init(np, to); if (rttm_cs.to.of_base.base && rttm_cs.to.of_clk.rate) { rttm_enable_clocksource(&rttm_cs.cs); clocksource_register_hz(&rttm_cs.cs, RTTM_TICKS_PER_SEC); sched_clock_register(rttm_read_clock, RTTM_BIT_COUNT, RTTM_TICKS_PER_SEC); } else pr_err("%s: setup of timer %d as clocksoure failed", __func__, clkidx); return cpuhp_setup_state(CPUHP_AP_REALTEK_TIMER_STARTING, "timer/realtek:online", rttm_cpu_starting, NULL); rollback: pr_err("%s: timer registration failed\n", __func__); for_each_possible_cpu(cpu_rollback) { if (cpu_rollback == cpu) break; to = per_cpu_ptr(&rttm_to, cpu_rollback); timer_of_cleanup(to); } return -EINVAL; } TIMER_OF_DECLARE(otto_timer, "realtek,otto-timer", rttm_probe);