// SPDX-License-Identifier: GPL-2.0-only #include #include #include "rtl83xx.h" #define RTL931X_VLAN_PORT_TAG_STS_INTERNAL 0x0 #define RTL931X_VLAN_PORT_TAG_STS_UNTAG 0x1 #define RTL931X_VLAN_PORT_TAG_STS_TAGGED 0x2 #define RTL931X_VLAN_PORT_TAG_STS_PRIORITY_TAGGED 0x3 #define RTL931X_VLAN_PORT_TAG_CTRL_BASE 0x4860 /* port 0-56 */ #define RTL931X_VLAN_PORT_TAG_CTRL(port) \ RTL931X_VLAN_PORT_TAG_CTRL_BASE + (port << 2) #define RTL931X_VLAN_PORT_TAG_EGR_OTAG_STS_MASK GENMASK(13,12) #define RTL931X_VLAN_PORT_TAG_EGR_ITAG_STS_MASK GENMASK(11,10) #define RTL931X_VLAN_PORT_TAG_EGR_OTAG_KEEP_MASK GENMASK(9,9) #define RTL931X_VLAN_PORT_TAG_EGR_ITAG_KEEP_MASK GENMASK(8,8) #define RTL931X_VLAN_PORT_TAG_IGR_OTAG_KEEP_MASK GENMASK(7,7) #define RTL931X_VLAN_PORT_TAG_IGR_ITAG_KEEP_MASK GENMASK(6,6) #define RTL931X_VLAN_PORT_TAG_OTPID_IDX_MASK GENMASK(5,4) #define RTL931X_VLAN_PORT_TAG_OTPID_KEEP_MASK GENMASK(3,3) #define RTL931X_VLAN_PORT_TAG_ITPID_IDX_MASK GENMASK(2,1) #define RTL931X_VLAN_PORT_TAG_ITPID_KEEP_MASK GENMASK(0,0) extern struct mutex smi_lock; extern struct rtl83xx_soc_info soc_info; /* Definition of the RTL931X-specific template field IDs as used in the PIE */ enum template_field_id { TEMPLATE_FIELD_SPM0 = 1, TEMPLATE_FIELD_SPM1 = 2, TEMPLATE_FIELD_SPM2 = 3, TEMPLATE_FIELD_SPM3 = 4, TEMPLATE_FIELD_DMAC0 = 9, TEMPLATE_FIELD_DMAC1 = 10, TEMPLATE_FIELD_DMAC2 = 11, TEMPLATE_FIELD_SMAC0 = 12, TEMPLATE_FIELD_SMAC1 = 13, TEMPLATE_FIELD_SMAC2 = 14, TEMPLATE_FIELD_ETHERTYPE = 15, TEMPLATE_FIELD_OTAG = 16, TEMPLATE_FIELD_ITAG = 17, TEMPLATE_FIELD_SIP0 = 18, TEMPLATE_FIELD_SIP1 = 19, TEMPLATE_FIELD_DIP0 = 20, TEMPLATE_FIELD_DIP1 = 21, TEMPLATE_FIELD_IP_TOS_PROTO = 22, TEMPLATE_FIELD_L4_SPORT = 23, TEMPLATE_FIELD_L4_DPORT = 24, TEMPLATE_FIELD_L34_HEADER = 25, TEMPLATE_FIELD_TCP_INFO = 26, TEMPLATE_FIELD_SIP2 = 34, TEMPLATE_FIELD_SIP3 = 35, TEMPLATE_FIELD_SIP4 = 36, TEMPLATE_FIELD_SIP5 = 37, TEMPLATE_FIELD_SIP6 = 38, TEMPLATE_FIELD_SIP7 = 39, TEMPLATE_FIELD_DIP2 = 42, TEMPLATE_FIELD_DIP3 = 43, TEMPLATE_FIELD_DIP4 = 44, TEMPLATE_FIELD_DIP5 = 45, TEMPLATE_FIELD_DIP6 = 46, TEMPLATE_FIELD_DIP7 = 47, TEMPLATE_FIELD_FLOW_LABEL = 49, TEMPLATE_FIELD_DSAP_SSAP = 50, TEMPLATE_FIELD_FWD_VID = 52, TEMPLATE_FIELD_RANGE_CHK = 53, TEMPLATE_FIELD_SLP = 55, TEMPLATE_FIELD_DLP = 56, TEMPLATE_FIELD_META_DATA = 57, TEMPLATE_FIELD_FIRST_MPLS1 = 60, TEMPLATE_FIELD_FIRST_MPLS2 = 61, TEMPLATE_FIELD_DPM3 = 8, }; /* The meaning of TEMPLATE_FIELD_VLAN depends on phase and the configuration in * RTL931X_PIE_CTRL. We use always the same definition and map to the inner VLAN tag: */ #define TEMPLATE_FIELD_VLAN TEMPLATE_FIELD_ITAG /* Number of fixed templates predefined in the RTL9300 SoC */ #define N_FIXED_TEMPLATES 5 /* RTL931x specific predefined templates */ static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS_RTL931X] = { { TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2, TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2, TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_DSAP_SSAP, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3 }, { TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_TCP_INFO, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3 }, { TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2, TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_META_DATA, TEMPLATE_FIELD_SLP }, { TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2, TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5, TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_TCP_INFO, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SLP }, { TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2, TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5, TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_META_DATA, TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3 }, }; inline void rtl931x_exec_tbl0_cmd(u32 cmd) { sw_w32(cmd, RTL931X_TBL_ACCESS_CTRL_0); do { } while (sw_r32(RTL931X_TBL_ACCESS_CTRL_0) & (1 << 20)); } inline void rtl931x_exec_tbl1_cmd(u32 cmd) { sw_w32(cmd, RTL931X_TBL_ACCESS_CTRL_1); do { } while (sw_r32(RTL931X_TBL_ACCESS_CTRL_1) & (1 << 17)); } inline int rtl931x_tbl_access_data_0(int i) { return RTL931X_TBL_ACCESS_DATA_0(i); } void rtl931x_vlan_profile_dump(int index) { u64 profile[4]; if (index < 0 || index > 15) return; profile[0] = sw_r32(RTL931X_VLAN_PROFILE_SET(index)); profile[1] = (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 4) & 0x1FFFFFFFULL) << 32 | (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 8) & 0xFFFFFFFF); profile[2] = (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 16) & 0x1FFFFFFFULL) << 32 | (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 12) & 0xFFFFFFFF); profile[3] = (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 20) & 0x1FFFFFFFULL) << 32 | (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 24) & 0xFFFFFFFF); pr_info("VLAN %d: L2 learning: %d, L2 Unknown MultiCast Field %llx, \ IPv4 Unknown MultiCast Field %llx, IPv6 Unknown MultiCast Field: %llx", index, (u32) (profile[0] & (3 << 14)), profile[1], profile[2], profile[3]); } static void rtl931x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[]) { u32 cmd = 1 << 20 | /* Execute cmd */ 0 << 19 | /* Read */ 5 << 15 | /* Table type 0b101 */ (msti & 0x3fff); priv->r->exec_tbl0_cmd(cmd); for (int i = 0; i < 4; i++) port_state[i] = sw_r32(priv->r->tbl_access_data_0(i)); } static void rtl931x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[]) { u32 cmd = 1 << 20 | /* Execute cmd */ 1 << 19 | /* Write */ 5 << 15 | /* Table type 0b101 */ (msti & 0x3fff); for (int i = 0; i < 4; i++) sw_w32(port_state[i], priv->r->tbl_access_data_0(i)); priv->r->exec_tbl0_cmd(cmd); } inline static int rtl931x_trk_mbr_ctr(int group) { return RTL931X_TRK_MBR_CTRL + (group << 2); } static void rtl931x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info) { u32 v, w, x, y; /* Read VLAN table (3) via register 0 */ struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 3); rtl_table_read(r, vlan); v = sw_r32(rtl_table_data(r, 0)); w = sw_r32(rtl_table_data(r, 1)); x = sw_r32(rtl_table_data(r, 2)); y = sw_r32(rtl_table_data(r, 3)); rtl_table_release(r); pr_debug("VLAN_READ %d: %08x %08x %08x %08x\n", vlan, v, w, x, y); info->tagged_ports = ((u64) v) << 25 | (w >> 7); info->profile_id = (x >> 16) & 0xf; info->fid = w & 0x7f; /* AKA MSTI depending on context */ info->hash_uc_fid = !!(x & BIT(31)); info->hash_mc_fid = !!(x & BIT(30)); info->if_id = (x >> 20) & 0x3ff; info->profile_id = (x >> 16) & 0xf; info->multicast_grp_mask = x & 0xffff; if (x & BIT(31)) info->l2_tunnel_list_id = y >> 18; else info->l2_tunnel_list_id = -1; pr_debug("%s read tagged %016llx, profile-id %d, uc %d, mc %d, intf-id %d\n", __func__, info->tagged_ports, info->profile_id, info->hash_uc_fid, info->hash_mc_fid, info->if_id); /* Read UNTAG table via table register 3 */ r = rtl_table_get(RTL9310_TBL_3, 0); rtl_table_read(r, vlan); v = ((u64)sw_r32(rtl_table_data(r, 0))) << 25; v |= sw_r32(rtl_table_data(r, 1)) >> 7; rtl_table_release(r); info->untagged_ports = v; } static void rtl931x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info) { u32 v, w, x, y; /* Access VLAN table (1) via register 0 */ struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 3); v = info->tagged_ports >> 25; w = (info->tagged_ports & 0x1fffff) << 7; w |= info->fid & 0x7f; x = info->hash_uc_fid ? BIT(31) : 0; x |= info->hash_mc_fid ? BIT(30) : 0; x |= info->if_id & 0x3ff << 20; x |= (info->profile_id & 0xf) << 16; x |= info->multicast_grp_mask & 0xffff; if (info->l2_tunnel_list_id >= 0) { y = info->l2_tunnel_list_id << 18; y |= BIT(31); } else { y = 0; } sw_w32(v, rtl_table_data(r, 0)); sw_w32(w, rtl_table_data(r, 1)); sw_w32(x, rtl_table_data(r, 2)); sw_w32(y, rtl_table_data(r, 3)); rtl_table_write(r, vlan); rtl_table_release(r); } static void rtl931x_vlan_set_untagged(u32 vlan, u64 portmask) { struct table_reg *r = rtl_table_get(RTL9310_TBL_3, 0); rtl839x_set_port_reg_be(portmask << 7, rtl_table_data(r, 0)); rtl_table_write(r, vlan); rtl_table_release(r); } static inline int rtl931x_mac_force_mode_ctrl(int p) { return RTL931X_MAC_FORCE_MODE_CTRL + (p << 2); } static inline int rtl931x_mac_link_spd_sts(int p) { return RTL931X_MAC_LINK_SPD_STS + (((p >> 3) << 2)); } static inline int rtl931x_mac_port_ctrl(int p) { return RTL931X_MAC_L2_PORT_CTRL + (p << 7); } static inline int rtl931x_l2_port_new_salrn(int p) { return RTL931X_L2_PORT_NEW_SALRN(p); } static inline int rtl931x_l2_port_new_sa_fwd(int p) { return RTL931X_L2_PORT_NEW_SA_FWD(p); } irqreturn_t rtl931x_switch_irq(int irq, void *dev_id) { struct dsa_switch *ds = dev_id; u32 status = sw_r32(RTL931X_ISR_GLB_SRC); u64 ports = rtl839x_get_port_reg_le(RTL931X_ISR_PORT_LINK_STS_CHG); u64 link; /* Clear status */ rtl839x_set_port_reg_le(ports, RTL931X_ISR_PORT_LINK_STS_CHG); pr_debug("RTL931X Link change: status: %x, ports %016llx\n", status, ports); link = rtl839x_get_port_reg_le(RTL931X_MAC_LINK_STS); /* Must re-read this to get correct status */ link = rtl839x_get_port_reg_le(RTL931X_MAC_LINK_STS); pr_debug("RTL931X Link change: status: %x, link status %016llx\n", status, link); for (int i = 0; i < 56; i++) { if (ports & BIT_ULL(i)) { if (link & BIT_ULL(i)) { pr_info("%s port %d up\n", __func__, i); dsa_port_phylink_mac_change(ds, i, true); } else { pr_info("%s port %d down\n", __func__, i); dsa_port_phylink_mac_change(ds, i, false); } } } return IRQ_HANDLED; } int rtl931x_write_phy(u32 port, u32 page, u32 reg, u32 val) { u32 v; int err = 0; val &= 0xffff; if (port > 63 || page > 4095 || reg > 31) return -ENOTSUPP; mutex_lock(&smi_lock); pr_debug("%s: writing to phy %d %d %d %d\n", __func__, port, page, reg, val); /* Clear both port registers */ sw_w32(0, RTL931X_SMI_INDRT_ACCESS_CTRL_2); sw_w32(0, RTL931X_SMI_INDRT_ACCESS_CTRL_2 + 4); sw_w32_mask(0, BIT(port % 32), RTL931X_SMI_INDRT_ACCESS_CTRL_2 + (port / 32) * 4); sw_w32_mask(0xffff, val, RTL931X_SMI_INDRT_ACCESS_CTRL_3); v = reg << 6 | page << 11 ; sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0); sw_w32(0x1ff, RTL931X_SMI_INDRT_ACCESS_CTRL_1); v |= BIT(4) | 1; /* Write operation and execute */ sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0); do { } while (sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0) & 0x1); if (sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0) & 0x2) err = -EIO; mutex_unlock(&smi_lock); return err; } int rtl931x_read_phy(u32 port, u32 page, u32 reg, u32 *val) { u32 v; if (port > 63 || page > 4095 || reg > 31) return -ENOTSUPP; mutex_lock(&smi_lock); sw_w32(port << 5, RTL931X_SMI_INDRT_ACCESS_BC_PHYID_CTRL); v = reg << 6 | page << 11 | 1; sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0); do { } while (sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0) & 0x1); v = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0); *val = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_3); *val = (*val & 0xffff0000) >> 16; pr_debug("%s: port %d, page: %d, reg: %x, val: %x, v: %08x\n", __func__, port, page, reg, *val, v); mutex_unlock(&smi_lock); return 0; } /* Read an mmd register of the PHY */ int rtl931x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val) { int err = 0; u32 v; /* Select PHY register type * If select 1G/10G MMD register type, registers EXT_PAGE, MAIN_PAGE and REG settings are don’t care. * 0x0 Normal register (Clause 22) * 0x1: 1G MMD register (MMD via Clause 22 registers 13 and 14) * 0x2: 10G MMD register (MMD via Clause 45) */ int type = (regnum & MII_ADDR_C45)?2:1; mutex_lock(&smi_lock); /* Set PHY to access via port-number */ sw_w32(port << 5, RTL931X_SMI_INDRT_ACCESS_BC_PHYID_CTRL); /* Set MMD device number and register to write to */ sw_w32(devnum << 16 | mdiobus_c45_regad(regnum), RTL931X_SMI_INDRT_ACCESS_MMD_CTRL); v = type << 2 | BIT(0); /* MMD-access-type | EXEC */ sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0); do { v = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0); } while (v & BIT(0)); /* Check for error condition */ if (v & BIT(1)) err = -EIO; *val = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_3) >> 16; pr_debug("%s: port %d, dev: %x, regnum: %x, val: %x (err %d)\n", __func__, port, devnum, mdiobus_c45_regad(regnum), *val, err); mutex_unlock(&smi_lock); return err; } /* Write to an mmd register of the PHY */ int rtl931x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val) { int err = 0; u32 v; int type = (regnum & MII_ADDR_C45)?2:1; u64 pm; mutex_lock(&smi_lock); /* Set PHY to access via port-mask */ pm = (u64)1 << port; sw_w32((u32)pm, RTL931X_SMI_INDRT_ACCESS_CTRL_2); sw_w32((u32)(pm >> 32), RTL931X_SMI_INDRT_ACCESS_CTRL_2 + 4); /* Set data to write */ sw_w32_mask(0xffff, val, RTL931X_SMI_INDRT_ACCESS_CTRL_3); /* Set MMD device number and register to write to */ sw_w32(devnum << 16 | mdiobus_c45_regad(regnum), RTL931X_SMI_INDRT_ACCESS_MMD_CTRL); v = BIT(4) | type << 2 | BIT(0); /* WRITE | MMD-access-type | EXEC */ sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0); do { v = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0); } while (v & BIT(0)); pr_debug("%s: port %d, dev: %x, regnum: %x, val: %x (err %d)\n", __func__, port, devnum, mdiobus_c45_regad(regnum), val, err); mutex_unlock(&smi_lock); return err; } void rtl931x_print_matrix(void) { volatile u64 *ptr = RTL838X_SW_BASE + RTL839X_PORT_ISO_CTRL(0); for (int i = 0; i < 52; i += 4) pr_info("> %16llx %16llx %16llx %16llx\n", ptr[i + 0], ptr[i + 1], ptr[i + 2], ptr[i + 3]); pr_info("CPU_PORT> %16llx\n", ptr[52]); } void rtl931x_set_receive_management_action(int port, rma_ctrl_t type, action_type_t action) { u32 value = 0; /* hack for value mapping */ if (type == GRATARP && action == COPY2CPU) action = TRAP2MASTERCPU; switch(action) { case FORWARD: value = 0; break; case DROP: value = 1; break; case TRAP2CPU: value = 2; break; case TRAP2MASTERCPU: value = 3; break; case FLOODALL: value = 4; break; default: break; } switch(type) { case BPDU: sw_w32_mask(7 << ((port % 10) * 3), value << ((port % 10) * 3), RTL931X_RMA_BPDU_CTRL + ((port / 10) << 2)); break; case PTP: /* udp */ sw_w32_mask(3 << 2, value << 2, RTL931X_RMA_PTP_CTRL + (port << 2)); /* eth2 */ sw_w32_mask(3, value, RTL931X_RMA_PTP_CTRL + (port << 2)); break; case PTP_UDP: sw_w32_mask(3 << 2, value << 2, RTL931X_RMA_PTP_CTRL + (port << 2)); break; case PTP_ETH2: sw_w32_mask(3, value, RTL931X_RMA_PTP_CTRL + (port << 2)); break; case LLTP: sw_w32_mask(7 << ((port % 10) * 3), value << ((port % 10) * 3), RTL931X_RMA_LLTP_CTRL + ((port / 10) << 2)); break; case EAPOL: sw_w32_mask(7 << ((port % 10) * 3), value << ((port % 10) * 3), RTL931X_RMA_EAPOL_CTRL + ((port / 10) << 2)); break; case GRATARP: sw_w32_mask(3 << ((port & 0xf) << 1), value << ((port & 0xf) << 1), RTL931X_TRAP_ARP_GRAT_PORT_ACT + ((port >> 4) << 2)); break; } } u64 rtl931x_traffic_get(int source) { u32 v; struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 6); rtl_table_read(r, source); v = sw_r32(rtl_table_data(r, 0)); rtl_table_release(r); v = v >> 3; return v; } /* Enable traffic between a source port and a destination port matrix */ void rtl931x_traffic_set(int source, u64 dest_matrix) { struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 6); sw_w32((dest_matrix << 3), rtl_table_data(r, 0)); rtl_table_write(r, source); rtl_table_release(r); } void rtl931x_traffic_enable(int source, int dest) { struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 6); rtl_table_read(r, source); sw_w32_mask(0, BIT(dest + 3), rtl_table_data(r, 0)); rtl_table_write(r, source); rtl_table_release(r); } void rtl931x_traffic_disable(int source, int dest) { struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 6); rtl_table_read(r, source); sw_w32_mask(BIT(dest + 3), 0, rtl_table_data(r, 0)); rtl_table_write(r, source); rtl_table_release(r); } static u64 rtl931x_l2_hash_seed(u64 mac, u32 vid) { u64 v = vid; v <<= 48; v |= mac; return v; } /* Calculate both the block 0 and the block 1 hash by applyingthe same hash * algorithm as the one used currently by the ASIC to the seed, and return * both hashes in the lower and higher word of the return value since only 12 bit of * the hash are significant. */ static u32 rtl931x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed) { u32 h, h0, h1, h2, h3, h4, k0, k1; h0 = seed & 0xfff; h1 = (seed >> 12) & 0xfff; h2 = (seed >> 24) & 0xfff; h3 = (seed >> 36) & 0xfff; h4 = (seed >> 48) & 0xfff; h4 = ((h4 & 0x7) << 9) | ((h4 >> 3) & 0x1ff); k0 = h0 ^ h1 ^ h2 ^ h3 ^ h4; h0 = seed & 0xfff; h0 = ((h0 & 0x1ff) << 3) | ((h0 >> 9) & 0x7); h1 = (seed >> 12) & 0xfff; h1 = ((h1 & 0x3f) << 6) | ((h1 >> 6) & 0x3f); h2 = (seed >> 24) & 0xfff; h3 = (seed >> 36) & 0xfff; h3 = ((h3 & 0x3f) << 6) | ((h3 >> 6) & 0x3f); h4 = (seed >> 48) & 0xfff; k1 = h0 ^ h1 ^ h2 ^ h3 ^ h4; /* Algorithm choice for block 0 */ if (sw_r32(RTL931X_L2_CTRL) & BIT(0)) h = k1; else h = k0; /* Algorithm choice for block 1 * Since k0 and k1 are < 4096, adding 4096 will offset the hash into the second * half of hash-space * 4096 is in fact the hash-table size 32768 divided by 4 hashes per bucket * divided by 2 to divide the hash space in 2 */ if (sw_r32(RTL931X_L2_CTRL) & BIT(1)) h |= (k1 + 4096) << 16; else h |= (k0 + 4096) << 16; return h; } /* Fills an L2 entry structure from the SoC registers */ static void rtl931x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e) { pr_debug("In %s valid?\n", __func__); e->valid = !!(r[0] & BIT(31)); if (!e->valid) return; pr_debug("%s: entry valid, raw: %08x %08x %08x %08x\n", __func__, r[0], r[1], r[2], r[3]); e->is_ip_mc = false; e->is_ipv6_mc = false; e->mac[0] = r[0] >> 8; e->mac[1] = r[0]; e->mac[2] = r[1] >> 24; e->mac[3] = r[1] >> 16; e->mac[4] = r[1] >> 8; e->mac[5] = r[1]; e->is_open_flow = !!(r[0] & BIT(30)); e->is_pe_forward = !!(r[0] & BIT(29)); e->next_hop = !!(r[2] & BIT(30)); e->rvid = (r[0] >> 16) & 0xfff; /* Is it a unicast entry? check multicast bit */ if (!(e->mac[0] & 1)) { e->type = L2_UNICAST; e->is_l2_tunnel = !!(r[2] & BIT(31)); e->is_static = !!(r[2] & BIT(13)); e->port = (r[2] >> 19) & 0x3ff; /* Check for trunk port */ if (r[2] & BIT(29)) { e->is_trunk = true; e->stack_dev = (e->port >> 9) & 1; e->trunk = e->port & 0x3f; } else { e->is_trunk = false; e->stack_dev = (e->port >> 6) & 0xf; e->port = e->port & 0x3f; } e->block_da = !!(r[2] & BIT(14)); e->block_sa = !!(r[2] & BIT(15)); e->suspended = !!(r[2] & BIT(12)); e->age = (r[2] >> 16) & 3; /* the UC_VID field in hardware is used for the VID or for the route id */ if (e->next_hop) { e->nh_route_id = r[2] & 0x7ff; e->vid = 0; } else { e->vid = r[2] & 0xfff; e->nh_route_id = 0; } if (e->is_l2_tunnel) e->l2_tunnel_id = ((r[2] & 0xff) << 4) | (r[3] >> 28); /* TODO: Implement VLAN conversion */ } else { e->type = L2_MULTICAST; e->is_local_forward = !!(r[2] & BIT(31)); e->is_remote_forward = !!(r[2] & BIT(17)); e->mc_portmask_index = (r[2] >> 18) & 0xfff; e->l2_tunnel_list_id = (r[2] >> 4) & 0x1fff; } } /* Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry */ static void rtl931x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e) { u32 port; if (!e->valid) { r[0] = r[1] = r[2] = 0; return; } r[2] = BIT(31); /* Set valid bit */ r[0] = ((u32)e->mac[0]) << 24 | ((u32)e->mac[1]) << 16 | ((u32)e->mac[2]) << 8 | ((u32)e->mac[3]); r[1] = ((u32)e->mac[4]) << 24 | ((u32)e->mac[5]) << 16; r[2] |= e->next_hop ? BIT(12) : 0; if (e->type == L2_UNICAST) { r[2] |= e->is_static ? BIT(14) : 0; r[1] |= e->rvid & 0xfff; r[2] |= (e->port & 0x3ff) << 20; if (e->is_trunk) { r[2] |= BIT(30); port = e->stack_dev << 9 | (e->port & 0x3f); } else { port = (e->stack_dev & 0xf) << 6; port |= e->port & 0x3f; } r[2] |= port << 20; r[2] |= e->block_da ? BIT(15) : 0; r[2] |= e->block_sa ? BIT(17) : 0; r[2] |= e->suspended ? BIT(13) : 0; r[2] |= (e->age & 0x3) << 17; /* the UC_VID field in hardware is used for the VID or for the route id */ if (e->next_hop) r[2] |= e->nh_route_id & 0x7ff; else r[2] |= e->vid & 0xfff; } else { /* L2_MULTICAST */ r[2] |= (e->mc_portmask_index & 0x3ff) << 16; r[2] |= e->mc_mac_index & 0x7ff; } } /* Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table * hash is the id of the bucket and pos is the position of the entry in that bucket * The data read from the SoC is filled into rtl838x_l2_entry */ static u64 rtl931x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e) { u32 r[4]; struct table_reg *q = rtl_table_get(RTL9310_TBL_0, 0); u32 idx; u64 mac; u64 seed; pr_debug("%s: hash %08x, pos: %d\n", __func__, hash, pos); /* On the RTL93xx, 2 different hash algorithms are used making it a total of * 8 buckets that need to be searched, 4 for each hash-half * Use second hash space when bucket is between 4 and 8 */ if (pos >= 4) { pos -= 4; hash >>= 16; } else { hash &= 0xffff; } idx = (0 << 14) | (hash << 2) | pos; /* Search SRAM, with hash and at pos in bucket */ pr_debug("%s: NOW hash %08x, pos: %d\n", __func__, hash, pos); rtl_table_read(q, idx); for (int i = 0; i < 4; i++) r[i] = sw_r32(rtl_table_data(q, i)); rtl_table_release(q); rtl931x_fill_l2_entry(r, e); pr_debug("%s: valid: %d, nh: %d\n", __func__, e->valid, e->next_hop); if (!e->valid) return 0; mac = ((u64)e->mac[0]) << 40 | ((u64)e->mac[1]) << 32 | ((u64)e->mac[2]) << 24 | ((u64)e->mac[3]) << 16 | ((u64)e->mac[4]) << 8 | ((u64)e->mac[5]); seed = rtl931x_l2_hash_seed(mac, e->rvid); pr_debug("%s: mac %016llx, seed %016llx\n", __func__, mac, seed); /* return vid with concatenated mac as unique id */ return seed; } static u64 rtl931x_read_cam(int idx, struct rtl838x_l2_entry *e) { return 0; } static void rtl931x_write_cam(int idx, struct rtl838x_l2_entry *e) { } static void rtl931x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e) { u32 r[4]; struct table_reg *q = rtl_table_get(RTL9310_TBL_0, 0); u32 idx = (0 << 14) | (hash << 2) | pos; /* Access SRAM, with hash and at pos in bucket */ pr_info("%s: hash %d, pos %d\n", __func__, hash, pos); pr_info("%s: index %d -> mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, idx, e->mac[0], e->mac[1], e->mac[2], e->mac[3],e->mac[4],e->mac[5]); rtl931x_fill_l2_row(r, e); pr_info("%s: %d: %08x %08x %08x\n", __func__, idx, r[0], r[1], r[2]); for (int i = 0; i < 4; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); } static void rtl931x_vlan_fwd_on_inner(int port, bool is_set) { /* Always set all tag modes to fwd based on either inner or outer tag */ if (is_set) sw_w32_mask(0xf, 0, RTL931X_VLAN_PORT_FWD + (port << 2)); else sw_w32_mask(0, 0xf, RTL931X_VLAN_PORT_FWD + (port << 2)); } static void rtl931x_vlan_profile_setup(int profile) { u32 p[7]; pr_info("In %s\n", __func__); if (profile > 15) return; p[0] = sw_r32(RTL931X_VLAN_PROFILE_SET(profile)); /* Enable routing of Ipv4/6 Unicast and IPv4/6 Multicast traffic */ /* p[0] |= BIT(17) | BIT(16) | BIT(13) | BIT(12); */ p[0] |= 0x3 << 11; /* COPY2CPU */ p[1] = 0x1FFFFFF; /* L2 unknwon MC flooding portmask all ports, including the CPU-port */ p[2] = 0xFFFFFFFF; p[3] = 0x1FFFFFF; /* IPv4 unknwon MC flooding portmask */ p[4] = 0xFFFFFFFF; p[5] = 0x1FFFFFF; /* IPv6 unknwon MC flooding portmask */ p[6] = 0xFFFFFFFF; for (int i = 0; i < 7; i++) sw_w32(p[i], RTL931X_VLAN_PROFILE_SET(profile) + i * 4); pr_info("Leaving %s\n", __func__); } static void rtl931x_l2_learning_setup(void) { /* Portmask for flooding broadcast traffic */ rtl839x_set_port_reg_be(0x1FFFFFFFFFFFFFF, RTL931X_L2_BC_FLD_PMSK); /* Portmask for flooding unicast traffic with unknown destination */ rtl839x_set_port_reg_be(0x1FFFFFFFFFFFFFF, RTL931X_L2_UNKN_UC_FLD_PMSK); /* Limit learning to maximum: 64k entries, after that just flood (bits 0-2) */ sw_w32((0xffff << 3) | FORWARD, RTL931X_L2_LRN_CONSTRT_CTRL); } static u64 rtl931x_read_mcast_pmask(int idx) { u64 portmask; /* Read MC_PMSK (2) via register RTL9310_TBL_0 */ struct table_reg *q = rtl_table_get(RTL9310_TBL_0, 2); rtl_table_read(q, idx); portmask = sw_r32(rtl_table_data(q, 0)); portmask <<= 32; portmask |= sw_r32(rtl_table_data(q, 1)); portmask >>= 7; rtl_table_release(q); pr_debug("%s: Index idx %d has portmask %016llx\n", __func__, idx, portmask); return portmask; } static void rtl931x_write_mcast_pmask(int idx, u64 portmask) { u64 pm = portmask; /* Access MC_PMSK (2) via register RTL9310_TBL_0 */ struct table_reg *q = rtl_table_get(RTL9310_TBL_0, 2); pr_debug("%s: Index idx %d has portmask %016llx\n", __func__, idx, pm); pm <<= 7; sw_w32((u32)(pm >> 32), rtl_table_data(q, 0)); sw_w32((u32)pm, rtl_table_data(q, 1)); rtl_table_write(q, idx); rtl_table_release(q); } static int rtl931x_set_ageing_time(unsigned long msec) { int t = sw_r32(RTL931X_L2_AGE_CTRL); t &= 0x1FFFFF; t = (t * 8) / 10; pr_debug("L2 AGING time: %d sec\n", t); t = (msec / 100 + 7) / 8; t = t > 0x1FFFFF ? 0x1FFFFF : t; sw_w32_mask(0x1FFFFF, t, RTL931X_L2_AGE_CTRL); pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL931X_L2_PORT_AGE_CTRL)); return 0; } void rtl931x_sw_init(struct rtl838x_switch_priv *priv) { /* rtl931x_sds_init(priv); */ } static void rtl931x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index) { int block = index / PIE_BLOCK_SIZE; sw_w32_mask(0, BIT(block), RTL931X_PIE_BLK_LOOKUP_CTRL); } /* Fills the data in the intermediate representation in the pie_rule structure * into a data field for a given template field field_type * TODO: This function looks very similar to the function of the rtl9300, but * since it uses the physical template_field_id, which are different for each * SoC and there are other field types, it is actually not. If we would also use * an intermediate representation for a field type, we would could have one * pie_data_fill function for all SoCs, provided we have also for each SoC a * function to map between physical and intermediate field type */ int rtl931x_pie_data_fill(enum template_field_id field_type, struct pie_rule *pr, u16 *data, u16 *data_m) { *data = *data_m = 0; switch (field_type) { case TEMPLATE_FIELD_SPM0: *data = pr->spm; *data_m = pr->spm_m; break; case TEMPLATE_FIELD_SPM1: *data = pr->spm >> 16; *data_m = pr->spm_m >> 16; break; case TEMPLATE_FIELD_OTAG: *data = pr->otag; *data_m = pr->otag_m; break; case TEMPLATE_FIELD_SMAC0: *data = pr->smac[4]; *data = (*data << 8) | pr->smac[5]; *data_m = pr->smac_m[4]; *data_m = (*data_m << 8) | pr->smac_m[5]; break; case TEMPLATE_FIELD_SMAC1: *data = pr->smac[2]; *data = (*data << 8) | pr->smac[3]; *data_m = pr->smac_m[2]; *data_m = (*data_m << 8) | pr->smac_m[3]; break; case TEMPLATE_FIELD_SMAC2: *data = pr->smac[0]; *data = (*data << 8) | pr->smac[1]; *data_m = pr->smac_m[0]; *data_m = (*data_m << 8) | pr->smac_m[1]; break; case TEMPLATE_FIELD_DMAC0: *data = pr->dmac[4]; *data = (*data << 8) | pr->dmac[5]; *data_m = pr->dmac_m[4]; *data_m = (*data_m << 8) | pr->dmac_m[5]; break; case TEMPLATE_FIELD_DMAC1: *data = pr->dmac[2]; *data = (*data << 8) | pr->dmac[3]; *data_m = pr->dmac_m[2]; *data_m = (*data_m << 8) | pr->dmac_m[3]; break; case TEMPLATE_FIELD_DMAC2: *data = pr->dmac[0]; *data = (*data << 8) | pr->dmac[1]; *data_m = pr->dmac_m[0]; *data_m = (*data_m << 8) | pr->dmac_m[1]; break; case TEMPLATE_FIELD_ETHERTYPE: *data = pr->ethertype; *data_m = pr->ethertype_m; break; case TEMPLATE_FIELD_ITAG: *data = pr->itag; *data_m = pr->itag_m; break; case TEMPLATE_FIELD_SIP0: if (pr->is_ipv6) { *data = pr->sip6.s6_addr16[7]; *data_m = pr->sip6_m.s6_addr16[7]; } else { *data = pr->sip; *data_m = pr->sip_m; } break; case TEMPLATE_FIELD_SIP1: if (pr->is_ipv6) { *data = pr->sip6.s6_addr16[6]; *data_m = pr->sip6_m.s6_addr16[6]; } else { *data = pr->sip >> 16; *data_m = pr->sip_m >> 16; } break; case TEMPLATE_FIELD_SIP2: case TEMPLATE_FIELD_SIP3: case TEMPLATE_FIELD_SIP4: case TEMPLATE_FIELD_SIP5: case TEMPLATE_FIELD_SIP6: case TEMPLATE_FIELD_SIP7: *data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)]; *data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)]; break; case TEMPLATE_FIELD_DIP0: if (pr->is_ipv6) { *data = pr->dip6.s6_addr16[7]; *data_m = pr->dip6_m.s6_addr16[7]; } else { *data = pr->dip; *data_m = pr->dip_m; } break; case TEMPLATE_FIELD_DIP1: if (pr->is_ipv6) { *data = pr->dip6.s6_addr16[6]; *data_m = pr->dip6_m.s6_addr16[6]; } else { *data = pr->dip >> 16; *data_m = pr->dip_m >> 16; } break; case TEMPLATE_FIELD_DIP2: case TEMPLATE_FIELD_DIP3: case TEMPLATE_FIELD_DIP4: case TEMPLATE_FIELD_DIP5: case TEMPLATE_FIELD_DIP6: case TEMPLATE_FIELD_DIP7: *data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)]; *data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)]; break; case TEMPLATE_FIELD_IP_TOS_PROTO: *data = pr->tos_proto; *data_m = pr->tos_proto_m; break; case TEMPLATE_FIELD_L4_SPORT: *data = pr->sport; *data_m = pr->sport_m; break; case TEMPLATE_FIELD_L4_DPORT: *data = pr->dport; *data_m = pr->dport_m; break; case TEMPLATE_FIELD_DSAP_SSAP: *data = pr->dsap_ssap; *data_m = pr->dsap_ssap_m; break; case TEMPLATE_FIELD_TCP_INFO: *data = pr->tcp_info; *data_m = pr->tcp_info_m; break; case TEMPLATE_FIELD_RANGE_CHK: pr_info("TEMPLATE_FIELD_RANGE_CHK: not configured\n"); break; default: pr_info("%s: unknown field %d\n", __func__, field_type); return -1; } return 0; } /* Reads the intermediate representation of the templated match-fields of the * PIE rule in the pie_rule structure and fills in the raw data fields in the * raw register space r[]. * The register space configuration size is identical for the RTL8380/90 and RTL9300, * however the RTL931X has 2 more registers / fields and the physical field-ids are different * on all SoCs * On the RTL9300 the mask fields are not word-aligend! */ static void rtl931x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[]) { for (int i = 0; i < N_FIXED_FIELDS; i++) { u16 data, data_m; rtl931x_pie_data_fill(t[i], pr, &data, &data_m); /* On the RTL9300, the mask fields are not word aligned! */ if (!(i % 2)) { r[5 - i / 2] = data; r[12 - i / 2] |= ((u32)data_m << 8); } else { r[5 - i / 2] |= ((u32)data) << 16; r[12 - i / 2] |= ((u32)data_m) << 24; r[11 - i / 2] |= ((u32)data_m) >> 8; } } } // Currently unused // static void rtl931x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr) // { // pr->mgnt_vlan = r[7] & BIT(31); // if (pr->phase == PHASE_IACL) // pr->dmac_hit_sw = r[7] & BIT(30); // else /* TODO: EACL/VACL phase handling */ // pr->content_too_deep = r[7] & BIT(30); // pr->not_first_frag = r[7] & BIT(29); // pr->frame_type_l4 = (r[7] >> 26) & 7; // pr->frame_type = (r[7] >> 24) & 3; // pr->otag_fmt = (r[7] >> 23) & 1; // pr->itag_fmt = (r[7] >> 22) & 1; // pr->otag_exist = (r[7] >> 21) & 1; // pr->itag_exist = (r[7] >> 20) & 1; // pr->frame_type_l2 = (r[7] >> 18) & 3; // pr->igr_normal_port = (r[7] >> 17) & 1; // pr->tid = (r[7] >> 16) & 1; // pr->mgnt_vlan_m = r[14] & BIT(15); // if (pr->phase == PHASE_IACL) // pr->dmac_hit_sw_m = r[14] & BIT(14); // else // pr->content_too_deep_m = r[14] & BIT(14); // pr->not_first_frag_m = r[14] & BIT(13); // pr->frame_type_l4_m = (r[14] >> 10) & 7; // pr->frame_type_m = (r[14] >> 8) & 3; // pr->otag_fmt_m = r[14] & BIT(7); // pr->itag_fmt_m = r[14] & BIT(6); // pr->otag_exist_m = r[14] & BIT(5); // pr->itag_exist_m = r[14] & BIT (4); // pr->frame_type_l2_m = (r[14] >> 2) & 3; // pr->igr_normal_port_m = r[14] & BIT(1); // pr->tid_m = r[14] & 1; // pr->valid = r[15] & BIT(31); // pr->cond_not = r[15] & BIT(30); // pr->cond_and1 = r[15] & BIT(29); // pr->cond_and2 = r[15] & BIT(28); // } static void rtl931x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr) { r[7] |= pr->mgnt_vlan ? BIT(31) : 0; if (pr->phase == PHASE_IACL) r[7] |= pr->dmac_hit_sw ? BIT(30) : 0; else r[7] |= pr->content_too_deep ? BIT(30) : 0; r[7] |= pr->not_first_frag ? BIT(29) : 0; r[7] |= ((u32) (pr->frame_type_l4 & 0x7)) << 26; r[7] |= ((u32) (pr->frame_type & 0x3)) << 24; r[7] |= pr->otag_fmt ? BIT(23) : 0; r[7] |= pr->itag_fmt ? BIT(22) : 0; r[7] |= pr->otag_exist ? BIT(21) : 0; r[7] |= pr->itag_exist ? BIT(20) : 0; r[7] |= ((u32) (pr->frame_type_l2 & 0x3)) << 18; r[7] |= pr->igr_normal_port ? BIT(17) : 0; r[7] |= ((u32) (pr->tid & 0x1)) << 16; r[14] |= pr->mgnt_vlan_m ? BIT(15) : 0; if (pr->phase == PHASE_IACL) r[14] |= pr->dmac_hit_sw_m ? BIT(14) : 0; else r[14] |= pr->content_too_deep_m ? BIT(14) : 0; r[14] |= pr->not_first_frag_m ? BIT(13) : 0; r[14] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 10; r[14] |= ((u32) (pr->frame_type_m & 0x3)) << 8; r[14] |= pr->otag_fmt_m ? BIT(7) : 0; r[14] |= pr->itag_fmt_m ? BIT(6) : 0; r[14] |= pr->otag_exist_m ? BIT(5) : 0; r[14] |= pr->itag_exist_m ? BIT(4) : 0; r[14] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 2; r[14] |= pr->igr_normal_port_m ? BIT(1) : 0; r[14] |= (u32) (pr->tid_m & 0x1); r[15] |= pr->valid ? BIT(31) : 0; r[15] |= pr->cond_not ? BIT(30) : 0; r[15] |= pr->cond_and1 ? BIT(29) : 0; r[15] |= pr->cond_and2 ? BIT(28) : 0; } static void rtl931x_write_pie_action(u32 r[], struct pie_rule *pr) { /* Either drop or forward */ if (pr->drop) { r[15] |= BIT(11) | BIT(12) | BIT(13); /* Do Green, Yellow and Red drops */ /* Actually DROP, not PERMIT in Green / Yellow / Red */ r[16] |= BIT(27) | BIT(28) | BIT(29); } else { r[15] |= pr->fwd_sel ? BIT(14) : 0; r[16] |= pr->fwd_act << 24; r[16] |= BIT(21); /* We overwrite any drop */ } if (pr->phase == PHASE_VACL) r[16] |= pr->fwd_sa_lrn ? BIT(22) : 0; r[15] |= pr->bypass_sel ? BIT(10) : 0; r[15] |= pr->nopri_sel ? BIT(21) : 0; r[15] |= pr->tagst_sel ? BIT(20) : 0; r[15] |= pr->ovid_sel ? BIT(18) : 0; r[15] |= pr->ivid_sel ? BIT(16) : 0; r[15] |= pr->meter_sel ? BIT(27) : 0; r[15] |= pr->mir_sel ? BIT(15) : 0; r[15] |= pr->log_sel ? BIT(26) : 0; r[16] |= ((u32)(pr->fwd_data & 0xfff)) << 9; /* r[15] |= pr->log_octets ? BIT(31) : 0; */ r[15] |= (u32)(pr->meter_data) >> 2; r[16] |= (((u32)(pr->meter_data) >> 7) & 0x3) << 29; r[16] |= ((u32)(pr->ivid_act & 0x3)) << 21; r[15] |= ((u32)(pr->ivid_data & 0xfff)) << 9; r[16] |= ((u32)(pr->ovid_act & 0x3)) << 30; r[16] |= ((u32)(pr->ovid_data & 0xfff)) << 16; r[16] |= ((u32)(pr->mir_data & 0x3)) << 6; r[17] |= ((u32)(pr->tagst_data & 0xf)) << 28; r[17] |= ((u32)(pr->nopri_data & 0x7)) << 25; r[17] |= pr->bypass_ibc_sc ? BIT(16) : 0; } void rtl931x_pie_rule_dump_raw(u32 r[]) { pr_info("Raw IACL table entry:\n"); pr_info("r 0 - 7: %08x %08x %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]); pr_info("r 8 - 15: %08x %08x %08x %08x %08x %08x %08x %08x\n", r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]); pr_info("r 16 - 18: %08x %08x %08x\n", r[16], r[17], r[18]); pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]); pr_info("Fixed : %06x\n", r[6] >> 8); pr_info("Match M: %08x %08x %08x %08x %08x %08x\n", (r[6] << 24) | (r[7] >> 8), (r[7] << 24) | (r[8] >> 8), (r[8] << 24) | (r[9] >> 8), (r[9] << 24) | (r[10] >> 8), (r[10] << 24) | (r[11] >> 8), (r[11] << 24) | (r[12] >> 8)); pr_info("R[13]: %08x\n", r[13]); pr_info("Fixed M: %06x\n", ((r[12] << 16) | (r[13] >> 16)) & 0xffffff); pr_info("Valid / not / and1 / and2 : %1x\n", (r[13] >> 12) & 0xf); pr_info("r 13-16: %08x %08x %08x %08x\n", r[13], r[14], r[15], r[16]); } static int rtl931x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr) { /* Access IACL table (0) via register 1, the table size is 4096 */ struct table_reg *q = rtl_table_get(RTL9310_TBL_1, 0); u32 r[22]; int block = idx / PIE_BLOCK_SIZE; u32 t_select = sw_r32(RTL931X_PIE_BLK_TMPLTE_CTRL(block)); pr_info("%s: %d, t_select: %08x\n", __func__, idx, t_select); for (int i = 0; i < 22; i++) r[i] = 0; if (!pr->valid) { rtl_table_write(q, idx); rtl_table_release(q); return 0; } rtl931x_write_pie_fixed_fields(r, pr); pr_info("%s: template %d\n", __func__, (t_select >> (pr->tid * 4)) & 0xf); rtl931x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 4)) & 0xf]); rtl931x_write_pie_action(r, pr); rtl931x_pie_rule_dump_raw(r); for (int i = 0; i < 22; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); return 0; } static bool rtl931x_pie_templ_has(int t, enum template_field_id field_type) { for (int i = 0; i < N_FIXED_FIELDS_RTL931X; i++) { enum template_field_id ft = fixed_templates[t][i]; if (field_type == ft) return true; } return false; } /* Verify that the rule pr is compatible with a given template t in block block * Note that this function is SoC specific since the values of e.g. TEMPLATE_FIELD_SIP0 * depend on the SoC */ static int rtl931x_pie_verify_template(struct rtl838x_switch_priv *priv, struct pie_rule *pr, int t, int block) { int i; if (!pr->is_ipv6 && pr->sip_m && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_SIP0)) return -1; if (!pr->is_ipv6 && pr->dip_m && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_DIP0)) return -1; if (pr->is_ipv6) { if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1] || pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3]) && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_SIP2)) return -1; if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1] || pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3]) && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_DIP2)) return -1; } if (ether_addr_to_u64(pr->smac) && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0)) return -1; if (ether_addr_to_u64(pr->dmac) && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0)) return -1; /* TODO: Check more */ i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE); if (i >= PIE_BLOCK_SIZE) return -1; return i + PIE_BLOCK_SIZE * block; } static int rtl931x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr) { int idx, block, j; int min_block = 0; int max_block = priv->n_pie_blocks / 2; if (pr->is_egress) { min_block = max_block; max_block = priv->n_pie_blocks; } pr_info("In %s\n", __func__); mutex_lock(&priv->pie_mutex); for (block = min_block; block < max_block; block++) { for (j = 0; j < 2; j++) { int t = (sw_r32(RTL931X_PIE_BLK_TMPLTE_CTRL(block)) >> (j * 4)) & 0xf; pr_info("Testing block %d, template %d, template id %d\n", block, j, t); pr_info("%s: %08x\n", __func__, sw_r32(RTL931X_PIE_BLK_TMPLTE_CTRL(block))); idx = rtl931x_pie_verify_template(priv, pr, t, block); if (idx >= 0) break; } if (j < 2) break; } if (block >= priv->n_pie_blocks) { mutex_unlock(&priv->pie_mutex); return -EOPNOTSUPP; } pr_info("Using block: %d, index %d, template-id %d\n", block, idx, j); set_bit(idx, priv->pie_use_bm); pr->valid = true; pr->tid = j; /* Mapped to template number */ pr->tid_m = 0x1; pr->id = idx; rtl931x_pie_lookup_enable(priv, idx); rtl931x_pie_rule_write(priv, idx, pr); mutex_unlock(&priv->pie_mutex); return 0; } /* Delete a range of Packet Inspection Engine rules */ static int rtl931x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to) { u32 v = (index_from << 1)| (index_to << 13 ) | BIT(0); pr_info("%s: from %d to %d\n", __func__, index_from, index_to); mutex_lock(&priv->reg_mutex); /* Write from-to and execute bit into control register */ sw_w32(v, RTL931X_PIE_CLR_CTRL); /* Wait until command has completed */ do { } while (sw_r32(RTL931X_PIE_CLR_CTRL) & BIT(0)); mutex_unlock(&priv->reg_mutex); return 0; } static void rtl931x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr) { int idx = pr->id; rtl931x_pie_rule_del(priv, idx, idx); clear_bit(idx, priv->pie_use_bm); } static void rtl931x_pie_init(struct rtl838x_switch_priv *priv) { u32 template_selectors; mutex_init(&priv->pie_mutex); pr_info("%s\n", __func__); /* Enable ACL lookup on all ports, including CPU_PORT */ for (int i = 0; i <= priv->cpu_port; i++) sw_w32(1, RTL931X_ACL_PORT_LOOKUP_CTRL(i)); /* Include IPG in metering */ sw_w32_mask(0, 1, RTL931X_METER_GLB_CTRL); /* Delete all present rules, block size is 128 on all SoC families */ rtl931x_pie_rule_del(priv, 0, priv->n_pie_blocks * 128 - 1); /* Assign first half blocks 0-7 to VACL phase, second half to IACL */ /* 3 bits are used for each block, values for PIE blocks are */ /* 6: Disabled, 0: VACL, 1: IACL, 2: EACL */ /* And for OpenFlow Flow blocks: 3: Ingress Flow table 0, */ /* 4: Ingress Flow Table 3, 5: Egress flow table 0 */ for (int i = 0; i < priv->n_pie_blocks; i++) { int pos = (i % 10) * 3; u32 r = RTL931X_PIE_BLK_PHASE_CTRL + 4 * (i / 10); if (i < priv->n_pie_blocks / 2) sw_w32_mask(0x7 << pos, 0, r); else sw_w32_mask(0x7 << pos, 1 << pos, r); } /* Enable predefined templates 0, 1 for first quarter of all blocks */ template_selectors = 0 | (1 << 4); for (int i = 0; i < priv->n_pie_blocks / 4; i++) sw_w32(template_selectors, RTL931X_PIE_BLK_TMPLTE_CTRL(i)); /* Enable predefined templates 2, 3 for second quarter of all blocks */ template_selectors = 2 | (3 << 4); for (int i = priv->n_pie_blocks / 4; i < priv->n_pie_blocks / 2; i++) sw_w32(template_selectors, RTL931X_PIE_BLK_TMPLTE_CTRL(i)); /* Enable predefined templates 0, 1 for third quater of all blocks */ template_selectors = 0 | (1 << 4); for (int i = priv->n_pie_blocks / 2; i < priv->n_pie_blocks * 3 / 4; i++) sw_w32(template_selectors, RTL931X_PIE_BLK_TMPLTE_CTRL(i)); /* Enable predefined templates 2, 3 for fourth quater of all blocks */ template_selectors = 2 | (3 << 4); for (int i = priv->n_pie_blocks * 3 / 4; i < priv->n_pie_blocks; i++) sw_w32(template_selectors, RTL931X_PIE_BLK_TMPLTE_CTRL(i)); } int rtl931x_l3_setup(struct rtl838x_switch_priv *priv) { return 0; } void rtl931x_vlan_port_keep_tag_set(int port, bool keep_outer, bool keep_inner) { sw_w32(FIELD_PREP(RTL931X_VLAN_PORT_TAG_EGR_OTAG_STS_MASK, keep_outer ? RTL931X_VLAN_PORT_TAG_STS_TAGGED : RTL931X_VLAN_PORT_TAG_STS_UNTAG) | FIELD_PREP(RTL931X_VLAN_PORT_TAG_EGR_ITAG_STS_MASK, keep_inner ? RTL931X_VLAN_PORT_TAG_STS_TAGGED : RTL931X_VLAN_PORT_TAG_STS_UNTAG), RTL931X_VLAN_PORT_TAG_CTRL(port)); } void rtl931x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode) { if (type == PBVLAN_TYPE_INNER) sw_w32_mask(0x3 << 12, mode << 12, RTL931X_VLAN_PORT_IGR_CTRL + (port << 2)); else sw_w32_mask(0x3 << 26, mode << 26, RTL931X_VLAN_PORT_IGR_CTRL + (port << 2)); } void rtl931x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid) { if (type == PBVLAN_TYPE_INNER) sw_w32_mask(0xfff, pvid, RTL931X_VLAN_PORT_IGR_CTRL + (port << 2)); else sw_w32_mask(0xfff << 14, pvid << 14, RTL931X_VLAN_PORT_IGR_CTRL + (port << 2)); } static void rtl931x_set_igr_filter(int port, enum igr_filter state) { sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1), RTL931X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2))); } static void rtl931x_set_egr_filter(int port, enum egr_filter state) { sw_w32_mask(0x1 << (port % 0x20), state << (port % 0x20), RTL931X_VLAN_PORT_EGR_FLTR + (((port >> 5) << 2))); } void rtl931x_set_distribution_algorithm(int group, int algoidx, u32 algomsk) { u32 l3shift = 0; u32 newmask = 0; /* TODO: for now we set algoidx to 0 */ algoidx = 0; if (algomsk & TRUNK_DISTRIBUTION_ALGO_SIP_BIT) { l3shift = 4; newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SIP_BIT; } if (algomsk & TRUNK_DISTRIBUTION_ALGO_DIP_BIT) { l3shift = 4; newmask |= TRUNK_DISTRIBUTION_ALGO_L3_DIP_BIT; } if (algomsk & TRUNK_DISTRIBUTION_ALGO_SRC_L4PORT_BIT) { l3shift = 4; newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SRC_L4PORT_BIT; } if (algomsk & TRUNK_DISTRIBUTION_ALGO_SRC_L4PORT_BIT) { l3shift = 4; newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SRC_L4PORT_BIT; } if (l3shift == 4) { if (algomsk & TRUNK_DISTRIBUTION_ALGO_SMAC_BIT) newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SMAC_BIT; if (algomsk & TRUNK_DISTRIBUTION_ALGO_DMAC_BIT) newmask |= TRUNK_DISTRIBUTION_ALGO_L3_DMAC_BIT; } else { if (algomsk & TRUNK_DISTRIBUTION_ALGO_SMAC_BIT) newmask |= TRUNK_DISTRIBUTION_ALGO_L2_SMAC_BIT; if (algomsk & TRUNK_DISTRIBUTION_ALGO_DMAC_BIT) newmask |= TRUNK_DISTRIBUTION_ALGO_L2_DMAC_BIT; } sw_w32(newmask << l3shift, RTL931X_TRK_HASH_CTRL + (algoidx << 2)); } static void rtl931x_led_init(struct rtl838x_switch_priv *priv) { u64 pm_copper = 0, pm_fiber = 0; struct device_node *node; pr_info("%s called\n", __func__); node = of_find_compatible_node(NULL, NULL, "realtek,rtl9300-leds"); if (!node) { pr_info("%s No compatible LED node found\n", __func__); return; } for (int i = 0; i < priv->cpu_port; i++) { int pos = (i << 1) % 32; u32 set; u32 v; sw_w32_mask(0x3 << pos, 0, RTL931X_LED_PORT_FIB_SET_SEL_CTRL(i)); sw_w32_mask(0x3 << pos, 0, RTL931X_LED_PORT_COPR_SET_SEL_CTRL(i)); if (!priv->ports[i].phy) continue; v = 0x1; /* Found on the EdgeCore, but we do not have any HW description */ sw_w32_mask(0x3 << pos, v << pos, RTL931X_LED_PORT_NUM_CTRL(i)); if (priv->ports[i].phy_is_integrated) pm_fiber |= BIT_ULL(i); else pm_copper |= BIT_ULL(i); set = priv->ports[i].led_set; sw_w32_mask(0, set << pos, RTL931X_LED_PORT_COPR_SET_SEL_CTRL(i)); sw_w32_mask(0, set << pos, RTL931X_LED_PORT_FIB_SET_SEL_CTRL(i)); } for (int i = 0; i < 4; i++) { const __be32 *led_set; char set_name[9]; u32 setlen; u32 v; sprintf(set_name, "led_set%d", i); pr_info(">%s<\n", set_name); led_set = of_get_property(node, set_name, &setlen); if (!led_set || setlen != 16) break; v = be32_to_cpup(led_set) << 16 | be32_to_cpup(led_set + 1); sw_w32(v, RTL931X_LED_SET0_0_CTRL - 4 - i * 8); v = be32_to_cpup(led_set + 2) << 16 | be32_to_cpup(led_set + 3); sw_w32(v, RTL931X_LED_SET0_0_CTRL - i * 8); } /* Set LED mode to serial (0x1) */ sw_w32_mask(0x3, 0x1, RTL931X_LED_GLB_CTRL); rtl839x_set_port_reg_le(pm_copper, RTL931X_LED_PORT_COPR_MASK_CTRL); rtl839x_set_port_reg_le(pm_fiber, RTL931X_LED_PORT_FIB_MASK_CTRL); rtl839x_set_port_reg_le(pm_copper | pm_fiber, RTL931X_LED_PORT_COMBO_MASK_CTRL); for (int i = 0; i < 32; i++) pr_info("%s %08x: %08x\n",__func__, 0xbb000600 + i * 4, sw_r32(0x0600 + i * 4)); } const struct rtl838x_reg rtl931x_reg = { .mask_port_reg_be = rtl839x_mask_port_reg_be, .set_port_reg_be = rtl839x_set_port_reg_be, .get_port_reg_be = rtl839x_get_port_reg_be, .mask_port_reg_le = rtl839x_mask_port_reg_le, .set_port_reg_le = rtl839x_set_port_reg_le, .get_port_reg_le = rtl839x_get_port_reg_le, .stat_port_rst = RTL931X_STAT_PORT_RST, .stat_rst = RTL931X_STAT_RST, .stat_port_std_mib = 0, /* Not defined */ .traffic_enable = rtl931x_traffic_enable, .traffic_disable = rtl931x_traffic_disable, .traffic_get = rtl931x_traffic_get, .traffic_set = rtl931x_traffic_set, .l2_ctrl_0 = RTL931X_L2_CTRL, .l2_ctrl_1 = RTL931X_L2_AGE_CTRL, .l2_port_aging_out = RTL931X_L2_PORT_AGE_CTRL, .set_ageing_time = rtl931x_set_ageing_time, /* .smi_poll_ctrl does not exist */ .l2_tbl_flush_ctrl = RTL931X_L2_TBL_FLUSH_CTRL, .exec_tbl0_cmd = rtl931x_exec_tbl0_cmd, .exec_tbl1_cmd = rtl931x_exec_tbl1_cmd, .tbl_access_data_0 = rtl931x_tbl_access_data_0, .isr_glb_src = RTL931X_ISR_GLB_SRC, .isr_port_link_sts_chg = RTL931X_ISR_PORT_LINK_STS_CHG, .imr_port_link_sts_chg = RTL931X_IMR_PORT_LINK_STS_CHG, /* imr_glb does not exist on RTL931X */ .vlan_tables_read = rtl931x_vlan_tables_read, .vlan_set_tagged = rtl931x_vlan_set_tagged, .vlan_set_untagged = rtl931x_vlan_set_untagged, .vlan_profile_dump = rtl931x_vlan_profile_dump, .vlan_profile_setup = rtl931x_vlan_profile_setup, .vlan_fwd_on_inner = rtl931x_vlan_fwd_on_inner, .stp_get = rtl931x_stp_get, .stp_set = rtl931x_stp_set, .mac_force_mode_ctrl = rtl931x_mac_force_mode_ctrl, .mac_port_ctrl = rtl931x_mac_port_ctrl, .l2_port_new_salrn = rtl931x_l2_port_new_salrn, .l2_port_new_sa_fwd = rtl931x_l2_port_new_sa_fwd, .mir_ctrl = RTL931X_MIR_CTRL, .mir_dpm = RTL931X_MIR_DPM_CTRL, .mir_spm = RTL931X_MIR_SPM_CTRL, .mac_link_sts = RTL931X_MAC_LINK_STS, .mac_link_dup_sts = RTL931X_MAC_LINK_DUP_STS, .mac_link_spd_sts = rtl931x_mac_link_spd_sts, .mac_rx_pause_sts = RTL931X_MAC_RX_PAUSE_STS, .mac_tx_pause_sts = RTL931X_MAC_TX_PAUSE_STS, .read_l2_entry_using_hash = rtl931x_read_l2_entry_using_hash, .write_l2_entry_using_hash = rtl931x_write_l2_entry_using_hash, .read_cam = rtl931x_read_cam, .write_cam = rtl931x_write_cam, .vlan_port_keep_tag_set = rtl931x_vlan_port_keep_tag_set, .vlan_port_pvidmode_set = rtl931x_vlan_port_pvidmode_set, .vlan_port_pvid_set = rtl931x_vlan_port_pvid_set, .trk_mbr_ctr = rtl931x_trk_mbr_ctr, .set_vlan_igr_filter = rtl931x_set_igr_filter, .set_vlan_egr_filter = rtl931x_set_egr_filter, .set_distribution_algorithm = rtl931x_set_distribution_algorithm, .l2_hash_key = rtl931x_l2_hash_key, .read_mcast_pmask = rtl931x_read_mcast_pmask, .write_mcast_pmask = rtl931x_write_mcast_pmask, .pie_init = rtl931x_pie_init, .pie_rule_write = rtl931x_pie_rule_write, .pie_rule_add = rtl931x_pie_rule_add, .pie_rule_rm = rtl931x_pie_rule_rm, .l2_learning_setup = rtl931x_l2_learning_setup, .l3_setup = rtl931x_l3_setup, .led_init = rtl931x_led_init, };